
SketchConf: A Framework for Automatic Sketch
Configuration

Ruijie Miao∗, Fenghao Dong∗, Yikai Zhao∗, Yiming Zhao∗, Yuhan Wu∗, Kaicheng Yang∗, Tong Yang∗†, Bin Cui∗
∗ School of Computer Science, and National Engineering Laboratory for Big Data

Analysis Technology and Application, Peking University, Beijing, China
† Peng Cheng Laboratory, Shenzhen, China

Abstract—Sketches have risen as promising solutions for fre-
quency estimation, which is one of the most fundamental tasks
in approximate data stream processing. In many scenarios, users
have a strong demand to apply sketches under the expected error
constraints. In this paper, we explore how to configure sketch
parameters to satisfy user-defined error constraints. We propose
SketchConf, an automatic sketch configuration framework, which
efficiently generates memory-optimal configurations for the first
time. We show that SketchConf can be applied to order-
independent sketches, including CM, Count, Tower, and Nitro
sketches. We further discuss how to deal with the unknown
and changeable workloads when applying SketchConf to the
real scenarios of streaming data processing. Experimental results
show that SketchConf can be up to 715.51 times faster than
the baseline algorithm, and the outputted configurations save up
to 99.99% memory and achieve up to 27.44 times throughput,
compared with the theory-based configurations. The code is open
sourced at Github.

Index Terms—Data Stream; Frequency Estimation; Sketch;
Configuration

I. INTRODUCTION

Approximate data stream processing [1] has received con-
siderable research interests, and frequency estimation is one of
the most fundamental tasks. With sub-linear space complexity
and O(1) update/query time, sketching algorithms are consid-
ered as promising solutions for frequency estimation [2], [3],
[4], [5], [6], [7]. Take the CM sketch [8], one of the most
widely used sketches, as an example. The CM sketch consists
of a d×w matrix of counters. For an insertion, each row uses a
hash function to locate and increment one counter. For a query,
the same hash functions are used in d rows to locate d counters,
and the minimum value is reported. Although the estimated
frequency of sketches has errors, users in many scenarios
have a strong demand to apply sketching algorithms within the
expected error constraints. Such scenarios include streaming
databases [9], [10], natural language processing [11], [12],
network measurement [13], [14], and more [15], [16], [17],
[18], [19], [20], [21], [22].

In this paper, we study the following problem: providing
appropriate sketch parameters configuration in order to satisfy
user-defined error constraints. Typically, the sketch parameters
include the size of rows and columns of the counter matrix,
as d and w in the CM sketch. At the first glance, this problem

Co-primary authors: Ruijie Miao, Fenghao Dong, Yikai Zhao. The corre-
sponding author: Tong Yang (yangtongemail@gmail.com).

seems simple. However, appropriate sketch configurations are
actually critical for applications of sketches in most scenarios
where error constraints exist. An inappropriate configuration
may lead to violation of error constraints or drop in sketch
performance. For instance, the existing work on finding top-k
items [23] uses sketches to count the frequency of items and
maintain a heap of size k for top-k items. If the d and w
are set too small, the accuracy of sketches decreases, which
may misclassify the infrequent items as top-k items. If the
d and w are set too large, sketches suffer from not only
high memory overhead, but also low throughput, resulting in
inefficiency when dealing with large data. Although existing
solutions claim themselves to perform well, their performances
are often measured against well-chosen configurations, and
how to choose configurations is not well addressed.

To provide appropriate sketch parameters configuration,
two problems should be dealt with. First, given a parameter
configuration, we need to answer whether the error constraints
can be satisfied. Second, typical sketching algorithms (e.g.,
CM sketches) involve multiple parameters that should be
configured simultaneously, which means a large choice space.
Among the configurations that satisfy error constraints, the
optimal one should be selected. Below we show how exist-
ing solutions address these two problems, and analyze their
weakness as well.

Existing solutions on sketch configuration can be divided
into two categories: theory-based solutions and expert-tuned
solutions. Theory-based solutions enable users to calculate
sketch configurations with simple mathematical formulas.
However, theory-based solutions are based on theoretical error
bounds, which are usually much looser than real errors in
most workloads. Therefore, theory-based solutions provide
conservative answers to the question whether a configuration
satisfies error constraints. As a consequence, we observe
significant memory overhead and throughput drop for theory-
based configurations. With error constraints that Pr{Error >
500} < 0.1, for the synthetic dataset with Zipf skewness
parameter 0.5, the theory-based CM sketch takes 2.08MB,
with an insertion throughput of 19.42M items/s, while a
manually-adjusted configuration takes 395KB, with an inser-
tion throughput of 46.07M items/s. Similar phenomenon exists
for Count sketches, and more detailed comparison is provided
in §II-C.

On the other hand, expert-tuned solutions ask for experts
to manually tune sketch parameters. To check whether error
constraints can be satisfied for a specific configuration, expert-
tuned solutions repeatedly conduct experimental testing on a
test dataset sampled from real world workloads. With careful
parameter tuning, the result sketch configuration can be much
better than the theory-based one, reducing memory consump-
tion and speeding up insertion. However, as the choice space
is large, the fine-grained parameter tuning procedure is slow
and involves a large amount of manual labor. Besides, existing
work on workload analysis shows that workload characteristics
vary over time [24], [25] or when the applied scenarios change
[26], [27]. In response to the workload change, experts should
reconfigure the sketch, which requires even more manual
work.

Ideally, the sketch configuration framework should achieve
three following requirements:

• Automatic. The configuration procedure should not involve
manual labor.

• Optimal. The provided configuration should maximize the
sketch performance.

• Fast. The time cost of configuration procedure should be
low.

In this paper we aim to generate memory-optimal config-
uration, which minimizes the total memory consumption. To
search for memory-optimal configuration, a naive solution is
to automate the procedure of manually tuning parameters:
conduct binary search on memory, and for each memory value
enumerate parameter choices and check whether the error
constraints are satisfied, until the minimum feasible memory
value is found. For the check of error constraints, the naive
solution inserts testing dataset to sketches and compares the
query results with ground truth, and repeats this process for
multiple times. We find the naive solution suffers from poor
time efficiency, because: (1) the check of error constraints is
time-consuming, and (2) the total search time scales up with
the number of checked configurations.

To overcome the low time efficiency of the naive solution,
we propose our sketch configuration framework, SketchConf.
For the fast check of error constraints, SketchConf utilizes
Monte Carlo simulation technique to build an efficient error
predictor for order-independent sketches. Typical sketching
algorithms are order-independent 1, which means that the
estimation does not depend on the arriving order of items. This
property enables efficient Monte Carlo simulation for sketch
errors. First, for order-independent sketches, the items in the
stream can be swapped, and we can logically group items with
the same ID together as < iD, frequency > pairs. Instead
of running simulation item-by-item, we can simulate pair-
by-pair, which greatly reduce complexity. Second, for order-
independent sketches, the update of counters is independent
with each other. Therefore, Monte Carlo simulation of col-
liding items in a single counter is enough to predict errors,

1Previous work [28], [29] has proposed similar definition.

which avoids unnecessary hash computation and improves
cache utility.

To break the scaling time cost with the checked config-
urations, we propose the technique of reusing simulation
results. After analysis of the Monte Carlo simulation process,
we find that the tail error conditioning on the number of
distinct colliding items n (e.g., Pr{Error > X | n})
depends only on the workload characteristics, which remains
unchanged across the search. This implies that we can break
tail error probability into conditional probabilities, simulate
conditional probabilities only once, and reuse the simulation
results throughout the searching process. By reusing Monte
Carlo simulation results, the time cost is considerably reduced.

We propose an optimization to further accelerate Monte
Carlo simulation for skewed data distribution, which is com-
mon in the real world datasets [2], [26], [30], [31], [32].
Infrequent items contribute little to the errors but require
much time to simulate, and we can separate the simulation
of frequent and infrequent items. For infrequent items, we
conduct limited rounds of simulation, and hence the time cost
can be further reduced. We further discuss how to deal with
the challenges when applying SketchConf in real scenarios
of data stream processing, including: (1) unknown workload
characteristics, (2) overhead of frequent re-configuration of
sketches, and (3) violation of users demand due to the abrupt
change of workload characteristics. We provide solutions for
estimating the workload information, sketch error monitoring
and urgent re-configuration of sketches, respectively.

Our main contribution can be summarized as follows:

• We propose a Monte-Carlo-based error predictor to estimate
errors for order-independent sketches. Based on the error
predictor, we propose SketchConf, an automatic sketch
configuration framework that generates memory-optimal
configurations efficiently (§III).

