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Abstract—Finding top-k frequent items has been a hot issue in
databases. Finding top-k persistent items is a new issue, and has
attracted increasing attention in recent years. In practice, users
often want to know which items are significant, i.e., not only
frequent but also persistent. No prior art can address both of
the above two issues at the same time. Also, for high-speed data
streams, they cannot achieve high accuracy when the memory is
tight. In this paper, we define a new issue, named finding top-k
significant items, and propose a novel algorithm namely LTC to
address this issue. It includes two key techniques: Long-tail
Replacement and a modified CLOCK algorithm. We theoretically
prove there is no overestimation error and derive the correct rate
and error bound. We conduct extensive experiments on three
real datasets. Our experimental results show that LTC achieves
300 ∼ 108 and in average 105 times higher accuracy than other
related algorithms.

I. INTRODUCTION
A. Background and Motivations

Nowadays, the volume of data becomes larger and larger,
posing great challenges on fast queries. On the one hand, the
exploding data provides more opportunities for users to better
understand the world. On the other hand, it becomes harder
and harder for users or administrators to find the information
that they care about most in time.

In many scenarios, users only care about the most significant
part of the dataset, and want to get answers immediately. For
example, people want to know the most influential tweets
under a certain topic. For another example, customers want to
know which products are sold the best in a certain category.

In the above examples, it is often unnecessary to report an
exactly correct answer because of the following two reasons.
First, the data often contains noise, which means getting
the exact correct answer cannot improve the performance of
the applications. Second, such queries are often intermediate
results, serving for a comprehensive queries. For example,
when we find feature values in machine learning, we do not
care whether the feature values are all useful, but we hope that
the number of useful feature values to be as many as possible.
In other words, as long as the error is small enough, it almost
does not influence the final results. Therefore, approximate
queries has gained rising attention, and a series of approximate
data structures have been proposed and played important
roles in the last several decades, including Bloom filter [1]
and its variances [2]–[4], and sketches [5]–[9]. There are
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two advantages of approximate queries. First, maintaining
an approximate data structure requires less memory and less
computing resources. Second, approximate data structures can
support fast insertion and query, so they can catch up with the
fast speed of data streams. In summary, approximate query is
an effective method for big data applications.

In the aforementioned scenarios, people only care about the
most significant part of the dataset. In the typical use cases,
it is a classic and important topic to find frequent items [10]–
[15]. Other than that, some works focus on finding persistent
items [16], [17]. However, it is often insufficient to merely
involve one metric for significant items. In other words, people
actually care about significant items which are both frequent
and persistent. This has not been touched by existing works. In
this paper, we will focus on how to accurately and quickly find
significant items. We first present the definition of significant
items.
Definition of Significant Items: Given a data stream or a
dataset, we divide it into T equal-sized periods. Each item
could appear more than once in the data stream or in each
period. The Significance s of an item is a function of two
metrics: frequency f and persistency p.

s = αf + βp (1)

where α, β are parameters defined by users. Frequency refers
to the number of appearances of items. Persistency refers to
the number of periods where the items have appeared.

Finding top-k significant items is to report k items with the
largest significance. Finding top-k significant items is a key
component in many applications. We show three use cases as
follows.
Use Case 1: DDoS attacks detection [18]. Accurate and
timely detection of DDoS attacks has been a hot issue. The
DDoS victim receives many packets from attackers, which can
be detected by finding frequent items. However, only some
frequent items attack traffic. It would be time consuming to
carefully check all frequent items one by one. Actually, the
attack traffic is often not only frequent but also persistent.
Therefore, finding significant items can somehow separate
attack traffic from normal traffic more accurately.
Use Case 2: Website evaluation. Evaluating the websites by
popularity should be accurate and fast, and the rank should be
updated in real time. There are two key metrics of popularity:
frequency and persistency. Frequency refers to the number of
the user’s accesses to the website, while persistency indicates
whether this website is popular all the time. Therefore, both



of the two metrics should be considered in ranking the
popularity/significance of a website.
Use Case 3: Network congestion. Network congestion hap-
pens every second in data centers [19]–[21]. One effective
solution for solving congestion is to change the forwarding
path of some flows. As there could be millions of flows
in every second, a straightforward solution is to change the
forwarding paths of many flows, and then many entries of
the forwarding table in the switch will be modified. Some
algorithms for organizing the forwarding table do not support
fast update. To avoid modifying too many entries of the
forwarding table, it is highly desirable to change as few flow
paths as possible. A classic method is to only change the
forwarding path of large flows. This method does not always
work well, because the current large flows could be a burst, and
there could be very few packets later. Therefore, changing the
forwarding entry of such large flows is in vain. A better choice
is to detect the significant flows. They are not only frequent,
but also persistent, and thus with high probability they will
be large flows in a long period later. Therefore, changing the
significant flows is a better solution. Indeed, this could cause
congestion at another place. That is why network congestion
has been a challenging issue for many years. If persistent
flows all over the data center can be efficiently identified, we
can make a global solution to schedule the persistent flows,
mitigating congestion.

