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Abstract—Graphs are good at presenting relational and struc-
tural information, making it powerful in the representation
of various data. For the efficient storage and processing of
graph-like data, graph databases have been rapidly developed
and extensively studied. However, graph databases mostly use
adjacency lists as their basic data structure (e.g., Neo4j), which
could result in poor performance of edge due to the skewed
degree distribution of graphs.

We design the Wind-Bell Index to address this problem. Wind-
Bell Index is a memory-efficient index data structure, which can
be attached to existing graph databases to speed up the edge.
We have fully implemented our data structure in Neo4j, the
most popular graph database today, and conduct theoretical and
experimental analysis to evaluate the performance. Theoretical
results prove the high query efficiency of our algorithm. And
experimental results show that the average edge query speed is
increased by hundreds of times compared with the original query
interface of Neo4j. We believe that the excellent performance and
scalability of Wind-Bell Index make it suitable for the application
in a variety of graph databases.

I. INTRODUCTION

A. Background and Motivation
In recent years, graph databases have grown in importance

due to its ability of storing and processing graph-like data.
Considering the sparsity of graphs in practice, adjacency lists
are used as the basic storage structure in most graph databases.
However, adjacency lists invalidate directly searching for an
edge in the graph given the start point and the end point.
Instead, we can only conform the existence of an edge by
traversing the linked list of either the start point or the end
point, which reduces the efficiency of the basic edge query.

Moreover, the skewed degree distribution of graphs also
significantly affects the query performance of an edge. It is
well known that the node degrees of graphs often follow
the power-law distribution [1], [2]. In other words, graphs
are usually composed of a majority of low-degree nodes and
a minority of high-degree nodes [3], [4]. The skewness of
graphs is an obstruction in the optimization of graph databases.
Existing graph databases (e.g., Neo4j [5]) take a long time
when querying the neighbors of high-degree nodes, and take
a short time for low-degree nodes. However, high-degree nodes
have a higher probability to be queried and updated, leading
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to poor average performance. Therefore, it is highly desired to
design a solution which can improve the performance of edge
query, especially for high-degree nodes.

B. Prior Art and Their Limitations
Great efforts have been made on the construction and

optimization of graph databases in both academic and in-
dustrial fields. However, previous studies mostly focus on
some specific problems, such as discovering similarity [6],
[7], finding subgraphs [8], [9], generating shortest paths [10],
[11], [12], and so on. By contrast, we attempt to accelerate the
fundamental edge query, which consequently influences the
performance of specific query problems that include visiting
the edges. To the best of our knowledge, no existing work
directly lays emphasis on the improvement of edge query in
graph databases.

Among all the existing graph databases, the most widely
used open-sourced system is Neo4j [5], acknowledged for its
high performance, robustness, and flexibility. Neo4j uses the
adjacency list rather than the adjacency matrix to store the
whole graph, making it more suitable for sparse graphs. A
query for a particular edge 〈u, v〉 requires traversing the entire
list related to the start point u. Therefore, the speed of a edge
query mainly depends on the degree of node u. Unfortunately,
Neo4j does not address the problem of querying high degree
nodes, leaving room for improvement.

C. Our Proposed Solution
To address this problem, we propose a new data structure,

namely Wind-Bell Index, to build an index for the edges in
graph databases. Wind-Bell Index is characterized by its high
query speed and efficient memory consumption, which can
speed up the edge query by hundreds of times and consume
only 8 bytes for each edge.

Wind-Bell Index is a hybrid structure of adjacency matrix
and adjacency list, combining the advantages of the two basic
data structures. Wind-Bell Index consists of two parts, the
ceiling matrix and the hanging linked lists. The ceiling matrix
is a concentrated adjacency matrix, while the hanging linked
lists are balanced adjacency lists. Given a sparse graph with
m nodes and S edges, we assume that S is close to m due
to its sparsity, and assume the degree of the nodes follow



the power-law distribution. By setting the size of our ceiling
matrix to

√
m∗
√
m, we can guarantee that the expected length

of each linked list is approximately 1 in the case of well
load balance. To achieve well load balance, we propose to use
the multi-hashing technique and leverage the kick strategy of
Cuckoo hashing (see details in Section III). After realizing
load balance, all the linked lists are very short, and therefore
querying each edge only needs a few memory accesses (e.g., 1
∼ 4), thus speeding up the edge query. In contrast, a traditional
adjacency matrix need the size of m ∗ m (much larger than√
m ∗
√
m) while adjacency lists do not address the problem

of high-degree nodes.
We have derived theoretical results for our Wind-Bell and

proved that Wind-Bell outperforms the adjacency list when
the graph follows the power-law distribution. We have fully
implemented our data structure in the community version
of Neo4j, and released the source code on Github without
author information[13]. The experimental results show that the
edge query performance of Neo4j is improved by 2 orders of
magnitude on average by using the Wind-Bell.

