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Abstract—Software-Defined Networking (SDN), which sepa-
rates the control plane and data plane, is a promising new
network architecture for the Future Internet. OpenFlow is the
de facto standard which defines the communication protocol
between the controller and switches. The most challenging issue
in OpenFlow switches is the lookup of multiple OpenFlow tables.
The lookup of OpenFlow tables is so complicated that the state-of-
the-art research are still focusing on the design of lookup pipeline
architecture, and there is no specific algorithm for the lookup
of OpenFlow tables. In this paper, we revise the long-pipeline
architecture of OpenFlow 1.4 to a 5-stage pipeline architecture
to make a trade-off between flexibility and implementability, and
decompose the lookup of OpenFlow tables into three kinds of
lookup: longest prefix matching (IP lookup), multi-field matching
(packet classification), and exact matching. Then we design new
algorithms for packet classification, because the state-of-the-art
solutions for them seldom support fast update which is highly
demanding for OpenFlow. The other two kinds of lookups can
be well handled by state-of-the-art. Experimental results show
that our proposed algorithms work excellently, and outperform
state-of-the-art solutions.

I. INTRODUCTION

A. Background and Motivation

In recent years, Software-Defined Networking (SDN) is

proposed to separate the control plane and data plane of

routers. The control planes are centralized and named as

controller. The data planes are distributed and named as

switch. OpenFlow is the de facto standard which defines the

communication mechanism and message format between the

controllers and the switches.

In OpenFlow switches, the most challenging issue is the

lookup of OpenFlow tables. As shown in Figure 1, OpenFlow

switch specification 1.4 defines an architecture with many

pipeline stages, each of which holds one flow table [1]. One

incoming packet could be checked by multiple flow tables.

Such a long-pipeline architecture is difficult to implement in

practice. The state-of-the-art solution is still designing the
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lookup architecture [2], and there is no well-known specific

lookup algorithm for OpenFlow tables.

To address the problem of OpenFlow tables lookup, two

harsh requirements must be satisfied. First, the lookup ar-

chitecture should be implementable in practice. Second, the

lookup algorithms for any kinds of OpenFlow tables should

be fast and support fast incremental update.

OpenFlow 1.4 defines the long-pipeline architecture, which

is hard to implement in practice, because there could be many

different OpenFlow tables in one switch. Among so many

OpenFlow tables, the lookup of Forwarding Information Bases

(FIBs) and packet classifiers are two most challenging issues.

Although there are various solutions, very few algorithms for

FIB support fast lookup and fast update at the same time,

and almost no algorithms for classifier supports incremental

update. In sum, prior art do not satisfy the above two require-

ments.

B. Proposed Solutions

First, we observe that although there could be many Open-

Flow tables, most packets only need to query a few of them.

Based on this observation, we propose to divide the tables

into several groups, at most one table in each group will

be queried. Then we put the tables belonging to the same

group in the same pipeline stage. In this way, the long-pipeline

architecture is changed into a short-pipeline one at the cost of

losing little flexibility. Among various OpenFlow tables, the

most difficult problems are to lookup the FIBs and classifiers.

For the lookup of FIB (also known as IP lookup), we use the

SAIL L algorithm [3] to perform fast lookup and fast update.

Second, we propose a Bloom filter intersection algorithm

for packet classification. We first decompose the lookup of

classifiers into per-field lookup, and then use Bloom filter to

compute the intersection of all the per-field outputs. The per-

field lookup of classifiers can be divided into three categories:

Prefix Matching (PM) for the source and destination IP ad-

dresses, Range Matching (RM) for the source and destination

ports, and Exact Matching for the protocol type. For PM, we

use SAIL L to achieve fast lookup and update. For RM, we

propose a scheme named full range coding to support

fast lookup and propose a scheme named Common Prefix
Matching (CPC) to support update. EM can be simply

solved by hash tables.



Third, there are frequent AND and OR operations of Bloom

filters in our scheme. To speed up such operations, we propose

to use SIMD (single instruction, multiple data) by taking ad-

vantage of CPU pipeline technique. Specifically, we make use

of eight 128-bit registers to perform AND and OR operations

of Bloom filters in the CPU pipeline.

Paper organization. The rest of the paper proceeds as fol-

lows. In section II, we present our short-pipeline architecture

for OpenFlow tables. A set of algorithms for packet classi-

fication in section III. Section IV shows the implementation

details of our algorithms. We present experimental results in

section V. Section VI surveys the related work. Finally, we

conclude the paper in section VII.

