
BurstBalancer: Do Less, Better Balance for
Large-scale Data Center Traffic

Zirui Liu∗, Yikai Zhao∗, Zhuochen Fan∗, Tong Yang∗†, Xiaodong Li∗, Ruwen Zhang∗, Kaicheng Yang∗,
Zheng Zhong∗, Yi Huang‡, Cong Liu‡, Jing Hu‡, Gaogang Xie§ and Bin Cui∗

∗School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,
Peking University, Beijing, China †Peng Cheng Laboratory, Shenzhen, China ‡Huawei Technologies §CNIC CAS

Abstract—1 Layer-3 load balancing is a key topic in the
networking field. It is well acknowledged that flowlet is the
most promising solution because of its good trade-off between
load balance and packet reordering. However, we find its one
significant limitation: it makes the forwarding paths of flows
unpredictable. To address this limitation, this paper presents
BurstBalancer, a simple yet efficient load balancing system
with a sketch, named BalanceSketch. Our design philosophy is
doing less changes to keep the forwarding path of most flows
fixed, which guides the design of BalanceSketch and balance
operations. We have fully implemented BurstBalancer in a small-
scale testbed built with Tofino switches, and conducted large-scale
NS-2 simulations. Our results show that BurstBalancer achieves
5%∼35% smaller FCT than LetFlow in symmetric topology and
up to 30× smaller FCT in asymmetric topology, while 58× fewer
flows suffer from path changing. All related codes are open-
sourced at Github2.

I. INTRODUCTION

A. Background and Motivation
In typical data center networks, many candidate paths exist

between any server pair. How to evenly allocate the traffic to
these candidate paths is well known as the layer-3 (L3) load
balance. L3 load balance has been acknowledged as one key
topic in the networking field for many years [1]–[7].

There are three types of L3 load balancing schemes. First,
packet-level load balancing schemes [8]–[16] select a path
for each packet and achieve perfect traffic split. However,
they suffer from serious reordering problems when the delay
of candidate paths has a large difference. Second, flow-
level load balancing schemes [17]–[28] assign one path to
all packets of each flow. They avoid packet reordering, but
cannot well balance the traffic due to the skewed distribution
of flow sizes and hash collisions among large flows [29].
Third, flowlet-level load balancing schemes [30]–[36] make
the trade-off between minimizing packet reordering and evenly
balancing traffic. In their design, the packets of a flow are
divided into many groups, where the time interval between
any two adjacent groups is larger than a predefined threshold
δ. Each group of packets is called a flowlet [30]. It is well
acknowledged that flowlet is the most promising solution
because of its good trade-off between packet reordering and

1Co-primary authors: Zirui Liu, Yikai Zhao, and Zhuochen Fan. Corre-
sponding author: Tong Yang (yangtongemail@gmail.com).

2https://github.com/BurstBalancer/Burst-Balancer

load balance [36]–[40]. However, they cannot precisely detect
flowlets using small memory, and make a lot of unnecessary
manipulation: 1) The forwarding paths of the flows are unfixed
and unpredictable, while being aware of the paths is essential
for network measurement and management. 2) Due to the
limited memory on hardware and large concurrent flows,
they inevitably regard multiple flows as one flow, leading
the number of flowlets decreases a lot. 3) They unnecessarily
divide small flows into many flowlets, increasing the risk of
packet reordering.

Although existing load balancing schemes have made ex-
cellent contributions, they do not consider the flow-regulation
of the network. Flow-Regulation means that given a flow ID,
its forwarding path can be easily calculated, and does not
change with time. In most existing schemes, the forwarding
path of a flow is unfixed and unpredictable, which brings
great challenges for network management and optimization.
Intuitively, if most members of a group follow a simple rule,
then the management of this group would be simple. For
many network operations, such as network diagnosis [41]–
[44], congestion control [45]–[50], network measurement and
management [42], [51]–[59], it is often assumed or expected
that the forwarding paths of most flows can be obtained
easily. For example, the well known 007 system [44] is
designed for a network where all flows use ECMP. It needs
the forwarding paths of flows to locate the congested link. If
the forwarding path of flow changes rapidly and randomly,
007 cannot pinpoint the congested link timely and accurately,
resulting in unreliable diagnose results. For another example,
the pioneering work using INT for congestion control, HPCC
[49], uses the link load information to adjust the sending rate
of flows. If the forwarding paths of flows are fixed, HPCC
works excellently; but otherwise, the link load information
cannot match the culprit flow, so the advantages of HPCC
cannot be guaranteed. Therefore, we want a solution that can
not only balance the traffic well, but also keep the network
traffic following the flow rule as much as possible. The ideal
solution should manipulate as few packets/flows as possible.
B. Our Proposed Solution

Towards the above goal, we propose BurstBalancer, an
efficient load balancing system, with the aim of manipulating
only a small number of critical flowlets, namely FlowBursts.
In BurstBalancer, most flows follow ECMP [17] and we can

https://github.com/BurstBalancer/Burst-Balancer

easily get their forwarding paths. BurstBalancer devises a
sketch, namely BalanceSketch, and deploys it on each switch
to detect and make forwarding decisions for each FlowBurst.
BurstBalancer only needs small on-chip memory to keep
critical flowlets (FlowBursts), and thus perfectly embraces the
highly skewed flow distribution [60]–[64]. Further, BurstBal-
ancer only manipulates the critical flowlets which are very
limited in number, minimizing packet reordering. In addition,
BurstBalancer is easy to implement without any changes
to end-hosts or protocol stacks, and can be incrementally
deployed in existing networks.

The design philosophy of our BurstBalancer is doing less
manipulations while better balancing the traffic, which is
guided by the well-known Occam’s Razor principle: entities
should not be added beyond necessity. The philosophy of
doing less includes two dimensions based on our two key
observations. The first dimension of doing less is based on
Observation I: only a minority of flowlets are fast and large
enough to cause load imbalance, and we call these critical
flowlets FlowBursts3. Therefore, we manipulate only critical
flowlets (FlowBursts). For example, in the data center trace
used in our experiments, there are about 27,000 concurrent
flowlets, of which only 1.1% are FlowBurst. Therefore, if
we identify, maintain, and manipulate only FlowBursts, it
is possible to save on-chip memory up to 100 times while
achieving similar load balance performance as those schemes
identifying all flowlets. In this way, we divide all flowlets
into two kinds: FlowBursts and unnecessary flowlets4, and
only manipulate FlowBursts. Detecting unnecessary flowlets
requires huge memory overhead, and manipulating them only
makes the network more chaotic and increases reordering.

The second dimension of doing less is based on Observation
II: It is expensive and unnecessary to accurately detect and
manipulate all FlowBursts. Therefore, we only manipulate
most rather than all FlowBursts. 1) Finding all FlowBursts
is expensive for current hardware resources. 2) Manipulating
most FlowBursts while leaving other FlowBursts to follow
ECMP path can achieve good balance. 3) Finding all Flow-
Bursts needs complicated design of data structure. A strawman
solution to identify FlowBursts is to first identify all flowlets
using existing methods and then check whether the identified
flowlet is a FlowBurst. However, this solution is memory
inefficient because it records the information of all flowlets,
most of which are unnecessary to manipulate. Therefore, we
propose a simple data structure, namely BalanceSketch, to
keep most rather than all FlowBursts (See details in § III)
and evict unnecessary flowlets.

We extensively evaluate BurstBalancer on both small-scale
testbed and large-scale simulation platforms. Our testbed con-
sists of 4 Tofino switches [65] and 8 end-hosts in a leaf-spine
topology. For simulations, we use an event-level simulator
(NS-2 [66]) to test the performance of BurstBalancer in large-

3A formal definition of FlowBurst is provided in § II-A.
4Here, we also give the definition of unnecessary flowlets: 1) flowlets

formed by small flows; 2) flowlets formed by low-density flows (e.g., some
persistent flows that last for long time but send packets at a very slow speed).

scale topologies. Our experimental results show that compared
to LetFlow [31], BurstBalancer better balances the traffic
using smaller memory, while manipulates 58× fewer flows
at the same time. In symmetric topologies, BurstBalancer
achieves 5%∼35% smaller FCT (flow completion time) than
state-of-the-art LetFlow [31] and DRILL [8]. In asymmetric
topologies, BurstBalancer achieves up to 30× smaller FCT
than LetFlow and up to 6.4× smaller FCT than WCMP
[18]. We also conduct CPU experiments, and results show
that BurstBalancer achieves about 90% recall rate in finding
FlowBursts with small memory.

II. BACKGROUND AND RELATED WORK

In this section, we begin with the problem statement of
FlowBurst in § II-A. Then we discuss the related work of
load balance solutions for data center networks in § II-B. The
main symbols used in this paper are shown in Table I.