D. Key Contributions
In this paper, we make the following 3 key contributions.
• We propose the Wind-Bell Index, a relational index

structure which can be implemented in graph databases to
accelerate edge query. To the best of our knowledge, this
is the first index structure focusing on the optimization
of edge query in graph databases.

• We conduct mathematical analysis to evaluate our al-
gorithm. Theoretical results prove the effectiveness and
efficiency of our algorithm.

• We have fully implemented our Wind-Bell into the graph
database Neo4j, and provide a new interface for edge
query. The experimental results show that the average
edge query speed is increased by hundreds of times
compared with the original version of Neo4j’s Java API.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the background of query
optimization in graph databases and the related algorithms that
inspired our work.

A. Query Optimization
A number of graph databases have been developed to satisfy

the requirements of different applications, such as Neo4j [5],
OrientDB [14], DEX [15], HyperGraphDB [16], and so on.
Among all these graph databases, Neo4j has been the most
popular one in recent years [17].

As for graph databases, query performance is an especially
crucial evaluation indicator. Therefore, great effort has been
made on the optimization of query performance [18]. Existing
technologies include data distribution [19], query decompo-
sition [20], incremental processing [21], and graph sketching
[22], [23]. However, previous studies of query optimization
mostly focus on specific application scenarios and optimizing

any kind of query with one general technique still remains a
challenge [18].

B. Related Algorithms
Our Wind-Bell Index is inspired by the following three

algorithms.
d-random scheme [24]: Hash table is a commonly-used flexi-
ble data structure for performing fast look-ups. However, hash
collisions may significantly undermine the actual performance
in practice, and using multiple hash functions instead of single
hash functions is a solution to this problem [25], [26]. The
d-random scheme is one of the multi-hashing algorithms.
By using d independent hash functions, we get d buckets
for each item and hash the item to the least loaded one.
Although searching for an item requires examining d buckets,
the probability of long linked lists is significantly reduced.
Fast Hash Table [27]: Fast Hash Table regards Bloom filter
[28] as a multi-hashing technique and presents an efficient
hash table data structure by extending Bloom filters. In a Fast
Hash Table, every item is stored in the shortest linked list
among the d corresponding ones. In order to maintain this
property, the items in the table need to be adjusted during
each insert and delete operation.
Cuckoo hashing [29]: Cuckoo hashing is widely accepted as
one significant recent advancement in the field of hash tables.
If an item is to be inserted and the two candidate buckets are
both occupied, it will kick out one of the existing item, and
the kicked-out item will be reinserted. This kick operation will
be repeated until every item has its own bucket. We modify
the kick mechanism from Cuckoo hashing in the optimized
version of our Wind-Bell Index.

III. THE WIND-BELL INDEX

In this section, we first introduce the data structure and
basic operations of our Wind-Bell Index, then propose an
optimization strategy to further improve the performance.

A. Data Structure
First of all, we present the data structure of our Wind-Bell

Index. We may compare the Wind-Bell Index to a real wind
bell, which consists of a ceiling and multiple pendants. In
our data structure, the ceiling of the index is a matrix, while
the pendants represent linked lists. Each bucket in the ceiling
matrix keeps a pointer of one linked list, just like the top of
the wind bell with hanging pendants.
Ceiling Matrix: The ceiling of our Wind-Bell Index is an
adjacency matrix, marked as A, and the buckets in the ceiling
matrix are marked as A[i][j]. Every time there comes a new
edge e with 〈u, v〉, the row where it should be is determined
by the start point u, and the column is determined by the
end point v. We use N hash functions to map e into N
rows and N columns, then we combine them to obtain the
N2 candidate buckets for storing the element, marked as
A[i1, i2...iN ][j1, j2...jN ].