• We show how to apply our framework to order-independent
sketches, including sketches of CM, Count, Tower and Nitro
(§IV).

• We discuss the challenges and solutions when applying
SketchConf in the real scenarios with unknown and change-
able workloads (§V).

• We evaluate SketchConf in the synthetic datasets and real
world datasets (§VI). Our experimental results show that
SketchConf can be up to 715.51 times faster than the
baseline algorithm, and the outputted configurations save
up to 99.99% memory and achieve up to 27.44 times
throughput, compared with the theory-based configurations.

II. BACKGROUND AND RELATED WORK

A. Problem Statement

We define the problem of sketch parameters configuration,
which takes the following information as input:

• Workload. The required workload information includes the
frequency distribution of data stream and the number of
distinct items.

2

Fig. 1: A CM sketch with d = 3 and w = 10.

• Sketch type. Users specify the sketch type, e.g., the CM
sketch, the Count sketch. In this paper we consider sketches
that are order-independent.

• Error constraints. The error constraints are conveyed in
the form of tail error bounds, e.g., Pr{Error > X} < δ.
This means that with probability less than δ, the error of
estimation will be larger than X . There can be multiple
error constraints for one running sketch, e.g., Pr{Error >
X1} < δ1, P r{Error > X2} < δ2, · · · , P r{Error >
Xn} < δn.
The output of sketch parameters configuration is the

memory-optimal configuration. If multiple feasible configu-
rations have the same memory, the one with minimal hash
computation is outputted.

We explain the reasons behind the problem definition in
the follows. First, we decide to minimize memory, because it
improves the throughput at the same time. Existing work [33]
shows that memory access time comprises a large portion of
sketch processing time, and minimizing memory accelerates
memory access by improving cache utility. Second, the error
constraints are expressed in the form of one or multiple tail
error bounds. A more general way is to convey a complete
error distribution. However, in real scenario users usually only
cares some tail error probabilities. For example, users may
expect 99% quantile of error to be less than 100, which can be
express by tail error probability Pr{Error > 100} < 0.01.
It is also widely accepted in the research community, such
as [34]. Third, workload characteristics are acquirable. We
notice that existing work [35], [36] propose diverse methods
to acquire accurate estimation of the number of distinct items
and frequency distribution. And we will further discuss how
to deal with the unknown workload characteristics in §V.

B. Related work

1) Sketching algorithms:
Sketches are probabilistic data structure, which can provide
approximate answers for frequency estimation tasks. Many
sketches have similar data structure and operation design.
Figure 1 shows one typical sketch, CM sketches [8]. The CM
sketch comprises of a d × w counter matrix. When an item
arrives, each row uses an independent hash function to map
it to one counter and increments it by 1. To query an item’s
frequency, the CM sketch reports the minimum value of d
hashed counters. We find CM sketches are order-independent:
swapping two items in the data stream does not impact the
result value of the counter matrix, and therefore does not
impact the frequency estimation. In addition to CM sketches,
there are many typical sketches that are order-independent,

including sketches of Count [37], Tower [38], Nitro [33], and
more [39], [40].

Sketching algorithms can be applied in diverse downstream
applications [41]. One typical application is finding top-
k items, which aims to find k elements with the highest
frequency. Sketch-based solutions [23] will use sketches as
auxiliary data structures to estimate items’ frequency, and
maintain a heap of size k for top-k items. The primary goal
is to find top-k items accurately and fast, and the sketch
configurations are vital to the performance. While the state-
of-the-art solutions perform well, their performances are often
measured under well-chosen configurations. Therefore, the
downstream applications will benefit from an automatic sketch
configuration framework. Similar applications using sketches
also includes join size estimation [42], feature extraction [43].

Recently the idea of learning-based sketches has been pro-
posed [44] to enhance the performance of sketches. Learning-
based sketches utilize machine learning to classify heavy-
hitters, and record heavy-hitters with buckets and the non-
heavy-hitters with sketching algorithms. For learning-based
sketches, the sketch part of non-heavy-hitters still needs ap-
propriate configurations.

2) Error estimation for sketches:
Prior work on error estimation for sketches can be divided
into two categories: theoretical and statistical. Most efforts
towards error estimation for sketches reside on the theoretical
analyses. Sketches usually provide theoretical error bounds
[8], [37], [38], [33]. Moreover, prior work [45] also presents
refined error bounds for the Count sketch, which is based on
asymptotic analysis. For statistical methods, Rusu et. al [42]
proposes to use statistical analysis and argues that in some
cases theoretical bounds can be orders of magnitude worse
than statistical results. Chen et. al [46] proposes a solution,
which provides precise error estimation of sketch results at
the query time. To the best of our knowledge, it is so far the
most efficient algorithms to estimate error of sketch results.

3) Sketch configuration:
Providing sketch configuration under user specified require-
ments has been studied by the research community. OpenS-
ketch [13] automatically allocates resources across sketches.
The goal of OpenSketch is to minimize the error rate with the
given total memory, which is based on the theoretical error
bounds. HeteroSketch [34] explores sketch configuration under
heterogeneity of hardware. For error constraints, HeteroSketch
also uses theoretical error bounds. When configuring one
sketch on a single node, the above solutions are the same
as theory-based configurations, which are far from optimal.
SCREAM [47] proposes a dynamic resource allocator, which
dynamically adjusts the allocated resource for each sketch
according to the instantaneous accuracy. If the accuracy is
below the user specified accuracy bound, more resource is
allocated; otherwise, more resource is allocated. SCREAM
provides tighter but still non-optimal error bounds, as it does
not rely on traffic characteristics. Besides, it is designed for
heavy-hitter and heavy-change detection, while we focus on

3

400 500 600 700 800
Error Threshold X

10
5

10
3

10
1

Ta
il

Er
ro

r P
ro

ba
bi

lit
y

Theoretical Real

(a) CM sketches

400 500 600 700 800
Error Threshold X

10
4

10
3

10
2

10
1

Ta
il

Er
ro

r P
ro

ba
bi

lit
y

Theoretical Real

(b) Count sketches
Fig. 2: Gaps between theoretical error bounds and real tail
errors.

0.00 0.25 0.50 0.75 1.00
Zipf Skewness Parameter

10
2

10
3

10
4

M
em

or
y

(K
B

)

Theory-based Manually-tuned

(a) CM sketch - Memory

0.00 0.25 0.50 0.75 1.00
Zipf Skewness Parameter

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (M

ip
s)

Theory-based Manually-tuned

(b) CM sketch - Throughput

0.00 0.25 0.50 0.75 1.00
Zipf Skewness Parameter

10
2

10
3

10
4

10
5

M
em

or
y

(K
B

)

Theory-based Manually-tuned

(c) Count sketch - Memory

0.00 0.25 0.50 0.75 1.00
Zipf Skewness Parameter

10
1

10
0

10
1

10
2

10
3

Th
ro

ug
hp

ut
 (M

ip
s)

Theory-based Manually-tuned

(d) Count sketch - Throughput

Fig. 3: Comparison of theory-based and manually-tuned
configurations.

frequency estimation. In a word, our SketchConf is different
from prior work in the aspect of the optimal configuration.

C. Motivation

Theory-based solutions are the state-of-the-art method to
automatically configure sketches. We show limitations of
theory-based configurations as follows.
Gap between theoretical error bounds and real tail errors.
Theory-based configurations are based on the theoretical error
bounds for Pr{Error > X}. However, there is a huge
gap between theoretical error bounds and real tail errors.
We conduct experiments on the synthetic dataset that follows
Zipf distribution with skewness parameter 0.5. We compare
theoretical error bounds [8], [48] with real errors, and results
are shown in Figure 2. For CM sketches, the theoretical error
bounds are 1 − 4 orders of magnitude looser than the real
tail errors. Similarly, for Count sketches, the theoretical error
bounds are 3− 4 orders of magnitude looser.
Performance drop caused by theory-based configurations:
Theory-based configurations are far from optimal. we measure
the memory overhead and drop of insertion throughput caused
by theory-based configurations. We use the synthetic datasets
with Zipf skewness parameter ranging from 0.0 to 1.0. We set
the error constraint Pr{Error > 500} < 0.1, and compare
the theory-based configurations [8], [48] with manually-tuned

configurations that exactly satisfy the error constraint. As
shown in Figure 3, theory-based configurations consumes
more memory and have much lower throughput. For CM
sketches, compared with manually-tuned configurations, the
theory-based configurations consume 5.2−8.2× memory, and
have 1.5 − 2.4 times lower throughput. For Count sketches,
the theory-based configurations are even worse, consuming
35.3− 1869.7× memory and having 25.6− 70.8 times lower
throughput.