TABLE I: Symbols frequently used in this paper.
Notation Meaning

δ
Flowlet threshold that spaces two adjacent flowlets or
FlowBursts

V Lower bound of the speed of FlowBurst

F Voting threshold used for identifying flowlets of high
speed and large size

∆
Flow timeout threshold used for identifying whether a
flow ends

l Number of buckets in BalanceSketch
B[i] The ith bucket of BalanceSketch

h(.)
Hash function mapping each flow into one bucket in
BalanceSketch

A. Problem Statement
Network Stream: A network stream is an unbounded timing
evolving sequence of items S = {p1, p2, · · · }, where each item
pi = (fi, ti) indicates a packet of flow fi arriving at time ti.
Flow: A flow consists of packets {p′1, · · · , p′n} sharing
the same flow ID fi, which can be any combination of 5-
tuple: source IP address, source port, destination IP address,
destination port, protocol type.
Flowlet: Given a predefined flowlet threshold δ, a flowlet
refers to a group of continuous packets {p′1, · · · , p′m} of a
given flow fi, such that ∀0 < j < m, tj+1 − tj ≤ δ. This
flowlet is active if |tnow − tm| < δ, where tnow is the current
time, and is outdated otherwise. Intuitively, the packets of a
flow are divided into many groups/flowlets, where the interval
between flowlets is large enough.
FlowBurst: For a flowlet {p′1, · · · , p′m}, we define its size as
m, and define its speed as m

∆T , where ∆T = tm − t1. This
flowlet is a FlowBurst if m

∆T > V and m > ηk, where ηk is
the size of the kth largest flowlet among all active flowlets
whose speed are larger than V . Intuitively, FlowBursts refer
to a particular kind of flowlets that are fast and large enough
to cause load imbalance. For all active flowlets whose speed
exceed a predefined threshold V , we define the flowlets of the
largest k sizes as the FlowBursts.

B. Related Work
Existing load balancing solutions for data centers can be

roughly divided into three classes: packet-level schemes, flow-

2

level schemes, and flowlet-level schemes. For other solutions,
please refer to references [36], [67]–[70].
1) Packet-level schemes. Packet-level schemes [8]–[16]
choose a desirable path for each packet. They achieve the
ideal splitting ratio at the cost of packet reordering. DRILL
[8] makes per-packet decisions at each switch based on local-
queue occupancies and randomized algorithms. Other schemes
include NDP [9], MP-RDMA [10], Fastpass [16], DeTail [15],
QDAPS [11], RMC [12], OPER [13], and DRB [14].
2) Flow-level schemes. Flow-level load balancing schemes
[17]–[28] assign a path to each flow. They avoid packet
reordering but cannot well balance the traffic because of
collisions between large flows. The well-known ECMP [17]
uses flow-level hashing to select a path for each flow, and
achieves excellent performance when there are only small
flows but no large flows [26], [27]. WCMP [18] assigns
each path a weighted cost, and distributes the traffic based
on the cost. Other flow-level schemes include MPTCP [25],
FlowBender [20], and more [19], [21]–[24], [26]–[28], [71].
3) Flowlet-level schemes. Flowlet-level load balancing
schemes [30]–[36], [72] make a trade-off between packet-
level schemes and flow-level schemes in consideration of
minimizing reordering and maximizing performance at the
same time. Flowlets widely exist in data centers where most
applications send traffic in on-off patterns [37], [73], [74].
CONGA [34] designs a distributed algorithm to obtain global
congestion information in leaf-spine topologies, and assigns
each flowlet to the least congested path at leaf switches.
LetFlow [31] randomly picks paths for flowlets, and lets their
elasticity naturally balance the traffic on different paths. The
excellent work Contra [75] builds a system for performance-
aware routing based on flowlet switching, which can operate
seamlessly over any network topology and routing policies.
Other flowlet-level schemes include DASH [72], FLARE [30],
HULA [76], and more [32], [33], [35]. A flowlet scheme needs
to strike a balance between load balance and packet reordering.
A flowlet switching scheme has no danger of packet reordering
only when the timeout threshold δ is larger than the maximum
latency of the set of parallel paths. In order to avoid packet
reordering, the timeout threshold must be set to a large value.
However, large timeout threshold will degrade the system to a
flow-level scheme. Therefore, the timeout threshold δ should
be carefully chosen to achieve good performance.

Existing flowlet-level schemes use a flowlet table to de-
tect flowlets. Each table entry consists of a next_hop
and a timestamp. In CONGA [34] and LetFlow [31],
the timestamp is replaced with two bits, and they use a
separate process to periodically clean the entries. This table
must be very large to keep the collision rate small. Such a
huge table incurs heavy memory burden when deployed on
hardware platforms where on-chip memory is precious. By
contrast, sketch is a compact data structure that uses small
memory to perform various measurement tasks [50], [77]–[79].
Typical sketches include CM [80], CU [81], Count [82], CSM
[83], and more [84]–[87]. We can use sketches to detect and
schedule flowlets in real time, which is still an open area.

III. THE BALANCESKETCH ALGORITHM

In this section, we first present a strawman solution to detect
FlowBursts in § III-A, and introduce the rationale of BalanceS-
ketch in § III-B. We show the data structure and workflow of
BalanceSketch in § III-C and § III-D. We demonstrate how
BalanceSketch handles different traffic patterns in § III-E.
A. A Strawman Solution

One strawman solution to find FlowBursts is to first identify
all flowlets using existing methods, and then check whether
each identified flowlet is a FlowBurst. In the first step, same as
existing solutions [30], [32], [33], we use a timestamp array
to find flowlets. As shown in Figure 1, the interval between
the current time and the last arrival time of f2 exceeds δ, so
we report the packet of f2 as the start of a flowlet. In the
second step, we use a hash table with many buckets to detect
FlowBursts, i.e., the flowlets with high speed. Each bucket
maintains a flow ID and the recent speed of the flow. For a
flowlet of flow fi detected in step one, we map fi into one
bucket in the hash table. If another flowlet is already in this
bucket and its speed is slow (< V), we replace it with fi. As
shown in Figure 1, for the detected flowlet of f2, its mapped
bucket is taken by f3 and the speed of f3 is slow (< V), so
we replace f3 with f2. This solution is simple and easy to
deploy. However, it is memory inefficient because it records
the information of all flowlets, including the exact flow IDs
and their recent speed, whereas most flowlets are unnecessary
flowlets. The ideal goal is keeping only FlowBursts while
evicting all unnecessary flowlets.

Timestamp

𝑓! 147

143
···

𝑓"

Hash Table
Flow_ID: 𝒇𝟑

Speed: 1.1 Kpps
𝑓$ is too slow

2

1

flowlet

Detect Flowlets Keep FlowBursts

Large

𝑓$ → 𝑓"

Replace
···

Fig. 1: A strawman solution to detect FlowBursts (δ=5ms,
tnow=150ms, V=1.5Kpps).

B. Rationale of BalanceSketch
The design of BalanceSketch considers two dimensions of

doing less: 1) Different from the above strawman solution, we
manage to maintain only FlowBursts and evict unnecessary
flowlets. 2) We identify most rather than all FlowBursts, in
exchange for the simplicity of our data structure and its oper-
ations. Besides doing less, we have another design technique:
follower approximation. Ideally, when the first packet of a
FlowBurst arrives, we should know and manipulate it immedi-
ately. Obviously, it is almost impossible to immediately assert
a flowlet as FlowBurst when it just starts, but it is not hard
to assert a FlowBurst when it ends. Instead of manipulating
a FlowBurst FBi, we make a follower approximation by
manipulating the BurstFollower: the flowlet immediately fol-
lowing FBi. The rationale is that BurstFollower is a potential
FlowBurst, incurring a risk of load imbalance. Interestingly,
we find this approximation achieves similar performance to
the ideal solution. Consider a typical traffic pattern: FlowBurst,
FlowBurst, · · · . Ideally, we can manipulate each FlowBurst;

3

Approximately, we manipulate all FlowBurst except the first
one. More interesting patterns are provided in § III-E.
C. Data Structure

As shown in Figure 2, the data structure of BalanceSketch
is an array of l buckets. Let B[i] be the ith bucket. Each
packet of flow fi is mapped into one bucket B[h(fi)] through
a hash function h(.). Each bucket consists of four fields: 1)
A flow_ID field B[i].ID records the ID of the flow mapped
into this bucket, and we call the flow in the bucket as the
residing flow. 2) A vote field B[i].vote used to identify
FlowBursts. 3) A timestamp field B[i].time records the
arrival time of the last packet of the residing flow. 4) An
next_hop field B[i].nexthop records the next hop. For
the flow resided in B[i], if B[i].nexthop is not Null, we
forward the flow through this next hop. Otherwise, we forward
it using ECMP [17] mechanism: forwarding it through the
next hop hashed by its 5-tuple. For the flows not resided in
BalanceSketch, we also forward them using ECMP. All fields
in the data structure are initialized to 0 or Null.
D. Workflow

The pseudo-code of the workflow is shown in Algorithm 1.
For an incoming packet pc of flow fi at time tnow, BalanceS-
ketch takes two phases to process it: insertion and forwarding.
In the insertion phase, BalanceSketch inserts fi into one
bucket. In the forwarding phase, BalanceSketch selects the
appropriate next hop to forward this packet. Next, we explain
the two phases in details.

