
HyperCalm Sketch: One-Pass Mining Periodic
Batches in Data Streams

Zirui Liu†, Chaozhe Kong†, Kaicheng Yang†, Tong Yang†‡, Ruijie Miao†,
Qizhi Chen†, Yikai Zhao†, Yaofeng Tu§, and Bin Cui†

†School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,
Peking University, Beijing, China ‡Peng Cheng Laboratory, Shenzhen, China §ZTE Corporation

{zirui.liu, kcz, ykc, miaoruijie, hzyoi, zyk, bin.cui}@pku.edu.cn, {yangtongemail}@gmail.com, {tu.yaofeng}@zte.com.cn

Abstract—Batch is an important pattern in data streams, which
refers to a group of identical items that arrive closely. We find
that some special batches that arrive periodically are of great
value. In this paper, we formally define a new pattern, namely
periodic batches. A group of periodic batches refers to several
batches of the same item, where these batches arrive periodically.
Studying periodic batches is important in many applications, such
as caches, financial markets, online advertisements, networks,
etc. We propose a one-pass sketching algorithm, namely the
HyperCalm sketch, which takes two phases to detect periodic
batches in real time. In phase 1, we propose a time-aware
Bloom filter, namely HyperBloomFilter (HyperBF), to detect the
start of batches. In phase 2, we propose an enhanced top-k
algorithm, called Calm Space-Saving (CalmSS), to report top-
k periodic batches. We theoretically derive the error bounds for
HyperBF and CalmSS. Extensive experiments show HyperCalm
outperforms the strawman solutions 4× in term of average
relative error and 13.2× in term of speed. We also apply
HyperCalm to a cache system and integrate HyperCalm into
Apache Flink. All related codes are open-sourced.

Index Terms—Data Stream, Sketch, Periodic Batch

I. INTRODUCTION

A. Background and Motivation
Batch is an important pattern in data streams [1], which is

a group of identical items that arrive closely. Two adjacent
batches of the same item are spaced by a minimum interval
T , where T is a predefined threshold. Although batches can
make a difference in various applications, such as cache [1],
networks [2], and machine learning [3], [4], it is not enough
to just study batches. For instance, in cache systems, with
just the measurement results of batches, we are still not able
to devise any prefetching method and replacement policy.
Further mining some special patterns of batches is of great
importance. On the basis of batches, we propose a new pattern,
namely periodic batch. A group of periodic batches refers to
α consecutive batches of the same item, where these batches
arrive periodically. We call α the periodicity. Finding top-
k periodic batches refers to reporting k groups of periodic
batches with the k largest periodicities.

Studying top-k periodic batches is important in practice. For
example, consider a cache stream formed by many memory
access requests where each request is an item, periodic batches
provide insights to improve the cache hit rate. With the

Co-primary authors: Zirui Liu, Chaozhe Kong, and Kaicheng Yang. Corre-
sponding author: Tong Yang (yangtongemail@gmail.com).

historical information of periodic batches, we can forecast
the arrival time of new batches, and prefetch the item into
cache just before its arrival. For another example, in financial
transaction streams, periodic transaction batches could be an
indicator of illegal market manipulation [5]. By detecting
periodic batches in real time, we can quickly find those
suspicious clients that might be laundering money. Periodic
batches are also helpful in recommendation systems and
online advertisements, where the data stream is generated
when users click or purchase different commodities. A batch
forms when users continuously click or purchase the same
type of commodities. In this scenario, periodic batches imply
users’ seasonal and periodic browsing or buying behaviors [6]
(e.g., Christmas buying patterns that repeat yearly, or seasonal
promotion-related user behaviors). Studying periodic batches
can help us to better understand customer behavior, so that we
can deliver appropriate advertisements promptly to customers.
In addition, periodic batches are also important in networks.
In network stream, most TCP senders tend to send packets
in periodic batches [7]. If we can forecast the arrival time
of future batches, we can pre-allocate resources to them, or
devise better strategies for load balancing. To our knowledge,
there is no existing work studying periodic batches, and we
are the first to formulate and address this problem.

Finding periodic batches is a challenging issue. First, finding
batches is already a challenging issue. Until now, the state-of-
the-art solution to detect batches is Clock-Sketch [1], which
records the last arrival time of recent items in a cyclic array,
and uses another thread to clean the outdated information using
CLOCK [8] algorithm. However, to achieve high accuracy, it
needs to scan the cyclic array very fast, which consumes a
lot of CPU resources. Second, periodic batch is a more fine-
grained definition, and thus finding periodic batches is more
challenging than just finding batches. The goal of this paper
is to design a compact sketch algorithm that can accurately
find periodic batches with small space- and time- overhead.

B. Our Proposed Solution

To accurately detect periodic batches in real time, we
propose a one-pass sketching algorithm, namely HyperCalm.
HyperCalm takes two phases to find top-k periodic batches. In
phase 1, for each item e arriving at time t, we check whether
it is the start of a batch. If so, we query a TimeRecorder

queue to get the arrival time t̂ of the last batch of e, and
calculate the batch interval V = t − t̂. Then we send
this batch and its interval 〈e, V 〉 to the second phase. In
phase 2, we check periodicity and manage to record top-
k periodic batches, i.e., top-k 〈e, V 〉 pairs. In phase 1, we
devise a better algorithm than the state-of-the-art algorithm for
detecting batches, Clock-Sketch [1]. In phase 2, we propose an
enhanced top-k algorithm, which naturally suits our periodic
batch detection scenario.

In phase 1, we propose a time-aware version of Bloom
filter, namely HyperBloomFilter (HyperBF for short), to detect
batches. For each incoming item, phase 1 should report
whether the item is the start of a batch. In other words, this
is an existence detection algorithm. In addition to existence
detection, phase 1 should be aware of arrival time to divide
a series of the same item into many batches. Bloom filter [9]
is the most well-known memory-efficient data structure used
for existence detection. However, the existence detection of
Bloom filter is only low-dimensional, i.e., it is agnostic to time
dimension. Typical work aware of time dimension is Persistent
Bloom filter (PBF) [10]. It is an elegant variant of Bloom
filter, which uses a set of carefully constructed Bloom filters
to support membership testing for temporal queries (MTTQ)
(e.g., has a person visited a website between 8:30pm and
8:40pm?). MTTQ and batch detection are different ways to
be aware of time dimension. To enable Bloom filter to be
aware of time, our HyperBF extends each bit in Bloom filter
into a 2-bit cell, doubling the memory usage. Compared to
the standard Bloom filter, HyperBF has the same number of
hash computations and memory accesses for each insertion
and query. The only overhead for time awareness is doubling
the memory usage, which is reasonable and acceptable.

In phase 2, we propose an enhanced top-k algorithm,
called Calm Space-Saving (CalmSS for short), to report top-k
periodic batches. For each incoming batch and its interval, i.e.,
〈e, V 〉, phase 2 should keep periodic batches with large peri-
odicities, and evict periodic batches with small periodicities.
In other words, phase 2 keeps frequent 〈e, V 〉 pairs, and evicts
infrequent 〈e, V 〉 pairs, which is is a top-k algorithm. Typical
top-k algorithms include Space-Saving [11], Unbiased Space-
Saving [12], and Frequent [13]. However, their accuracy is
significantly harmed by cold items 1. This problem is more
serious in our scenario of periodic batch detection. This is
because one infrequent item may have multiple batches, and
one frequent item may also have multiple batches without
periodicity. Both the two cases above increase the number of
cold 〈e, V 〉 pairs. To identify and discard cold items, Cold
Filter [16] and LogLogFilter [17] record the frequencies of all
items in a compact data structure. However, considering the
large volume of data stream, this structure will be filled up very
quickly, and needs to be cleaned up periodically. To ensure the
one-pass property of our solution, it is highly desired to devise
a data structure which will never be filled up. Instead of record-

1Cold items refer to items with small frequencies (i.e., infrequent items),
and hot items refer to items with large frequencies (i.e., frequent items). In
practice, most items are cold items, which appear just several times [14], [15]

ing all items, our solution is to just record the frequencies
of some items in the sliding window, and discard those cold
items in the sliding window. Rather than using existing sliding
window algorithms [18], [19], [20], this paper designs an LRU
queue working together with Space-Saving because of the
following reasons. First, our LRU queue is elastic: users can
dynamically tune its memory usage to maintain a satisfactory
accuracy. Second, our LRU queue has elegant theoretical
guarantees (see details in § III-C). Third, our LRU queue can
be naturally integrated into the data structure of Space-Saving
(see details in § III-D): such combination achieves higher
accuracy and higher speed. Our combination is faster because
the LRU queue efficiently filters most cold items, and thus
the complicated replacement operations incurred by cold items
are avoided (see Figure 11c). Actually, besides the application
of periodic batch detection, our LRU queue can improve the
accuracy/speed of any streaming algorithms. We can handle
any case that Cold filter can handle, and we are both time-
and space- more efficient than Cold filter (§ V-C). All related
codes are open-sourced [21].

C. Key Contributions
• We formulate the problem of finding periodic batches in

data streams. We believe this is an important problem in
data mining.

• We propose an accurate, fast, and memory efficient Hyper-
Calm sketch to detect periodic batches in real time. Both
the two components of HyperCalm, HyperBF and CalmSS,
significantly outperform the state-of-the-art solutions in de-
tecting batches and finding top-k items, respectively.

• We derive theoretical guarantees for our HyperBF and
CalmSS, and validate our theories using experiments.

• We conduct extensive experiments showing that HyperCalm
well achieves our design goal. The results show HyperCalm
outperforms the strawman solutions 4× in term of average
relative error and 13.2× in term of processing speed.