For sketching algorithms, improving throughput means in-
creased efficiency when dealing with large data. Meanwhile,
reducing memory is also significant for the following reasons.
First, reducing memory improves cache utility, and therefore is
beneficial to the insertion throughput. Second, as the frequency
estimation is a fundamental task, there often exist multiple
instances of sketches on the same machine. Reducing memory
consumption by tens or hundreds of MB for one sketch seems
negligible, but can add up to big savings if there are hundreds
of sketches running concurrently. Third, deploying sketches in
the special hardware to achieve in-network acceleration is a
popular design choice, where the available memory is limited.
Reducing memory is key for such scenarios, as some special
ASICs contains only 10MB available memory.

III. SKETCHCONF ALGORITHM

In this section, we take the CM sketch as a case study,
and describe how SketchConf generates configuration for CM
sketches. We first consider that, given a sketch configuration,
how to design an error predictor that precisely predicts tail
error probability (§III-A). Then, based on the error predictor,
we describe how to search the optimal configurations effi-
ciently (§III-B). We present the optimization for skewed data
distribution to further speed up our algorithm (§III-C).

A. From Configuration to Tail Error

We first consider that, given the frequency distribution
D, the number of distinct items N and a CM Sketch con-
figuration, how to decide whether an error constraint (e.g.,
Pr{Error > 100} < 0.01) can be satisfied. To solve the
problem, we must provide precise prediction for Pr{Error >
X} with any X .
Rationale: In CM sketches, for the frequency estimation of
item e with real frequency f , we consider the counter that
e is hashed to. Suppose there are Z other items hashed to
this counter, namely e1, e2, · · · , eZ , and their frequencies are
f1, f2, · · · , fZ . The counter provides an estimation of (f +∑Z

i=1 fi) for e, and therefore the estimation error is
∑Z

i=1 fi,
i.e., the sum frequency of hash colliding items. Theoretical
error bounds use the expectation of the sum frequency and
Markov inequality to derive bounds for Pr{Error > X}.
The inequality is tight only in extreme frequency distribution,
e.g., all items have frequency 0 except for one with frequency
X . We instead use Monte Carlo simulation to sample and
estimate the sum frequency precisely.
Key technique i: Monte Carlo simulation (see Algorithm
1). For one row of the CM sketch with w counters, we

4

simulate Pr{Error > X} for item e. For any one of the
other N − 1 distinct items, the possibility that it collides
with e is 1

w . Therefore, the number of distinct colliding items
Z follows binomial distribution B(N − 1, 1

w). As N − 1 is
usually large and 1

w is small, we approximate that Z follows
Poisson distribution, with λ = N−1

w . We draw from Poisson
distribution to sample n from Z (line 3). Then, we draw from
frequency distribution D for n times, and calculate the sum
frequency (line 4). Here we should sample multiple times
instead of setting error to n∗E(D), because we aim to estimate
the distribution of the errors. The simulation will be conducted
for multiple times, and the relative frequency that the sum
frequency is larger than X will be reported as our prediction
(line 8). This method scales for multiple error constraints.
For multiple tail error probabilities, we can estimate these tail
errors in one Monte Carlo simulation process.

For a multi-row CM sketch with d rows, as different rows
are associated with independent hash functions, the estimation
error in each row can be regarded as independent and identi-
cally distributed. Estimation error exceeding X for d-row CM
sketch happens when and only when error in each row exceeds
X . Therefore, we run simulations to get prediction pred for
Pr{Error > X} in one row, and report predd (line 9).

Algorithm 1: Error Predictor for the CM Sketch
Input: the number of distinct items N ; frequency

distribution D; sketch depth d, width w; error
threshold X;

Output: Pr{Error > X}
1 cnt← 0, simRounds← 0, pred← 0;
2 while pred has not converged do
3 draw n from Poisson(N−1

w);
4 error ← sum of n frequencies sampled from D;
5 simRounds← simRounds+ 1;
6 if error > X then
7 cnt← cnt+ 1;
8 pred← cnt

simRounds ;
9 return predd;

B. From Tail Error to Configuration

With the error predictor prepared, we present our design to
search for the memory-optimal configuration. The configurable
parameters for the CM sketch include the sketch depth d and
width w. In the following we first describe a naive solution,
and then show how to improve time efficiency by reusing
simulation results.
A naive solution: the naive solution conducts binary search on
memory. For each memory consumption, it traverses possible
sketch depth d. Prior work [36] shows that the optimal
configurations usually have a small d, e.g., 3−4, and therefore
only small d should be traversed, e.g., 1 − 6. With given
memory consumption and number of sketch rows, the number
of sketch columns can be uniquely determined, and the error
predictor can be called to check whether all error constraints
can be satisfied. The naive solution can find the memory-
optimal configuration, but it suffers from poor time efficiency.

Each time a new configuration is searched, the error predictor
should be called to execute the time-consuming Monte Carlo
simulation.
Key technique ii: reuse simulation results (see Algorithm
2). To accelerate the search, we break down the tail error:
Pr{Error > X} =

∑
Pr{Error > X | Z = n}Pr{Z = n}

The former Pr{Error > X | Z = n} means the probability
that estimation error is larger than X conditioning on n
colliding distinct items. This is the same as: given n variables
following distribution D, the probability that their sum exceeds
X . It is only associated with the frequency distribution D,
which is unchanged in the search. The latter Pr{Z = n} can
be fast calculated with the formula of Poisson distribution, as
analyzed in III-A.

Therefore, we design our configuration searching with
reusing simulation results. We conduct binary search on
memory and enumerate possible configurations (line 2-6).
When a new configuration is searched, we first ensure that
the conditional probability Pr{Error > X | Z = n} for
n ∈ [1,K] has been calculated (line 14-21). According to
Theorem 1, when K is set to N

w +N ϵ, the sum of conditional
probability Pr{Error > X | Z = n} for n ∈ [1,K] is
close to Pr{Error > X}, and the difference is no more than
δ. Empirically, we set δ to 1% to ensure the difference is
small. Then we calculate the λ of Poisson distribution for Z,
and predict tail error probability (line 11-12). Note that for
multiple tail error constraints, the conditional probability with
the same n can be estimated in one Monte Carlo process.

Theorem 1. Let N be the number of distinct items, w be the
number of counters in a row. Then for a particular counter, de-
fine random variables Ξ1, Ξ2, . . . , ΞN such that Ξi := 1{the
i-th item is mapped into the counter}. Denote ξ := 5

√
w

5
√
w+

√
N ,

then for ∀δ > 0, take ϵ = max

{
5
√

1
Nw ,

ln 1
δ

N (
ln(1−ξ)

−ξ −1)

}
, the

following inequality holds:

Pr

(N∑
i=1

Ξi >
N
w

+N ϵ

)
⩽ δ

Proof. Since it’s easy to see that Ξ1, Ξ2, . . . , ΞN are iid and
E(Ξi) = 1

w , denote µ := 1
w . According to Chernoff bound,

for ∀ϵ > 0, we have:

Pr

(N∑
i=1

Ξi >
N
w

+N ϵ

)
= Pr

(
1

N

n∑
i=1

Ξi − µ > ϵ

)
= e−N((µ+ϵ) ln(µ+ϵ

µ)+(1−µ−ϵ) ln(1−µ−ϵ
1−µ))

⩽ eN (µ+ϵ) ln(1− ϵ
µ+ϵ) · eN ϵ

As we take ϵ ⩾ 5
√

1
Nw , we have ϵ

µ+ϵ = 1
µ
ϵ +1 ⩾ 5

√
w

5
√
w+

√
N =

ξ. Since f(x) = ln(1+x) is concave in (−1,+∞] with f(0) =

0, we can know that ln(1 + x) ⩽ ln(1−ξ)
−ξ x holds for ∀x ∈

(−1,−ξ]. Therefore, we have:

Pr

(N∑
i=1

Ξi >
N
w

+N ϵ

)
⩽ e−

ln(1−ξ)
−ξ N ϵ · eN ϵ

= e−(
ln(1−ξ)

−ξ −1)N ϵ ⩽ δ

5

Algorithm 2: Configuration Search for the CM Sketch
Input: the number of distinct items N ; frequency

distribution D; error threshold X; the required
number of conditional probability K;