B. Prior Art and Their Limitations
Existing solutions focus on only one dimension, such as

finding top-k frequent items [10]–[15], or finding top-k per-
sistent items [16], [17]. However, in practice, finding both
frequent and persistent items is more practical and important.
One straightforward solution is to combine two kinds of
algorithms. Specifically, for each incoming item, we build
two data structures, one for recording the frequent items,
and the other for recording the persistent items. Obviously,
the time and space overhead is the sum of the overhead of
two algorithms. Therefore, existing one-dimension solution is
inefficient in term of time and space. The design goal of this
paper is to design one data structure to accurately and quickly
find significant items with limited memory.

C. Our Solution
To find significant (frequent, persistent, or both) items, we

propose a novel algorithm, namely Long-Tail Clock (LTC),
which can accurately find top-k significant items with small
memory and high speed. LTC includes two key techniques:
Long-tail Replacement and a modified CLOCK algorithm.

First, we show how Long-tail Replacement works for
finding frequent items. This process is similar for finding
significant items. Suppose we want to use k cells to keep
track of top-k frequent items. Each cell stores an item ID and
its frequency 〈ei, fi〉. As k is usually small, the k cells will be
full soon. The key problem is how to handle the new incoming
item when the k cells are full. The most well known algorithm,

A flow is usually defined as a part of the five tuples: source IP address,
destination IP address, source port, destination port, and protocol.

Space-Saving, just lets the incoming item replace the smallest
item 〈emin, fmin〉 among all k items in those cells, and sets
the initial value of the new incoming item to fmin + 1. It
will cause large overestimation error. In contrast, our Long-
tail Replacement works as follows. When a new item arrives,
we decrement fmin by 1. And when it becomes 0, we replace
emin by the new item. The key technique is how to choose
an appropriate initial value for the new item. Our algorithm is
based on the observation that item frequencies in real datasets
follow long-tail distribution [22]–[26]. Therefore, we set the
initial value of the new item to the second smallest frequency
minus 1. Next we use two cases to explain why such an initial
value is reasonable.

Case I: The new incoming item e appeared continuously
for fmin times and thus expelled emin. The initial value of e
should be set to fmin. However, we do not know the value of
fmin. Fortunately, according to the long-tail distribution, fmin
is approximately the second smallest frequency minus 1.

Case II: The new incoming item e seldom appeared before,
this strategy might cause overestimation of the initial value of
e . However, it would be decremented and expelled soon from
the k cells.

Based on the long-tail distribution, there is no other appro-
priate initial value, More details about Long-tail Replacement
are provided in Section III-D.

Second, we modify the CLOCK algorithm to record per-
sistencies. The most challenging issue is to increment the
persistency by one for any item that appears more than once
in one period. Our idea is to leverage the spirit of the well
known CLOCK algorithm [27]–[29]. We propose two modified
CLOCK algorithms: a basic version (see Section III-B) with
overestimation error and an optimized version (see Section
III-C) eliminating overestimation error.
Key Contributions:
1) We abstract a problem named finding top-k significant
items, which is encountered in many applications but not
studied before. Furthermore, we propose a new algorithm,
namely LTC, to accurately find top-k significant items.
2) We claim there is no overestimation error and further derive
the theoretical bound of correct rate and error for LTC.
3) We conduct extensive experiments on 3 real datasets, and
the results show that our LTC achieves high accuracy and high
speed at the same time when using a small size of memory.

II. RELATED WORK

To the best of our knowledge, there is no prior work to
deal with finding top-k significant items. A straightforward
solution is to combine two kinds of algorithms: one for finding
frequent items and the other for finding persistent items. Here
we briefly describe the prior works of these two issues.

A. Finding Top-k Frequent Items

For finding top-k frequent items, existing algorithms can be
divided into two categories: counter-based and sketch-based.
Counter-based: Counter-based algorithms include Space-
Saving(SS) [13], Lossy Counting(LC) [15], CSS [14], etc.



These algorithms are similar to each other. Take Space-Saving
as an example, it maintains several cells, and each cell records
a pair 〈ei, fi〉, where ei is an item ID and fi is the estimated
frequency of ei. When an item arrives, it first judges whether
this item matches one of the cells. If it matches the jth cell,
SS increments fj by 1. Otherwise it finds the item whose
estimated frequency is the smallest, denoted by 〈emin, fmin〉.
Then it replaces emin by the new item ID, and increments
fmin by 1. It uses a structure named Stream-Summary to
accelerate the speed for the above operations.
Sketch-based: Sketch-based algorithms include the Count
sketch [5], the CM sketch (CM) [6], etc. They are similar
to each other. Take CM as an example, it uses multiple equal-
sized buckets associated with different hash functions hi to
record frequencies. Each bucket is comprised of several cells.
When an item e arrives, each bucket first computes hi(e) to
map e to the cell A[i][hi(e)], then increments the value of that
cell by 1. For each item, the estimated frequency is the smallest
value of all the mapped cells. Estan and Varghese proposed
the CU sketch (CU) [7]. It improves CM by incrementing only
the minimum value(s) among the mapped cells by 1 instead
of incrementing all the values of mapped cells when an item
arrives. To report top-k frequent items, it needs to maintain a
min-heap to record and update top-k frequent items.