• We apply HyperCalm to a cache system showing that peri-
odic batches can benefit real-world application. We integrate
HyperCalm into Apache Flink [22] showing that HyperCalm
can smoothly work in distributed systems.

II. BACKGROUND AND RELATED WORK

A. Problem Statement
Batches: A data stream is an infinite sequence of items where
each item is associated with a timestamp. A batch is defined
as a group of identical items in the data stream, where the
time gap between two adjacent batches of the same item must
exceed a predefined threshold T . For convenience, in this
paper, two adjacent batches mean two batches belong to the
same item by default. The arrival time of a batch is defined
as the timestamp of the first item of this batch. We define the
interval/time gap between two adjacent batches as the interval
between their arrival times.
Periodic batches: A group of periodic batches refers to α
consecutive batches of the same item, where these batches
arrive with a fixed time interval. We call α the periodicity.

Here, the “fixed time interval” is not the exact time, but the ap-
proximate (noise-tolerant) time rounded up to the nearest time
unit (e.g., one millisecond). Finding top-k periodic batches
refers to reporting k groups of periodic batches with the k
largest periodicities. Note that one item may have more than
one group of periodic batches, and thus can be reported more
than once.
Example (Figure 1): We present an example to further clarify
our problem definition. We focus on two kinds of distinct items
e1 and e2 in the data stream. For e1, its 6 batches form a
group of periodic batches. For e2, it has two groups of periodic
batches, with the periodicities of 4 and 5, respectively. Note
that some batches of e2 just have one item.

Data Stream

3s 3s 3s 3s 3s

item 𝒆𝟏 batch periodicity 6

2s 2s 2s

item 𝒆𝟐periodicity 4

3s 3s 3s 3s

periodicity 5

batch threshold 𝒯 = 1𝑠 𝓣

Fig. 1: Example of periodic batches.

Discussion: The definition of periodic batches is a design
choice related to final application. We think our definition of
periodic batches is most general, which can benefit many real-
world applications (see § V-E as an example). However, certain
application may also care about other aspects of periodic
batches, such as batch size and distance. For example, some
application may just want to detect those periodic batches
that are large enough in size. It is not hard to detect those
variants of periodic batches by adding small modification
to our solution. Further formulating more application-specific
variants of periodic batches is our future work.

B. Related Work
Related work is divided into three parts: 1) algorithms for

batch detection; 2) algorithms for finding top-k frequent items;
and 3) algorithms for mining periodic patterns.
Batch detection: Item batch is defined very recently in [1],
which proposes Clock-Sketch to find batches. Clock-Sketch
consists of an array of s-bits cells. For each incoming item,
it sets the d hashed cells as 2s − 1. For query, if one of the
d hashed cells is zero, it reports a batch. Clock-Sketch uses
an extra thread to cyclically sweep the cell array at a constant
speed and decreases the swept non-zero cells by one. The
sweeping speed is carefully selected to avoid false-positive
errors. Besides Clock-Sketch, some sliding window algorithms
can be applied to find batches, including Time-Out Bloom
Filter (TOBF) [23] and SWAMP [24].
Finding top-k frequent items: To find top-k frequent items
in data streams, existing approaches maintain a synopsis data
structure. There are two kinds of synopses: sketches and KV
tables. 1) Sketches usually consist of multiple arrays, each
of which consists of multiple counters. These counters are
used to record the frequencies of the inserted items. Typical

sketches include CM [25], CU [26], Count [27], and more
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].
However, sketches are memory inefficient because they record
the frequencies of all items, which is actually unnecessary. 2)
KV tables record only the frequent items. Typical KV table
based approaches include Space-Saving [11], Unbiased Space-
Saving [12], Frequent [13], and more [39], [40]. Space-Saving
and Unbiased Space-Saving record the approximate top-k
items in a data structure called Stream-Summary. However,
their accuracy is significantly degraded by cold items. To
address this issue, Cold Filter [16] uses a two-layer CU sketch
to filter cold items. However, as aforementioned, the structure
of Cold Filter will be filled up very quickly. Cleaning the
full Cold Filter will inevitably incur error and time overhead,
which is still not addressed.
Mining periodic patterns: Although there have been some
algorithms aiming at mining periodicity in time sequence
data [41], [42], [43], [44], [45], [46], [47], their problem
definitions are different from ours. More importantly, most
of them do not meet the requirements of data stream model
processing: 1) each item can only be processed once; 2) the
processing time of each item should be O(1) complexity and
fast enough to catch up with the high speed of data streams.
For example, TiCom [44] defines a periodical problem in an
incomplete sequence data, and develops an iterative algorithm
with time complexity of O(n2). RobustPeriod [42] proposes
an algorithm based on discrete wavelet transform with time
complexity of O(n log n). Further, there are some works
which elegantly use Fast Fourier Transform (FFT) or Auto
Correlation Function (ACF) to address different definitions of
periodic items, such as SAZED [45]. These algorithms need
to process one item multiple times, and thus cannot meet the
above two requirements.

TABLE I: Symbols frequently used in this paper.
Symbol Meaning

e ID of an item in a data stream
T Batch threshold spacing two adjacent batches
d Number of arrays in HyperBF
Bi The ith array of HyperBF
m Number of 2-bit cells in each array Bi
l Number of 2-bit cells in each block

hi(·) Hash function mapping an item into a cell in Bi
V Time interval of two adjacent batches of an item
c Length of the TimeRecorder queue

E = 〈e, V 〉 An entry in phase 2, which is the concatenation of
an item e and its batch interval V , i.e., 〈e, V 〉

w Length of the LRU queue in CalmSS
P Predefined promotion threshold of the LRU queue

III. THE HYPERCALM SKETCH

Overview (Figure 2): The workflow of the HyperCalm sketch
consists of two phases: 1) A HyperBloomFilter (HyperBF)
detecting the start of batches; and 2) A Calm Space-Saving
(CalmSS) recording and reporting top-k periodic batches. In
addition, we design a TimeRecorder queue to record the last
batch arrival time for potential periodic batches. Given an
incoming item e arriving at time t, we first propose HyperBF
to check whether it is the start of a batch. If so, we query the

TimeRecorder queue to get the arrival time t̂ of the last batch
of e and calculate the batch interval V = t − t̂. 2 Then we
update the arrival time of last batch of e in the TimeRecorder
queue to t. Next, we send e and its batch interval V to
CalmSS to detect top-k periodic batches. We combine the ID
of item e and its interval V to form an entry E = 〈e, V 〉,
and insert the entry into CalmSS. CalmSS reports k groups of
periodic batches with the k largest periodicities, i.e., reports
top-k entries with the k largest frequencies, where each entry
is an 〈e, V 〉 pair. We use a hash table index to accelerate
the lookup process of the TimeRecoder queue and CalmSS,
achieving O(1) processing time complexity (see more details
in § III-B and § III-C). The main symbols used in this paper
are listed in Table I.

TimeRecorder Query the arrival time of the2 last batch 𝑡̂

Phase 1

Item batch

Item 𝒆 arriving at time 𝒕

Phase 2

A Hash Table storing timestamps and indices

HyperCalm Sketch

Detect the start of batches1HyperBF

(Circular Queue)

LRU Queue Discard cold entries3

Min-Heap
(Space-Saving)

Keep and report top-k periodic4 batches (Top-k Algorithm)

Entry 𝒆,𝑽 (batch with rounded interval 𝑽)

Top-k periodic batches

Fig. 2: HyperCalm sketch workflow.

A. The HyperBF Algorithm
Rationale: To enable Bloom filter to be time-aware, the key
technique of HyperBF is to extend every bit in Bloom filter
into a 2-bit cell, and use these cells to compactly record the
approximate last arrival time of recent items. Although we can
also use 3-bit or 4-bit cells, we find that under fixed memory,
using 2-bit cells achieves the best accuracy. Since 2-bit cell
can represent 4 states (0∼3), HyperBF cyclically divides the
timeline into three kinds of time slices (1∼3), and the length of
each time slice is T , where T is the predefined batch threshold
(see Figure 4a). These time slices are recorded in the 2-bit cells
of HyperBF. HyperBF needs to clean all outdated time slices
efficiently. Rather than using an extra thread like Clock-Sketch
[1], HyperBF incidentally cleans the outdated cells during each
insertion operation. Compared with standard Bloom filter, Hy-
perBF has the same number of hash computations and memory
accesses for each insertion and query. Further, we propose a
novel Asynchronous Timeline technique to significantly reduce
the error of HyperBF. Theoretical guarantees of HyperBF are
provided in § IV.
Data structure: HyperBF consists of d arrays B1, · · · , Bd.
Each array Bi has m 2-bits cells Bi[1], · · · ,Bi[m], which are
evenly divided into m

l blocks with l 2-bit cells. Each block
can fit into the size of a cache line, and thus could be read or
write through one memory access. When checking one cell, we
can incidentally access the other cells in its block, which does
not incur extra memory accesses. Each array Bi is associated

2To tolerate noise in batch interval, in our experiments, V is rounded up
according to the regulations described in the parameter setting part of § V-D.

with a hash function hi(·) that maps an item into a cell in it.
As mentioned above, HyperBF divides the timeline into three
kinds of time slices (1∼3). Each cell stores a time slice (1∼3)
or a zero flag (0). We preserve the zero value of cells as the
batch flag: once an incoming is mapped into a cell with batch
flag, a new batch starts. For example in Figure 3, HyperBF
has 2 cell arrays, each of which has 4 2-bit cells which are
divided into 2 blocks. For simplicity, each block has l = 2
cells here. In practice, we can set the block size to any value
no more than 64B (l 6 256), i.e., no more than the cache line
size. All cells are initialized to 0.
Insert: For each incoming item e with timestamp t, we first
calculate the current time slice s = b tT c mod 3 + 1. We
calculate the d hash functions to locate the d hashed cells of e:
B1[h1(e)], · · · , Bd[hd(e)]. For each hashed cell, we check the
block which the cell resides, and incidentally clean outdated
cells to zero flag. Specifically, if the current time slice is 1,
time slice 2 is outdated; if the current time slice is 2, time
slice 3 is outdated; if the current time slice is 3, time slice
1 is outdated. Due to the high speed of the data stream, all
outdated cells will be cleaned in time (see theoretical results
in § IV). After cleaning, if any one of the d hashed cells is
zero flag, HyperBF reports the start of a batch. Finally, we
update all d hashed cells to the current time slice s.