ID Vote Time Next
𝑓! 0 198 Null

ID Vote Time Next
𝒇𝟑 1 200 Null

ID Vote Time Next
𝑓# 32 157 2

ID Vote Time Next
𝒇𝟏 1 200 Null

𝑓# ends, replace it with 𝑓%Time < 𝑡&'(−∆

𝑙 buckets Outdated

Vote = 0: not fast
Next_hop = Null: not scheduled

replace 𝑓! with 𝑓)
𝑓! will not reorder

ID Vote Time Next
𝑓* 48 186 Null

ID Vote Time Next
𝑓* 49 200 5

update Vote and Time
FlowBurstchange pathFlowletFast

𝑓!

𝑓"

𝑓#

ℬ[ℎ 𝑓%]

ℬ[ℎ 𝑓*]

ℬ[ℎ 𝑓)]

Fig. 2: Examples of BalanceSketch (tnow=200ms, ∆=30ms,
δ=5ms, F=30).

Insertion: First, we compute the hash function h(fi) to map
fi into the bucket B[h(fi)], and try to insert it. There are three
cases as follows.
Case 1: If B[h(fi)] is empty or tnow − B[h(fi)].time > ∆,
where ∆ is the predefined flow timeout threshold to identify
whether a flow ends, we just insert flow fi into B[h(fi)].
Specifically, we set B[h(fi)] to ⟨fi, 1, tnow, Null⟩, where
“Null” means forwarding flow fi through ECMP. In this case,
tnow − B[h(fi)].time > ∆ means the resided flow ends.
Case 2: If B[h(fi)] is not empty and fi is the residing flow,
we check whether this packet is the start of a FlowBurst.
Specifically, we check whether tnow − B[h(fi)].time > δ
and B[h(fi)].vote > F are both true, where δ is the flowlet
threshold and F is a predefined voting threshold for identifying
FlowBursts. If so, it means that the previous flowlet of fi
is a FlowBurst and just ends, and a new flowlet just starts.

Algorithm 1: Workflow of BalanceSketch
Input: A packet with timestamp ti of flow fi
Output: The next port to send this packet
// Insert the packet into BalanceSketch
if B[h(fi)] is empty or ti − B[h(fi)].time > ∆ then
B[h(fi)]← ⟨fi, 1, ti, Null⟩;

else if B[h(fi)].ID = fi then
if B[h(fi)].vote > F and ti − B[h(fi)].time > δ
then
B[h(fi)].nexthop← the randomly picked next
hop;

B[h(fi)].vote += 1;
B[h(fi)].time← ti;

else if B[h(fi)].ID ̸= fi then
if B[h(fi)].vote > 0 then
B[h(fi)].vote −= 1;

if B[h(fi)].vote = 0 and
B[h(fi)].nexthop = Null then
B[h(fi)]← ⟨fi, 1, ti, Null⟩;

// Select the next hop to forward the packet
if B[h(fi)].ID = fi and B[h(fi)].nexthop ̸= Null

then
return B[h(fi)].nexthop;

else
return ECMP next port(fi);

The new flowlet is potentially a FlowBurst, and thus we
manipulate it by randomly picking a next hop and update
B[h(fi)].nexthop. Finally, we increment B[h(fi)].vote by one
and update B[h(fi)].time to the current time tnow. Note that
randomly picking a next hop is one design choice, and we can
also choose the least loaded next hop or use the “power of
two choices” techniques [88].
Case 3: If B[h(fi)] is not empty and f ′

i is the residing
flow where f ′

i ̸= fi, we decrement B[h(fi)].vote by one if
B[h(fi)].vote > 0. Afterwards, if B[h(fi)].vote = 0 and
B[h(fi)].nexthop = Null, we replace f ′

i with fi. Specif-
ically, we set B[h(fi)] to ⟨fi, 1, tnow, Null⟩. Note that if
B[h(fi)].vote = 0 but B[h(fi)].nexthop ̸= Null, we do not
immediately evict f ′

i , and will evict it only when it is outdated
(the flow timeout threshold ∆) in Case 1. In this way, the
FlowBursts in BalanceSketch will not be frequently replaced,
and thus the number of manipulated flow decreases. This is
consistent with our design philosophy of doing less.
Forwarding: After inserting fi into BalanceSketch, we select
the next hop to forward the incoming packet pc. If fi is the
residing flow and B[h(fi)].nexthop ̸= Null, which means
that fi is experiencing a FlowBurst, we forward pc through
B[h(fi)].nexthop. Otherwise, we forward pc using ECMP.
Discussion: BalanceSketch makes two approximations: 1)
BalanceSketch uses the “vote” field to approximately iden-
tify FlowBursts. Recall that in § II-A, we formally define
FlowBurst using speed and size. Although we can use more

4

fields to exactly represent the speed, size, and hash collisions,
we find that using just the “vote” field can already achieve
high accuracy. Therefore, to save memory, BalanceSketch
only use one “vote” field to approximately reflect the speed
and size of flowlets. 2) BalanceSketch uses the follower
approximation strategy to make load balance decisions. Bal-
anceSketch considers subsequent flowlets after crossing the
“F” threshold as FlowBursts and manipulates them. We make
this approximation because we cannot immediately predict a
flowlet as FlowBurst when it just starts. Experimental results
show that under these two approximations, BalanceSketch still
has high accuracy in detecting FlowBursts (§ V-A).
Example settings (Figure 2): We use three examples to illus-
trate the workflow of BalanceSketch, where the three packets
of flow f1 ∼ f3 arrive simultaneously at time t = 200ms, the
flow timeout threshold ∆ is 30ms, the flowlet threshold δ is
5ms, and the voting frequency threshold F is 30.
Example 1 (upper of Figure 2): When a packet of f1 arrives,
it is mapped into bucket B[h(f1)]. Since t−B[h(f1)].time >
∆, we think the residing flow f4 has ended and replace it with
f1. Since B[h(f1)].nexthop = Null, we forward the packet
using ECMP.
Example 2 (center of Figure 2): When a packet of f2 arrives,
it is mapped into bucket B[h(f2)]. Since bucket B[h(f2)] is
not empty and f2 is the residing flow, we check whether this
packet is the start of a FlowBurst. Since t−B[h(f2)].time > δ
and B[h(f2)].vote > F are both true, we think a previous
FlowBurst of f2 just ends, and the new flowlet has high
probability to be a FlowBurst. Thus, we manipulate the new
flowlet by changing B[h(f2)].nexthop to a randomly picked
next hop. We increment B[h(f2)].vote by one and update
B[h(f2)].time to tnow. Finally, since f2 is the residing flow
and B[h(f2)].nexthop ̸= Null, we forward the packet through
B[h(f2)].nexthop.
Example 3 (lower of Figure 2): When a packet of f3 arrives,
it is mapped into bucket B[h(f3)]. Since bucket B[h(f3)] is
not empty and f3 is not the residing flow, we decrement
B[h(f3)].vote by one. Afterwards, since B[h(f3)].vote = 0
and B[h(f3)].nexthop = Null, we replace the residing flow
f6 with f3. Since B[h(f3)].nexthop = Null, we forward the
packet using ECMP.

2

1

Traffic PatternsFlowBurst

···

···

Flowlet

3 ···

4 ···

Manipulate

0 1 0 1 0 1 1 1 0 0

0 1 1 0 0 1 0 0 1 0

Fig. 3: Examples of typical traffic patterns.