II. ARCHITECTURE OF OPENFLOW TABLES LOOKUP

A. OpenFlow Switch Specification 1.4

Table #1 Table #2 Table #n

Stage I Stage II
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Fig. 1. Pipeline architecture for the lookup of OpenFlow tables.

An OpenFlow switch holds many tables, such as FIB, ACL,

MAC address, and VLAN tag tables, etc. As shown in Figure

1, given one incoming packet, one or more OpenFlow tables

may need to be queried. The number of alternative fields

increases to 42 in OpenFlow Switch Specification 1.4 [1].

One OpenFlow table could contain one or more fields of

the 42 fields. OpenFlow Switch Specification 1.4 presents a

straightforward solution – assigning one pipeline stage for

each table. The pipeline starts from the first table – table

#1, whether other tables will be used or not depends on the

outcome of the former table. The main disadvantage of this

pipeline architecture is that the number of stages could be too

many to be implemented in practice. To address this issue,

we propose to reduce the number of stages in the following

section.

B. Modified OpenFlow Switch Architecture
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Fig. 2. Modified architecture for the lookup of OpenFlow tables.

In practice, one incoming packet only needs to query a few

OpenFlow tables. Therefore, as shown in Figure 2, we can

classify the tables into several groups, and make sure that

at most one table in a group needs to be checked for one

packet. Then we build one pipeline stage for each group. Note

that the pipeline processing is only allowed to go forward

but not backward. When inserting a new table, we need to

decide which stage/group this table should be inserted into. For

example, given an incoming packet, it should first check the

VLAN tag table in the first stage to decide which classifier in

the second stage should be used, and finally, the corresponding

FIB in the third stages will be queried to decide the egress

port. Generally, five stages are sufficient for most applications.

This architecture significantly reduces the number of pipeline

stages, but could sacrifice a little flexibility because at most

five tables can be queried for a packet. However, it is believed

that well-designed 5-stage tables can satisfy the requirements

of most application scenarios. In other words, this architecture

provides an opportunity to perform efficient lookup and update

of OpenFlow tables by sacrificing little flexibility. Current

commercial SDN switches support such a pipeline design [4].

C. Decomposing OpenFlow Tables Lookup

The OpenFlow tables can be classified into two categories:

single-field tables (e.g., FIBs, MAC tables) and multiple-field

tables (e.g., classifiers). The lookup of single-field tables can

be divided into two categories: Longest Prefix Matching (e.g.,
IP Lookup), and Exact Matching (e.g., MAC address table).

The problem of Exact Matching can be efficiently solved

by hash tables. IP lookup and packet classification are two

classic problems, and various solutions have been proposed.

For the lookup of OpenFlow tables, the update performance is

demanding because the controller could frequently announce

rules to OpenFlow switches. Unfortunately, few IP lookup

algorithms support fast update, and almost no prior packet

classification algorithms supports incremental update. To sup-

port fast lookup and update, we use SAIL L2 for IP lookup

and propose Bloom Filter Intersection (BFI) algorithm for

packet classification, and we name our solution Bloom filter

Intersection (BFI).

III. PACKET CLASSIFICATION

A. Background

Since our scheme for packet classification is based on

BV [5] and its successor ABV [6], we first present some

background details on these two algorithms.

1) BV scheme: Lakshman and Stiliadis [5] proposed the

seminal technique which is commonly referred to as Lucent

bitvector scheme (BV). The technique proceeds in two steps:

First, given a classifier with n rules, for an incoming 5-tuple

tp, BV conducts lookup in every individual field. The lookup

result of each field is recorded in a n−bit bit vector which

is initialized to be all 0s. If tp matches rule ri, the i−th bit

of the bit vector is set to 1. Second, BV makes a bitwise

logical AND (&) of all the bit vectors. The most significant “1”

2The SAIL L algorithm [3] is a cross-platform algorithm which can achieve
fast and constant IP lookup speed and fast incremental update.



bit in the resulting vector corresponds to the highest priority

matching rule. The time and space complexity of searching bit

vectors is O(log2n) and O(F ∗ n2), respectively, where n is

the number of rules and F is the number of fields. Further, BV

proposed a method to reduce the length of bit vectors, while

ABV [6] proposed a better one. The authors also proposed an

optimization for classifiers only with source and destination IP

addresses, which we do not discuss due to space limitation.

BV mainly targets at hardware implementation. The authors

implemented a five-field version in FPGA platform, which

performs one million lookups per second for 512 rules.