2 3 2 3

𝑒!

1 0 2 1

ℎ!(𝑒!) ℎ"(𝑒!)

Clean Clean

ℬ! ℬ"

0 3 2 3 1 0 0 1ℬ! ℬ"

0 1 2 3 1 0 1 1ℬ! ℬ"

Update Update

block 2bits

Example 1

Batch

0 1 2 3

𝑒"

1 0 1 1

ℎ!(𝑒") ℎ"(𝑒")

Clean Clean

ℬ! ℬ"

0 1 2 0 1 0 1 1ℬ! ℬ"

0 1 2 0 1 0 1 2ℬ! ℬ"

Update Update

block 2bits

Example 2𝑠!"# = 1 𝑠!"# = 2

Fig. 3: Two examples of HyperBF (d = 2, m = 4, l = 2).

Example 1 (left of Figure 3): For item e1 arriving at time
slice snow = 1, we first locate its two hashed cells B1[2] and
B2[3] by calculating h1(e1) and h2(e1). Next, we clean the
outdated cells with value 2. For B1[2], we check all cells in
its block (i.e., B1[1] and B1[2]), and clean the outdated cell
B1[1] to zero. For B2[3], we clean the outdated cell B2[3] to
zero. After cleaning, since the second hashed cell B2[3] is
zero, we report the start of a batch. Finally, we update the two
hashed cells to snow.
Example 2 (right of Figure 3): For item e2 arriving at time
slice snow = 2, we first locate its two hashed cells B1[3] and
B2[4]. Next, we check the blocks which the two hashed cells
reside, and clean the outdated cells with value 3, i.e., clean
B1[4] to zero. Since after cleaning, both the two hashed cells
are not zero, we do not report a batch. Finally, we update B1[3]
and B2[4] to snow.
Error analysis: HyperBF might miss some batches, but
the reported batches are always true. The error of missing
batches comes from three aspects. 1) The error incurred by
hash collision, which is the cause of false positive error of
Bloom filters. 2) The error incurred by outdated cells that are
not cleaned in time. 3) The error incurred by coarse-grained

timeline division. We provide the theoretical analysis of the
three kinds of error in § IV, proving that the impact of the
first two kinds of error are negligible. For the third error,
essentially, our 2-bit time slice is a coarse-grained timeline
division: the gain is extremely high memory efficiency, and the
cost is the fuzzy perception of time. Fortunately, we found the
error incurred by fuzzy perception of time can be significantly
reduced by the technique of Asynchronous Timeline.
Asynchronous Timeline: HyperBF perceives time in a fuzzy
way. When the interval between two adjacent batches is among
T ∼ 2T , HyperBF might not be able to report the second
batch correctly, depending on the relative offset of the timeline.
Specifically, only when the interval span three time slices can
HyperBF be able to report the second batch. This issue is
illustrated in Figure 4a. Although the time interval between the
two occurrences of e1 exceeds T , HyperBF cannot correctly
divide them into two batches because the interval span just
two time slices. Therefore, when the current time slice is 1,
time slice 3 is not outdated. To address this issue, we propose
the Asynchronous Timeline technique. Our key idea is to use d
different timeline offsets for the d arrays to enhance the ability
of batch perception. In this way, as long as the interval spans
three time slices in any one of the d timelines, HyperBF can
perceive the second batch correctly. As shown in Figure 4b,
after using the Asynchronous Timeline technique, the interval
spans three time slices in the second array. In this example,
HyperBF can correctly perceive the second batch. We derive
theoretical guarantees for Asynchronous Timeline using linear
programming model in Theorem IV.3 in § IV, proving that the
time division error can be reduced by d times when using d
evenly distributed timelines.

𝒯

time division error

Synchronous
𝑒!

1.2𝒯

1 2 3 1 2ℬ!/ ℬ"

𝑒!

(a) Synchronous.

1 2 3 1 2
1 2 3 1 2

ℬ!
ℬ"

Asynchronous
𝑒! 𝑒!

1.2𝒯

(b) Asynchronous.
Fig. 4: Optimization using Asynchronous Timeline

B. The TimeRecoder Algorithm
To record the last arrival time of batches, a strawman

solution is to use a huge hash table to store the arrival time
of the last batches for all items. This is memory inefficient,
because most batches are not periodic. To address this issue,
we propose TimeRecorder aiming to only store the time for
those batches that are potential top-k periodic batches. The
data structure of TimeRecorder is essentially a circular queue,
which is implemented as a doubly linked list of c nodes.
Each node records an item ID. We build the first hash table
index (Index_1) for TimeRecorder. For each item e in the
TimeRecorder queue, we store the arrival time t̂ of its last
batch in Index_1.

For each incoming batch of item e at time t, we first query
Index_1 to check whether the arrival time of its last batch
is recorded. 1) If so, we calculate the batch interval V = t− t̂.
Then we combine the item ID e and its batch interval V to
form an entry E = 〈e, V 〉, and send the entry to CalmSS.

Finally, we update the timestamp of e to the current time
t. 2) If not, we insert e into the TimeRecorder queue, and
store the arrival time t of its last batch in Index_1. If the
TimeRecorder queue is already full before insertion, we evict
the oldest (least recently accessed) item e0 to make room for
e. Note that if e0 has periodic batches (i.e., it is maintained in
CalmSS), we still preserve the arrival time of its last batch in
Index_1. For the implementation details, please see § III-D.

Our TimeRecorder evicts the following items: 1) Items that
are old and do not show periodicity; and 2) Items whose
batches have long periods, which have little potential to
become top-k periodic batches. The TimeRecorder keeps the
items that are highly likely to have top-k periodic batches, and
discard other items which are the major part of the data stream.
Therefore, our TimeRecoder queue is much more memory
efficient than the above strawman solution.

E = 𝑒, 𝑉

Top-k periodic
batches

CalmSS
LRU

Queue
Filter cold entries

Top-k Algorithm

entry

Min-Heap
(Space-Saving)

TimeRecorder
Queue

Index_3

Index_1

Index_2

Hash
Table

𝑒
hash

Batch of item 𝑒

Item

(a) Data structure.

Yes
In top-k?

E = 𝑒, 𝑉

In LRU
Queue?

No
Yes

No

End

End

counter
= 𝒫? End

Yes

No

End

CalmSS Workflow

Insert E into
LRU Queue

Increment E’s counter
in LRU Queue

Delete E from LRU Queue
and insert into Min-Heap

Increment E’s counter
in Min-Heap

(b) Insertion workflow.
Fig. 5: Data structure and workflow of CalmSS.

C. The CalmSS Algorithm
Rationale: Phase 2 uses a top-k algorithm to report top-k
periodic batches. The most well-known top-k algorithm is
Space-Saving [11], which works by maintaining a Min-Heap
of m bins. For each incoming entry E1

3, if it is in the heap, it
increments its counter by one; otherwise, it updates one of the
smallest bins (Emin, fmin) to (E1, fmin+1). In this way, each
incoming entry increments a counter in Space-Saving. Recall
that in phase 2, most entries are cold entries, which appear just
several times. All increments by cold entries are unnecessary,
and significantly increase the overestimation error. Therefore,
we propose CalmSS to minimize the influence of cold entries.
The key idea of CalmSS is to use a queue to discard cold
entries. The queue records the frequency of entries in the
sliding window. This queue follows the LRU strategy: the
least recently visited cold entry will be discarded, and hot
entries will be moved to Space-Saving. Specifically, for each
incoming entry, it is first inserted into the queue: if it appears
too few times in the sliding window, it will be discarded;
otherwise, it will be moved to the Space-Saving. This LRU
Queue can be considered as a guardian of Space-Saving to
keep cold entries outside. We theoretically prove the error
bound of CalmSS in § IV.
Data structure (Figure 5a): CalmSS consists of an LRU
queue and a Space-Saving (it is essentially an Min-Heap): 1)

3Each entry E = 〈e, V 〉 is the concatenation of an item ID e and a batch
interval V .

The LRU queue uses a sliding window of w bins to keep
the recent w distinct entries. Each bin stores a key-value pair
(E, f), where the key is an entry ID and the value is a small
counter recording the frequency of E. The LRU queue uses a
predefined threshold P (called promotion threshold) to filter
out cold entries: Once the counter of an entry E reaches
P , it means it is not a cold entry, and thus we remove E
from the LRU queue and insert it into the Space-Saving. 2)
The Space-Saving uses a Stream-Summary [11] and a hash
table to achieve O(1) time complexity to locate and update
the smallest entry. The hash table is used to index both the
Stream-Summary and the LRU queue. Note that CalmSS is
a meta-framework that accommodates any top-k algorithm,
which means the Space-Saving can be replaced by other top-k
algorithm, such as Unbiased Space-Saving [12] and Frequent
[48]. We use Space-Saving because it has the best theoretical
results. Similar to the TimeRecoder, we build the second and
third hash table indices (Index_2 and Index_3) for the
LRU queue and the Space-Saving, respectively.
Insert (Figure 5b): For each incoming entry E = 〈e, V 〉,
we first query it in the hash indices: 1) If E is in the Space-
Saving, we just increment its counter by one. 2) If E is in
the LRU queue, we increment the small counter of E in the
LRU queue by one. After increment, if the small counter
reaches the predefined promotion threshold P , we remove E
from the LRU queue and insert (E,P) into the Space-Saving.
Specifically, if the Min-Heap is already full before inserting
E, we update the smallest node (Emin, fmin) in the Space-
Saving to (E, fmin+P). 3) If E is not in the LRU queue, we
insert (E, 1) into the LRU queue. If the LRU queue is already
full before inserting E, we evict the least recently accessed
entry to make room for E.
Report: To report top-k periodic batches, CalmSS just reports
the k entries with the k largest frequencies in the Min-Heap.
Note that one item could have multiple groups of periodic
batches, and thus could be reported more than once.