Output: the memory-optimal configuration
1 probLen← 0, P rob← [],;
2 while binary search on memory is not stopped do
3 enumerate possible configurations (d,w) for

current memory value;
4 call Error Predictor(N , d, w, Prob) to check

error constraints;
5 if a better configuration is found then
6 assign it to optConfig;
7 return optConfig;
8 Function Error_Predictor(N , d, w,&Prob):
9 Get Conditional Probability(X,K,Prob);

10 λ← N−1
w ;

11 pred←
∑K

i=1 Poissonλ(i)Prob[i];
12 return predd;
13 Function

Get_Conditional_Probability(X,K,&Prob):
14 while probLen ≤ K do
15 cnt← 0, simRounds← 0, probLen←

probLen+ 1;
16 while Prob[probLen] has not converged do
17 error ← sum of probLen frequencies

sampled from D;
18 if error > X then
19 cnt← cnt+ 1;
20 simRounds← simRounds+ 1;
21 Prob[probLen]← cnt

simRounds ;

C. Optimization

Real world often witnesses skewed frequency distribution
of workload [2], [26], which indicates that most items are
infrequent, while only a few items are frequent. Infrequent
items contribute little to the estimation error; besides, with
much smaller variance, the converge of Monte Carlo needs
much fewer rounds of simulation [49]. Therefore, we separate
the simulation of frequent and infrequent items, by recording
distributions of infrequent items with limited rounds of sim-
ulation. For highly skewed data, this optimization can largely
reduce the amount of sampling for infrequent items.

As the pseudo code shown in Algorithm 3, the optimized
version first simulates for infrequent items (line 2). Specifi-
cally, we simulate conditional probability Pr{Error > X |
Z = n} for infrequent items with different n, and repeat for T
times (line 10-14). We will show in §VI-D that the choice of
T has little impact on the performance of the optimizations.
When simulating for Pr{Error > X | Z = n}, the sum
frequency of frequent items is sampled and calculated (line 4-
5). Then, we look up the pre-computed records of distribution
of the infrequent items, and update the predicted conditional
probability. It is noticeable that the records of infrequent items
can be shared for Pr{Error > X | n} with different n.

Algorithm 3: Optimized Error Predictor
Input: the number of colliding distinct items n; error

threshold X; frequency distribution of frequent
items Dl and infrequent items Ds; the portion
of frequent items p; simulation rounds for
infrequent items T ;

Output: Pr{Error > X | Z = n}
1 cnt← 0, simRounds← 0, pred← 0;
2 dist← Get Infrequent Dist(n);
3 while pred has not converged do
4 nl ← Binomial(n, p);
5 suml ← sum of nl frequencies sampled from Dl;
6 cnt += Card({f | f ∈ dist[n− nl] ∧ f >

X − suml});
7 simRounds += T ;
8 pred← cnt

simRounds ;
9 return pred;

10 Function Get_Infrequent_Dist(n):
11 for i = 1 to n do
12 for j = 1 to T do
13 dist[i][j]←

sum of i frequencies sampled from Ds;
14 return dist;

IV. GENERALIZE TO OTHER SKETCHES

SketchConf can be generalized to other order-independent
sketches. We show how to generalize to Count sketches in
§IV-A, Tower sketches in §IV-B, and Nitro sketches in §IV-C.
It is worth attention that, the idea of Monte Carlo simulation,
reusing simulation results and the optimization of separating
frequent and infrequent items are general for these order-
independent sketches. When it comes to concrete operations
such as how to conduct Monte Carlo simulation for a specific
kind of sketch, as different sketches have different ways of
insertion and querying results, SketchConf must adjust the
concrete operations.

A. Count Sketch

The Count sketch [37] consists of a d× w counter matrix,
and we call the rows R1, · · · , Rd. There are 2d hash functions,
where h1, · · · , hd hash items to one counter in each row, and
s1, · · · , sd hash items to {+1,−1}. When inserting item s, for
Ri, the hashed counter Ri[hi(s)] is added with si(s). When
querying the frequency of item s, the median of Ri[hi(s)] ·
si(s) is reported.

The error of frequency estimation for Count sketches also
comes from the hash colliding items. However, Count sketches
are different from CM sketches in two aspects: 1) each item
updates the counter with {+1,−1} according to hash function
si; 2) Count sketches use median estimator for query, while
CM sketches use minimum estimator. For the first difference,
when conducting Monte Carlo simulation, we should sample
the colliding items that hash to +1 and those that hash to
−1 separately, by sampling from binomial distribution. For
the second difference, we only consider Count sketches with
uneven d. Suppose an item s has frequency of f . The median
of estimated frequency has an error larger than X indicates

6

that: more than half of the estimation are either larger than
f + X , or less than f − X . As the tail error probability for
a single row can be predicted with Monte Carlo simulation,
we can compute the tail error probability for median estimator
with the binomial expansion.

Pmedian =

d∑
i=⌈d/2⌉

Ci
dP

i
single(1− Psingle)

d−i

Here the Ci
d is the combinatorial number, and Psingle is the tail

error probability for a single row. The simulation results can
also be reused for Count sketches, because for Count sketches
the conditional probability is still only related to workload
characteristics. The optimization is available. The simulation
of the sum frequency for items hashed to +1 (or −1) is exactly
the same as in CM sketches, and therefore the optimization
can be applied to accelerate this process.

B. Tower Sketch

The Tower sketch [38] consists of d rows of counters and d
hash functions. The Tower sketch uses different counter size
for each row, and sets the memory consumption for all counter
rows to the same. This means the row with a larger counter
size comprises of fewer counters. The insertion and query
operations for the Tower sketch are similar to the CM sketch,
except for one special case: the maximum value for a counter
(e.g., 2δ − 1 for a δ-bits counter). For insertion, the counter
with maximum value will not be updated. For querying, the
counter with maximum value stands for infinity.

The configurable parameters for Tower sketches include the
number of counter arrays d, the number of bits for one array.
We use fixed counter size of 32 bits, 16 bits, 8 bits and 4 bits.
To predict error of Tower sketch under a specific configuration,
we observe that event Error > X occurs in two situations:
1) the sum frequency of colliding items is larger than X , and
2) the sum frequency will cause the counter to be maximum
value (infinity). Suppose the sum frequency of colliding items
is s, and the array has counters with δ bits, we have:
Pr{Error > X} = max{Pr{s > X}, P r{s ⩾ 2δ − 1}}

= Pr{s > min{X, 2δ − 2}}
Therefore, it can be predicted in the same way as CM sketches,
and the only difference is that X should be adjusted. Reusing
simulation results and the optimization are available for Tower
sketches.

C. Nitro Sketch

The Nitro sketch [33] utilizes the sampling technique to
accelerate insertion for CM sketches and Count sketches.
The Nitro sketch sets a sampling rate p. For insertion, each
counter array samples items with probability p, and sampled
items update one hashed counter with p−1 (CM sketches),
or {+p−1,−p−1} (Count sketches). When querying item’s
frequency, Nitro sketches report the median of d hashed
counters.

The configurable parameters are the same as CM sketches
or Count sketches. The estimation error of an item s in Nitro
sketch comes from two aspects: the other sampled items that

collides with s, and the sampling error of s itself. For an
single array of Nitro sketch of CM version, suppose an item
e with frequency f is hashed to one counter. The value of the
counter can be expressed as p−1fp + p−1S, where fp is the
number of times e is sampled, and S is the sum frequency
of colliding sampled items. The estimation error consists of
the collision error p−1S and the sampling error p−1fp − f .
To apply our error predictor, for colliding sampled items, we
first estimate the sum frequency of colliding sampled items S,
where we can apply Monte Carlo simulation. Then we draw
from binomial distribution B(S, p), and multiply it with p−1

to get the sampled size. For the sampling error of s, we can
also conduct Monte Carlo simulation: draw s from frequency
distribution, and simulate sampling error. Therefore Monte
Carlo simulation can accurately predict error of Nitro sketches.
Reusing simulation results is available, as the conditional
probability is only associated with frequency distribution and
sampling rate p. For the optimization, it can be applied to
accelerate the estimation of collision errors. As the sampling
error is associated with the queried item itself, the optimization
cannot be applied to accelerate sampling error.

V. APPLYING SKETCHCONF TO REAL SCENARIOS

Above we have discussed how to configure sketches under
given and fixed workload characteristics. However, in real sce-
narios of data stream processing, the workload characteristics
may not be explicitly provided. Moreover, the workload char-
acteristics may change over time, which introduces additional
challenges for the application of SketchConf. In this section,
we discuss how to address the challenges caused by unknown
and changeable workloads.