E. Handling Different Traffic Patterns
We take four typical traffic patterns as examples and explain

how BalanceSketch handles them, illustrating our FlowBurst
follower approximation technique achieves similar load bal-
ance performance than the ideal solution of manipulating each
FlowBurst at start. In our examples, all FlowBursts/flowlets
belong to the same flow. Suppose the default next hop is 0, and
the backup next hop is 1. We assume the traffic of each flow

consists of high-density FlowBursts and low-density flowlets.
An ideal load balance solution should distribute these high-
density FlowBursts among all equivalent links as evenly as
possible. And manipulating the other flowlets benefits little
for load balance because low-density flowlets contribute little
to link congestion.
Pattern 1 (upper-left of Figure 3): This pattern consists of
continuous flowlets mixed by a FlowBurst. BalanceSketch ma-
nipulates the BurstFollower (the flowlet bounded by black-box
in the figure), achieving the same load balance performance as
the ideal solution that manipulates each FlowBurst. Note that
in this case, manipulating other flowlets (i.e., changing the next
hop) benefits little for load balance. BalanceSketch does not
manipulate them and manages to achieve least change of the
next hop. Since there is no frequent manipulation, BalanceS-
ketch minimizes packet reordering. This idea is consistent with
our design philosophy of doing less.
Pattern 2 (lower-left of Figure 3): This pattern consists of
FlowBurst1, flowlet1, FlowBurst2, flowlet2, · · · . BalanceS-
ketch changes the next hop for each flowlet, and the following
FlowBurst is forwarded through the same next hop of the
previous flowlet. It achieves similar performance as the ideal
solution that manipulates each FlowBurst.
Pattern 3 (upper-right of Figure 3): This pattern consists of
FlowBurst1, flowlet1, flowlet2, FlowBurst2, flowlet3, flowlet4,
· · · . BalanceSketch changes the next hop for each BurstFol-
lower (e.g., flowlet1), and forwards following flowlet2 and
FlowBurst2 through the same next hop. The next hops of
BalanceSketch are ⟨0, 1, 1, 1, 0, 0, · · · ⟩, while that of the ideal
solution are ⟨1, 1, 1, 0, 0, 0, · · · ⟩. Both BalanceSketch and the
ideal solution select one next hop for every two flowlets and
one FlowBursts, and thus they have similar performance.
Pattern 4 (lower-right of Figure 3): This pattern con-
sists of FlowBurst1, FlowBurst2, flowlet1, FlowBurst3, Flow-
Burst4, flowlet2, · · · . BalanceSketch manipulates each lat-
ter FlowBurst and each flowlet, and its next hops are
⟨0, 1, 1, 1, 0, 0, · · · ⟩. It achieves similar performance as the
ideal solution with the next hops of ⟨1, 1, 0, 1, 1, 0, · · · ⟩.

IV. THE BURSTBALANCER SYSTEM

A. Overview of BurstBalancer
BurstBalancer deploys BalanceSketch on switches to detect

and make forwarding decisions for each FlowBurst. We deploy
one BalanceSketch on each edge switch and let it process all
packets arriving from the line side. Given an incoming packet,
we check whether the packet is the start of a FlowBurst. If so,
we change the next hop of this flow by randomly picking a
next hop. In this way, BurstBalancer divides large and dense
flows into FlowBursts, and distributes them to different paths.
And for small flows and low-density flows, BurstBalancer just
neglects them and forwards them using ECMP. BurstBalancer
achieves good load balancing performance while manipulates
fewer flows at the same time.
B. Testbed Implementation

We have fully implemented a BurstBalancer prototype on
a testbed with 4 Edgecore Wedge 100BF-32X switches (with

5

Tofino ASIC) [65] and 16 end-hosts in a Leaf-Spine topology.
On each switch, we develop BalanceSketch using P4 language
[89]. Next, we first describe the challenges we face when im-
plementing BalanceSketch on programmable switches. Then
we describe the workflow of the hardware version of Bal-
anceSketch and analyze additional resource usage.

1) Challenges on Programmable Switches:
To process packets at line rate, Tofino switch requires the
algorithms running on it to comply with many constraints.
Although BalanceSketch is easy to implement on software
platforms (e.g., middleboxes, etc.), when deploying it on
hardware, we face the following key challenges.
Resource limitation: We implement BalanceSketch in reg-
isters and use the Logical Units in each stage to lookup
and update the elements of registers in real time. Recall
that each bucket of BalanceSketch consists of four fields
(flow_ID, timestamp, vote, and next_hop). However,
each Stateful ALU can only access one pair of 32-bit elements
in each register. Thus, we must divide one bucket into multiple
parts and store them in different registers.
Pipeline limitation (I): Tofino switches process packets in
a pipelined manner, where each register can only be read or
modified once in one pipeline stage. Therefore, each incoming
packet can only access each register exactly once, which brings
difficulty in clearing the outdated buckets. Due to the first
challenge, we have to store the flow_ID and timestamp
of a bucket in two different registers. For each incoming
packet, we first check the flow_ID register and then update
the timestamp register if ID matches. However, when ID
mismatches and the timestamp is outdated (smaller than
tnow−∆), BalanceSketch needs to clear the bucket by setting
flow_ID to Null (Case 1 in § III-D). This backward operation
is impossible on Tofino architectures. In our implementation,
we consider to use the mirror and recirculate mechanism: once
a bucket is identified as outdated, we create a mirror packet
and resend it to the ingress port. We use this mirror packet to
clear the flow_ID register. Here, the mirror and recirculate
mechanism would not cause performance issue. First, not all
packets need the mirror and recirculate mechanism, whereas
only a few packets (<0.5%) need this mechanism. Second, this
mechanism is only used to clear the outdated bucket, which
would not affect the scheduling and forwarding of packets.
Pipeline limitation (II): In the software version of BalanceS-
ketch, if flow_ID mismatches and vote is decremented
to zero, we check whether next_hop is Null, and evict
the residing flow fold if so (Case 3 in § III-D). This check
operation ensures that the FlowBursts in BalanceSketch are
not frequently replaced, and also prevents fold from packet
reordering incurred by immediately evicting. However, as ex-
plained above, this backward operation cannot be implemented
in pipeline. Therefore, in our implementation, when vote is
decremented to zero, we must decide whether to evict the re-
siding flow before checking next_hop. To address this issue,
we consider dividing BalanceSketch into two parts: a selector
and a scheduler. The selector detects FlowBursts and informs
the scheduler to schedule them. And the scheduler maintains

the next hop information for all scheduled flows. Once a flow
is selected to schedule and enters the scheduler, it will be
kept until ends. In this way, we approximately implement the
software operation of BalanceSketch in a pipelined manner.

Flow_ID
Vote

Timestamp

Check ID and inc./dec. vote1
replace 𝑓!"# if vote is zeroRegister1

Detect FlowBurst and set flag3Register2

Mirror Pkts
Part 1: Selector

Network Pkts

Flow_ID
Timestamp

Next_hop

Update ID, timestamp, and
next_hop if the flag is set

4Register3

Schedule if flow ID matches5Register4

Part 2: Scheduler

Ingress Pipeline

Clear outdated bucket2

Fig. 4: BalanceSketch on programmable switch.

2) Workflow:
As shown in Figure 4, the workload of BalanceSketch has two
parts: a selector and a scheduler. The selector detects Flow-
Bursts and selects the flows to be scheduled. The scheduler
keeps the next hop information of the scheduled flows. Both
the two parts are implemented in the ingress pipeline.
Selector: Each bucket in selector consists of three fields:
flow_ID, vote, and timestamp. The selector uses two
registers, where flow_IDs and votes are implemented in
one register, and timestamps in another. For each incoming
packet of fi, we first check and update the hashed flow_ID
and vote in the first register, i.e. increment vote if ID
matches and decrement it otherwise. If vote is decremented
to zero, we replace flow_ID with fi. Then we access the
hashed timestamp in the second register: 1) We check
whether the bucket is outdated, i.e., check whether the time
gap exceeds ∆. If so, we create a mirror packet and use
it to clear the bucket. 2) We check whether the packet is
the start of a FlowBurst, i.e., check whether ID matches,
vote exceeds F , and time gap exceeds δ. If so, we inform
the scheduler to manipulate this flow by setting a temporary
variable sch_flag. 3) We finally update the timestamp
to the current time tnow if ID matches.
Scheduler: Each bucket in scheduler consists of three fields:
flow_ID, timestamp, and next_hop. The scheduler also
uses two registers, where flow_ID and timestamp are
implemented in one register, and next_hop in another. For
each incoming packet of fi, if it is the start of a FlowBurst,
i.e., sch_flag is set, we try to update the scheduler: we
check the hashed flow_ID and timestamp. If ID matches
or the timestamp is outdated (smaller than tnow −∆), we
update flow_ID to fi, timestamp to tnow, and next_hop
to a randomly chosen next hop. Finally, if the flow_ID is
fi, we forward the packet through next_hop. Otherwise, we
forward the packet using ECMP.

3) Hardware Resources Utilization:
We show the utilization of different types of hardware re-
sources in Table II. We can see that the average resources
usage is less than 10% across all resources, except for Stateful
ALUs, which is used for accessing registers and performing

6

transactional read-test-write operations on BalanceSketch. We
implement BalanceSketch in 9 stages on Tofino switch: 4
stages for the selector and 2 stages for the scheduler. In
addition, we use 3 stages to implement the basic functions
of the switch, such as route matching and packet forwarding.