Each bucket in the matrix has two fields, a counter CNT
and a pointer PTR. The pointer points to the hanging linked



list attached to the bucket, while the counter records the length
of the list. Despite the extra memory cost, maintaining the
counter field1 is essential in our algorithm because it enables
us to balance the load of whole structure and accelerate the
querying process.
Hanging Linked Lists: We have some designs for the linked
list hanging from the ceiling matrix. Every element in the
hanging linked list represents an edge in the graph, and
there are five basic fields for every element, marked as
〈u, v, nextRel, preRel, nextRec〉. u and v stand for the start
point and end point of the edge, nextRel points to the next
element in the hanging linked list, and preRel points to the
previous element. nextRec is not used in this section, it will
be introduced in the Section V later. By making the hanging
linked list a doubly linked list, we can better support the
flexible operations of graph databases.

In addition to the five basic fields, extra fields can be added
to the elements to indicate the properties of an edge. As for
multigraphs with more than one edge between the same start
point and end point, we simply store these edges together and
add a pointer to the element to link the edges with one another
just use the NextRec pointer. And for graphs with different
types of edges, we can build multiple Wind-Bell indexes for
each type of edge if needed. Building multiple Wind-Bell does
not necessarily incur large amount of extra space because the
elements in the hanging linked lists would not be repeatedly
stored.

B. Operations
Insertion: For each newly added edge e with 〈u, v〉, we need
to insert it into the Wind-Bell. Before the insertion, we use
the query operation (it will be shown below) to check whether
the point pair 〈u, v〉 exists. If it does exist, the new edge will
be updated into the existing element.

Otherwise, we insert a new element in the Wind-Bell for
e. We use N hash functions to calculate the N2 candidate
buckets, put e into the least loaded bucket among them,
and increase the CNT of the chosen bucket by one. We
can flexibly adjust N , the number of hash functions used,
according to the application scenario. If we lay more emphasis
on data load balancing, we can use a larger N to select the least
loaded bucket from more candidates when inserting elements;
if we emphasize more on query performance, we can use a
smaller N to reduce the number of buckets to be traversed
during the query.
Example (Figure 1): Suppose that we want to insert an edge e
marked as 〈18, 06〉, which is shown in green. In this example,
we set N to 2 and calculate the 4 candidate buckets using the
2 hash functions, and traverse all the buckets to confirm that
e is a new edge for this graph, as shown in Step 1-4. After
that, we choose the bucket with the smallest counter, which is
0 in the example, increase the CNT of the chosen bucket by
one and put e on the top of the hanging linked list of PTR.
Query: To query an edge by 〈uq, vq〉, we first use the N
hash functions to calculate the N2 candidate buckets that

1Using the counter field is inspired by the Fast Hash table [27].

Algorithm 1: Insertion-Wind-Bell

1 Procedure Insertion(e:〈u, v〉):
2 ptr ← Query(e);
3 if ptr != null then
4 update the element e in ptr;
5 end
6 for each i ∈ [1, N ] do
7 for each j ∈ [1, N ] do
8 Buc← bucket with the least counter

A[Hashi(u)][Hashj(v)];
9 end

10 end
11 put e into Buc;

may contain the edge 〈uq, vq〉. Then we traverse the linked
lists attached to these N2 buckets to find out whether the
target edge exists. If it does, we directly return the element;
Otherwise, we report that the query target does not exist and
return NULL.
Example (Figure 1): Suppose that we want to query an edge
marked as 〈20, 21〉, which is shown in orange. We calculate
the 4 candidate buckets using the 2 hash functions as well, and
traverse all the buckets to check whether the element 〈20, 21〉
exists in the graph. In this example, we query the 4 candidate
buckets in the ascending order2 of CNT . Luckily, the query hit
the element Eq in the first hanging linked list, so we directly
return Eq without checking the rest of the linked lists.

Figure 1: Basic index structure and operations.

C. Optimization
In order to achieve better load balance, we propose an

optimization strategy and provide an adjustment operation.
We will adjust the longest linked list among the N2 candi-

date buckets during an insertion when it meets the following
two conditions:
1) The length of the longest list exceeds a predefined threshold

Tabs.