2) ABV scheme: The memory usage and lookup speed of

BV scheme can be improved if the length of bit vectors can be

reduced. Baboescu and Varghese proposed the ABV scheme

to aggregate the bit vector [6]. ABV includes two methods.

The first method is called recursive aggregation. For example,

given a 8-bit vector 0000 0101, it can be aggregated by 01,

where “0” means that the first four bits are all “0” bits, and “1”

means that there is at least one “1” bit in the second four bits.

In this way, the length of the bit vector is reduced to 1/4. To

reduce the number of “1” bits in the aggregated bit vector, the

authors proposed the second method – filter rearrangement. It

rearranges the filters which are order-independent to make “1”s

to be relatively intensive, and ultimately reduces the “1”s of

the aggregated bit vector. The first method only works when

the “1” bits are sparse, but the total memory usage of bit

vectors is kept unchanged. The second method comes at a

cost of slowing down the update speed.

We propose to use Bloom filters to replace bit vectors, and

then make the bitwise AND operation of Bloom filters. There is

a widely known property that the maximum number of filters

matching a packet is inherently limited in real filter sets [7].

Therefore, the number of rule IDs inserted into Bloom filters

is much smaller than n, thus the size of Bloom filters is also

much smaller than n, especially when n is large. Further, we

propose to use SIMD to speed up the logical AND and OR
operations. Compared with ABV, our Bloom filter scheme

not only speeds up the query, but also reduces the space

complexity from O(F ∗ n2) to O(F ∗ m ∗ n), where m is

the size of Bloom filters.

B. Proposed Architecture of Packet Classification

A classifier K consists of n rules, denoted by r1, ..., rn.

Each rule consists of F fields and corresponds to an action.

Each rule associates with a priority. When multiple rules are

matched, the action of the rule with the highest priority is

executed. One commonly used method is to let the rule with

smaller ID have higher priority.

In this section, we proposed a solution named Bloom Filter

Intersection (BFI) [8], [9] for packet classification. Figure 3

shows an example of the architecture of our BFI solution for

5-tuple classifiers. Our solution proceeds in five steps. First,

we split the classifier K with F fields into F per-field tables.

We conduct lookup in every per-field table, and report the IDs

of matched rules (ID set). Second, we build one Bloom filter

(BF) for each ID set. Third, we compute the intersection BF by
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Fig. 3. Proposed architecture for packet classification.

making bitwise AND of all BFs. Fourth, we query the smallest

ID set in the intersection BF, and figure out the intersection of

ID sets. Fifth, we perform a second confirmation by comparing

the packet head with the matched rules one by one, and then

output the smallest rule ID.

For the lookup of per-field tables, there are three kinds of

matching: Prefix Matching (PM), Range Matching (RM), and

Exact Matching (EM). Different from Longest Prefix Matching

(LPM), PM reports all the matched prefixes. EM is simple and

thus we do not discuss it in this paper.

PM or LPM are well-studied problems. The recent works

are multi-core solutions [10], FIB compression [11] and SAIL

algorithms [3]. We use the SAIL L algoirthm to address the

PM problem. For the RM problem, there are two typical

algorithms: binary code [12] and gray code [13], [14]. Unfor-

tunately, both of them cannot support fast incremental update.

To address this issue, we propose the common prefix coding

scheme, namely CPC, to support fast update.

Next, we present three key schemes of our BFI solution:

overlapped pushing, CPC and Intersection BF.

C. Overlap Pushing Scheme

Note that searching the fields of sIP and dIP is a PM

problem rather than an LPM problem. Therefore, we propose a

pushing method – Overlap Pushing. The only difference

of overlap pushing and conventional pushing is that, using

overlap pushing, those nodes which are pushed to level 16,

24 or 32 will inherit all next hops in the pushing path of the

chunk. After overlap pushing, each prefix node at level 16, 24,

or 32 has a next hop array, which stores multiple rule IDs, and

then we can build a vector and a Bloom filter for those prefix



nodes. The lookup and update methods of overlap pushing

scheme are similar to that of conventional pushing.