B. Finding Top-k Persistent Items

For finding top-k persistent items, there are several existing
algorithms, such as coordinated 1-sampling [17], PIE [16] and
its variant [30]. Because coordinated 1-sampling focuses on
improving the performance of distributed data streams, we
do not introduce it in detail. The state-of-the-art algorithm
is PIE. The key idea of PIE is to use Raptor codes [31] to
record and identify item IDs, and to find the persistent items.
It executes each period one by one. During each period, it
maintains a data structure called Space-Time Bloom Filter and
uses Raptor codes to encode the IDs of items appeared in this
period. Finally, it gathers all Space-Time Bloom Filters and
decodes each item by the recorded raptor codes.

Besides, we can modify sketch-based algorithms to be
adapted to finding top-k persistent items. The thorniest prob-
lem is that some items might appear more than once in one
period, which means we cannot update the persistency directly.
To deal with this problem, we maintain a standard Bloom
filter(BF) [1], [32] to record whether it has appeared in the
current period. We also need to maintain a min-heap to assist
in finding top-k persistent items.

III. THE LTC ALGORITHM

In this section, we first describe the data structure and
operations of LTC in detail. The key idea of LTC is to only
keep track of the items with high potential to be significant.
Second, we propose two novel optimizations: 1) Deviation
Eliminator and 2) Long-tail Replacement.
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Fig. 1: The data structure of LTC.

A. Data Structure
As shown in Figure 1, the data structure of our LTC

is a lossy table comprised of w buckets. Each bucket is
comprised of d cells. Each cell is used to store the 3-
tuples: 〈key, frequency, persistency〉. The key field stores
item ID; The frequency field stores the estimated number of
appearances of the item; The persistency field consists of two
parts: a counter to store the estimated persistency and a flag
bit to indicate whether it has appeared in the current period.
Let A[i][j] be the jth cell of the ith bucket in the lossy table,
and let A[i][j].ID, A[i][j].f , A[i][j].f lag and A[i][j].counter
be the ID field, frequency field, flag and counter in the cell
A[i][j], respectively. Let α ∗ A[i][j].f + β ∗ A[i][j].counter
be the significance of A[i][j], where α and β are parameters
defined by users. Among all the cells in one bucket, we call the
cell with the smallest significance the smallest cell.
B. Operations

We call a cell empty if and only if the ID field is NULL
and the significance of this cell equals 0. We initiate LTC by
setting all the cells in the lossy table to empty and all the flags
to false.

1) Insertion:
For each incoming item e at time t, LTC first computes the

hash function h(e) to map e to the bucket A[h(e)]. According
to the cells of A[h(e)], there are 3 cases as follows:

Case 1: e is found in a cell of A[h(e)], denoted by
A[h(e)][j]. In this case, LTC sets A[h(e)][j].f lag to true, and
increments A[h(e)][j].f by 1. It means that e has appeared in
the current time period, and its total frequency is increased.
The persistency will be incremented in the next period, which
will be detailed later.

Case 2: e is not found in any cell of A[h(e)], but there
is an empty cell A[h(e)][j]. In this case, LTC inserts e into
A[h(e)][j]. Note that in this basic version, inserting e into
A[h(e)][j] is to set A[h(e)][j].ID to e, A[h(e)][j].f to 1,
A[h(e)][j].f lag to true, and A[h(e)][j].counter to 0, which
means it appears for the first time.

Case 3: e is not found in any cell of A[h(e)], and there is
no empty cell in A[h(e)]. In this case, LTC first finds the
smallest cell in this bucket. And then it performs the
Significance Decrementing operation on this cell.
After that, if there is an empty cell, LTC inserts e into the
empty cell.

Raptor codes are the first known class of fountain codes with linear time
encoding and decoding.



Significance Decrementing: Suppose that it is performed on
a cell A[i][j]. LTC first decrements A[i][j].counter by 1, and
then decrements A[i][j].f by 1. After that, if the significance
of A[i][j] is 0, the item in A[i][j] is expelled (i.e., deleted) and
A[i][j] is made empty. However, as the frequency is always
greater than the persistency, the recorded persistency might
be negative after several Significance Decrementing operations
are performed on the cell. We can avoid such a case by keeping
0 if it is already 0.

ID, frequency, persistency

   after 
insertion

the smallest cell
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Fig. 2: An example for inserting an item.