When applying sketching algorithms for streaming data, as
the streaming data may go unbounded, a practical and common
solution is to divide the streaming data into time windows of
fixed length, each processed by a sketch individually. Ideally,
we wish to provide an appropriate sketch configuration for
each time window that matches the corresponding workload
characteristic. However, applying SketchConf will face three
challenges as follows. First, as the workload information is
the necessary input of SketchConf, we should estimate the
information of the unknown workload in each time window
with low overhead. Second, the optimal configuration for each
time window may vary slightly due to small changes in the
workload, while frequent re-configuration of sketches may
incur additional overhead. Therefore, we should avoid unnec-
essary re-configuration of sketches. Third, the abrupt change
of workload characteristics may lead to severe violation of
user specified error constraints. In such situations, we should
take emergency methods to guarantee the users’ requirements.

For the first challenge, our idea is to estimate workload
information based on the sketch of the previous time window.
At the start time of current time window, we can apply
MRAC [35] algorithms to estimate the number of distinct
items and the frequency distribution from the built sketch of
the previous time window. We can use the estimated workload
information of the previous time window as the prediction

7

of future workload, and apply SketchConf to generate sketch
configuration. The process will finish before the current time
window ends, as both MRAC and SketchConf is efficient.
For the next time window, we will apply the new sketch
configuration.

For the second challenge, we propose a technique to monitor
the errors of the sketch results in real time. The technique
is based on the observation from [46], which shows that the
estimation errors of sketches can be precisely approximated
by the distribution of sketch counters. Specifically, take a
d × w CM sketch as an example. Suppose the proportion
of counters greater than K in the first row is pK . The
probability that the error of the estimated frequency is greater
than K is approximately pdK . Therefore, we maintain an error
counter for each error constraints Pr{Error > Xi} < δi,
which records the number of counters that exceed Xi in
the first row. Maintaining such error counters in real time
incurs little overhead: when the item increments one counter
in the first row of the sketch from Xi to Xi + 1, we
update the error counter. After the time window ends, we
recover tail errors from the error counters. Only if the tail
errors are larger/smaller than user specified constraints to
some thresholds, e.g., Pr{Error > Xi} > δi(1 + Ta) or
Pr{Error > Xi} < δi(1 − Ta), do we activate SketchConf
to re-configure the sketch of the next time window. Otherwise,
we consider the tail errors go through normal fluctuations.

For the third challenge, our idea is to stop the current
time window immediately when abrupt events lead to severe
violation of users’ demand. Since we can monitor the error
of the sketch in the current time window in real time, we
use the threshold Tb to decide whether the current tail errors
severely violate users’ demands. Specifically, for one user
specified error constraint Pr{Error > Xi} < δi, if the
current tail error Pr{Error > Xi} has exceeded δi(1 + Tb),
it is considered as severe violation. Note that Tb is different
from Ta. Tb should be set much larger than Ta, which is used
to avoid extreme worse cases. When the severe violation is
detected, the current time window wc is ended, and a new time
window starts with the same sketch configuration as the last
window. At the same time, we urgently execute MRAC on the
sketch of window wc for workload analysis, use SketchConf
to re-configure sketches. Note that the execution of MRAC
and SketchConf require time, and if the sketch error in the
current window exceeds the Tb threshold again, we end the
window and start a new one to ensure a consistent guarantee
of error constraints. Once the re-configuration is over, we start
a new time window with the new sketch configuration. The
time cost of re-configuration is small because of the efficiency
of MRAC and SketchConf. Besides, the abrupt change of
workload characteristics are usually rare, and therefore we
think such a complex solution is acceptable.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Datasets: 1) Synthetic Dataset: the synthetic dataset is gen-
erated according to the Zipf distribution. We vary the skewness

parameter from 0.0 to 1.5. Each synthetic dataset contains
32M items with around 1M distinct items. 2) IP Trace
Dataset: it contains one hour of anonymous network traces
collected from the Equinix-Chicago monitor in 2018 [50]. We
use the source IP and destination IP as the ID of items. We
divide it into 1-minute intervals, and each contains around
27M items and 85K distinct items. 3) WebDocs Dataset: it
is built from a spidered collection of web documents [51].
It filters out html tags and the most common words in the
documents, and use remaining terms as items. We use part
of the dataset, which contains around 64M items and 32.9M
distinct items.
The competitors: We compare our SketchConf with the
following competitors: theory-based solutions, hash table so-
lutions, learning-based sketches, and the baseline algorithm.

For theory-based solution, we use the theoretical config-
urations in [8], [48] for CM sketches and Count sketches,
respectively. For hash table solutions, we implement a hash
table with chaining to record items’ frequency with full
accuracy. For the learning-based sketches, we implement the
heavy-hitter predictor in [44], and for the sketch part we use
theory-based configurations and SketchConf configurations.
The baseline algorithm is built on the state-of-the-art work
for sketch error estimation [46], which provides a posterior
error estimation by examining the distribution of the result
counters. The baseline conducts binary search on memory,
and enumerate configurations as SketchConf does. For each
searched configuration, the baseline builds a sketch, inserts
items into the sketch, and uses the distribution of result
counters to estimate tail error probability. It repeats multiple
times and uses convergent results as predicted errors. Note that
the baseline should build the sketch first, because the error
estimation algorithm is posterior and can only be used on the
inserted sketch record.
Implementation: We implement SketchConf for sketches of
CM, Count, Nitro, Tower in C++. We conduct evaluations on
a server with dual 18-core CPUs (36 threads, Intel Core i9-
10980XE CPU @3.00GHz) and 125GB DRAM memory. In
all experiments, we use Farm Hash [52] to implement hash
functions. Our source code is available at Github [53].

B. Experiments on the Error Predictor

In this section, we evaluate the error predictor in III-A and
show that our Monte Carlo based error predictor can precisely
predict tail error probability.
Settings: We use the synthetic dataset with Zipf skewness
parameter 1.0 for this experiment and evaluate the error
predictor for Pr{Error > 100}. For CM, Count and Tower
sketches, we set the number of rows d = 3 and the number
of columns w = 200000. For Nitro sketches, we use the CM
version with d = 3 and w = 200000, and set the sampling
rate p = 0.1. We conduct the error predictor with 10 million
iterations of Monte Carlo simulations, and plot the predicted
tail error probability as the number of iterations grows. The
ground truth is obtained by building a sketch, directly inserting

8

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

2

4

6

8

10

TE
P

(×
10

3)
Error Predictor
Ground Truth

(a) CM sketches

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

1

2

3

4

5

TE
P

(×
10

2)

Error Predictor
Ground Truth

(b) Count sketches

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

2

4

6

8

10

TE
P

(×
10

4)

Error Predictor
Ground Truth

(c) Tower sketches

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

4

8

12

16

20

TE
P

(×
10

2)

Error Predictor
Ground Truth

(d) Nitro sketches
Fig. 4: Experiments on the error predictor (TEP represents tail error probability).

all the item in the dataset into it and querying each distinct
items to calculate the real tail error rate.
Experimental Results (Figure 4): For CM sketches, af-
ter 10 million iterations, the predicted tail error probability
is 0.004698 and the ground truth is 0.004681. For Count
sketches, the predicted tail error probability is 0.017554 and
the ground truth is 0.017508. For Tower sketches, the predicted
tail error probability is 0.000461 and the ground truth is
0.000460. For Nitro sketches, the predicted tail error prob-
ability is 0.086967 and the ground truth is 0.087547.
Analysis: The experiment results show that our algorithm can
predict tail error probability accurately. For all four sketches,
the gaps between our prediction and the ground truth are
smaller than 0.66%.

In the following experiments we conduct Monte Carlo
simulation in batches, each including 1000 iterations. We stop
the simulation if the fluctuation of predicted error in the current
batch and in previous batches is less than 0.0001, and output
the predicted error.