D. Full Range Coding and CPC Scheme
The industry standard of classifiers is that only source and

destination ports are represented by ranges [15]. Although the

source and destination ports only range from 0 to 65535, it

is the main reason of causing an entry explosion for TCAM

(Ternary Content Addressable Memory) based solutions. There

are three well-know range coding schemes: binary code [12],

gray code [13] and RFC code [16]. Binary code and gray

code can alleviate the entry explosion to some extent. RFC

code first splits the whole range into i small ranges, and

then builds one bitmap with n bits for each range, where

n is the number of rules. This method is not suitable for

TCAM but for software. The main shortcoming is too much

memory usage. Unfortunately, all of them cannot support fast

incremental update. Adding a large range will cause a large

number of entry updates. To conduct fast range lookup and

update, we propose a coding scheme named common prefixes

coding (CPC in short) algorithm.
1) Full Range Coding: Because both source port and

destination port range from 0 to 65535. Thus we propose

to use a straightforward solution, namely Full Range Coding

for convenience: building a full array Rg[65536] with 65536

elements, each element includes a set of IDs. Given an

incoming port i, the matched IDs are stored in Rg[i]. For

example, Rg[5] = #3, 7, 9 means rules 3, 7 and 9 include

the port 5. In this way, we can directly get the address of the

matched ID set. Further, We can build a small BF for each ID

set.
Full Range Coding can achieve fast lookup speed, but brings

difficulties for incremental update. In this section, we propose

an algorithm named CPC to minimize the update overhead.
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Fig. 4. Coding the Ranges.

2) CPC Scheme: Definition I: prefix of a range. Given a

range [a, b] (0 � a, b � 65535), we define pre(a, b) as the

longest common binary prefix of a and b, while a
and b are represented by 16-bit binary digitals.

For example, given a range [10011, 10100], then the prefix

of this range pre(10011, 10100) is 10.

Theorem 3.1: Given any two ranges: [a, b] and [c, d], if they

have no intersection, then their common prefixes are different,

i.e., pre(a, b) �= pre(c, d).
Proof: Assume pre(a, b) = pre(c, d) = p, and we assume

the length of p is l. The (l + 1)-th bit of a and b must be

0 and 1, because p is their longest common binary prefix.

Thus a and b can be represented by p0∗, and p1∗. Since we

assume pre(a, b) = pre(c, d), for the same reason, c and d
can also be represented by p0∗, and p1∗. In this case, the

digital with prefix p1 and other bits all 0s – p1000... must

be in range p0∗ ∼ p1∗. In other words, p1000... ∈ [a, b]
and p1000... ∈ [c, d]. This contradicts with the premise of no

intersection. Therefore, the assumption pre(a, b) = pre(c, d)
does not hold, i.e., pre(a, b) �= pre(c, d).

3) Construction of CPC: As shown in Figure 4, the con-

struction of our CPC scheme proceeds in the following steps.

First, we record all the ranges of the classifier, and suppose we

get g0 ranges. Such g0 ranges divide the whole range [0,65535]

into g non-overlapping sub-ranges. Second, we represent all

the g ranges by their common prefixes, and there will be

g prefixes. These prefixes can be represented by a 16-bit trie,

and we call it CPC trie for convenience. Specifically, given

any small range [a,b]:IDs, we compute pre(a, b), and insert a

node corresponding to pre(a, b) into the CPC trie, and set the

data field to [a,b]:IDs.

Given a port i, which one of the g ranges contains i? The

answer is very interesting, we can lookup i in the CPC trie,

and the longest matched prefix represents the matched range.

In other words, the initial version of CPC scheme converts

range matching into LPM.

Note that the CPC scheme is proposed to only assist the

update of Full Range Coding, thus we show the update

mechanism as follows.

4) Using CPC trie to Assist Range Updating: When in-

serting a new range [a,b]:id, one straightforward solution is

to update those ranges which have intersections with [a,b]:id.

Obviously, updating so many ranges will degrade the update

performance. To minimize the update overhead, we propose to

first compute pre(a, b), and then only insert the corresponding

node into the CPC trie. In this way, the lookup no longer

follows the LPM rule but follows the PM rule. The lookup

must check all the matched prefixes to judge whether the

incoming port is in the ranges stored in the prefix node,

and then returns all the matched IDs. When deleting a range

[a,b]:id, we do not actually perform deletion, but insert [a,b]:-

id instead. When the accessed CPC trie node has a minus ID,

this means the ID is already deleted.

Because the ranges are initially coded by our Full Range

Coding method, thus the number of prefixes in the CPC trie

is equal to the number of insertions. For the lookup of CPC

trie, we can just lookup the CPC trie using CPUs, and we

can also use FPGA to accelerate the lookup speed, given the

CPC trie is usually small enough to be held in the on-chip

memory of FPGA. Using FPGA, one lookup of CPC trie can

be achieved in one clock cycle when pipelining. The worst

case update is 16 memory accesses. When there is an update



burst, the update performance can be regarded as O(1) because

the update handling is also pipelined during burst. After long-

term updating, the size of the CPC trie may be too large to

be held in the on-chip memory of FPGA, in this case, we

can perform one re-construction using the Full Range Coding

scheme to empty the CPC trie.