Example: As shown in Figure 2, we set w = 3, d = 3, α =
1, β = 0, where w and d are the number of buckets and
the number of cells in each bucket, respectively. For the
persistency field in the figure, let the value of the number
denote the counter, and let the color denote the flag: blue for
true and green for false. For example, 〈e7, 5, 3〉 means item
e7 has a frequency of 5 and a persistency of 3. The color of
3 is blue means that the flag is true. When e1 arrives, LTC
first computes the hash function to map e1 to A[1]. However,
e1 is not found in A[1] but there is an empty cell A[1][2].
Therefore, e1 is inserted into A[1][2]. When e2 arrives, it is
mapped to A[2] and A[2][1].ID is equal to e2. Therefore,
LTC sets A[2][1].f lag to true (the color is changed from
green to blue in the figure), and increments A[2][1].f by 1
(from 5 to 6). When e3 arrives, it is mapped to A[3], but
e3 is not found in this bucket and there is no empty cell
in A[3]. Therefore, LTC finds the smallest cell A[3][1], and
performs Significance Decrementing operation on this cell:
LTC decrements A[3][1].counter by 1 (from 3 to 2), and
decrements A[3][1].f by 1 (from 5 to 4). After that, there
is still no empty cell, e3 is not inserted into the lossy table.
Persistency Incrementing: To accurately record the persis-
tency, we should increment the persistency only by 1 for items
that appear one or more times in one period. To achieve this,
we leverage the spirit of the well-known CLOCK algorithm
[27]–[29]. Our key idea is as follows. We use a pointer to scan
the lossy table, and check the flag. By the ending of a period,
the whole lossy table is just scanned once, and will be scanned
from the beginning again. Given a bucket with an item e, if
the corresponding flag is true, it means that item e appeared at
least once. In this case, we increment its persistency by 1, and
reset the flag to false. Otherwise, we do nothing. Our method
is essentially a lazy update strategy. Such a strategy can avoid
additional incrementing of persistency.
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Fig. 3: The CLOCK and Persistency Incrementing.

To be clearer, we use a figure to show how our technique
works. As shown in Figure 3, every cell corresponds to a
time slot in the CLOCK. The pointer p points to the current
time. At the beginning of each period, p points to the first
slot of the CLOCK, and p moves clockwise and passes slots.
In order to guarantee that p passes all cells exactly once, the
time of scanning the whole lossy table needs to be equal to
the length of each period. To achieve this, suppose a period
contains n arriving items and there are m cells/time slots in
total, suppose the arriving speed of every item is the same,
the step size is m/n. In other words, every time when each
incoming item is processed, p passes m/n time slots. In this
way, at the beginning of each new period, p will exactly move
to the starting position again, and thus p passes all cells exactly
once. After each item arrives, we use a thread to scan m/n
cells which correspond to those m/n time slots. LTC scans
each cell as follows:

Case 1: The flag of this cell is false. We do nothing.
Case 2: The flag of this cell is true. In this case, we

increment the counter by 1, and reset the flag to false.
Our method can be easily extended when the period is

defined by time. In practice, the arriving speed of items could
vary a lot. To adapt to the arriving speed, we can dynamically
adjust the scanning speed by modifying the step size of the
pointer p. Suppose our lossy table has m cells/time slots in
total and each period has t seconds. Within every period (t
seconds), the lossy table is exactly scanned one time, from the
start to the end. Given a current item arriving at xth second
and its previous item at yth second, we can just let the pointer
p pass (x− y)/t ∗m time slots. In this way, although the step
size of p for every item is different, p still passes all cells
exactly once in each period.
Example: Similar to the previous example, the color of the
persistency field indicates the value of the flag: blue for true
and green for false. As shown in Figure 3, there are wd cells
(w buckets and d cells in each bucket) in total, and the pointer
p moves clockwise and passes both cell 1 and 2. LTC uses a



thread to scan these two cells. For cell 1, the flag is false,
so nothing is changed. For cell 2, the flag is true, thus its
persistency is changed from 3 to 4, and the flag is reset to
false (the color is changed from blue to green in the figure).

2) Query:
To query an item e, LTC checks the bucket A[h(e)]. If

e matches a cell in this bucket, it reports the corresponding
significance of this item, otherwise it reports this item did not
appear. To find top-k significant items, LTC reports the largest
k significant items recorded in the lossy table.

3) Advantages:
LTC achieves that the items stored in LTC are those with

high probability to be significant. With such a design, LTC
discards most of the insignificant items and saves much
memory. On the one hand, the item with high significance
has a high probability to be significant. On the other hand,
the newly inserted item still has a chance to be significant.
Thus, when a new item arrives, we choose to hurt the most
insignificant items for all considerations. The Significance
Decrementing operation effectively achieves such a design. It
always decrements the significance of the smallest cells. When
an item arrives continuously and turns the significance of the
smallest cell to 0, it will be inserted into the lossy table. Our
experimental results show that the accuracy of this design is
much better than other related algorithms.