C. Experiments on Reusing Simulation Results
In this section, we evaluate how reusing simulation results

improves time efficiency for SketchConf in the configuration
search, regardless of workload information.
Settings: We use the synthetic datasets that follow the Zipf
distribution. We vary the skewness parameters from 0.0 to 1.5,
and each dataset contains 32M items and around 1M distinct
items. We compare the time cost of SketchConf with and with-
out reusing simulation results. We use three error constraints
that the output configurations should satisfy simultaneously:
i) Pr{Error > 100} < 0.01, ii) Pr{Error > 200} < 0.005,
iii) Pr{Error > 300} < 0.001.
Experimental results (Figure 5): When the Zipf skewness
parameter ranges from 0.0 to 1.5, our reuse technique reduces
reduce 81.63% to 99.96% of time cost for CM sketches,
73.85% to 98.62% for Count sketches, 94.43% to 99.88%
for Tower sketches, 86.85% to 99.74% for Nitro sketches.
Analysis: The experimental results show that the technique
of reusing simulation results can improve time efficiency for
all four kinds of sketches. The reduced time cost can be up
to 99.96%. With the reusing simulation results technique, the
search for sketch configuration can be finished in the order of
10s.

D. Experiments on the Optimization
In this section, we apply the optimization of separating

frequent and infrequent items to four kinds of sketches, and

show how the optimization improves time efficiency. Besides,
we discuss how the choice of T (the number of repeated
simulations on infrequent items, as shown in algorithm 3)
impact the performance of the optimization.
Settings: Our optimization is designed for skewed frequency
distribution, so we conduct experiments on the synthetic
dataset with skewness parameter ranging from 1.0 to 1.5
to show the effect of the optimization. To show the impact
of T , we use the synthetic dataset with skewness parameter
1.0, and conduct evaluations on CM sketches and Count
sketches. The output configurations should follow three error
constraints simultaneously: i) Pr{Error > 100} < 0.01, ii)
Pr{Error > 200} < 0.005, iii) Pr{Error > 300} < 0.001,
the same as in §VI-C.
Effects of the optimization (Figure 6): The experiment
results show that, with optimization, SketchConf achieves
lower time cost for CM sketches, Count sketches and Tower
sketches, and comparable performance for Nitro sketches.
When Zipf skewness parameter ranges from 1.0 to 1.5, our
optimization can reduce 49.39% to 63.78% of time cost for
CM Sketches, 42.84% to 68.66% for Count Sketches, and
12.48% to 45.23% for Tower sketches. For Nitro sketches,
the time cost is comparable. The reason is that, the simula-
tion of Nitro sketches requires an additional computation of
Binomial distribution due to the sampling, and thus is more
time-consuming. For other sketches, the bottleneck lies in
the addition of frequencies, and when simulating infrequent
items the cost is small. For Nitro sketches, the bottleneck
lies in the Binomial distribution computations, and separating
frequent and infrequent items means two times of Binomial
distribution computations, which offsets the benefits brought
by the optimization.
Impact of T (Figure 7): The experimental results show that,
T , the number of repeated simulation of infrequent items, has
little impact on the performance of the optimization. For CM
sketches, when changing T from 250 to 2000, the time cost
of SketchConf ranges between 0.476124s and 0.573137s, and
the memory of output configurations ranges between 1996KB
to 2033KB. For Count sketches, when changing T from 250
to 2000, the time cost of SketchConf ranges between 0.61s
and 0.71s, and the memory of output configurations ranges
between 2613KB to 2668KB.

E. Experiments on Configurations

In this section, we evaluate the effectiveness of SketchConf
in the aspects of output configurations and search time cost on

9

0.0 0.5 1.0 1.5
Zipf Skewness Parameter

10 1

100

101

102

Ti
m

e
Co

st
 (

s)
Without Reuse
With Reuse

(a) CM sketches

0.0 0.5 1.0 1.5
Zipf Skewness Parameter

100

101

102

Ti
m

e
Co

st
 (

s)

Without Reuse
With Reuse

(b) Count sketches

0.0 0.5 1.0 1.5
Zipf Skewness Parameter

100

101

102

Ti
m

e
Co

st
 (

s)

Without Reuse
With Reuse

(c) Tower sketches

0.0 0.5 1.0 1.5
Zipf Skewness Parameter

100

101

102

Ti
m

e
Co

st
 (

s)

Without Reuse
With Reuse

(d) Nitro sketches
Fig. 5: Experiments on reusing simulation results.

1.0 1.1 1.2 1.3 1.4 1.5
Zipf Skewness Parameter

0

1

2

3

Ti
m

e
Co

st
 (

s)

Without Optimization
With Optimization

(a) CM sketches

1.0 1.1 1.2 1.3 1.4 1.5
Zipf Skewness Parameter

1

2

3

4

5

Ti
m

e
Co

st
 (

s)
Without Optimization
With Optimization

(b) Count sketches

1.0 1.1 1.2 1.3 1.4 1.5
Zipf Skewness Parameter

0

2

4

6

8

Ti
m

e
Co

st
 (

s)

Without Optimization
With Optimization

(c) Tower sketches

1.0 1.1 1.2 1.3 1.4 1.5
Zipf Skewness Parameter

0

2

4

6

8

10

Ti
m

e
Co

st
 (

s)

Without Optimization
With Optimization

(d) Nitro sketches
Fig. 6: Experiments on the optimization.

0 400 800 1200 1600 2000
T

0

1

2

3

4

5

6

M
em

or
y

(M
B

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
C

os
t (

s)

Memory Time

(a) CM sketches

0 400 800 1200 1600 2000
T

0

1

2

3

4

5

6

M
em

or
y

(M
B

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
C

os
t (

s)

Memory Time

(b) Count sketches
Fig. 7: Experiments on the impact of parameter T .

CM Count
103

104

105

106

107

M
em

or
y

(K
B)

Ours
HashTable

Theory-based

(a) Memory Consumption

CM Count

100

101

Th
ro

ug
hp

ut
 (

M
 it

em
s/

s) Ours
HashTable

Theory-based

(b) Throughput

Fig. 8: Comparison with theory-based configurations and
hash table solutions on the IP Trace Dataset.

the real datasets. We further evaluate the impact of the number
of error constraints on SketchConf.
Settings: We conduct experiments of frequency estimation
on the IP Trace Dataset and WebDocs Dataset. We compare

CM Count

104

105

106

107

M
em

or
y

(K
B)

Ours
HashTable

Theory-based

(a) Memory Consumption

CM Count

10 2

10 1

100

101

Th
ro

ug
hp

ut
 (

M
 it

em
s/

s) Ours
HashTable

Theory-based

(b) Throughput

Fig. 9: Comparison with theory-based configurations and
hash table solutions on the WebDocs Dataset.

CM Count

10 3

10 2

Ta
il

Er
ro

r
Pr

ob
ab

ili
ty

Demand1
Demand2

Demand3

(a) The IP Trace Dataset

CM Count

10 3

10 2

Ta
il

Er
ro

r
Pr

ob
ab

ili
ty

Demand1
Demand2

Demand3

(b) The WebDocs Dataset
Fig. 10: Real tail errors of SketchConf in two real-world
datasets.

CM Count
100

102

104

106

108

M
em

or
y

(K
B

)

Naive
Learned
Ours
Learned+Ours

(a) Learning-based sketches

IP Trace
CM

IP Trace
Count

WebDocs
CM

WebDocs
Count

100

101

102

103

104

Ti
m

e
Co

st
 (

s)

Ours
Baseline

(b) The baseline

Fig. 11: Comparison with learning-based sketches and the
baseline.

the sketch solutions using SketchConf configurations with
the sketch solutions using theory-based configurations, hash
table solutions and learning-based sketches. As prior work
[44] trains learning-based sketches with the IP Trace Dataset,
we only compare SketchConf with learning-based sketches
on the IP Trace Dataset. For search time cost, we compare
with the baseline algorithm. The output configurations should
satisfy three error constraints, which are the same as those
used in §VI-C and §VI-D. For the impact of the number of
error constraints, we vary the number of error constraints and
evaluate SketchConf on the synthetic dataset with skewness
parameter 1.0. We enable the optimization for SketchConf in
this experiments.
Comparison with theory-based configurations and hash
table solutions on the IP Trace Dataset (Figure 8, 10(a)): On
the IP Trace Dataset, the configurations output by SketchConf

10

1 2 3 4 5
Constraints

10 1

100

Ti
m

e
Co

st
 (

s)

CM
COUNT
TOWER
NITRO

Fig. 12: Evaluation on the number of error constraints.