2We prove the efficiency of quering in the ascending order in Section IV



Algorithm 2: Query-Wind-Bell

1 Function Query(〈uq, vq〉):
2 for each i ∈ [1, N ] do
3 for each j ∈ [1, N ] do
4 if element Eq is found in

A[Hashi(uq)][Hashj(vq)] then
5 return Eq;
6 end
7 end
8 end
9 return null;

2) The ratio of the length of the longest list to the shortest
list exceeds a predefined threshold Tr.

If so, a randomly-chosen element er will be kicked out from
the longest linked list and reinserted. This operation will move
er to the shortest linked list in N2 candidate buckets of er,
so as to balance the load. This operation may cause a series
of elements to be reinserted, and therefore we make a limit
to the maximum times of reinsertion in a single operation to
ensure that the insertion of one edge won’t take too long.

How should we choose the element er to be reinserted?
Intuitively, adjusting the oldest element in the linked list may
be most effective because the shortest list among the N2

candidate buckets of the oldest element is likely to have
changed after many operations. So we maintain an additional
pointer PTRt in each bucket of the ceiling matrix pointing
to the tail of the hanging linked list. By maintaining the tail
pointer, we can directly find the oldest element in the list and
reinsert it.

Figure 2: Optimization: kick strategy for load balance.

Example (Figure 2): To better show our optimization, we
present an example of the adjustment operation. In this exam-
ple, we define N2 = 4, Tabs = 10, and Tr = 2. Suppose
that we want to insert an edge e marked as 〈79, 19〉. First,
we calculate the 4 candidate buckets as before, and check the
least loaded bucket Amin (3) and the most loaded bucket Amax
(11). Noticing that the CNT of Amax is bigger than Tabs, and
the ratio of the CNT of Amax to Amin is also bigger than
Tr, so we kick out the tail element er 〈20, 19〉 from Amax,
and reinsert it after the insertion of e is completed.

Analysis: Adding the tail pointer will increase the space
consumption of the ceiling matrix by an additional 1/2, but the
space consumption of the ceiling matrix takes a very small part
in the whole Wind-Bell, which is acceptable compared with
its optimization effect. Besides, the extra time consumed by
the adjustment operation is constant since there’s no need to
perform the query operation when reinserting the kicked-out
element. In other words, we only need to use N hash functions
and select the bucket with the smallest counter to reinsert the
kicked-out element.

IV. TIME COMPLEXITY ANALYSIS

In this section, we conduct theoretical analysis of the Wind-
Bell Index. Our goal is to evaluate the memory access time T
when QUERY to show Wind-Bell Index has a high efficiency.

Assuming that we have m nodes and S edges in total. The
out- and in- degrees of node i are marked as Xi and Yi respec-
tively, and they are independently and identically distributed3

in random variable X (i.e. X[1..m], Y[1..m]
i.i.d.∼ X). We define

the size of the ceiling matrix is K ∗ K (K 6 m). Suppose
there are Gi start nodes Xi[1..Gi] mapped to row i and Hj

end nodes Yj[1..Hj ] mapped to column j (0 6 Gi, Hj 6 m).
Every time we insert an element, we select N rows and N
columns to find N2 candidate buckets, inserting the element
into the shortest one. For simplicity, in this section, we fix
N = 1.

Obviously the consumption of a single adjacency list is

T1 = E

[
m∑
i=1

E (XiEYXi)

]
= E

(
m∑
i=1

X2
i

2

)
=
m

2
EX2.

We want to prove that for a Wind-Bell Index, if the variance
of r.v.X satisfies lim

m→+∞
DX/m = 0, EX > µ > 0, we have

T2 =
K2

2m2 (EX)
2

(
DX

m

K
+ EX2m

2

K2

)
.

To prove this theorem, we first give two observations.
In the first step, noticing the distribution of X may change

with the nodes number m, we can’t directly use any existing
SLLN. However, we observe that given lim

m→+∞
DX/m = 0

and EX > µ > 0, we can use Chebyshev inequality and get

P
(
| S

mEX
− 1| > ε

EX

)
6

1

ε2
D
(
S

m

)
=

DX
mε2

→ 0 (m→ +∞) .

In other words, mEX can be used to approximately replace
the edge number S.