TABLE II: H/W resources used by BalanceSketch.
Resource Usage Percentage
Hash Bits 390 7.81%
SRAM 92 9.59%
Map RAM 26 4.51%
TCAM 0 0%
Stateful ALU 13 27.08%
VLIW instr 16 4.17%
Match Xbar 109 7.10%

C. Discussion

In BurstBalancer, only a small fraction of flows are manip-
ulated. Therefore, unlike other flowlet-level schemes, Burst-
Balancer can readily work with most network measurement
and management systems, such as 007 [44], HPCC [49],
and etc. Take 007 as an example. The 007 system assumes
all flows follow ECMP. After detecting TCP retransmission
on end-hosts, 007 triggers a path discovery mechanism to
acquire the routing links of the victim flow. Finally, 007
maintains a voting scheme based on the paths of flows that
had retransmissions, and the top-voted links are reported in
each measurement epoch. In LetFlow, all flows have unfixed
forwarding path, which changes rapidly and randomly, making
the path tracing scheme impossible to implement. By contrast,
in BurstBalancer, most flows follow ECMP and thus have fixed
forwarding paths. In BurstBalancer, if a TCP retransmission
is detected for a ECMP flow, 007 can still trace its forwarding
path and update the votes of each link on the path. We can still
use the voting results to reflect the real-time congestion level
of each link. Therefore, BurstBalancer can still work with 007.

V. EXPERIMENTAL RESULTS

We evaluate BurstBalancer (BB) with testbed experiments
(§ V-C) and event-level simulations (§ V-B) in both asymmetric
and symmetric typologies. We also evaluate the accuracy of
BalanceSketch (§ V-A1) and the load balance performance of
BurstBalancer on a single switch (§ V-A2). Our experiments
aim to answer the following questions.
• Can BalanceSketch accurately detect FlowBursts? Bal-

anceSketch achieves about 90% Recall Rate in finding
FlowBursts. (§ V-A1)

• Can BurstBalancer manipulate fewer flows to balance
the traffic? BurstBalancer manipulates 58× fewer flows
than LetFlow [31] while better balances the traffic. (§ V-A2)

• In symmetric topologies, can BurstBalancer better bal-
ance the traffic? BurstBalancer achieves 5%∼35% better
FCT than LetFlow [31] and DRILL [8]. (§ V-B)

• In asymmetric topologies, can BurstBalancer better
balance the traffic? BurstBalancer achieves up to 30×
better FCT than LetFlow and up to 6.4× better FCT than
WCMP [18]. (§ V-C)

Metrics: We use flow completion time (FCT) as the primary
performance metric. In certain experiments, we also consider
the statistics of the queue lengths across ports and the packet
reordering ratio. We use the Recall Rate (RR) to evaluate the
accuracy of BalanceSketch in finding FlowBursts.
Workloads: We use two realistic workloads and one synthetic
workload: 1) Web search workload [90] from a production
cluster running web search services; 2) RPC workload [91]
that contains many small flows; 3) Synthetic workload that is
of heavy-tailed distribution. The traffic distribution is shown
in Figure 7. All the three workloads are heavy-tailed: a small
fraction of large flows contribute to most traffic.
Parameter selection: We set the parameters of BurstBalancer
intuitively: 1) We set the flowlet timeout threshold δ to a sub-
RTT timescale. As suggested in LetFlow [31], δ controls the
trade-off between load balance and packet reordering. Larger
δ goes with fewer reordering packets and greater risk of load
imbalance. A sub-RTT timescale δ can well divide TCP bursts
into flowlets, and thus achieves good performance. 2) We set
the flow timeout threshold ∆ to a RTT timescale. BalanceS-
ketch uses ∆ to identify whether a residing flow ends, so we
set ∆ to 3∼5 times of RTT. 3) We set the voting threshold
F to a small value, because we find that the BalanceSketch
using small F can accurately detect FlowBursts.
A. CPU Experiments

1) Accuracy in Finding FlowBursts:
Platform and implementation: We conduct the experiments
on an 18-core CPU server (Intel i9-10980XE) with 128GB
DDR4 memory and 24.75MB L3 cache. We use C++ to im-
plement the strawman solution in § III-A and BalanceSketch.
Dataset: We use the IMC packet traces [92] collected in a data
center network, which contains about 19.9M packets belonging
to 7.6M different flows. We set the flowlet threshold δ = 50µs.
Recall that in § II-A, we define FlowBursts as those flowlets
with fast speed (>V) and large size (>ηk, where ηk is the size
of the kth largest active flowlet with > V speed). Here, we set
V to the 70th percentile of the speed of all active flowlets. We
set ηk to the size of the 200th largest flowlets with > V speed.
In other words, we define the top-200 largest flowlets with > V
speed as FlowBursts. Afterwards, we test the accuracy of our
BalanceSketch in finding these FlowBursts.

30 60 90 120 150 180
Memory Usage (KB)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

(R
R

)

Strawman
BalanceSketch

Fig. 5: BalanceSketch accu-
racy in finding FlowBursts.

Accuracy of basic BalanceS-
ketch (Figure 5): We find
that the RR of BalanceSketch
greatly outperforms the straw-
man solution. Compared to
the strawman solution, RR of
BalanceSketch is about 30%
higher on average. When using
180KB of memory, BalanceS-
ketch achieves about 90% RR
in finding FlowBursts. The re-
sults are consistent with our
analysis in § III-A. The main reason is that the strawman
solution records information of all flowlets, most of which
are unnecessary flowlets, incurring enormous redundancy. In

7

contrast, BalanceSketch only keeps FlowBursts and discards
unnecessary flowlets, gaining high memory efficiency. In
summary, BalanceSketch well achieves our design goal of
accurately identifying FlowBursts using small memory.

2) Load Balance Performance on a Single Switch:
We evaluate the load balance performance of BurstBalancer on
single switch and compare it against ECMP [17] and LetFlow
[31]. We use C++ to simulate the load balancing module of
a 128-port switch, on which we deploy the Flowlet Tables
(LetFlow) and the BalanceSketchs with different sizes (2K/4K
entries/buckets). We generate the traffic according to the
synthetic workload (Figure 6(c)) at switch 1.
Load distribution across all ports (Figure 7(a)): We find that
compared to LetFlow, BurstBalancer better balances the traffic
using smaller memory. The results show that the standard
deviation of BurstBalancer using 2K buckets is smaller than
LetFlow using 4K entries. This is because due to the limited
memory and the large number of concurrent flows, LetFlow
inevitably regards multiple flows as one, leading the number
of detected flowlets decreases a lot. In other words, the large
volume of concurrent flows makes LetFlow harder to divide
flows into flowlets, resulting in more unbalanced load.
Ratio of manipulated flows (Figure 7(b)): We find that
compared to LetFlow, BurstBalancer manipulates 58 times
fewer flows while achieves better load balance performance.
The results show that the manipulated flows of BurstBalancer
is 1.0 %∼1.65%, while that of LetFlow is > 95%. Note the
the load balance performance of BurstBalancer 2K is better
than LetFlow 4K.
Ratio of reordering packets (Figure 7(c)): We find that
compared to LetFlow using 4K entries, BurstBalancer using
2K buckets has less reordering packets while achieves better
load balance performance. We simulated a scenario where
two switches S1 and S2 are connected by 128 links. We
generate traffic at S1, and measure the packet reordering rate
at S2 by counting the mismatches between actual and expected
sequence number.
Load distribution for high-density traffic (Figure 7(d)): To
better demonstrate the advantages of our BurstBalancer over
LetFlow, we accelerate the synthetic workload by 5 times to
create a high-density traffic model. We repeat the experiments
using LetFlow 4K and BurstBalancer 2K. The results show
that the performance of LetFlow and ECMP is almost the
same, because the high-density traffic makes it difficult for
LetFlow to detect flowlets, and thus LetFlow degenerates into
ECMP. BurstBalancer can still well balance the traffic since
it only manipulates critical flowlets and ignores abundant
unnecessary flowlets.
B. Event-level Simulations (NS-2)

We evaluate BurstBalancer using an event-level network
simulator, Network Simulator 2 (NS-2) [66], in large-scale
symmetric topologies, where we compare BurstBalancer
against ECMP [17], DRILL [8], and LetFlow [31] under
different network loads. We also evaluate the performance
of BurstBalancer and LetFlow using tables of different sizes,
validating the memory efficiency of BurstBalancer.