take up 1.32MB and 2.74MB for CM sketches and Count
sketches, respectively, and the insertion throughput is 14.24M
items/s and 9.96M items/s, respectively. Sketch solutions with
SketchConf configurations save 93.41%, 99.98% memory and
achieve 1.94×, 21.35× throughput compared with theory-
based configurations, and save 93.37%, 86.30% memory and
achieve 10.22×, 7.14× throughput compared with hash table
solutions. It is worth noting that the theory-based configu-
rations may consumes more memory than the fully accurate
hash table solutions. This is because the theoretical bounds are
loose, especially for real-world datasets with high skewness.
Beside, for SketchConf configurations, the real tail error
probabilities match the three demands.
Comparison with theory-based configurations and hash ta-
ble solutions on the WebDocs Dataset (Figure 9, 10(b)): On
the WebDocs Dataset, the configurations generated by Sketch-
Conf take up 3.86MB and 2.41MB for CM sketches and Count
sketches, respectively, and the insertion throughput is 23.83M
items/s and 8.67M items/s, respectively. Sketch solutions with
SketchConf configurations save 91.89%, 99.99% memory, and
achieve 5.37×, 50.57× throughput compared with theory-
based configurations, and save 99.25%, 99.53% memory and
achieve 3457×, 1257× throughput compared with hash table
solutions. Beside, for SketchConf configurations, the real tail
error probabilities match the three demands.
Comparison with learning-based sketches (Figure 11(a)):
For theory-based configurations, sketches take up 19.77MB,
14.11GB, respectively. With learning-based techniques the
memory consumption is reduced to 16.13MB, 9.40GB, respec-
tively. Compared with learning-based sketches, SketchConf
improves memory efficiency by 12.36×, 3491×, because the
sketch part still has much space for refinement. It is also
noticeable that our SketchConf is orthogonal to the learning
techniques, as SketchConf can be utilized to generate the
configurations for the sketch part. If the learning techniques
show good performance, combining learning techniques with
SketchConf may further improve the memory efficiency. For
Count sketches the combination reduces memory by 1.13×
compared with simply running SketchConf.
Comparison with Baseline (Figure 11(b)): For CM Sketches,
SketchConf takes 0.62s and 12.32s to search for configurations
on IP Trace and WebDocs Dataset respectively, while the base-
line takes 214s and 8815.09s. For Count Sketches, SketchConf
takes 0.66s and 37.34s, while the baseline takes 291s and
2.04 × 104s respectively. SketchConf achieves 345.16× and
715.51× lower time cost for CM sketches, and 440.91× and
546.33× lower time cost for Count sketches.

CM Count
103

104

105

106

107

108

M
em

or
y

(K
B)

Ours Theory-based

(a) Memory Consumption

CM Count

100

101

Th
ro

ug
hp

ut
 (

M
 it

em
s/

s) Ours Theory-based

(b) Throughput

Fig. 13: Experiments on finding top-100 items.

Analysis: The reason why SketchConf can generate bet-
ter configurations compared with theory-based ones is that,
SketchConf can output the configurations that exactly match
the error constraints. In contrast, the theory-based configu-
rations often achieve accuracy that is far beyond the user’s
requirement. Therefore, the configurations of SketchConf are
more memory-efficient, and also achieve higher throughput
due to higher cache utility. One reason why SketchConf con-
sumes less time than the baseline algorithm is that, SketchConf
conducts Monte Carlo simulation instead of building sketches
by inserting all items. Reusing Monte Carlo simulation and
the optimization also provide much speedup.
Impact of the number of error constraints (Figure 12):
The experimental results show that SketchConf can support
multiple error constraints efficiently. When the number of
error constraints grows from 1 to 5, the search time cost of
SketchConf increase from 0.09s to 1.32s for CM sketches,
from 0.15s to 1.16s for Count sketches, from 0.29s to 4.10s
for Tower sketches, and from 0.38s to 5.80s for Nitro sketches.

F. Experiments on the Top-k Applications
In this section, we show how SketchConf improves the

effectiveness of sketches in the top-k applications.
Settings: We run sketching algorithms and maintain a heap of
size 100 to find top-100 items on the IP Trace Dataset. Suppose
in the IP Trace Dataset, the frequency difference of 100-th
and 101-th largest items is X . To achieve 99% precision,
the sketching algorithms should ensure that the probability
of estimation error larger than X is no more than 1%. We
compare the performance of SketchConf and theory-based
configurations under such error constraints.
Experiments Results (Figure 13): As shown in figure, com-
pared with theory-based configurations, SketchConf reduces
memory consumption by 9.83×, 2723× in sketches of CM,
Count, respectively, and provide 1.45×, 15.27× speed up
respectively. The precision of finding top-100 items is no less
than 99%. For applications such as top-k, SketchConf can en-
sure the precision requirements while improving performance
in both memory consumption and throughput.

G. Experiments on the unknown and changeable workload
In this section, we simulate the unknown and changeable
workload when applying SketchConf to streaming data pro-
cessing. We consider applying CM sketches in time-based
window scenarios, e.g., building a new sketch for each new
time window, as stated in §V. To simulate the changeable
workload, we use the synthetic dataset for each time window,

11

Abrupt change
of workload

Window #1 Window #2 Window #3 Window #4

(a) Workload change that leads to errors lower than
the demands

Abrupt change
of workload

Window #1 Window #2 Window #3 Window #4

(b) Workload change that leads to errors higher than
the demands

Abrupt change
of workload

Window #1 W #2 Window #4W #3

(c) Workload change that leads to severe violation
of demands

Fig. 14: Simulations for unknown and changeable workloads, where “TEP” stands for “Tail Error Probability”.

and adjust the parameters like the skewness parameter and the
number of items.
Settings: The sketch configurations should satisfy the follow-
ing three error constraints at the same time: i) Pr{Error >
100} < 0.01, ii) Pr{Error > 200} < 0.005, iii) Pr{Error >
300} < 0.001. For the following simulations, we use the CM
sketch with 3 rows and 152226 columns at the beginning. In
window 1, we use the synthetic dataset with skewness param-
eter 1.0, 30M items and 1M distinct items as the streaming
data, and change workload for the following windows. We
set Ta = 0.2 and Tb = 0.5 (as defined in §V). We run the
EM algorithm for 1 iteration for MRAC, since each iteration
takes a relative long time to complete, and our results show
that 1 iteration suffices to produce precise estimation for re-
configuration.
Simulation of errors lower than user demands (Figure
14(a)): The solid lines indicate the real-time monitored TEPs
(tail error probabilities) and the dotted lines represent the
user’s demands. At the end of window 1, we find that all of
the three TEPs don’t exceed δi(1+Ta) and TEP #1 is close to
demand #1 (i.e. bigger than δ1(1− Ta)), so it is unnecessary
to re-configure the sketch. For the following windows, we
change the skewness parameter to 1.2. At the end of window
2, we find that all of the three TEPs are much less than
user’s demands (i.e. less than δi(1 − Ta)), which indicates
we can meet the demands with less memory consumption, so
in window 3 we execute MRAC and SketchConf to calculate
the new configuration for the sketch. Before window 3 ends,
SketchConf outputs a new configuration with 4 rows and
37474 columns. In window 4 we use the new configuration,
which still meets the user’s demand with 67.18% less memory
consumption.
Simulation of errors higher than user demands (Figure
14(b)): For the following windows, we still use the skewness
parameter of 1.0, but increase the number of items per window
to 32M. At the end of window 2, we find that the TEP #1
is significantly higher than user’s demand (i.e. bigger than
δ0(1+Ta)), which indicates we need to re-configure the sketch
to meet the user’s demand, so in window 3 we execute MRAC
and SketchConf to calculate the new configuration for the
sketch. Before window 3 ends, SketchConf outputs a new
configuration with 3 rows and 167078 columns. In window
4 we use the new configuration, which can meet the user’s
demands.

Simulation of severe violation of user demands (Figure
14(c)): For the following windows, we change the skewness
parameter to 0.8. During window 2, we find that TEP #1
exceeds demand #1 to an extent (i.e. bigger than δ0(1 + Tb)),
which indicates we need to urgently stop the current window
and conduct re-configuration. Along with window 3, we exe-
cute MRAC and SketchConf to calculate the new configuration
for the sketch. When the re-configuration ends, we start
window 4 with the new sketch configuration with 5 rows and
197383 columns. The real-time monitored errors indicate that
the new configuration can meet the user’s demands.
Memory overhead: The memory overhead of the MRAC
algorithm depends on the flow distribution. In our experiments
above, MRAC typically needs tens of megabytes of memory.
However, in real world scenario, the significant change of flow
distribution happens not that often, and only then need we use
MRAC to estimate the new distribution and reconfigure the
sketch. So the memory consumption of MRAC won’t have
much impact to the whole system.