E. Results Intersection

1) Intersection Bloom Filter: We analyze the problem of

results aggregation of all per-field results in this section. This

is the same as the problem of sets intersection. Therefore, we

state the problem as: given c sets, each set has ni (1 ≤ i ≤ c)
elements, what is the intersection of the c sets? We propose

to use Bloom Filters [8], [17] (BF in short) to address this

problem. And the solution has three versions as follows.

1. &BF. The straightforward solution is to build Bloom

Filters for sets, and then AND them, thus we call it &BF.

Specifically, given c− 1 sets: S1, S2...Sc−1, &BF first builds

c− 1 Bloom Filters: BF1, BF2...BFc−1 using the same k hash

functions and the same amount of memory – m bits. Then

&BF makes a bitwise AND operation for all the c−1 BFs and

obtains the resulting BF, namely BFc−1. Last, it queries BFc−1

using all the elements of Sc , and then outputs the elements

when BFc−1 reports true. This version is simple and fast, but

there is room for improvement.

2. Version I – Selected &BF. Compared with &BF, our

first version adds an additional selection operation, thus we

call it Selected &BF. The Selected &BF scheme proceeds in

the following four steps. First, Selected &BF constructs one

BF per set. Second, it makes a bitwise AND of all the c BFs,

and gets a resulting BF – BFc. Third, it queries BFc using the

smallest set.

Here we compare the size of intersection result of &BF and

Selected &BF. First, FPR comparison. Note that BFc is the

result of BFc−1&BFc, thus there are fewer 1s in BFc. That is

to say, the FPR of BFc is smaller than that of BFc−1. &BF uses

BFc−1 and Selected &BF uses BFc, thus Selected &BF has

smaller FPR. Second, querying sets comparison. &BF checks

all the elements of the last set, where the last set is not always

the smallest. In contrast, Selected &BF checks all the elements

of the smallest set. In conclusion, Selected &BF outputs a

smaller intersection than &BF.

3. Version II – Priority Selected &BF. To further minimize

the query overhead, besides choosing the smallest sets, we

figure out the largest one of minimal ID in each ID set, we

name it maxFi=1{minID∈Si
{ID}}. For the smallest ID set,

we only check those IDs which are equal to or larger than

maxFi=1{minID∈Si
{ID}}. Note that we will sort the element

(ID) in ascending order during the insertion, and always query

the ID from the smallest one.

4. Using Different k for Different Priorities. After the

intersection BF reports the matched IDs, we need to make a

second confirmation from the rule with highest priority (i.e.,
smallest ID). If the rules with higher priority have smaller

FPR, the number of second confirmations can be reduced.

Therefore, during the construction of Bloom Filters, we assign

more hash functions for smaller IDs. One simple approach is

that: Given an ID id and k0 independent hash functions, we

assign the first k0 − �log2 id� hash functions for it.

A similar idea proposed by Li et al.. is multi-class Bloom

Filter [18], it chooses the number of hash functions k based

on the probability of each element to be inserted into the

Bloom Filter. In other words, multi-class BF chooses k by

the probability that elements appear, while our improved BF

chooses k by the priority of elements.

2) The Formula of Intersection of Bloom Filters: The false

positive rate of the intersection of Bloom Filters can be

computed by the following theorem.

Theorem 1: Given two sets S1 with n1 elements and S2
with n2 elements. We build two Bloom Filters (BF1 for S1 and

BF2 for S2) using the same k independent hash functions. The

size of both BF1 and BF2 is m bits. We make bitwise AND
operation of BF1 and BF2, and we name the resulting BF as

rBF. Let f1, f2 and fr represent the FPR of BF1, BF2 and

BFr. It can be concluded that fr = f1 ∗ f2.

Proof: We define p′ as the probability that one bit

(suppose it is at position i) is 0 in rBF. There are two cases:

Case I: the bit at position i is zero in both BF1 and BF2.