Topology and traffic: We conduct the experiments in a two-
tier Leaf-Spine topology consisting of 8 spine switches and 8
leaf switches. Each leaf switch is connected to 16 servers. All
links run at 10Gbps. Here, we have a convergence rate of 2 at
the leaf level, which is common in modern data centers [31],
[37]. We configure 90% of the network bandwidth to deliver
the web search workload (Figure 6(a)), and the rest to deliver
the RPC workload (Figure 6(b)) as background traffic.
Setting: For BurstBalancer and LetFlow, we configure the
BalanceSketch/Flowlet Table to have 250 buckets/entries by
default. In practice, such a small table can fit into one single
1R1W on-chip memory bank, and consumes negligible die
area. We set the flowlet threshold δ = 200µs, set the flow
timeout threshold ∆ = 50ms, and set F = 0.
FCT v.s. network load (Figure 8): We find that the overall
average FCT of BurstBalancer is always lower than ECMP,
DRILL, and LetFlow under different network loads. As shown
in Figure 8(a), as network loads vary, the overall average FCT
of BurstBalancer changes from 13.6ms to 54.9ms, while that of
ECMP, DRILL, and LetFlow changes from 14.7ms, 15.4ms,
and 15.3ms to 58.6ms, 60.6ms, and 57.7ms, respectively. In
summary, BurstBalancer achieves up to ∼25.2%, ∼20.1%, and
∼25.8% lower overall average FCT than ECMP, DRILL, and
LetFlow, respectively. We further study the average FCT of
small flows (< 100KB), medium flows (0.1∼10MB), and large
flows (> 10MB) in Figure 8(b)-8(d). The results show that
for small flows, DRILL has the lowest average FCT because
it balances the traffic at the finest granularity. But for medium
flows and large flows, the average FCT of DRILL is high
because it suffers significant packet reordering. BurstBalancer
always achieves the lowest average FCT for medium flows
and large flows among all schemes.
FCT v.s. number of buckets/entries (Figure 9): We find that
the overall average FCT of BalanceSketch always outperforms
LetFlow under different table sizes. The experiments are
conducted under 90% network loads. As shown in Figure 9(a),
as the number of buckets varies, the overall average FCT of
BurstBalancer changes from 44.2ms to 40.1ms, while that of
LetFlow changes from 77.7ms to 42.2ms. The results show
that the gap between BurstBalancer and LetFlow becomes
larger as the number of buckets decreases. This is because
LetFlow cannot accurately divide flows into flowlets under
small memory usage. In summary, BurstBalancer achieves
up to ∼43.1% lower overall average FCT than LetFlow. We
further study the average FCT of flows of different sizes in
Figure 9(b)-9(d). The results are similar to that in Figure 9(a).
Analysis: BurstBalancer has lower FCT than LetFlow when
using the flowlet tables of the same sizes. When the amount
of storage is sufficient, BurstBalancer has similar performance
as LetFlow. When the amount of storage is small, LetFlow
has poor load balance performance but BursstBalaner can still
well balance the traffic. This is because when the number
of concurrent flows exceeds the size of the flowlet table,
LetFlow inevitably regards multiple flows as one, making it
difficult to detect flowlets. And thus, LetFlow cannot well
balance the traffic when using small flowlet tables. By contrast,

8

10
3

10
4

10
5

10
6

10
7

Flow Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Flows
Bytes

(a) Web search.

10
1

10
2

10
3

10
4

10
5

Flow Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Flows
Bytes

(b) RPC.

10
0

10
1

10
2

10
3

10
4

Flow Size (pkts)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Flows
Pkts

(c) Synthetic.
Fig. 6: Traffic distributions. The Bytes (Pkts) CDF shows the distribution of traffic bytes (packets) across different flow sizes.

0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 D
ev

ia
tio

n
 (N

or
m

al
iz

ed
 b

y
M

ea
n) ECMP

LetFlow_2K
LetFlow_4K
BB_2K (ours)
BB_4K (ours)

(a) Standard deviation of # packets
at all ports (normalized by mean).

0
1
2

9 5

1 0 0

Ma
nip

ula
ted

 Fl
ow

s (
%) L e t F l o w _ 2 K

 L e t F l o w _ 4 K
 B B _ 2 K (o u r s)
 B B _ 4 K (o u r s)

(b) Ratio of manipulated flows.
2

3

4

5

6

7

8

R
eo

rd
er

in
g

Pk
ts

 (%
) LetFlow_2K

LetFlow_4K
BB_2K (ours)
BB_4K (ours)

(c) Ratio of reordering packets.

0 32 64 96 128
Port (sorted by load)

0.000

0.005

0.010

0.015

N
or

m
al

iz
ed

 L
oa

d
(p

kt
s.

)

ECMP
LetFlow
BurstBalancer (ours)

(d) Load distribution across ports.

Fig. 7: Performance of BalanceSketch on single switch.

BurstBalancer only manipulates a small amount of critical
flowlets, which is memory efficient.
C. Testbed Experiments

As described in § IV-B, we build a small-scale testbed in
an asymmetric topology, on which we compare BurstBalancer
against WCMP [18], and LetFlow [31].
Topology and traffic: As shown in Figure 10, we use a two-
tier Leaf-Spine topology consisting of 2 spine switches and
2 leaf switches, each of which is connected to 8 servers.

S2S1

L1 L2
1 23

4

Fig. 10: Testbed topology
with asymmetry. All links
run at 40 Gbps.

All links run at 40Gbps. We fail
one of the two links between
a leaf and a spine to create
asymmetry. We use a client-
server program to generate dy-
namic traffic [93], where the
client application generates re-
quests through persistent TCP
connections based on a Poisson
process, and the server application responds with the requested
data. On each leaf, we configure 6 servers to generate requests
to 6 servers under another leaf according to the web search
workload (Figure 6(a)). We configure the other 2 servers to
generate single-packet requests to 2 servers under another leaf.
The single-packet requests are used as background traffic to
improve the number of concurrent flows. We configure the
bandwidth usage of the single-packet traffic as ∼ 5Gbps.
Setting: For BurstBalancer and LetFlow, we configure Bal-
anceSketch/Flowlet Table to have 128 or 256 buckets/entries.
For WCMP, we configure the weighted cost only according
to the localized link status of the switch. We set the flowlet
threshold δ = 500µs, set the flow timeout threshold ∆ =
50ms, and set the voting threshold F = 0.
FCT v.s. network load (Figure 11): We find that in asym-
metric typologies, the overall average FCT of BurstBalancer
is always better than WCMP and LetFlow under different
network loads. As shown in Figure 11(a), as network loads
vary, the overall average FCT of WCMP changes from 1.62ms

to 64.4ms. The overall average FCT of BurstBalancer using
BalanceSketch of 128 buckets and 256 buckets change from
1.63ms and 1.65ms to 13.8ms and 10.2ms, respectively. And
the overall average FCT of LetFlow using Flowlet Table
of 128 entries and 256 entries change from 1.64ms and
1.61ms to 232ms and 32.8ms, respectively. Due to asymmetry,
the average FCT has a sudden increase between 50%∼60%
network loads. As a whole, the average FCT of BurstBalancer
is significantly lower than WCMP and LetFlow, and the
BurstBalancer using 128 buckets and 256 buckets have similar
performance. LetFlow has higher FCT than BurstBalancer
because when using Flowlet Table of 128/256 entries. Note
that when using 128 table entries, the average FCT of LetFlow
is significantly higher than the others. This is because such
small memory makes it difficult for LetFlow to detect flowlets,
and thus the next_hops in the Flowlet Table almost remains
unchanged. In LetFlow, each flow is forwarded through the
next_hop recorded in one of the 128 entries. Since the
distribution of the 128 next_hops is uneven, the load balance
performance is bad. We further study the average FCT of flows
of different sizes in Figure 11(b)-11(d). The results are similar
to that in Figure 11(a).

Forwarding statistics of the four ports in a leaf switch
(Figure 12): We find that in asymmetric topologies, BurstBal-
ancer achieves the traffic distribution closer to the optimal
ratio. We measure the number of forwarded packets of the
four fabric ports in a leaf switch (shown in Figure 10) under
90% network loads. In this asymmetric topology, the optimal
traffic distribution ratio among Port#1∼Port#4 is 1:1:2:2.
As shown in Figure 12(a), for ECMP, the traffic distribution
ratio is 1:0.96:1.12:1.14. This ratio is not 1:1:1:1 thanks to
the implicit feedback mechanism of persistent connections:
the probability of reusing congested connections is small.
As shown in Figure 12(b), for BurstBalancer, the traffic
distribution ratio is 1:1.03:1.45:1.47. As explained in LetFlow
[31], flowlet switching schemes have the implicit feedback

9

50 60 70 80 90 100
Network Load (%)

10

20

30

40

50

60

70

M
ea

n
FC

T
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(a) Average FCT of all flows.

50 60 70 80 90 100
Network Load (%)

0.1

0.2

0.3

0.4

0.5

M
ea

n
FC

T
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(b) FCT of small flows (<100KB).