3In fact, the out- and in- degrees must satisfy
∑
i
Xi =

∑
i
Yi = S. We

roughly use the i.i.d. condition to simplify the proof.



In the second step, we observe that if lim
m→+∞

K/m = 0,
we have

EG2
g

Gg∼B(m, 1
K )

==========

m∑
i=0

i2Cim

(
1

K

)i(
1− 1

K

)m−i
=
m

K

m−1∑
i=0

[iCim−1

(
1

K

)i(
1− 1

K

)m−1−i
+ Cim−1

(
1

K

)i(
1− 1

K

)m−1−i
]

=
m2

K2

(
1 +

K

m
− 1

m

)
=
m2

K2
(m→ +∞) .

Based on above two observations, we can easily prove our

main theorem. Since Xi and Yj are independent,
Gi∑
g=1

Xig and

Hh∑
h=1

Yjh are independent as well. Therefore

T2 := E
K∑
i=1

K∑
j=1

1

2

Gi∑
g=1

Xig

Hj∑
h=1

Yjh

m∑
i=1

Xi


2

Observation 1
========= E

K∑
i=1

K∑
j=1

1

2

Gi∑
g=1

Xig

Hj∑
h=1

Yjh

mEX


2

i.i.d.
=====

K2

2(mEX)2

E
 Gg∑
g=1

Xig

2

2

E(·)=E(E(·))
=========

K2

2(mEX)2
×E

 Gg∑
g=1

EX2
ig

+ E

 Gg∑
g=1

Gg∑
g′=1,g′ 6=g

E (XigXig′)
2


2

i.i.d.
=====

K2

2(mEX)2
×{

E
(
GgEX2

)
+ E

[(
G2
g −Gg

)
(EX)

2
]}2

=
K2

2(mEX)2
(
DXEGg + EX2EG2

g

)2
Observation 2
=========

K2
(
DXm

K + EX2m2

K2

)2
2m2 (EX)

2 .

To conclude, we have

T1
T2

=
m (EX)

2 EX2[
DX + m(EX)2

K

]2 .

With the condition of K ∗ K = m, we can prove that the
memory access time of Wind-Bell Index is always less than
that of an adjacency list. When K =

√
m, we have

T1
T2

=

 1√
m

√ EX2

(EX)
2 −

√
(EX)

2

EX2

+

√
(EX)

2

EX2

−2 .
Let x := EX2/ (EX)

2. On the one hand, according to
Jensen inequality, we have x > 1; on the other hand, according

to
m∑
i=1

X2
i 6 (

m∑
i=1

Xi)
2 we have x 6 m. Let F (x) := T1/T2,

we can get dF (x)
dx |x=√m−1 = 0. So we claim F (x) increases

from 1 to
√
m− 1, decreases from

√
m− 1 to m. Therefore

F (x) > F (1) = F (m) = 1, which means Wind-Bell Index
has a better query efficiency than adjacency linked list.

To take a step further, if the density function of r.v.X obeys
the power-law distribution

pX (x) =

{
α

1−m−α
1

xα+1 , x ∈ [1,m] ;

0, x /∈ [1,m] ,

through some mathematical tricks, we can get a more precise
theoretical result (shown in Table I, note that m → +∞).
We can also draw Figure 3 to demonstrate that our Wind-Bell
Index can be up to 200 times faster than the adjacency linked
list when m = 106.

Figure 3: T1/T2 when m = 106.

In Section VI, we find that the experimental results consist
with the theoretical analysis.

V. IMPLEMENTATION IN NEO4J

In this section, we detail the interface we have made in the
open source version 4.2.0 of Neo4j.

First we introduce the basic data structure in Neo4j. In
Neo4j, graph consists of nodes and relations; nodes have their
labels, while relations have their types. Besides, other infor-
mation about nodes and relations is described as properties.
Each relation has its source node and destination node and the
two nodes will save the relation in their own adjacency linked
list. Neo4j provides iterators to traverse the adjacency linked
lists.



Table I: Estimate of T1/T2.