For an arbitrary element e in S1 or S2, if hi(e) does not point

to i, then the bit at position i is still zero. The probability is

p′I =

(
m− 1

m

)k(n1+n2)

=

(
1− 1

m

)k(n1+n2)

(1)

Case II: the bit at position i is zero in one BF of BF1 and

BF2. The probability is

p′II =

(
1−

(
m− 1

m

)kn1
)(

m− 1

m

)kn2

+

(
1−

(
m− 1

m

)kn2
)(

m− 1

m

)kn1
(2)

Obviously, p′ = p′I + p′II , therefore, we have

1− p′ = 1− p′I − p′II

= 1 +

(
m− 1

m

)k(n1+n2)

−
(
m− 1

m

)kn1

−
(
m− 1

m

)kn2

=

(
1−

(
1− 1

m

)kn1
)

∗
(
1−

(
1− 1

m

)kn2
)

(3)

And finally, the false positive rate of the intersection BF is

given by the following equation.

f = (1− p′)k

=

(
1−

(
1− 1

m

)kn1
)k

∗
(
1−

(
1− 1

m

)kn2
)k

= f1 ∗ f2

(4)



Note that the above derivation of FPRs is based on the

original Bloom’s FPR formula [8], which was claimed to

be flawed by Bose et al. [19] and Christensen et al. [20].

However, both studies pointed out that the error of Bloom’s

formula is negligible, especially when m is large, thus we still

use Bloom’s formula in this paper.

3) Second Confirmation after the Report of Bloom Filters:
The Bloom filters will report which IDs are matched. If false

positives occur, we need to make a second confirmation. The

method proceeds in the following three steps. First, we store

all rules in advance in the format of bit arrays. Given one

5-tuple rule, we combine sIP, dIP and protocol into a 72-bit

array (Arr72 in short), note that the “*”s are replaced by

1s. At the same time, we constitute the corresponding 72-bit

mask (Mask72 in short). Note that the if the mask is 3, we

use 0001111111.... to represent it. Second, given an incoming

packet, we combine its sIP, dIP, and protocol into a 72-bit

array (incoming72), then we compute “(incoming72
OR mask72) XOR Arr72”, if the result is 0, go to the

third step; otherwise, report false. Third, we check whether the

source and destination ports of the incoming packet match the

rule by simple comparison. If the result is negative, we check

the next rule. Otherwise, we report the ID, and algorithm ends.

IV. IMPLEMENTATION

Since our algorithm needs frequent bitmap operations, we

propose to use SIMD to accelerate the speed of logical AND
and OR of bitmaps. We also show how to use FPGA to

accelerate the update speed of our BFI scheme.

A. using SIMD on CPU Platform

The bottleneck of our BFI algorithm is the AND operation

of Bloom filters. To address this issue, we propose to use

Single Instruction Multiple Data (SIMD) [21] to speed up

such operations. The first instance of SIMD extensions to

the ×86 architecture was called MMX in 1995. Eight 128-

bit registers (XMM0 ∼ XMM7) are added to the later SIMD

extensions (SSE, SSE2, and SSE3). The SIMD operation

enables processing of multiple data with a single instruction,

which means that they are faster although they take more clock

cycles to execute than a simple ×86 operation.

We can also take advantage of CPU pipeline technique.

Operations of modern processors are broken into multiple

micro operations (μ-ops). Each single μ-op takes 1 cycle

to execute. Suppose we want to do two subsequent AND
operations:

pand A, B;

pand C, D;

Each pand operation takes t μ-ops. CPU does not wait t μ-ops

for the first operation and then work on the second operation.

If the pand operation needs to wait v cycles(usually much less

than t) before handing the next instruction in the pipeline, then

two pand operations only take t+ v cycles.

In our scheme, we need to perform frequent logical AND and

OR operations on Bloom filters. Thus we propose to use SIMD

and the CPU pipeline technique to speed up such operations.

TABLE I
THE ASSEMBLY CODE OF BITWISE AND OF BIT VECTOR A AND B.

Coding schemes
asm

{
mov edi, A;
mov esi, B;
mov ecx, counter;
jmp ZERO1;

Loop1:
movapd xmm0, [edi];
movapd xmm1, [edi + 16];
...
movapd xmm7, [edi + 112];

pand xmm0, [esi];
pand xmm1, [esi + 16];
...
pand xmm7, [esi + 112];

movapd [edi], xmm0;
movapd [edi + 16], xmm1;
...
movapd [edi + 112], xmm7;
add edi, 128;
add esi, 128;

ZERO1:
dec ecx;
jns Loop1;

}

Taking a simple example, given two bit vectors A and B, we

show the assembly code of bitwise AND of vectors A and

B in Table I. The assembly code proceeds in the following

steps. First, we copy each 128 bits of A to 8 registers (XMM0

∼ XMM7). Second, we perform AND operation in the above

registers in parallel. Third, we go to the next loop till all the

bits of both A and B are processed. In this way, currently we

can make bitwise AND for two 128*8-bit vectors almost in

one cycle. In other words, this approach extends the size of

a machine WORD from 64 bits to 1024 bits. The width of

the SIMD registers is increased to 512 bits, and the number is

increased to 32 (ZMM0 ∼ ZMM31). It is supported by Intel’s

Knights Landing processor. Thus our scheme can be further

improved.