LTC can accurately record the persistencies of items stored
in our lossy table. The challenge is that how to increment the
persistency by one for any item that appears more than once
in a period. To address this challenge, we use the modified
CLOCK algorithm to deal with the update of persistency. As
mentioned above, each cell will be scanned exactly once in a
period. Thus, the persistency will be incremented by at most
1 in one period even if the corresponding item appeared many
times, which exactly matches the definition of persistency.

4) Limitations:
First, the period of each cell has a deviation from the real

period, and we propose an optimization namely Deviation
Eliminator, which is detailed in Section III-C.

Second, the frequency and persistency of a newly inserted
item are both initialized to 1. However, its real frequency and
persistency tend to be much larger than 1, because it may have
come many times to offset the original smallest item in the
bucket. To address this problem, we propose an optimization
namely Long-tail Replacement in Section III-D.
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Fig. 4: An example of the deviation.

C. Optimization I: Deviation Eliminator
We use Figure 4 as an example to show how the deviation

happens. Given an item arriving at time Ta and Tb, the

corresponding cell is scanned by a thread at time T ′a and T ′b.
At time Ta, the flag is set to true. At time T ′a, LTC finds the
flag is true, thus the persistency is incremented by 1, and the
flag is reset to false. At time Tb, the flag is set to true. At
time T ′b, the persistency is incremented by 1, and the flag is
reset to false. In this way, the persistency is incremented twice.
However, the real persistency is actually 1. The reason behind
is that although the persistency is incremented by at most 1 in
each period, the period of that cell has a deviation from the
real period. Therefore, the recorded persistency might not be
equal to the real persistency.

Our solution is based on this observation: using only one
flag cannot differentiate the current period and the previous
period, but the deviation is always less than one period.
Therefore, as long as we use another bit to differentiate the
current period and the previous period, the deviation can be
totally eliminated.
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Fig. 5: Deviation Eliminator.

We use an example to explain our solution. As shown in
Figure 5, we replace the flag of the persistency field with
two flags: a current flag and a previous flag. Suppose
the current period is period 3, we call the period 2 the
previous period. The current flag indicates whether the
recorded item has appeared in the current period (period 3),
and the previous flag indicates whether the recorded item
has appeared in the previous period (period 2).

The operations for the frequency field are the same as the
basic version. Here we show the operations for the persistency
field when an item e arrives. At first, e is mapped to one
bucket. Same as the basic version, there are three cases.

Case 1: e is found in a cell of A[h(e)], denoted by
A[h(e)][j]. LTC sets A[h(e)][j].current to true.

Case 2: e is not found in any cell of A[h(e)], but there is
an empty cell A[h(e)][j]. Then e is inserted into the bucket,
and LTC sets A[h(e)][j].current to true.

Case 3: e is not found and there is no empty cell in A[h(e)].
The strategy is the same as that of the basic version.

The Persistency Incrementing operation is determined by
the value of the previous flag. Specifically, suppose the
pointer p scans z cells after an item arrives. We use a thread to
scan these z cells, and check their previous flags: for each
flag, if it is true, the corresponding persistency is incremented
by 1 and the previous flag is reset to false; otherwise,
nothing is changed. The Significance Decrementing operation
is the same as that of the basic version.
Flag refreshment: At the end of each period, we immediately
scan all cells: for each cell, we first move the value of the



current flag to the previous flag and then reset the
current flag to false.

In this way, we achieve that the recorded information exactly
corresponds to a real period, and thus eliminate the deviation.
Refreshment elimination: Fortunately, the above flag refresh-
ment operation can be eliminated by using the following
method. We split all the periods into two parts: odd-numbered
periods and even-numbered periods, and replace the current
and previous flags with two new flags: an even flag and an
odd flag. If the current period is an even-numbered period,
the even flag denotes the current flag, and the odd flag
denotes the previous flag, or vice versa. After each period
ends, the current flag is either changed from even to odd or
from odd to even. In this way, the above flag refreshment
operation is finished automatically.

D. Optimization II: Long-tail Replacement
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(a) Three arbitrary buckets.
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(b) Three datasets.

Fig. 6: Frequency distribution.

The key novelty of this paper is Long-tail Replacement, as
it significantly improves the accuracy of our algorithm. Next,
we show the details of this optimization.
Assumption: In practice, the real datasets often follow the
long-tail distribution. Furthermore, we assume that the fre-
quencies of items that fall into the same bucket still follow
the long-tail distribution.

This Assumption is consistent with the following experi-
ments. We set the number of buckets to 800 and use different
datasets (detailed in Section V-B) to verify our assumption.
Figure 6(a) plots the frequencies of top-20 frequent items
in three arbitrary buckets on Network dataset, and Figure
6(b) plots the frequencies of top-20 frequent items on three
datasets. From the figures above, we can clearly see that
frequencies follow the long-tail distribution no matter what
dataset or specific bucket we choose.