D. Implementation

In our implementation, we combine the three hash indices
(Index_1, Index_2, and Index_3) into one hash table
index Index_all. For each key-value pair in the hash table
Index_all, it includes one key (item ID) e and three values:
1) A timestamp t̂, which is the arrival time of the last batch of
e; 2) Two entry lists List_1 and List_2, which record the
corresponding entries of e (they are essentially some batch
intervals of e) that are in the LRU queue and the Space-
Saving (Min-Heap), respectively. Each node in the two entry
lists uses a pointer to index the location of the LRU queue or
the Space-Saving. 3) A counter recording the sum of several
parts: the number of appearances of e in the TimeRecorder,
and the lengths of the two lists. We delete e from the hash
table once its counter is decremented to zero. In this way, for
all items that have periodic batches, their last batch arrival
time is maintained in Index_all even if they are not in the
TimeRecorder queue.

IV. MATHEMATICAL ANALYSIS

In this section, we provide a thorough theoretical support for
the HyperCalm sketch, and validate our theoretical analyses
using experiments. Our theoretical analyses focus on the
following three key issues.
• How accurate can HyperBF detect batches? We derive the

error bound of HyperBF in Lemma IV.4 and Theorem IV.1,
and conduct experiments to validate our bound in Figure 7b.
The results show that both theoretical and experimental error
rate are smaller than 0.01 in common cases.

• How accurate can CalmSS detect top-k periodic batches?
We derive the error bound of CalmSS in Theorem IV.2, and
conduct experiments to validate our bound in Figure 8. The
results show that both theoretical and experimental error rate
are smaller than 0.01 in common cases.

• Is the Asynchronous Timeline technique of HyperBF
effective? We theoretically analyze the accuracy gain of
Asynchronous Timeline technique in Theorem IV.3, and con-
duct experiments to validate it in Figure 9b. Both theoretical
and experimental results show that Asynchronous Timeline
technique significant improves the accuracy of HyperBF.

A. Error rate of HyperBF
We first prove the error rate of HyperBF in Theorem IV.1.

A data stream can be formulated by two variables: density
α and activity β, where density α is the number of distinct
items observed at each moment, and activity β is the number
of distinct items emerging/dying per unit time. Consider two
consecutive time interval T1 and T2. The numbers of distinct
items observed in T1 and T2 are α + βT1 and α + βT2,
respectively. And the number of distinct items observed in
the two intervals is α+β(T1 +T2). Most data streams can be
formulated by these two variables. Take CAIDA [49] dataset
as an instance, Figure 7a shows the average number (±5std)
of distinct items observed in time intervals of different length.
We can see that the linear relationship almost holds where
α = 3195.2 and β = 35238.9. Next, consider two adjacent
occurrences of item e at t1 and t2, where t2 − t1 > 2T . Let
K = b t2T c − b

t1
T c. Let γn = α + βnT denote the number of

distinct items observed in a time interval of length nT .

···

KT (K+1)T(K-1)TT 2T 3T0

𝑹𝟎𝑹𝟏𝑹𝟐𝑹𝟑𝑹𝟒𝑹𝟓𝑹𝟔𝑹𝑲)𝟐𝑹𝑲)𝟏𝑹𝑲

𝒕𝟎 𝒕𝟐𝒕𝟏

𝒕𝟎
Part 1
Part 2
Part 3

cleaning

Fig. 6: Error rate analysis of HyperBF.

As shown in Figure 6, consider two adjacent occurrences
of an item e in the data stream. Assume the timestamps of the
two occurrences are t1 and t2, respectively. Assume t2− t1 >
2T , meaning that the second occurrence of e is the start of
a batch and there is no time division error. Next, we derive
the error rate of HyperBF, which is defined as the probability
that HyperBF does not report a batch at t2.

Now consider a certain hashed cell Bi[hi(e)] of item e. It
is obvious that Bi[hi(e)] is accessed by e at both t1 and t2.

Let t0 be the last time that Bi[hi(e)] was accessed before t2.
We have t1 6 t0 < t2. In particular, if t0 = t1, we can assert
that there is no item hashed into Bi[hi(e)] between t1 and t2.
Assume that 0 6 t1 < T and KT 6 t2 < (K + 1)T , i.e.,
K =

⌊
t2
T
⌋
−
⌊
t1
T
⌋
. Since t1 and t2 are two arbitrary selected

timestamps, and the timeline can be arbitrarily specified,
the above assumption does not impair generality. Next, we
use symbol Ri (0 6 i 6 K) to denote the time interval
[(K − i)T , (K + 1 − i)T). We restrict the range of possible
t0 into [T , (K + 1)T). And we can assume that Bi[hi(e)] can
be cleaned by other items only in [0,KT).

Lemma IV.1. Let A′j denote the event that t0 6 (K + 1 −
j)T . Let j′ = (j−K−1)T +t2

T . Then we have ∀1 6 j < K,

Pr
(
A′j
)
≈ e−

γ
j′
m .

Proof. The probability that Bi[hi(e)] is not selected by a
certain hash function during the insertion of an item is 1− 1

m .
Note that t0 6 (K + 1 − j)T is equivalent to the statement
that Bi[hi(e)] is not selected by any item that arrives between
(K + 1− j)T and t2. From our data stream assumption, the
number of distinct items arrives between (K + 1 − j)T and
t2 is γj′ = α+ β(j −K − 1)T + βt2. Since the hash values
of distinct items have no significant correlation between each
other, then the probability that Bi[hi(e)] is not selected by any
of the γj′ distinct items is Pr

(
A′j
)

=
(
1− 1

m

)γj′ ≈ e− γj′m
Lemma IV.2. For ∀0 6 j < K, let A′j denote the event
that t0 6 (K − j + 1)T , and let Aj denote the event that
(K − j) T 6 t0 < (K − j + 1) T , i.e., the event that t0 ∈ Rj .
Then we have that for ∀1 6 j < K, Pr (Aj) > e−

γj
m −e−

γj+1
m .

Proof. It is obvious that for ∀0 6 j < K, we have

Pr
(
A′j
)

= Pr
(
A′j+1

)
+ Pr (Aj)

According to Lemma IV.1, we have that for ∀1 6 j < K:

Pr (Aj) = Pr
(
A′j
)
− Pr

(
A′j+1

)
≈ e−

γ
j′
m − e−

γ
j′+1
m

= e−
α+β(j−K−1)T+βt2

m

(
1− e−

βT
m

)
= e−

γ
j′
m

(
1− e−

βT
m

)
Since t2 < (K + 1)T , we have that γj′ = α+ β(j −K −

1)T + βt2 < α+ βjT = γj .
Thus, we have

Pr (Aj) = e−
γ
j′
m

(
1− e−

βT
m

)
> e−

γj
m

(
1− e−

βT
m

)
= e−

α+βjT
m − e−

α+β(j+1)T
m = e−

γj
m − e−

γj+1
m

Lemma IV.3. Let m′ = m
l−1 . Given u time intervals of length

T , T1, · · · , Tu, let Cu denote the event that a certain cell, e.g.,
Bi[hi(e)], is cleaned at least once in these time intervals. Then
we have:

1− e−
γu
m′ 6 Pr (Cu) 6 1− e−

uγ1
m′

Proof. For each incoming item ei, Bi[hi(e)] is cleaned if and
only if ei is hashed into the same block but not the same cell
with e. Therefore, the probability that Bi[hi(e)] is not cleaned
during the insertion of ei is 1− l−1

m = 1− 1
m′ .

Let x be the number of distinct items in the u intervals,
T1, · · · , Tu. According to the data stream assumption, we have
γu 6 x 6 uγ1. Actually, when the u intervals are consecutive,
we have x = γu, and when the u intervals are disjoint
and separated far away enough from each other, we have
x = uγ1. Since the probability that Bi[hi(e)] is not cleaned
in T1, · · · , Tu is

(
1− 1

m′

)x ≈ e−
x
m′ , we have Pr (Cu) =

1−e− x
m′ . Thus, we have 1−e−

γu
m′ 6 Pr (Cu) 6 1−e−

uγ1
m′ .

Lemma IV.4. Let P be the probability that a certain hashed
cell of item e (e.g., Bi[hi(e)]) is zero at t2. Let m′ = m

l−1

and uj =
⌈
j−2

3

⌉
. Let K1 =

⌊
K
3

⌋
− 1, K2 =

⌊
K−1

3

⌋
− 1,

and K3 =
⌊
K−2

3

⌋
− 1. Then the lower bound of P is

P ′ = P ′1+P ′2+P ′3, where P ′1 =
∑K1

k=0

(
e−

γ3k+2
m − e−

γ3k+3
m

)
,

P ′2 =
∑K2

k=0

(
e−

γ3k+3
m − e−

γ3k+4
m

)(
1− e−

γu3k+3
m′

)
, and

P ′3 =
∑K3

k=0

(
e−

γ3k+4
m − e−

γ3k+5
m

)(
1− e−

γu3k+4
m′

)
.