B. Implementation on FPGA Platform

Although our BFI scheme can perform excellently only

using CPUs, it provides the opportunity to accelerate the

update speed when using FPGA.

During the update process, we build two CPC tries for

the fields of sport and dport. Similar to prior SRAM-pipeline

scheme for IP lookup, we build one stage per level in the on-

chip memory of FPGA. Because we only store the insertion

of update messages in the CPC trie, and each CPC trie has

only 16 levels. When the input packets are continuous, such

pipelined stages works, the system throughput is equal to

that of system frequency. We carry out the FPGA simulation

for Virtex-7 (model XC7VX1140T) using Xilinx ISE 13.2



IDE., the integration simulation results of 10K rules shows a

minimum clock period of 3.79ns, i.e., a maximum frequency

of 264 MHz.

V. EXPERIMENTAL RESULTS

Since we decompose the lookup of openflow tables into

three kinds of lookups: exact matching (EM), longest prefix

matching (LPM), and packet classification. EM can be well

handled by hash tables, and we use SAIL L to deal with

LPM, thus we only show the experimental results of packet

classification in this section.

A. Experimental Setup

Synthetic classifiers and traffic: To test the performance of

our algorithm and prior art, we use the synthetic rule generated

by the well-known ClassBench [22]. In our experiments, the

rules we have used contain Accesses Control List (ACL),

Firewall (FW) and IP Chain (IPC). The size of rule sets ranges

from 100 to 10000. Given we can hardly access to real-world

classifiers, the seed file which ClassBench provided can make

the performance as close to practice as possible.

Computing platform: We carry out our experiments on a

desktop computer equipped with a Pentium (R) Dual-Core

CPU 5500@2.80GHz and 8GB Memory running Windows 7.

Source codes: The source codes of SAIL L, Lulea,

TreeBitmap, LC-trie were downloaded from [23]. The source

code of BV was downloaded from [24], and we implemented

ABV by ourselves. We obtain the source code of efficut and

hypercut written by the authors.

B. Experiments on Packet Classification

We compare our scheme BFI with the well-known software

algorithms: BV [5], ABV [6], hypercuts [25], efficuts [26]. The

source code of hypersplit released by the authors [27] does

not always output the correct rule ID, thus is not compared

with our algorithm. The Hicut [28] takes more than 20 hours

to build the decision tree for large rule sets, thus is also

not compared with our algorithm. BV and ABV support

incremental updates at the cost of huge memory consumption

and low lookup speed, while hicuts, hypercuts, efficuts, and

hypersplit can achieve relatively high lookup speed at the cost

of not supporting incremental update.

To make a fair comparison among these well-known al-

gorithms, we produce different types of rules and the corre-

sponding traffic traces using ClassBench [22], and then test

their lookup speed. There is no update trace available and

ClassBench cannot produce updates, thus we will evaluate the

update performance of packet classification algorithm in the

future work.

The experimental results of lookup speed are shown in

Figure 5. The x-axis represents the rule set. In this class bench,

there are three kinds of rules: ACL rules (ACL), fireware rules

(FW), and IPC rules (IPC). We carry out the experiments

on these three kinds of rules with the size of 100, 1000,

and 10000, respecitively. As shown in Figure 5, for example,

ACL100 2 refers to the second sample of ACL rule set with

100 rules, and IPC1000 3 referes to the third sample of IPC

rules. We use the corresponding traffic traces to lookup the rule

set, and the y-axis represents the lookup speed, where Mpps

means Million packets per second. It can be observed that our

BFI algorithm outperforms prior art significantly. Specifically,

our experimental results show that BFI achieves 10.6∼21.7,

7.4∼8.4, 14.8∼19.4, and 14.1∼24.9 times faster lookup speed

compared to BV, ABV, EffiCut, and HyperCut, respectively.

The experimental results of update speed are shown in

Figure 5. The x-axis represents the rule set. Results show that

the update speed of BFI ranges from 1100 to 1400 updates per

second. We do not compare with other packet classification

algorithms, because their source codes do not include the

update algorithm.

VI. RELATED WORK

We survey the related work from the following three aspects:

openflow table lookup, IP lookup, and packet classification.