Based on the above assumption, we propose a novel op-
timization, namely Long-tail Replacement, to set the initial
value (frequency or persistency) of the newly inserted item.
For convenience we use value to denote persistency and
frequency, which means this optimization can be adapted
to both persistency and frequency field in the lossy table.
Specifically, we set the initial value of the newly inserted item
to the second smallest value minus 1.

Given a full bucket, when a new item e arrives, we decre-
ment the value of the smallest cell by 1. When the value
becomes 0, e will be inserted into this bucket. As mentioned in
Section III-B4, we set the initial value of e to 1 is not a good
strategy. The reason behind is that with high probability it has
arrived in many times. The ideally initial value is the original
smallest value. As mentioned above, item frequencies in real

dataset often follow the long-tail distribution, and it is similar
to persistencies. Therefore, our strategy is to set the initial
value of the new item to the second smallest value minus 1.
In this way, the inserted cell is still the smallest cell, and we
restore the value of the new item as accurately as possible. In
the worst case, an infrequent or inpersistent item is inserted
into the lossy table, the initial value might be large. However,
with high probability it will be expelled soon, since it seldom
appears later.

When the value means significance, we decrement the item
with the smallest significance: decrementing both frequency
and persistency by 1. Same as the Significance Decrementing
operation, LTC does not decrement the persistency when it is
0. When a new item is inserted into the bucket, we set the
initial value of the newly inserted item to the second smallest
frequency and the second smallest persistency.
Shortcoming: Such an optimization is based on the assump-
tion that the dataset follows the long-tail distribution. Long-
tail Replacement may not work well for other distributions,
such as the uniform distribution: every item has the similar
frequencies.

Therefore, users should check whether the distribution is
long-tail if they want to use Long-tail Replacement. The
method is as follows: users can sample the dataset, and plot
a figure to show the frequency distribution to check whether
there is a long tail in the figure. More methods can be found
in the literature [22]–[26].

IV. MATHEMATICAL PROOFS

We first claim the basic version with Deviation Eliminator
has no overestimation error on significance, and then derive the
formula of the theoretical bound of correct rate and error. Due
to space limitation, the proof of no overestimation is detailed
in the appendix of the technical report [33].

A. The Claim of no Overestimation

Theorem IV.1. For an item ei, let si and ŝi be the real
significance and estimated significance, respectively. We have

ŝi 6 si (2)

B. The Correct Rate Bound

The correct rate refers to the probability that the reported
significance is correct.

Lemma IV.1. The reported significance of an item is correct
if it satisfies the following conditions: 1) When the item
arrives for the first time, the bucket is not full, and 2) The
corresponding cell is not the smallest cell at any point of time.

Proof. When an item e arrives for the first time, if there
is an empty cell in the bucket mapped by e, the estimated
significance of e, which is α + β, is equal to the real
significance. When another item arrives later, if it is already in
the bucket, the estimated significance of e is not influenced.
Otherwise, the Significance Decrementing operation will be
performed on the smallest cell. Since e is not in the smallest



cell, the estimated significance of e is not influenced, either.
In summary, the reported significance of e is correct.

Assume that there is a stream S which has M distinct items:
e1, e2, · · · , eM . Let fi be the frequency of ei in the stream and
N be the total number of items. For convenience, we assume
that f1 > f2 > · · · > fM . According to the nature of Zipfian
dataset, we have

fi =
N

iγζ(γ)
(3)

where ζ(γ) =
∑M
i=1

1
iγ and γ is the skewness of the stream.

For an item e, let f denote the number of appearances of
e. Let ℘i denote the probability that ei is mapped to the same
bucket as e and the number of appearances of ei has ever been
larger than that of e at some time during the whole process.
If fi > f , it is obvious that ℘i = 1

w , otherwise ℘i = 1
w ∗

fi
f+1 ,

where w is the number of buckets. For convenience, we use
useful to describe that an item ei satisfies the above condition.

Let dpj,x denote the probability [34]–[36], that for the first
j frequent items, there are x useful items. We have

dpj,x = dpj−1,x ∗ (1− ℘j) + dpj−1,x−1 ∗ ℘j (4)

Let P denote the correct rate for e, since the Lemma IV.1
is a sufficient condition that the reported significance of e is
correct, we have

P >
d−2∑
k=0

dpM,k (5)

where d is the number of cells in each bucket.

Proof. For the jth item, it has the probability of ℘j to
be useful. Since there are totally two different conditions,
according to the principle of probability accumulation, we get
the probability in Equation 4.

According to the Lemma IV.1, if there are k useful items, as
long as k < d− 1, the reported significance of e is sure to be
correct. Since k ranges from 0 to d−2, we get the probability
in Equation 5.