50 60 70 80 90 100
Network Load (%)

0

10

20

30

40

50

M
ea

n
FC

T
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(c) FCT of medium flows.

50 60 70 80 90 100
Network Load (%)

100

200

300

400

500

M
ea

n
FC

T
(m

s)

ECMP
DRILL
LetFlow
BB (ours)

(d) FCT of large flows (>10MB).

Fig. 8: NS-2 simulation results: FCT statistics under different network loads.

30 120 210 300
Buckets

20

40

60

80

100

M
ea

n
FC

T
(m

s)

LetFlow
BurstBalancer (ours)

(a) Average FCT of all flows.

30 120 210 300
Buckets

0.30

0.35

0.40

0.45

0.50

M
ea

n
FC

T
(m

s)

LetFlow
BurstBalancer (ours)

(b) FCT of small flows (<100KB).

30 120 210 300
Buckets

10

20

30

40

50

60

M
ea

n
FC

T
(m

s)

LetFlow
BurstBalancer (ours)

(c) FCT of medium flows.

30 120 210 300
Buckets

300

400

500

600

700

M
ea

n
FC

T
(m

s)

LetFlow
BurstBalancer (ours)

(d) FCT of large flows (>10MB).

Fig. 9: NS-2 simulation results: FCT statistics of LetFlow and BurstBalancer using tables of different sizes.

10 40 70 100
Network Load (%)

10
2

10
3

10
4

10
5

M
ea

n
FC

T
(m

s)

WCMP
LetFlow_128
LetFlow_256
BB_128 (ours)
BB_256 (ours)

(a) FCT of all flows.

10 40 70 100
Network Load (%)

10
2

10
3

10
4

10
5

M
ea

n
FC

T
(m

s)

WCMP
LetFlow_128
LetFlow_256
BB_128 (ours)
BB_256 (ours)

(b) FCT of small flows (<100KB).

10 40 70 100
Network Load (%)

10
3

10
4

10
5

10
6

M
ea

n
FC

T
(m

s)

WCMP
LetFlow_128
LetFlow_256
BB_128 (ours)
BB_256 (ours)

(c) FCT of medium flows.

10 40 70 100
Network Load (%)

10
4

10
5

10
6

10
7

M
ea

n
FC

T
(m

s)

WCMP
LetFlow_128
LetFlow_256
BB_128 (ours)
BB_256 (ours)

(d) FCT of large flows (>10MB).

Fig. 11: Testbed results: FCT statistics under different network loads in asymmetric topology.

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f p
kt

s
(×

10
8) Port #1

Port #2
Port #3
Port #4

(a) # pkts (ECMP).

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
um

be
r o

f p
kt

s
(×

10
8) Port #1

Port #2
Port #3
Port #4

(b) # pkts (BurstBalancer).
Fig. 12: Testbed results: Number of forwarded packets of
four ports in asymmetric topology.

mechanism: once a flow is routed through a congested link,
this flow is more likely to experience a flowlet timeout, and
thus it is more likely to be rerouted through other links.
The results show that BurstBalancer also keeps this implicit
feedback mechanism, and achieves the traffic distribution
closer to the optimal ratio.

D. Discussion
In our experiments, we compare the load balance perfor-

mance of BurstBalancer with LetFlow under the same flowlet
table sizes. When there are sufficient memory for the flowlet
table, the load balance performance of BurstBalancer and
LetFlow will be similar. However, it is worth noticing that
BurstBalancer only manipulates a small fraction of flows
(<2%), whereas LetFlow manipulates almost all flows (>98%)
(Figure 7(b)). The forwarding paths of most flows in Burst-
Balancer are fixed and predictable. Therefore, there are less
packet reordering in BurstBalancer, and network measurement
and management are easier for BurstBalancer. On the other

hand, when available memory for the flowlet table is tight,
BurstBalancer will have better load balance performance than
LetFlow. Since the bandwidth of switches grows much faster
than the on-chip SRAM memory, we believe that the small
memory usage of BurstBalancer will be more valuable in
future networks.

VI. CONCLUSION

This paper presents BurstBalancer, an efficient load balanc-
ing system for data center networks. Based on flowlet, the
design philosophy of BurstBalancer is to only manipulate a
small amount of critical flowlets. We formally define these crit-
ical flowlets as FlowBursts. BurstBalancer proposes a compact
sketch algorithm, namely BalanceSketch, to accurately identify
and manipulate most FlowBursts under small memory usage.
Experiments on a testbed and simulations show that BurstBal-
ancer outperforms state-of-the-art LetFlow in both symmetric
and asymmetric topologies, while manipulates fewer flows
at the same time. In the future work, we plan to derive
theoretical guarantees for our BalanceSketch, and we plan to
integrate BurstBalancer into practical network measurement
and management systems.

ACKNOWLEDGMENT

We thank our shepherd Praveen Tammana and the anony-
mous reviewers for their valuable feedback. This work is
supported by Key-Area Research and Development Program
of Guangdong Province 2020B0101390001, National Natu-
ral Science Foundation of China (NSFC) (No. U20A20179,
61832001).

10

REFERENCES

[1] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness
for load balance in networks-on-chip,” in 2008 IEEE 14th International
Symposium on High Performance Computer Architecture, 2008, pp. 203–
214.

[2] O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss, “Layered routing
in irregular networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 1, pp. 51–65, 2005.

[3] D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms
for peer-to-peer systems,” in Proceedings of the 16th annual ACM
Symposium on Parallelism in Algorithms and Architectures, 2004, pp.
36–43.

[4] R. Hsiao and S.-D. Wang, “Jelly: a dynamic hierarchical p2p overlay
network with load balance and locality,” in 24th International Confer-
ence on Distributed Computing Systems Workshops, 2004. Proceedings.,
2004, pp. 534–540.

[5] J. Alvarez-Horcajo, D. Lopez-Pajares, J. M. Arco, J. A. Carral, and
I. Martinez-Yelmo, “Tcp-path: Improving load balance by network
exploration,” in 2017 IEEE 6th International Conference on Cloud
Networking (CloudNet), 2017, pp. 1–6.

[6] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing
network layer,” in Proceedings of the 9th ACM Conference on Computer
and Communications Security, 2002, pp. 193–206.

[7] A. K. Y. Cheung and H.-A. Jacobsen, “Dynamic load balancing in
distributed content-based publish/subscribe,” in ACM/IFIP/USENIX In-
ternational Conference on Distributed Systems Platforms and Open
Distributed Processing, 2006, pp. 141–161.

[8] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17, 2017, p. 225–238.

[9] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter networks and
stacks for low latency and high performance,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17, 2017, p. 29–42.

[10] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,
and T. Moscibroda, “Multi-path transport for {RDMA} in datacenters,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 357–371.

[11] J. Huang, W. Lv, W. Li, J. Wang, and T. He, “Qdaps: Queueing delay
aware packet spraying for load balancing in data center,” in 2018 IEEE
26th International Conference on Network Protocols (ICNP), 2018, pp.
66–76.

[12] S. Zou, J. Huang, J. Wang, and T. He, “Improving tcp robustness over
asymmetry with reordering marking and coding in data centers,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 57–67.

[13] S. Liu, J. Huang, W. Jiang, J. Wang, and T. He, “Reducing flow
completion time with replaceable redundant packets in data center
networks,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 46–56.

[14] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, 2013,
pp. 49–60.

[15] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail: reducing
the flow completion time tail in datacenter networks,” in Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, 2012, pp.
139–150.

[16] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized” zero-queue” datacenter network,” in Proceedings of
the 2014 ACM conference on SIGCOMM, 2014, pp. 307–318.

[17] C. Hopps et al., “Analysis of an equal-cost multi-path algorithm,” RFC
2992, November, Tech. Rep., 2000.

[18] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems, 2014, pp. 1–14.

[19] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal
flow routing in datacenters via local link balancing,” in Proceedings

of the ninth ACM conference on Emerging networking experiments and
technologies, 2013, pp. 151–162.

[20] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies, 2014, pp. 149–
160.

[21] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18, 2018, p. 191–205.

[22] F. De Pellegrini, L. Maggi, A. Massaro, D. Saucez, J. Leguay, and
E. Altman, “Blind, adaptive and robust flow segmentation in data-
centers,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 10–18.

[23] E. Dong, X. Fu, M. Xu, and Y. Yang, “Dcmptcp: Host-based load
balancing for datacenters,” in 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), 2018, pp. 622–633.

[24] J. Sun, Y. Zhang, X. Wang, S. Xiao, Z. Xu, H. Wu, X. Chen, and Y. Han,
“dc2 −mtcp: Light-weight coding for efficient multi-path transmission
in data center network,” in 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2017, pp. 419–428.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 266–277, 2011.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
Nsdi, vol. 10, no. 8. San Jose, USA, 2010, pp. 89–92.