Proof. Now we discuss the possible range of t0. Since our
goal is to derive the lower bound of P , we can just ignore
the case where t0 ∈ RK . And we note that when t0 ∈ R0 or
t0 ∈ R1, Bi[hi(e)] cannot be zero at t2. Therefore, we only
discuss the cases where T 6 t0 < (K − 1)T , i.e., the cases
where t0 ∈ Rj (2 6 j 6 K − 1).

First, consider the cases where t0 ∈ R3k+2 (0 6 k 6⌊
K
3

⌋
− 1). In these cases, Bi[hi(e)] will be cleaned to zero

when inserting item e at t2. Let K1 =
⌊
K
3

⌋
− 1. We can

derive the first part of P as P1 =
∑K1

k=0 Pr (A3k+2) =∑K1

k=0

(
e−

γ3k+2
m − e−

γ3k+3
m

)
= P ′1.

Second, consider the cases where t0 ∈ R3k+3 (0 6 k 6⌊
K−1

3

⌋
− 1). As shown in Figure 6, when t0 ∈ R6, in order

to guarantee that Bi[hi(e)] = 0 at t2, Bi[hi(e)] must be
cleaned at least once in time intervals R4 and R1. Generally,
when t0 ∈ Rj , let uj denote the number of intervals in
which Bi[hi(e)] should be cleaned at least once. Then we
have uj =

⌈
j−2

3

⌉
. Let K2 =

⌊
K−1

3

⌋
− 1. We can derive the

second part of P as P2 =
∑K2

k=0 Pr (A3k+3) Pr
(
Cu3k+3

)
>∑K2

k=0

(
e−

γ3k+3
m − e−

γ3k+4
m

)(
1− e−

γu3k+3
m′

)
= P ′2.

Third, consider the cases where t0 ∈ R3k+4 (0 6 k 6⌊
K−2

3

⌋
−1). These cases are similar to the cases in the second

part, and the proof is also similar.
In summary, we have that P = P1+P2+P3 > P ′1+P ′2+P ′3.

Theorem IV.1. We define the error rate E of HyperBF (with-
out Asynchronous Timeline) as the probability that HyperBF
does not report a batch at t2. Then we have:

E 6 (1− P ′)d

where P ′ is the lower bound in Lemma IV.4.

Proof. Note that HyperBF does not report a batch at t2 if
and only if all d hashed cells B1[h1(e)], · · · ,Bd[hd(e)] are
zero at t2. Since the d arrays of HyperBF are independent
of each other, we have that E = (1− P)

d, where P is the
probability that one hashed cell is zero at t2. Thus, we have
E 6 (1− P ′)d, where P ′ is the lower bound of P derived in
Lemma IV.4. This gives the proof of Theorem IV.1.

Experimental analysis (Figure 7b): We conduct experiments
on CAIDA [49] dataset to validate the theoretical bound in
Lemma IV.4. We use the HyperBF that just has one array (d =
1), and allocate 4KB of memory to it (m = 16000). The results
show that the experimental error rate is always well bounded
by theoretical bound. As the volume of CAIDA data stream
is very large, almost all outdated cells in HyperBF can be
cleaned promptly. Therefore, the experimental error rate does
not vary with K. As K grows larger, our theoretical bound
becomes more accurate. Note that we only focus on a single
array of HyperBF here. If we use the HyperBF consisting of
d = 8 arrays, the error rate will be < 0.01.

0.1 0.2 0.3 0.4
Time Interval Length (s)

0

5

10

15

20

D

is
tin

ct
 It

em
s

(K
) Average Number

(a) Data stream.

5 10 15 20 25 30
K

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r R
at

e

Upper bound
Experimental

(b) Error rate.
Fig. 7: Error rate of HyperBF.

B. Error rate of CalmSS
We define the error rate ζ of CalmSS as the probability

that a cold item fails to be discarded by LRU queue, i.e.,
the probability that a cold item enters the top-k algorithm in
CalmSS. Next, we derive the upper bound of ζ.

We assume the data stream consists of two types of items:
cold items and hot items, and all items of the same type
have the same arrival speed. The data stream is essentially
the sum of many independent Poisson processes of two kinds
(hot items and cold items). Let λh and λc be the parameters
of the two Poisson processes, respectively. Let nh and nc be
the number of distinct hot items and cold items, respectively.
Notice that nh � w and nc � w. Therefore, we can assume
that in a short time interval, all arriving items are distinct.
Consider a cold item e, we assume all items that arrives
between the time when e enters the LRU queue and the time
when e is removed from the LRU queue are distinct hot items.
Here, we assume all of these items are hot because we want
to derive an upper bound of ζ. Cold items only promote the
LRU queue to discard e, resulting in a smaller ζ.

Theorem IV.2. For a cold item e, the probability ζ that it fails
to be discarded by CalmSS, i.e., the error rate of CalmSS, is

ζ =

(
w−1∑
x=0

1

x!

Rx

(R+ 1)x+1
Γ(x+ 1)

)P−1

where R = nhλh
λc

, and Γ(z) represents the Gamma function.

Proof. Suppose e fails to be discarded by the LRU queue, i.e.,
it enters the top-k algorithm. Then e must arrives P times in a
short time, and each arrival increments the counter of e in the
LRU queue by one. Let random variables T1, T2, · · · , TP−1

be the time gaps between every two adjacent occurrences of
e. As e arrives according to a Poisson process of intensity λc,
we have Ti follows an exponential distribution with mean λc.

Let Di denote the event that there arrive w hot items within
Ti. It is clear that D1, · · · ,DP−1 are independent of each
other. Recall that the Poisson processes of different hot items
are independent of each other. Let λ1 = nhλh and λ2 = λc.
The probability of the event that there arrive x hot items within
T is Px,T = (λ1T)T

x! e−λ1T .
Then we have:

Pr(Di) =

w−1∑
x=0

Px,Ti =

w−1∑
x=0

(λ1Ti)
Ti

x!
e−λ1Ti

Recall that the Poisson processes of all distinct items are
independent of each other. Then we have:

ζ =E{T1,··· ,TP−1}

[
Pr

(P−1∏
i=1

Di

)]

=E{T1,··· ,TP−1}

[P−1∏
i=1

Pr(Di)
]

=

P−1∏
i=1

ETi [Pr(Di)]

Further, we have:

ζ =

P−1∏
i=1

ETi [Pr(Di)] =

P−1∏
i=1

w−1∑
x=0

∫ +∞

0

(λ1ti)
x

x!
e−λ2tidti

=

(
w−1∑
x=0

1

x!

Rx

(R+ 1)x+1
Γ(x+ 1)

)P−1

where R = λ1

λ2
and Γ(z) represents the Gamma function.

Experimental analysis (Figure 8): We conduct experiments
to validate our theoretical bound in Theorem IV.2. We set
w = 16, P = 4, and generate the data stream using two
kinds of Poisson processes where nh = 50 and nc = 1. The
results show that the experimental error rate is always bounded
by the theoretical upper bound. Note that when R < 50,
the intensity of cold items λc is smaller than the intensity
of hot items λh, meaning that cold items are actually not

0 50 100 150
R (1/ 2)

10
6

10
4

10
2

10
0

Er
ro

r R
at

e

Upper bound
Experimental

Fig. 8: Error of CalmSS.

cold. Therefore, when R is
small, CalmSS has large theoret-
ical and experimental error. As
R increases, our data stream as-
sumption will be closer to truth.
When R > 50, λc < λh,
meaning that the cold items are
really cold. When R = 125, the
theoretical error rate is 10−2 and
the experimental error rate is 10−4, showing that CalmSS is
highly effective in filtering cold items in real cases.

C. Effectiveness of Asynchronous Timeline
Theorem IV.3. After using the Asynchronous Timeline tech-
nique, the time division error is minimized when the d timelines
are evenly distributed, i.e., when the timeline offset for the ith

array is oi = (i−1)
d T , where the minimized error is reduced

by d times compared to the synchronous version.

Proof. The time division error occurs only when the batch
interval spans two time slices in all of the d timelines. Without
loss of generality, we take the first timeline as the reference
timeline, i.e., we set o1 = 0, and we suppose o1 < o2 < · · · <
od < T . Consider two batches arrives at timestamps xT and
(2 − y)T respectively, where x > 0, y > 0, and x + y < 1.
The interval between the two batches is ∆t = (2− y − x)T .
It is clear that T < ∆t < 2T . Consider the ith timeline with
offset oi ∈ [0, T), it can correctly perceive the second batch if
and only if xT < oi and (2− y)T > T + oi. In other words,
the ith timeline can correctly perceive the second batch if the
interval meets the above two constraints.

Our goal is to find the optimal o2, · · · , od ∈ [0, T) to
perceive as much intervals as possible. Suppose the valid
values of x and y are uniformly distributed, the above problem
can be transformed into a linear programming problem. As
shown in Figure 9a, the triangular area under the line x+y = 1
represents the feasible range of x and y. Let oi = µiT where
µi ∈ [0, 1). Each timeline with offset oi enables the intervals
lie in the rectangular area x > 0, y > 0, x < µi, and y < 1−µi
to be correctly perceives. Therefore, the goal of the linear
programming is to maximize the total area S, which is the
union of the d− 1 rectangles. And we have:

S = µ2(1− µ2) + (µ3 − µ2)(1− µ3) + (µ4 − µ3)(1− µ4)

+ · · ·+ (µd − µd−1)(1− µd)

By applying the method of Lagrange multipliers, we can
easily derive that S is maximized when µi = (i−1)

d , i.e., oi =
(i−1)
d T , and the maximized S is d−1

d times of the triangular
area. Thus, asynchronous timeline reduces the error by d times.