C. The Error Bound

The definitions of symbols used below are similar to the
ones mentioned in Section IV-A and IV-B. For an arbi-
trary item ei recorded in the lossy table, if no Significance
Decrementing operation is performed on it, the estimated
significance is exactly equal to the real significance. Let Xi

be the number of times that this operation is performed on ei,
we have

ŝi = si −Xi ∗ (α+ β) (6)

where α and β are the coefficients of frequency and persis-
tency, respectively.

It is similar to the non-descending path number problem.

The operation is performed on ei if and only if the corre-
sponding cell is the smallest cell in the bucket. Let Psmall be
the probability of it, we have

Psmall =

(
i− 1

d− 1

)(
1

w

)d−1(
w − 1

w

)i−d
(7)

Let V be the number of items which could perform Signif-
icance Decrementing operation on ei. In other words, these
items need to be mapped to the same bucket as ei and less
significant than ei. The expectation of V can be derived as
follows:

E(V ) =
1

w

M∑
j=i+1

fj (8)

Then we can drive the formula for E(Xi):

E(Xi) = Psmall ∗ E(V ) (9)

According to Equation 6, we can derive that

E(ŝi) = si − Psmall ∗ E(V ) ∗ (α+ β) (10)

Given an arbitrary positive number ε, based on the Markov
inequality, we have

Pr{si − ŝi > εN} 6 E(si − ŝi)
εN

6
Psmall ∗ E(V ) ∗ (α+ β)

εN

(11)

D. Experiments for Verifying the Theoretical Formulas
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Fig. 7: Real value and theoretic bound.
As shown in Figure 7(a), we set k = 1000 and vary the

memory size from 10KB to 150KB. The theoretical correct
rate bound is always less than the real correct rate. As shown
in Figure 7(b), we set k = 1000, ε = 2−18, and vary the
memory size from 10KB to 100KB, the theoretical error bound
is always larger than the real value.

V. EXPERIMENTAL RESULTS
In this section, we conduct experiments to show the perfor-

mance of LTC and other related algorithms. For convenience,
we use finding frequent/persistent/significant items to denote
finding top-k frequent/persisntent/significant items.
A. Metrics

The assessment is made by two metrics: ARE(average rela-
tive error) and Precision. Suppose the correct top-k significant
set is φ, the reported set is ψ, consisting of e1, e2, . . . , ek,
and the reported significance is respectively ŝ1, ŝ2, . . . , ŝk.
The precision is defined as |φ∩ψ|k and the ARE is defined as
1
k ∗
∑k
i=1

|si−ŝi|
si

, where si is the real significance of ei.

We ignore the metric AAE (average absolute error), because it will be
significantly affected by the parameters (e.g. α, β).



B. Datasets
1) Social: This dataset comes from a real social network [37],
which includes users’ messages and the sending time. We
regard the username of the sender of a message as an item
ID and the sending time of a message as the timestamp [38]–
[40]. This dataset contains 1.5M messages, and we divide it
into 200 periods with a fixed time interval.
2) Network: This is a temporal network of interactions on
the stack exchange web site [41]. Each item consists of three
values u, v, t, which means user u answered user v’s question
at time t. We regard u as an item ID and t as the timestamp.
This dataset contains 10M items, and we divide it into 1000
periods with a fixed time interval.
3) CAIDA: This dataset is from CAIDA Anonymized Internet
Trace 2016 [42], consisting of IP packets. We regard the source
IP address of a packet as an item ID and the index as the
timestamp. This dataset contains 10M packets, and we divide
it into 500 periods with a fixed time interval.

We also generate synthetic datasets and conduct experiments
on them. Due to space limitation, we present results of these
experiments in the appendix of the technical report [33].
Implementation: We implement our algorithm and other
related algorithms in C++. Here we use Bob Hash [43], [44]
as our hash function. All the programs run on a server with
duel 6-core CPUs(24 threads, Intel Xeon CPU E5-2620 @2
GHz) and 62GB total system memory. The source codes of
LTC and other related algorithms are available on Github [33].

C. Experiment Setup
To achieve a head-to-head comparison, we use the same

memory for every algorithm compared in this section. For the
PIE algorithm, since it needs to maintain a Space Time Bloom
Filter for each period, it cannot decode any item when the
memory is tight. Thus, we use T times of the default memory
size for PIE, where T is the number of periods, to make its
performance comparable. For SS, CSS, LC, PIE and LTC, the
number of cells is determined by the memory size. For sketch-
based algorithms, we set the number of arrays to 3. When they
are used to find frequent items, the size of the heap is k, and
we allocate the rest memory to the sketch. When they are
used to find persistent items, we need to maintain a standard
BF to record whether an item has appeared in the current
period, and therefore we allocate half of the memory to the
standard BF and the rest memory to the sketch+heap. When
they are used to find significant items, for each algorithm we
maintain two sketches: one for finding frequent items, and
the other for finding persistent items, and we allocate the
whole memory to them evenly. For LTC, we have conducted
experiments to compare the performance of different d. Due to
space limitation, we present the results in the appendix of the
technical report [33]. According to the results, we set d = 8
by default in the following experiments. For every experiment,
we query top-k items once at the end.