F := T1/T2 α ∈ (1, 2) α ≈ 2 α ∈ (2,+∞)

K � mE2X/DX (α− 1)2K2m1−α/α (2− α) K2 ln2m/m (α− 1)2K2/α (α− 2)m

K ≈ mE2X/DX α (2− α)mα+1/ (α− 1)2 2m/ lnm α (α− 2)m

K � mE2X/DX α (2− α)mα−1/ (α− 1)2 m/ ln2m α (α− 1)2 (α− 2)

Neo4j does not provide an edge index. Therefore, the
original transaction of Neo4j does not support directly getting
an edge by its start point and end point. A particular edge can
be indirectly visited through the function getRelationships
provided by the class Node, which returns all the edges
connected to the node. In other words, in order to get an edge
by its start point uq and end point vq in Neo4j, we need to first
find the node of the start point uq , and then traverse the linked
list of uq to get the edge we want. If the degree of uq is high,
traversing its linked list is time consuming. Therefore, we add
the new interface to the transaction of Neo4j, which can get an
edge without traversing the adjacency list of the related nodes.
The latest open-source version of Neo4j is 4.4.12. This version
has a interface which could query an edge by its start point
and end point, but as fast as the query function we mentioned
above.

We make the following three modifications in the interface
implementation of our Wind-Bell Index.

1) To realize data persistence, we add read and write functions
for the Wind-Bell. We append a field for our Wind-Bell
Index in the class of TransactionImpl in Neo4j. If the
graph database is restarted, we create and initialize a new
Wind-Bell; otherwise, we load the previous Wind-Bell from
the disk. When the current transaction is committed, we
write the Wind-Bell into the corresponding file in the disk.
Through this modification, we support the open and close
operations of Neo4j and establish the consistency between
the graph database and the Wind-Bell Index.

2) To realize real-time update of the relational changes in
the graph, we set a monitor in the edge creation function
CreateRelaionshipTo of class Node. Every time a node
u creates a new edge connected to node v, we can capture
the action and insert the edge e with the pair 〈u, v〉 into
our Wind-Bell.

3) To realize fast multi-edge query, we modify our index
structure. In the implementation, we notice that Neo4j
allows multiple relationships between the same start point u
and end point v 4. Therefore, we organize all the edges with
the same 〈u, v〉 pair as a linked list and regard the whole
linked list as one element, which is attached to the field
nextRec in the hanging linked list. We call the element an
edgelinkedlist to distinguish it from the hanging linked
list. As a result, what our interface returns is actually an
iterator, by which we can traverse the edge linked list and
get all the edges between point 〈u, v〉.

4In practical graphs, two adjacent nodes could have many edges. For
example, two bank accounts could have many transactions.

Through the modifications mentioned above, we realize the
data persistence, real-time update, and multi-edge query for
our Wind-Bell Index. Through the interface we provided in
the TransactionImpl of Neo4j, we can directly query any
particular edge given the start point and end point at a higher
speed.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results of the
Wind-Bell Index. First, we describe the experimental setup
in Section VI-A. Second, we present the time improvement
and space performance of implementing Wind-Bell in Section
VI-B and Section VI-C, respectively. Finally, we summarise
and analyze the overhead of Wind-Bell in Section VI-D.

The query operation in Neo4j can be made by using Java
API, TraverserFrameWork, or Cypher query language. Exper-
imental results show that the query speed of using Java API
is the fastest among the three query methods [30]. Therefore,
we choose the original Java API provided by Neo4j as the
baseline in our experiments.

A. Experimental Setup
Setup Details: We implement our Wind-Bell in Neo4j with
java, and then compare the storage and query performance of
our algorithm with the original query interface for relations
provided by Neo4j. The default parameters are set as follows.
The number of hash functions N is set to 2. The length and
width of matrix K is set to 100. The default data size is set
to 1 ∗ 106. The maximum data size5 is set to 1.3 ∗ 106.
Datasets: We use the dataset from CAIDA[31] network data
in our experiment. CAIDA datasets identifies each flow of
IP trace streams by the five-tuples: source and destination IP
address, source, and destination port, protocol. With 13 bytes
of five-tuples, there are another 8 bytes in each record for
timestamp.

We use the source and destination IP address in the traces
as the start point and end point for the graph, respectively. We
create timestamps ourselves, although there are timestamps
in the dataset of CAIDA, the 8-byte timestamp is not fit
for JAVA experiments, filtering by the timestamps would be
difficult on ranging, so we make they ourselves. We make
timestamp by random function, 80% on (0, 10000), and the
other on (0, 1000000), simulating that there comes a burst
on time (0, 10000). The dataset of CAIDA we used contains
1067013 edges concerning 59304 different nodes, more details
on Table II.