1

x0 1

𝒙 + 𝒚 = 𝟏

𝜇! 𝜇" 𝜇#···

1 − 𝜇!

y

1 − 𝜇"

1 − 𝜇#

···
𝑺

(a) Linear programming.

2 4 6 8
d

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

Synchronous
Random Async.
Even Async.

(b) Time division error.
Fig. 9: Asynchronous Timeline analysis.

Experimental analysis (Figure 9b): We conduct experiments
on CAIDA [49] to validate Theorem IV.3. We set the batch
threshold T to 1.454 µs, and fix the memory usage of Hy-
perBF to 50KB. We find that Asynchronous Timeline technique
significantly improves the accuracy of HyperBF. We also find
that when using Asynchronous Timeline, HyperBF using d
evenly distributed timelines is more accurate than HyperBF
using d randomly distributed timelines. For example, when

using d = 8 arrays, the RR of the basic HyperBF is 61%, while
that of the HyperBF using Asynchronous Timeline is about
80%. Specifically, the RR of the HyperBF using randomly
distributed timelines is 80.07%, while that of the HyeprBF
using evenly distributed timelines is 81.95%.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the effective-
ness of HyperCalm and its benefits to real-world applications.
Our experiments focus on the following five key issues.
• Can HyperBF accurately and efficiently detect item

batches? We compare the performance of HyperBF with
state-of-the-art Clock-Sketch [1], SWAMP [24], and Time-
Out Bloom filter (TOBF) [23] in finding item batches. The
results show that under the same memory usage, HyperBF
always achieves higher accuracy and faster speed than state-
of-the-art solutions. (§ V-B)

• Can CalmSS accurately and efficiently detect top-k
items? We compare the performance of CalmSS with state-
of-the-art Space-Saving (SS) [11], Unbiased Space-Saving
(USS) [12], and Cold filter [16] + Space-Saving (CF+SS) in
finding top-k items. The results show that under the same
memory usage, HyperBF always achieves higher accuracy
and faster speed than state-of-the-art solutions. (§ V-C)

• Can HyperCalm accurately and efficiently detect top-
k periodic batches? We combine the state-of-the-art al-
gorithms in detecting batches and finding top-k items to
form one strawman solution for finding periodic batches,
and compare HyperClam against it. The results show that
HyperCalm outperforms the strawman solutions 4× in term
of average relative error and 13.2× in term of speed. (§ V-D)

• Is it beneficial for real-world application to detect
periodic batches? We apply the HyperCalm sketch to a
cache system, and use the measurement results of periodic
batches to optimize the replacement and prefetch strategies.
The results show that HyperCalm improves the hit rates of
both LFU and LRU caches. (§ V-E)

• Can HyperCalm work well in distributed systems? We
implement HyperCalm on top of Apache Flink [22], show-
ing that our solution can be easily integrated into modern
stream processing framework and work well in distributed
environment. (§ V-F)

A. Experimental Setup
Platform and setting: We conduct experiments on an 18-
core 4.2GHz CPU server (Intel i9-10980XE) with 128GB
3200MHz DDR4 memory and 24.75MB L3 cache. We im-
plement all codes with C++ and build them with g++ 7.5.0
(Ubuntu 7.5.0-6ubuntu2) and -O3 option. The hash functions
we use are 32-bit Murmur Hash [50]. We use SIMD (Single
Instruction and Multiple Data) to accelerate the cleaning pro-
cess of HyperBF. By default, the parameters of the comparing
algorithms are set according to the recommendation of their
authors. We first find the ground-truth batches / top-k items /
periodic batches according to predefined parameters, and store
them as golden labels in a large hash table.

2
4

2
6

2
8

2
10

Memory Usage (KB)

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

HyperBF
Clock
SWAMP
TOBF

(a) F1 score.

2
4

2
6

2
8

2
10

Memory Usage (KB)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

l = 2
l = 4
l = 8
l = 16

(b) Cell line size (l).

2
4

2
6

2
8

2
10

Memory Usage (KB)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

d = 1
d = 2
d = 4
d = 8

(c) Number of Arrays (d).

2
4

2
6

2
8

2
10

Memory Usage (KB)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

Synchronous
Asynchronous

(d) Timeline distribution.

2
4

2
6

2
8

2
10

Memory Usage (KB)

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

op
s)

HyperBF
Clock
SWAMP
TOBF

(e) Processing speed.
Fig. 10: Performance of HyperBF (CAIDA).

Datasets:
1) CAIDA dataset: CAIDA [49] is a data stream of IP trace
collected in 2018. Each item is identified by its source IP (4
bytes) and destination IP (4 bytes).
2) Criteo dataset: Criteo [51] is an advertising click data
stream consisting of about 45M ad impressions. Each item is
identified by its categorical feature and conversion feedback.
Evaluation Metrics:
1) Recall Rate (RR): The ratio of the number of correctly
reported instances to the number of correct instances.
2) Precision Rate (PR): The ratio of the number of correctly
reported instances to the number of reported instances.
3) F1 Score: 2×RR×PR

RR+PR .

4) Average Relative Error (ARE): 1
|Ψ|
∑
ei∈Ψ

∣∣∣fi − f̂i∣∣∣ /fi,
where fi is the real frequency of item ei, f̂i is its estimated
frequency, and Ψ is the query set.
5) Throughput (Mops): Million operations per second.

B. Experiments on HyperBF
Parameter setting: We compare HyperBF with Clock-Sketch
[1], SWAMP [24], and Time-Out Bloom filter (TOBF) [23].
For HyperBF, we set d = 8 and l = 32 by default. For CAIDA,
we set the time-based batch threshold T to 0.72 seconds. For
Criteo, we set the count-based batch threshold T to 40,000.
Under such settings, there are about 0.96M batches in CAIDA
dataset, and about 4.9M batches in Criteo dataset.
Accuracy of detecting batches (Figure 10a): We find
that HyperBF always achieves the best accuracy. In fact,
HyperBF, Clock, and TOBF always have 100% PR, but Hy-
perBF achieves better RR than Clock and SWAMP. SWAMP
always has 100% RR because it reports all unrecorded items
as batches, but its PR is less than 40% as it suffers high
false positive errors. When using 256KB of memory, Hy-
perBF achieves 97% F1 score, significantly outperforms Clock
(90%), SWAMP (28%), and TOBF (73%).
Impact of cell line size (l) (Figure 10b): We find that a
larger value of cell line size l goes with higher RR of HyperBF,
and when the cell line size exceeds 8, HyperBF achieves
the optimal accuracy. When setting l = 2 and using more
than 256KB of memory, the RR of HyperBF decreases as the
memory usage increases because the outdated cells are not
cleaned in time. The two curves of l = 8 and l = 16 are
highly in coincidence, meaning that l = 8 is already enough
to achieve the optimal accuracy.
Impact of number of arrays (d) (Figure 10c): We find that
HyperBF performs well when using d = 4 or d = 8 arrays.

When the memory usage is small, smaller d goes with higher
RR. This is because when the total memory usage is fixed,
smaller d leads to larger size of each array, and thus leads to
less hash collisions in each array. When the memory usage is
large, larger d goes with higher Recall Rate. This is because
if the array size is too small, the outdated cells cannot be
cleaned in time, which compromises the accuracy of HyperBF.
When setting d = 8 and using 256KB of memory, the RR of
HyperBF exceeds 95%.
Impact of Asynchronous Timeline (Figure 10d): We find
that the Asynchronous Timeline technique can significantly
improve the RR of HyperBF. Here, the Asynchronous Timeline
technique uses d evenly distributed timelines. When using
256KB of memory, HyperBF using Asynchronous Timeline
achieves 97% RR, significantly outperforms that of the basic
version (82%).
Processing speed (Figure 10e): We find that HyperBF is
faster than other algorithms. The results show that under
different memory constraints, the throughput of HyperBF is
always 16 Mops, while that of TOBF and SWAMP are about
14 Mops and 9 Mops, respectively. The throughput of Clock
drops rapidly with the increase of memory usage because
when using more memory, Clock needs to clean more cells
per insertion. When using 1024KB of memory, the throughput
of Clock is only a half of that of HyperBF.

C. Experiments on CalmSS

Parameter setting: We compare CalmSS with Space-Saving
(SS) [11], Unbiased Space-Saving (USS) [12], and Cold filter
[16] + Space-Saving (CF+SS). For CalmSS, we set w = 16
and P = 4 by default. We set k = 100 and conduct the
experiments using CAIDA.
Accuracy of finding top-k items (Figure 11a): We find that
CalmSS always has better RR than SS, USS, and CF+SS.
The RR of CalmSS reaches 78% even if the memory size
is only 32KB, while that of SS and USS are about 50%. As
the memory size exceeds 128KB, the RR of CalmSS is very
close to 100%. The RR of CF+SS is smaller than ours because
the large volume of data stream fill it up very quickly.
Frequency estimation for top-k items (Figure 11b): We find
that CalmSS always achieves smaller ARE than SS, USS, and
CF+SS. When using 32KB of memory, the ARE of CalmSS
is 0.1, about 4 times lower than that of the other algorithms.
When using 512KB of memory, the ARE of CalmSS is 7.5×
10−4, while that of SS, USS, CF+SS are 1.8 × 10−3, 1.1 ×
10−3, and 2.1× 10−2, respectively.

2
3

2
5

2
7

2
9

Memory Usage (KB)

0.2

0.4

0.6

0.8

1.0
R

ec
al

l R
at

e

CalmSS
SS
USS
CF+SS

(a) Recall.

2
3

2
5

2
7

2
9

Memory Usage (KB)

10
3

10
2

10
1

10
0

10
1

A
R

E

CalmSS
SS
USS
CF+SS

(b) ARE.