[27] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in 2011 Proceedings IEEE INFOCOM, 2011, pp. 1629–1637.

[28] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the seventh
conference on emerging networking experiments and technologies, 2011,
pp. 1–12.

[29] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 202–215.

[30] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, p. 51–62, 2007.

[31] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in 14th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 17), 2017, pp. 407–420.

[32] F. Fan, B. Hu, and K. L. Yeung, “Routing in black box: Modularized
load balancing for multipath data center networks,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 1639–
1647.

[33] Y. Li, D. Wei, X. Chen, Z. Song, R. Wu, Y. Li, X. Jin, and W. Xu,
“Dumbnet: A smart data center network fabric with dumb switches,” in
Proceedings of the 13th EuroSys Conference, ser. EuroSys ’18, 2018.

[34] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in Pro-
ceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 503–
514.

[35] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford, “Clove:
How i learned to stop worrying about the core and love the edge,” in
Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
2016, pp. 155–161.

[36] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[37] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load
balancing in data center networks: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2324–2352, 2018.

[38] S. Sinha, S. Kandula, and D. Katabi, “Harnessing tcp’s burstiness with
flowlet switching,” in Proc. 3rd ACM Workshop on Hot Topics in
Networks (Hotnets-III). Citeseer, 2004.

[39] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “Effective delay-
controlled load distribution over multipath networks,” IEEE transactions

11

on Parallel and distributed systems, vol. 22, no. 10, pp. 1730–1741,
2011.

[40] B. Radunović, C. Gkantsidis, D. Gunawardena, and P. Key, “Horizon:
Balancing tcp over multiple paths in wireless mesh network,” in Pro-
ceedings of the 14th ACM international conference on Mobile computing
and networking, 2008, pp. 247–258.

[41] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in Proceedings of the 2016 ACM
SIGCOMM Conference, ser. SIGCOMM ’16, 2016, p. 129–143.

[42] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred, “Taking
the blame game out of data centers operations with netpoirot,” in
Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM
’16, 2016, p. 440–453.

[43] Y. Wu, A. Chen, and L. T. X. Phan, “Zeno: Diagnosing performance
problems with temporal provenance,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), 2019, pp.
395–420.

[44] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T.
Loo, and G. Outhred, “007: Democratically finding the cause of packet
drops,” in 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), 2018, pp. 419–435.

[45] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the 2017
Internet Measurement Conference, ser. IMC ’17, 2017, p. 78–85.

[46] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering
egress with edge fabric: Steering oceans of content to the world,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17, 2017, p. 418–431.

[47] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Bar-
ros, “Network coding meets tcp,” in IEEE INFOCOM 2009, 2009, pp.
280–288.

[48] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger,
“Tcp revisited: A fresh look at tcp in the wild,” in Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement, ser. IMC
’09, 2009, p. 76–89.

[49] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’19, 2019, pp. 44–58.

[50] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic in-band network telemetry,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’20, 2020, p.
662–680.

[51] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from googles network
infrastructure,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16, 2016, p. 58–72.

[52] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao, “Efficient
querying and maintenance of network provenance at internet-scale,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10, 2010, p. 615–626.

[53] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo,
“Quantitative network monitoring with netqre,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17, 2017, p. 99–112.

[54] P. Tammana, R. Agarwal, and M. Lee, “Cherrypick: Tracing packet
trajectory in software-defined datacenter networks,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015, pp. 1–7.

[55] W. Wang, X. C. Wu, P. Tammana, A. Chen, and T. E. Ng, “Closed-loop
network performance monitoring and diagnosis with {SpiderMon},” in
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22), 2022, pp. 267–285.

[56] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with {PathDump},” in 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16), 2016, pp. 233–248.

[57] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng,
R. Wang, H. Wu, Y. Wang et al., “{LightGuardian}: A {Full-Visibility},
lightweight, in-band telemetry system using sketchlets,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), 2021, pp. 991–1010.

[58] K. Yang, Y. Li, Z. Liu, T. Yang, Y. Zhou, J. He, T. Zhao, Z. Jia, Y. Yang
et al., “Sketchint: Empowering int with towersketch for per-flow per-
switch measurement,” in 2021 IEEE 29th International Conference on
Network Protocols (ICNP). IEEE, 2021, pp. 1–12.

[59] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with {SwitchPointer},” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018, pp.
453–456.

[60] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement, 2009,
pp. 202–208.

[61] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and
X. Li, “Heavykeeper: An accurate algorithm for finding top-k elephant
flows,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018, pp. 909–921.

[62] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “Pfabric: Minimal near-optimal datacenter transport,” in
Proceedings of the 2013 ACM Conference on Special Interest Group on
Data Communication (SIGCOMM ’13), 2013, p. 435–446.

[63] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao et al., “Packet-level telemetry in large
datacenter networks,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15), 2015,
pp. 479–491.

[64] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “Deconstructing datacenter packet transport,” in Proceedings
of the 11th ACM Workshop on Hot Topics in Networks (HotNets ’12),
2012, pp. 133–138.

[65] “Barefoot tofino: World’s fastest p4-programmable ethernet switch
asics,” https://barefootnetworks.com/products/brief-tofino/.

[66] “The Network Simulator - ns-2,” https://www.isi.edu/nsnam/ns/.
[67] A. Kabbani and M. Sharif, “Flier: Flow-level congestion-aware routing

for direct-connect data centers,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[68] P. Wang, G. Trimponias, H. Xu, and Y. Geng, “Luopan: Sampling-based
load balancing in data center networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 1, pp. 133–145, 2019.

[69] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, 2017, pp.
253–266.

[70] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He, “Caps: Coding-
based adaptive packet spraying to reduce flow completion time in data
center,” IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp.
2338–2353, 2019.

[71] Z. Li, J. Bi, Y. Zhang, A. B. Dogar, and C. Qin, “Vms: Traffic balancing
based on virtual switches in datacenter networks,” in 2017 IEEE 25th
International Conference on Network Protocols (ICNP), 2017, pp. 1–10.

[72] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D. Walker,
“Adaptive weighted traffic splitting in programmable data planes,” in
Proceedings of the Symposium on SDN Research, 2020, pp. 103–109.

[73] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic,”
in Proceedings of the conference on Communications architecture &
protocols, 1991, pp. 133–147.

[74] Z.-L. Zhang, V. J. Ribeiro, S. Moon, and C. Diot, “Small-time scaling
behaviors of internet backbone traffic: an empirical study,” in IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Cat. No. 03CH37428),
vol. 3. IEEE, 2003, pp. 1826–1836.

[75] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker,
“Contra: A programmable system for performance-aware routing,” in
17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), 2020, pp. 701–721.

[76] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[77] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement, 2003, pp.
234–247.

[78] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies

12

https://barefootnetworks.com/products/brief-tofino/
https://www.isi.edu/nsnam/ns/

using sketch subspaces,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, 2006, pp. 147–152.

[79] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in International conference
on database theory. Springer, 2005, pp. 398–412.

[80] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[81] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGMCOMM CCR, vol. 32, no. 4, 2002.

[82] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[83] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking
(TON), vol. 20, no. 5, pp. 1622–1634, 2012.

[84] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, 2014, pp. 75–88.

[85] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for high
similarities using odd sketches,” in Proceedings of the 23rd International
Conference on World Wide Web, ser. WWW ’14, 2014, pp. 109–118.

[86] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121–132, 2008.

[87] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18,
2018, p. 561–575.

[88] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[89] “P4-16 language specification,” https://p4.org/p4-spec/docs/P4-16-v1.2.
1.html#sec-checksums.

[90] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[91] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 221–235.

[92] “Data Set for IMC 2010 Data Center Measurement.” https:
//pages.cs.wisc.edu/∼tbenson/IMC10 Data.html.

[93] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling {ECN} in multi-
service multi-queue data centers,” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
537–549.

13

https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html

	Introduction
	Background and Motivation
	Our Proposed Solution

	Background and Related Work
	Problem Statement
	Related Work

	The BalanceSketch Algorithm
	A Strawman Solution
	Rationale of BalanceSketch
	Data Structure
	Workflow
	Handling Different Traffic Patterns

	The BurstBalancer System
	Overview of BurstBalancer
	Testbed Implementation
	Challenges on Programmable Switches
	Workflow
	Hardware Resources Utilization

	Discussion

	Experimental Results
	CPU Experiments
	Accuracy in Finding FlowBursts
	Load Balance Performance on a Single Switch

	Event-level Simulations (NS-2)
	Testbed Experiments
	Discussion

	Conclusion
	References