5Data size refers to the number of edges we insert in the experiments



Table II: Details of CAIDA dataset.

Node Number 59304
Edge Number 1067013

Max Node Degree 486
Min Node Degree 2
P95 Node Degree 59
P99 Node Degree 457

Computation Platform: Our experiments are performed on
a server with 18-core CPUs (36 threads, Intel(R) Core i9-
10980XE CPU @ 3.00 GHz) and 128GB DRAM memory.
Queries: We run three different queries in Neo4j:

Q1 : MATCH (a)-[e]->(b)
RETURN e

Q2 : MATCH (a)-[e]->(b)
WHERE e.time>1000&e.time<100000
RETURN e

Q3 : MATCH (a)->(b)->(c)->(a)
RETURN a, b, c

Q3 is query of finding triangle.
Metrics: We compare our Wind-Bell with the original inter-
face of Neo4j using the following metrics and describe the
time distributions of corresponding experiments.
1) Average Query Time (AQT): The average time needed for

performing one edge query.
2) Average Insertion Time (AIT): The average time needed

for inserting one edge.
3) Loading Rate (LR): The proportion of buckets in which

the counter is not zero.
4) Average List Length (ALL): The average length of the

buckets in which the counter is not zero.
5) Longest List Length (LLL): The length of the longest list

in all buckets.
6) Average Memory Usage (AMU): The average memory

used for Wind-Bell Index to store one edge.

B. Experiments on Time

Average Query Time vs. Data Size (Figure 4(a)). We find
that the average query time of the optimized Wind-Bell is at
least 36.85 times shorter than that of the original Neo4j. The
results show that the ratio of the query time of original Neo4j
to the optimized Wind-Bell increases when the data size grows
larger. When the data size is 1300K, the average query time of
the optimized Wind-Bell is 7.88× 10−4 ms, which is 557.38
times shorter than that of the original Neo4j.
Average Query Time vs. Matrix Width (Figure 4(b)). We
find that the average query time of the optimized Wind-Bell is
at least 328.33 times shorter than that of the original Neo4j.
The results show that when setting the matrix width to 200, the
average query time of the optimized Wind-Bell is 1.047×10−3
ms, which is 328.78 times shorter than that of the original
Neo4j.

Average Query Time on Finding Triangles (Figure 4(c)).
We find that the average query time of finding triangles of
the optimized Wind-Bell is at least 17601.49 times shorter
than that of the original Neo4j. The results show that when
querying 900K node pairs, the average query time of Wind-
Bell is 2.36 × 10−4 ms, which is 33718.93 times shorter
than that of the original Neo4j. In the experiment of finding
triangles, we use the simplest approach: Enumerating groups
of three nodes like 〈u, v, w〉, and then checking whether the
three points form a triangle. We enumerate 100K, 300K, 500K,
700K, 900K triangles, and then get the average query time of
finding a triangle.
Summary and Analysis. In summary, Wind-Bell Index
achieves high speed of query in different situations, it performs
about hundreds of times better than the original Neo4j on
average, and even 10,000 times better in the problem of finding
triangles. The reason for such a good performance is that the
Wind-Bell avoids the steps of finding nodes from the database
and traversing the long adjacency lists of high-degree nodes
to confirm the edges. Besides, maintaining the load balance of
Wind-Bell is another reason for the well performance, which
reduces the times of memory access in each query.