2
3

2
5

2
7

2
9

Memory Usage (KB)

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s) CalmSS

SS
USS
CF+SS

(c) Processing speed.

2
5

2
6

2
7

2
8

2
9

Memory Usage (KB)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

w = 0
w = 8
w = 16
w = 32

(d) Queue length (w).

2
5

2
6

2
7

2
8

2
9

Memory Usage (KB)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

P = 0
P = 2
P = 4
P = 6

(e) Promotion thld. (P).
Fig. 11: Performance of CalmSS (CAIDA).

20 60 100 140
Memory Usage (KB)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

HyperCalm
Clock+USS

(a) Recall (CAIDA).

320 640 960 1280
Memory Usage (KB)

0.0

0.2

0.4

0.6

0.8

1.0
R

ec
al

l R
at

e

HyperCalm
Clock+USS

(b) Recall (Criteo).

20 60 100 140
Memory Usage (KB)

10
3

10
2

10
1

10
0

A
R

E

HyperCalm
Clock+USS

(c) ARE (CAIDA).

320 640 960 1280
Memory Usage (KB)

10
4

10
3

2 × 10
4

3 × 10
4

4 × 10
4

6 × 10
4

A
R

E HyperCalm
Clock+USS

(d) ARE (Criteo).

20 60 100 140
Memory Usage (KB)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

op
s)

HyperCalm
Clock+USS

(e) Speed (CAIDA).
Fig. 12: Performance of HyperCalm (CAIDA and Criteo).

Processing speed (Figure 11c): We find that CalmSS is
faster than SS, USS, and CF+SS. CF+SS is slow because
Cold filter needs extra memory accesses and hash computation.
Surprisingly, CalmSS is faster than SS and USS because
it sends only hot items to Space-Saving, resulting in fewer
memory accesses to Space-Saving data structure. The LRU
queue is small enough to be held in caches, and thus does not
incur extra memory access.
Impact of LRU queue length (w) (Figure 11d): We find that
CalmSS performs well when the length of the LRU queue w is
just 8. When using 256KB memory, the RR of CalmSS using
an LRU queue of length w = 8 is 91%, while that of Space-
Saving (w = 0) is 77%. Since the three curves of w = 8,
w = 16, and w = 32 are highly in coincidence, we conclude
that w = 8 is enough to achieve satisfactory accuracy.
Impact of promotion threshold (P) (Figure 11e): We find
that the optimal promotion threshold P is 4 or 6. When using
256KB memory, the RR of CalmSS with P = 2 or P = 4 is
about 92%, while that of Space-Saving (P = 0) is 76%. Note
that the optimal P is highly correlated with the dataset.

D. Experiments on HyperCalm

Parameter setting: We combine the state-of-the-art Clock-
Sketch and Unbiased Space-Saving to form a strawman so-
lution for finding top-k periodic batches (Clock+USS), and
compare our HyperCalm with it. The parameters (including
memory proportion) of HyperCalm and the strawman solution
are empirically set so that they achieve relatively good perfor-
mance. For HyperBF, we set d = 8 and l = 32 by default. For
CalmSS, we set P = 7.
1) Setting on CAIDA: We set the time-based batch threshold
T to 0.072 millisecond. Each batch interval V is rounded to
the nearest multiple of 0.72 millisecond. Under such settings,
there are about 4.1M periodic batches in CAIDA dataset.
2) Setting on Criteo: We set the count-based batch threshold
T to 20,000. Each batch interval V is rounded to the nearest
multiple of 100,000. Under such settings, there are about
14.7M periodic batches in Criteo dataset.

Accuracy of finding periodic batches (Figure 12a-12b):
We find that the RR of HyperCalm always outperforms the
strawman solution on two datasets. On CAIDA, when using
60KB of memory, the RR of HyperCalm is 94%, while that of
the strawman solution is 78%. On Criteo, when using 800KB
of memory, the RR of HyperCalm is 90%, while that of the
strawman solution is 85%.
Frequency estimation of periodic batches (Figure 12c-12d):
We find that HyperCalm always has smaller ARE than the
strawman solution on two datasets. On CAIDA, when using
60KB of memory, the ARE of HyperCalm is about 6.9×10−3,
which is 4 times lower than that of the strawman solution. On
Criteo, when using 800KB of memory, the ARE of HyperCalm
is about 1.3× 10−4, which is 4.6 times lower than that of the
strawman solution.
Processing speed (Figure 12e): We find that the processing
speed of HyperCalm always outperforms the strawman so-
lution on two datasets. On CAIDA, when using 60KB of
memory, the throughput of HyperCalm is 10.2 Mops, which is
13.2 times higher than that of the strawman solution. The gap
between HyperCalm and Clock+USS is huge because Clock
needs to clean many cells per insertion, which harms the speed.

4
3

4
4

4
5

4
6

4
7

TimeRecorder Length (c)

0.6

0.7

0.8

0.9

1.0

R
ec

al
l R

at
e

50 KB
60 KB
70 KB
80 KB

(a) Recall (CAIDA).

4
3

4
4

4
5

4
6

4
7

TimeRecorder Length (c)
10

2

10
1

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

A
R

E

50 KB
60 KB
70 KB
80 KB

(b) ARE (CAIDA).
Fig. 13: Impact of TimeRecorder queue length (c).

Impact of the length of TimeRecorder (c) (Figure 13):
We find that as the length of the TimeRecorder queue grows
larger, the accuracy of HyperClam increases. We also find
that HyperClam performs well when the TimeRecorder queue
length c = 1024. As shown in Figure 13a, under 80KB
of memory, when TimeRecorder queue length c is 1024,
HyperClam achieves 97% RR. As shown in Figure 13b, under

80KB of memory, when TimeRecorder queue length c is 1024,
the ARE of HyperClam is about 1.8× 10−2.

E. Applying HyperCalm to Cache Systems
We apply HyperCalm to a simulated cache system to show-

case a promising application scenario, where the data stream is
formed by many memory access requests. HyperCalm yields
two insights to optimize cache performance. First, with the
help of real-time batch detection, we can find out the batches
that are still active now. When cache is full, we do not discard
those items that still have active batches because they are
highly likely to arrive again in the near future. Second, with
the historical knowledge of periodic batches, we can forecast
the arrival time of new batches, so as to prefetch data into
cache before their arrival. Our experimental results show that
with the help of HyperCalm, the hit rates of both LFU and
LRU are significantly enhanced.
Implementation and datasets: We implement a fully associa-
tive cache simulator that mimics the behavior of a hardware
cache. We use CAIDA [49] and treat source IP address (4
bytes) as memory access request. Note that the performance
of caches is highly related to datasets. Only when the dataset
includes many periodic batches (it usually does) can our
solution improve hit rate. In practice, each cache entry consists
of two fields: key, value. In many cases (MemC3, CDN, etc),
the size of value field is very large. As HyperCalm does not
store values, its size is only proportional to the number of
periodic batches. Thus, its memory cost is very small.

2
3

2
5

2
7

2
9

Cache Size (×10)

0.2

0.4

0.6

0.8

H
it

R
at

e

Baseline
Clock
HyperCalm

(a) LFU.

10.0 12.5 15.0 17.5 20.0
Memory Usage (KB)

0.35

0.40

0.45

0.50

0.55

H
it

R
at

e

Baseline
HyperCalm

(b) LRU.
Fig. 14: Optimization to cache replacement policy.

Experiments on LFU (Figure 14a): We find that HyperCalm
significantly improves the hit rate of LFU with small memory
overhead, and HyperCalm outperforms Clock-Sketch [1] in
both hit rate and processing speed. Here, we compare
HyperCalm with Clock-Sketch, which also uses the batch
detection results to improve replacement policies. We set the
memory usage of HyperCalm and Clock to 20KB, which is
small compared to the cache storage. The results show that
HyperCalm always has higher hit rate than Clock and the
LFU baseline. With the cache size of 1280, the hit rate of
HyperCalm is 67%, while that of Clock and LFU are 60%
and 48%, respectively.
Experiments on LRU (Figure 14b): We find that HyperCalm
improves the hit rate of LRU, and the hit rate grows higher
as the memory of HyperCalm grows larger. We set the cache
size to 640 lines (about 80KB) and change the memory of
HyperCalm. The results show that HyperCalm always has
higher hit rate than the LRU baseline. Note that although
LRU is acknowledged as the best replacement algorithms, it

has poor support for periodic requests. Thus, on our synthetic
dataset where half of the requests arrive periodically, the hit
rate of LRU is only 41%. When using 20KB of memory,
HyperClam improves the hit rate from 41% to 45%.

F. Integration into Apache Flink
We implement HyperCalm on top of Apache Flink [22]

showing that our solution can be easily integrated into modern
stream processing framework and work in distributed systems.
Experimental setup: We run the experiments at a Flink cluster
with 1 master and 5 workers using CAIDA [49]. We deploy a
Hadoop Distributed File System (HDFS) in our cluster, where
we set the master node as NameNode and the worker nodes
as DataNodes. Each node has 4 virtual CPU cores of Intel
XEON Platinum 8369B, and 8 GB main memory. The job
manager and each task manager of Flink are configured with
1 GB of memory. Each node uses Flink 1.13.1, Java 11 and
Hadoop 2.8.3 running on Ubuntu 20.04 LTS. All experiments
are repeated 10 times and average (±std) throughput is plotted.

1 2 3 4
Number of parallel instances

1.0

1.5

2.0

2.5

3.0

Ev
en

ts
/s

 (×
10

6)

(a) Local mode.

1 2 3 4 5
Number of nodes

1

2

3

4

5

Ev
en

ts
/s

 (×
10

6)

(b) Cluster mode.
Fig. 15: Throughput on Apache Flink.