VII. CONCLUSION

Providing appropriate parameter configurations for sketch-
ing algorithm is critical for the applications of sketches in
various scenarios. This paper proposes an automatic sketch
configuration framework, SketchConf, which supports order-
independent sketches. SketchConf utilizes the technique of
Monte Carlo simulation to build precise and efficient error
predictor. To speed up the configuration search, SketchConf
uses the technique of reusing simulation results. For highly
skewed data, SketchConf can enable the optimization of
separating frequent and infrequent items to further reduce
the time cost. When applied to real scenarios, we provide
practical solutions to deal with the unknown and changeable
workloads. Experimental results show that SketchConf can
output configurations efficiently, and the output configurations
consume much less memory and achieve better insertion
throughput compared with theory-based configurations.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable suggestions. This work is supported by Key-Area
Research and Development Program of Guangdong Province
2020B0101390001, and National Natural Science Foundation
of China (NSFC) (No. U20A20179, 61832001).

12

REFERENCES

[1] Kaiyu Li and Guoliang Li. Approximate query processing: What is
new and where to go? a survey on approximate query processing. Data
Science and Engineering, 3:379–397, 2018.

[2] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch:
Faster and more accurate stream processing. In SIGMOD, 2016.

[3] Daniel Ting. Data sketches for disaggregated subset sum and frequent
item estimation. In SIGMOD, 2018.

[4] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and
quantiles over sliding windows. In Proc. ACM SIGMOD, pages 286–
296, 2004.

[5] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent
data sketching. In SIGMOD, 2015.

[6] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. Stingy
sketch: a sketch framework for accurate and fast frequency estimation.
Proceedings of the VLDB Endowment, 15(7):1426–1438, 2022.

[7] Graham Cormode and Marios Hadjieleftheriou. Methods for finding
frequent items in data streams. The VLDB Journal, 19(1):3–20, 2010.

[8] Graham Cormode and S Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
2005.

[9] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based
geometric monitoring of distributed stream queries. Proceedings of the
VLDB Endowment, 6(10):937–948, 2013.

[10] Benedikt Sigurleifsson, Aravindan Anbarasu, and Karl Kangur. The
count-min sketch data structure and its uses within computer science,
2019.

[11] Amit Goyal and Hal Daumé III. Approximate scalable bounded space
sketch for large data nlp. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, pages 250–261,
2011.

[12] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms
for estimating point queries in nlp. In Proceedings of the 2012 joint
conference on empirical methods in natural language processing and
computational natural language learning, pages 1093–1103, 2012.

[13] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with opensketch. In NSDI 2013, 2013.

[14] Zaoxing Liu, Antonis Manousis, and et al. One sketch to rule them
all: Rethinking network flow monitoring with univmon. In Proc. ACM
SIGCOMM, 2016.

[15] Partha Talukdar and William Cohen. Scaling graph-based semi super-
vised learning to large number of labels using count-min sketch. In
Artificial Intelligence and Statistics, pages 940–947. PMLR, 2014.

[16] Fabon Dzogang, Thomas Lansdall-Welfare, Saatviga Sudhahar, and
Nello Cristianini. Scalable preference learning from data streams. In
Proceedings of the 24th International Conference on World Wide Web,
pages 885–890, 2015.

[17] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity
is everything: A new approach to protecting passwords from {Statistical-
Guessing} attacks. In 5th USENIX Workshop on Hot Topics in Security
(HotSec 10), 2010.

[18] Heejung Yang and Chin-Wan Chung. Efficient iceberg query processing
in sensor networks. The Computer Journal, 57(12):1834–1851, 2014.

[19] Qi George Zhao, Mitsunori Ogihara, Haixun Wang, and Jun Jim Xu.
Finding global icebergs over distributed data sets. In Proc. ACM
SIGMOD-SIGACT-SIGART, 2006.

[20] M. Gurmeet Singh and M. Rajeev. Approximate frequency counts over
data streams. In Proc. VLDB, pages 346–357, 2002.

[21] Yang Yang, Wenjie Zhang, Ying Zhang, Xuemin Lin, and Liping Wang.
Selectivity estimation on set containment search. Data Science and
Engineering, 4(3):254–268, 2019.

[22] Yuhan Wu, Siyuan Dong, Yi Zhou, Yikai Zhao, Fangcheng Fu, Tong
Yang, Chaoyue Niu, Fan Wu, and Bin Cui. Kvsagg: Secure aggregation
of distributed key-value sets. In 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE). IEEE, 2023.

[23] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shi-
gang Chen, and Xiaoming Li. Heavykeeper: An accurate algorithm for
finding top-k elephant flows. IEEE/ACM Transactions on Networking,
27(5):1845–1858, 2019.

[24] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change
in data streams. In VLDB, volume 4, pages 180–191. Toronto, Canada,
2004.

[25] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper.
Workload analysis and demand prediction of enterprise data center
applications. In 2007 IEEE 10th International Symposium on Workload
Characterization, pages 171–180. IEEE, 2007.

[26] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[27] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Charac-
terizing, modeling, and benchmarking {RocksDB} {Key-Value} work-
loads at facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 209–223, 2020.

[28] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel,
Idit Keidar, Lee Rhodes, and Hadar Serviansky. Fast concurrent data
sketches. ACM Transactions on Parallel Computing, 9(2):1–35, 2022.

[29] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok Kim, Shir Landau-
Feibish, Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula,
and Mark Silberstein. {SwiSh}: Distributed shared state abstractions
for programmable switches. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 171–191, 2022.

[30] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich.
Flash crowds and denial of service attacks: Characterization and impli-
cations for cdns and web sites. In Proceedings of the 11th international
conference on World Wide Web, pages 293–304, 2002.

[31] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A Freedman,
Ken Birman, and Robbert van Renesse. Characterizing load imbalance in
real-world networked caches. In Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, pages 1–7, 2014.

[32] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[33] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and
general sketch-based monitoring in software switches. In Proceedings
of the ACM Special Interest Group on Data Communication, pages 334–
350. 2019.

[34] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. {HeteroSketch}:
Coordinating network-wide monitoring in heterogeneous and dynamic
networks. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 719–741, 2022.

[35] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. Data streaming
algorithms for efficient and accurate estimation of flow size distribution.
ACM SIGMETRICS Performance Evaluation Review, 32(1):177–188,
2004.

[36] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: adaptive and
fast network-wide measurements. In SIGCOMM, 2018.

[37] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-
quent items in data streams. In Automata, Languages and Programming.
2002.

[38] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He,
Tong Zhao, Zhengyi Jia, Yongqiang Yang, et al. Sketchint: Empowering
int with towersketch for per-flow per-switch measurement. In 2021 IEEE
29th International Conference on Network Protocols (ICNP), pages 1–
12. IEEE, 2021.

[39] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measurement
through randomized counter sharing. IEEE/ACM Transactions on
Networking, 20(5):1622–1634, 2012.

[40] Fan Deng and Davood Rafiei. New estimation algorithms for streaming
data: Count-min can do more. Webdocs. Cs. Ualberta. Ca, 2007.

[41] Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng
Chen, Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. She:
A generic framework for data stream mining over sliding windows. In
Proceedings of the 51st International Conference on Parallel Processing,
pages 1–12, 2022.

[42] Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators.
In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 187–198, 2007.

[43] Amirali Aghazadeh, Ryan Spring, Daniel LeJeune, Gautam Dasarathy,
Anshumali Shrivastava, et al. Mission: Ultra large-scale feature selection
using count-sketches. In International conference on machine learning,
pages 80–88. PMLR, 2018.

13

[44] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-
based frequency estimation algorithms. In International Conference on
Learning Representations, 2019.

[45] Gregory T Minton and Eric Price. Improved concentration bounds for
count-sketch. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 669–686. SIAM, 2014.

[46] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing
Liu. Precise error estimation for sketch-based flow measurement. In
Proceedings of the 21st ACM Internet Measurement Conference, pages
113–121, 2021.

[47] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
Scream: Sketch resource allocation for software-defined measurement.

In Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, pages 1–13, 2015.

[48] Sergei Vassilvitskii. Lecture 3: Counting on streams, 2017.
[49] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta

numerica, 7:1–49, 1998.
[50] Anonymized internet traces 2018. https://catalog.caida.org/details/

dataset/passive 2018 pcap. Accessed: 2022-6-29.
[51] Real-life transactional dataset. http://fimi.ua.ac.be/data/.
[52] Farmhash. https://github.com/google/farmhash.
[53] Source code of SketchConf. https://github.com/SketchConf/SketchConf.

14