C. Experiments on Space
Loading Rate vs. Data Size (Figure 5(a)). We find that the
loading rate of the optimized Wind-Bell is at least 5.61%
higher than that of the original Wind-Bell. The results show
that when using data size of 1300K, the loading rate of the
optimized Wind-Bell is 93.30%, which is 32.42% higher than
that of the original Wind-Bell.
Average List Length vs. Data Size (Figure 5(b)). We find
that the average list length of the optimized Wind-Bell is at
least 24.11% shorter than that of the original Wind-Bell. The
results show that when using data size of 1300K, the average
list length of the optimized Wind-Bell is 2.79, which is 24.48%
shorter than that of the original Wind-Bell.
Longest List Length vs. Data Size (Figure 5(c)). We find
that the longest list length of the optimized Wind-Bell is at
least 59.46% shorter than that of the original Wind-Bell. The
results show that when using data size of 1300K, the longest
list length of the optimized Wind-Bell is 23, which is 62.30%
shorter than that of the original Wind-Bell.
Summary and Analysis. In summary, the experiments on
space show that the optimized Wind-Bell achieves better load
balance in different metrics comparing with the original Wind-
Bell. It proves that our optimization of kicking out the tail
element is a good way to balance the load of the ceiling
matrix. Therefore, we may find that the query speed of the
optimized Wind-Bell is higher than the original Wind-Bell.
The improvement of speed may be not so obvious in our
experiments, but we believe that the optimization scheme will
have a significant improvement effect when the skewness of
the degree distribution increases.

D. Overhead
Average Insertion Time vs. Data Size (Figure 4(d)). We find
that the average insertion time of the optimized Wind-Bell is
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Figure 5: Experiments on space.

at most 8.65% longer than that of the original Neo4j. The
results show that when using data size of 1300K, the average
insertion time of the optimized Wind-Bell is 7.60 ms, which
is 0.51% longer than that of the original Neo4j.

In addition to the metrics shown in the figures, we also
describe the time distribution of insertion of 1000K in Table
III. We find that the difference between the maximum insertion
time and the average insertion time is not significant, showing
that Wind-Bell index is a balanced data structure. Besides,
we find that the 99% quantile of the time distribution is very
close to the average time, which also prove the balanced
performance of Wind-Bell index.

Table III: Details of Time Distribution.

Insertion time
Average Time(ms) 7.44

Min Time(ms) 6
Max Time(ms) 28
P99 Time(ms) 8
P95 Time(ms) 8

Average Memory Usage vs. Data Size (Figure 5(d)). We
find that the average memory usage of the optimized Wind-
Bell is at most 4.27% larger than that of the original Wind-
Bell. The results show that the ratio of the memory usage of
the optimized Wind-Bell to the original Wind-Bell decreases
when the data size grows larger. When the data size is 1300K,
the average memory usage of the optimized Wind-Bell is 8.49

byte, which is 0.36% larger than that of the original Wind-
Bell.
Summary and Analysis. In summary, Wind-Bell does not
bring a large overhead in the insertion time. The overhead
of insertion is relatively small, which can be ignored when
compared with the insertion time of the original Neo4j. The
space Wind-Bell consumes is not so small to be ignored, but
it is not so big for an index. For every edge in the graph,
we take about 8 bytes to maintain it in the Wind-Bell. When
the graph grows larger, the space consumption of the Wind-
Bell will become larger, but we believe it is acceptable and
worthwhile compared with the significant speed up effect. In
practical application, user can flexibly adjust the parameters in
the data structure. A larger K results in a larger ceiling matrix
which consumes more space but shortens the average length
of the hanging linked lists. A larger N indicates using more
hash functions which leads to more balanced hanging linked
lists but increases the insertion and query time. It would be
better to use a larger K if the data volume is large. However
increasing N is more time-consuming than we expected, so
we suggest that N be set to 2.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new data structure Wind-Bell
Index, which is used as an edge index to accelerate edge
query in graph databases. We implement it in a widely-used
graph database, Neo4j, and provide a new interface for edge
query. In addition to the basic version of Wind-Bell Index,
we also provide an optimization strategy to realize better load
balance. In the experiments, our Wind-Bell achieves excellent



performance: It speeds up the edge query by hundreds of times
compared with the original query interface of Neo4j. The key
idea of Wind-Bell index is to avoid traveling through long
linked lists of high-degree nodes. We believe that Wind-Bell
index can play a better role in the industry, where high degree
nodes become a bottleneck. It is reasonable to believe that
the performance of Neo4j on multiple tasks can be further
accelerated by using our index and query interface. And all
the other graph databases which also use adjacency lists to
store the graphs can be improved by implementing Wind-Bell
Index.

In our future work, we hope that we can further improve
our code and add the Wind-Bell Index to the open source
community of Neo4j to provide a convenient interface for
efficient edge query. Moreover, we plan to implement the
Wind-Bell Index in more graph databases, and try to extend
our index structure to distributed graph databases to adapt to
a wider range of application scenarios.
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