Experimental results (Figure 15): We find that HyperCalm
can smoothly work on top of Flink framework. As shown in
Figure 15a, in local mode experiments, the throughput linearly
increases up to 3 parallel instances (parallelism). Afterwards,
the throughput growth becomes less linear. As shown in
Figure 15b, in cluster mode, the throughput linearly scales
up with more nodes used in the cluster.

VI. CONCLUSION

This paper proposes a new pattern in data streams, namely
periodic batches, which is useful in many applications. We
propose the HyperCalm sketch, to accurately detect periodic
batches in real time. The two key components of HyperCalm,
HyperBF and CalmSS, significantly outperform state-of-the-
art solutions in detecting batches and finding top-k items,
respectively. We provide theoretical guarantees for HyperBF
and CalmSS. Extensive experimental results demonstrate the
effectiveness of our approach. In the future, we plan to deploy
HyperCalm in more applications, and use our results to im-
prove the performance of recommendation systems, financial
markets, load balancing, etc.

ACKNOWLEDGMENT

We would like to thank Yuhan Wu, Haochen Gan, and the
anonymous reviewers, for their help in improving this paper.
This work is supported by Key-Area Research and Devel-
opment Program of Guangdong Province 2020B0101390001,
National Natural Science Foundation of China (NSFC) (No.
U20A20179, 61832001).

REFERENCES

[1] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang.
Out of many we are one: Measuring item batch with clock-sketch.
SIGMOD, 2021.

[2] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flowtune:
Flowlet control for datacenter networks. In NSDI, 2017.

[3] Tamás Lévai, Felicián Németh, Barath Raghavan, and Gábor Rétvári.
Batchy: Batch-scheduling data flow graphs with service-level objectives.
In NSDI, 2020.

[4] Runze Lei, Pinghui Wang, Rundong Li, Peng Jia, Junzhou Zhao,
Xiaohong Guan, and Chao Deng. Fast rotation kernel density estimation
over data streams. In SIGKDD, 2021.

[5] Craig Pirrong. Energy market manipulation: definition, diagnosis, and
deterrence. Energy LJ, 31:1, 2010.

[6] Tong Chen, Hongzhi Yin, Hongxu Chen, Hao Wang, Xiaofang Zhou,
and Xue Li. Online sales prediction via trend alignment-based multitask
recurrent neural networks. KAIS, 2019.

[7] Z-L Zhang, Vinay J Ribeiro, Sue Moon, and Christophe Diot. Small-
time scaling behaviors of internet backbone traffic: An empirical study.
In INFOCOM, 2003.

[8] Fernando J Corbato. A paging experiment with the multics system.
Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE
PROJECT MAC, 1968.

[9] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[10] Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou.
Persistent bloom filter: Membership testing for the entire history. In
SIGMOD, 2018.

[11] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In ICDT.
Springer, 2005.

[12] Daniel Ting. Data sketches for disaggregated subset sum and frequent
item estimation. In SIGMOD, 2018.

[13] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency
estimation of internet packet streams with limited space. In ESA.
Springer, 2002.

[14] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch:
Faster and more accurate stream processing. In SIGMOD, 2016.

[15] Graham Cormode. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers, 2011.

[16] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li,
and Steve Uhlig. Cold filter: A meta-framework for faster and more
accurate stream processing. In SIGMOD, 2018.

[17] Peng Jia, Pinghui Wang, Junzhou Zhao, Ye Yuan, Jing Tao, and
Xiaohong Guan. Loglog filter: Filtering cold items within a large
range over high speed data streams. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 804–815. IEEE, 2021.

[18] Linfeng Zhang and Yong Guan. Frequency estimation over sliding
windows. In ICDE, pages 1385–1387. IEEE, 2008.

[19] Ran Ben Basat, Roy Friedman, and Rana Shahout. Stream frequency
over interval queries. Proceedings of the VLDB Endowment, 12(4):433–
445, 2018.

[20] Shuhao Sun, Jingwei Zheng, and Dagang Li. Hee-sketch: an effi-
cient sketch for sliding-window frequency estimation over skewed data
streams. In ISPA, 2019.

[21] Hypercalm codes. https://github.com/HyperCalmSketch/
HyperCalmSketch.

[22] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015.

[23] Shijin Kong, Tao He, Xiaoxin Shao, Changqing An, and Xing Li. Time-
out bloom filter: A new sampling method for recording more flows. In
ICOIN, 2006.

[24] Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. Pay for a
sliding bloom filter and get counting, distinct elements, and entropy for
free. In INFOCOM. IEEE, 2018.

[25] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1), 2005.

[26] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting: Focusing on the elephants, ignoring the mice.
TOCS, 21(3), 2003.

[27] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-
quent items in data streams. In Automata, Languages and Programming.
2002.

[28] Takuya Akiba and Yosuke Yano. Compact and scalable graph neighbor-
hood sketching. In SIGKDD, 2016.

[29] Yang Yang, Ying Zhang, Wenjie Zhang, and Zengfeng Huang. Gb-
kmv: An augmented kmv sketch for approximate containment similarity
search. In 2019 IEEE 35th International Conference on Data Engineer-
ing (ICDE), pages 458–469. IEEE, 2019.

[30] Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan Qi, Min
Hu, Chao Deng, and Xiaohong Guan. Bidirectionally densifying lsh
sketches with empty bins. In SIGMOD, 2021.

[31] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. A
learned sketch for subgraph counting. In SIGMOD, 2021.

[32] Daniel Ting, Jonathan Malkin, and Lee Rhodes. Data sketching for real
time analytics: Theory and practice. In SIGKDD, 2020.

[33] Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu
Wang, John CS Lui, and Xiaohong Guan. A memory-efficient sketch
method for estimating high similarities in streaming sets. In SIGKDD,
2019.

[34] Daniel Ting. Count-min: Optimal estimation and tight error bounds
using empirical error distributions. In SIGKDD, 2018.

[35] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. A
sketch-based index for correlated dataset search. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 2022.

[36] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Var-
gaftik. Salsa: self-adjusting lean streaming analytics. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pages 864–875.
IEEE, 2021.

[37] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. A
sketch-based index for correlated dataset search. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), 2022.

[38] Bohan Zhao, Xiang Li, Boyu Tian, and etal. Dhs: Adaptive memory
layout organization of sketch slots for fast and accurate data stream
processing. In SIGKDD, 2021.

[39] Yuhan Wu, Siyuan Dong, Yi Zhou, Yikai Zhao, Fangcheng Fu, Tong
Yang, Chaoyue Niu, Fan Wu, and Bin Cui. Kvsagg: Secure aggregation
of distributed key-value sets. In 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE). IEEE, 2023.

[40] Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han,
Tao Li, Ori Rottenstreich, and Tong Yang. Mapembed: Perfect hashing
with high load factor and fast update. In SIGKDD, 2021.

[41] Komate Amphawan, Philippe Lenca, and Athasit Surarerks. Efficient
mining top-k regular-frequent itemset using compressed tidsets. In
New Frontiers in Applied Data Mining: PAKDD 2011 International
Workshops, Shenzhen, China, May 24-27, 2011, Revised Selected Papers
15, pages 124–135. Springer, 2012.

[42] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan
Xu. Robustperiod: Robust time-frequency mining for multiple periodic-
ity detection. In Proceedings of the 2021 International Conference on
Management of Data, pages 2328–2337, 2021.

[43] Mohamed G Elfeky, Walid G Aref, and Ahmed K Elmagarmid. Stagger:
Periodicity mining of data streams using expanding sliding windows. In
Sixth International Conference on Data Mining (ICDM’06), pages 188–
199. IEEE, 2006.

[44] Quan Yuan, Jingbo Shang, Xin Cao, Chao Zhang, Xinhe Geng, and
Jiawei Han. Detecting multiple periods and periodic patterns in event
time sequences. In CIKM, 2017.

[45] Maximilian Toller, Tiago Santos, and Roman Kern. Sazed: parameter-
free domain-agnostic season length estimation in time series data. Data
Mining and Knowledge Discovery, 33(6):1775–1798, 2019.

[46] Zhuochen Fan, Yinda Zhang, Tong Yang, Mingyi Yan, Gang Wen, Yuhan
Wu, Hongze Li, and Bin Cui. Periodicsketch: Finding periodic items
in data streams. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 2022.

[47] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye.
Mining periodic behaviors for moving objects. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1099–1108, 2010.

[48] Erik Demaine, Alejandro López-Ortiz, and J Munro. Frequency esti-
mation of internet packet streams with limited space. Algorithms—ESA
2002, 2002.

[49] CAIDA dataset. Available: http://www.caida.org/home.
[50] Murmur hashing source codes. https://github.com/aappleby/smhasher.
[51] Criteo dataset. Available: https://ailab.criteo.com/ressources/.

https://github.com/HyperCalmSketch/HyperCalmSketch
https://github.com/HyperCalmSketch/HyperCalmSketch
http://www.caida.org/home
https://github.com/aappleby/smhasher
https://ailab.criteo.com/ressources/

	Introduction
	Background and Motivation
	Our Proposed Solution
	Key Contributions

	Background and Related Work
	Problem Statement
	Related Work

	The HyperCalm Sketch
	The HyperBF Algorithm
	The TimeRecoder Algorithm
	The CalmSS Algorithm
	Implementation

	Mathematical Analysis
	Error rate of HyperBF
	Error rate of CalmSS
	Effectiveness of Asynchronous Timeline

	Experimental Results
	Experimental Setup
	Experiments on HyperBF
	Experiments on CalmSS
	Experiments on HyperCalm
	Applying HyperCalm to Cache Systems
	Integration into Apache Flink

	Conclusion
	References