A. OpenFlow Tables Lookup
For the lookup of OpenFlow table, given an incoming

packet, the packet head could be checked by several tables,

such as FIB, classifier, MAC tables, etc. The lookup of

OpenFlow tables is the most challenging issue in OpenFlow

switches, and state-of-the-art work that design a SDN-specific

switching chip [2] are not finished yet. There is still no well

known specific algorithm for the lookup of OpenFlow table.

B. IP Lookup

IP lookup is a well-studied problem, and there are various

software based and hardware based algorithms. Here we only

survey the typical RAM based algorithms. The SIGCOMM’97

best paper proposed Lulea algorithm [29], constructing very

small lookup tables using bitmap mechanism, and thus can

perform fast lookup due to the cache mechanism of CPUs.

We here introduce two deployed algorithms: Tree Bitmap and

LC-trie. Tree Bitmap [30] is adopted by Cisco, and LC-trie

[31] is adopted in Linux Kernel [32]. Two recent works are

the multi-core algorithm [10] and SAIL algorithms [3]. One

elaborate survey can be found in [33].

C. Packet Classification
Packet classification algorithms can be classified into two

main categories: algorithmic (usually using RAM) solutions

and TCAM-based solutions. Two excellent survey papers can

be found in [7], [34].

TCAM based solutions are the de facto standard in the in-

dustrial field. All the rules are stored in TCAM and compared

in parallel, the result thereby can be obtained only in one

clock cycle [35]–[37]. The shortcomings of TCAM are the

high cost and high power consumption, and hard to perform

range matching. Binary code [12] and gray code [13] were

proposed to enable TCAM support range matching at the

cost of entry explosion: one range of W bits is coded to

2W − 2 and 2W − 4 entries in the worst case, respectively.

Further improvements proposed by Rottenstreich et al. [38],

[39] can relieve the entry explosion at the cost of changing the

conventional TCAM architecture. The inherent shortcoming of

above coding schemes is the slow update performance.
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(d) Using 100 firewall rules.
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(f) Using 10000 firewall rules.
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(g) Using 100 IP chain rules.

IPC1000_1 IPC1000_2 IPC1000_3
0.0

3.0

6.0

9.0

Lo
ok
up
sp
ee
d
(M
pp
s)

Rule set

BFI BV ABV
EffiCut HyperCut
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Fig. 5. Lookup speed of packet classification algorithms.
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Algorithmic solutions are often implemented in software.

Even when the regions of each field are non-overlapping, the

best bounds [40] for software solutions are: either O(n ∗ F )
space and O(logn) time or O(n) space and O(logF−1n)
time, where n is the number of rules and F (≥ 3) is the

number of fields. This indicates software solutions suffer either

high time complexity or high space complexity. However,

Gupta and McKeown introduced a new direction into packet

classification research [16] – looking for heuristics that work

well on common rule sets. The authors presented the most

well known observations regarding the characteristics of real

filter sets. After that, most RAM based solutions for faster

lookup focus on leveraging the characteristics of real filter sets.

Other important observations on real classifiers include [41]–

[43]. The observation [15] is that most rules in a classifier

are order-independent. In summary, prior software solutions

cannot achieve fast search speed when the real classifier does

not have the corresponding characteristics. Our BFI algorithm

is independent with the characteristics of classifiers.

Other algorithmic solutions include decision trees, bit vec-

tors, and cross-producting. Hicuts [28] is the seminal tech-

nique of decision tree based solutions, its successors includes

hypercuts [25], hypersplits [44], efficuts [26], etc. These

solutions seek for various optimization methods to reduce

the memory usage and depth of the decision tree. Peng He

et al. found that the performance of the above decision tree

based solutions varies a lot for the same size classifiers with

different characteristics [45]. Bit vector schemes include BV

[5] and ABV [6] which are detailed before. Cross-producting

[16] scheme first searches per-field tables, and then outputs

the results of via the lookup of one or more huge cross-

producting tables. Improvement to speed up each table lookup

is proposed in [46]. The advantage of the cross-producting

schemes is fast lookup speed, while the main shortcomings are

the huge memory usage and requirement for re-construction

when updating.



VII. CONCLUSION

The key contributions of this paper lie in the following

aspects. First, we modify the long-pipeline architecture of

OpenFlow switch specification into a short one, so as to make

the lookup of OpenFlow tables implementable. Second, for

the packet classification, we propose the BFI algorithm and

a set of optimizations (including overlap pushing, full range

coding, and CPC) to achieve fast lookup and update. Third, we

propose to use SIMD to speed up the AND and OR operations

of Bloom filters. Experimental results show that our proposed

solutions significantly outperform state-of-the-art solutions.
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