D. Effects of Long-tail Replacement
In this set of experiments, we compare the optimized version

(with Long-tail Replacement) with the basic version. The
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Fig. 8: LTC with Long-tail Replacement vs. the basic version.

dataset we use is the Network dataset. As shown in Figure
8(a) and Figure 8(b), LTC Y means the optimized version,
and LTC N means the basic version.

For the first experiment (Figure 8(a)), we set α = 1, β =
1, k = 1000, and vary the memory size from 50KB to 300KB.
For the second experiment (Figure 8(b)), we set the memory
size to 50KB, k = 1000, and vary the parameters. The results
show that the precision of LTC Y is always larger than that of
LTC N. We use this optimization by default in the following
experiments.

E. Effects of Deviation Eliminator
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Fig. 11: LTC with Deviation
Eliminator vs. the basic version.

In this set of experi-
ments, we compare the op-
timized version (with Devia-
tion Eliminator) with the ba-
sic version. Here we focus
on finding persistent items,
which means α = 0, β = 1.
The dataset we use is the
Network dataset. As shown

in Figure 11, LTC Y means the optimized version, and LTC N
means the basic version. We set k = 1000 and vary the
memory size from 10KB to 50KB. The results show that the
precision of LTC Y is slightly larger than that of LTC N. We
use this optimization by default in the following experiments.

F. Comparisons on Finding Frequent Items

In this set of experiments, we set α = 1, β = 0, which
means the significance of an item is only related to its
frequency. We compare the performance of LTC with SS, CSS,
LC, CM and CU.
1) Precision vs. memory size (Figure 9(a)-(c)). LTC has the
highest precision among all data structures no matter how the
memory size changes. In this experiment, we set k = 100, and
vary the memory size from 5KB to 50KB. As shown in Figure
9(a), for the CAIDA dataset, when the memory size is 10KB,
the precision of LC, SS, CSS, CM and CU is respectively
18%, 6%, 21%, 38% and 52%, while the one of LTC reaches
99%. As the memory size increases, the precision of LTC is
always 100%, while the precision of LC, SS, CSS, CM and
CU is respectively 63%, 38%, 67%, 98% and 99% at most.
As shown in Figure 9(b), for the Network dataset, when the
memory size is 10KB, the precision of LC, SS, CSS, CM and
CU is respectively 5%, 2%, 6%, 31% and 41%, while the one
of LTC reaches 88%. As shown in Figure 9(c), for the Social
dataset, when the memory size is 10KB, the precision for LC,
SS, CSS, CM, CU and LTC is respectively 62%, 58%, 86%,
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Fig. 9: Measuring precision on finding frequent items.
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Fig. 10: Measuring ARE on finding frequent items.

84%, 87% and 98%. All these experiments show that LTC has
much better precision than the other algorithms.
2) ARE vs. memory size (Figure 10(a)-(c)). LTC has the
lowest ARE among all data structures no matter how the
memory size changes. The configuration of this experiment
is the same as the previous experiment. As shown in Figure
10(a), for the CAIDA dataset, the ARE of LTC is respectively
between 1512 and 260869 times, 26657 and 1748590 times,
1199 and 220837 times, 155 and 940484 times, 105 and
872303 times smaller than LC, SS, CSS, CM and CU. As
shown in Figure 10(b), for the Network dataset, the ARE of
LTC is respectively between 202 and 17960 times, 11243 and
48184 times, 183 and 12075 times, 18 and 32087 times, 1.01
and 27620 times smaller than LC, SS, CSS, CM and CU.
As shown in Figure 10(c), for the Social dataset, the ARE of
LTC is respectively between 141 and 805 times, 90 and 1465
times, 20 and 26 times, 16 and 17879 times, 11 and 17765
times smaller than LC, SS, CSS, CM and CU.
3) Precision vs. k (Figure 9(d)). LTC has the highest precision
among all data structures no matter how the standard of ‘top’
changes. In this experiment, we set the memory size to 100KB,
and vary k from 100 to 1000. Due to space limitation, we just
show the results on Network dataset. As shown in Figure 9(d),
as k increases, the precision of LC, SS, CSS, CM and CU is
respectively changed from 78% to 36%, 53% to 19%, 79% to
36%, 97% to 65% and 99% to 88%, while the one of LTC is
always larger than 95%.
4) ARE vs. k (Figure 10(d). LTC has the lowest ARE
among all data structures no matter how the standard of ‘top’
changes. The configuration of this experiment is the same as
the previous experiment. As shown in Figure 10(d), for the
Network dataset, the ARE of LTC is respectively between 448
and 3565 times, 17869 and 41172 times, 398 and 3459 times,
2677 and 23786 times, 132 and 3575 times smaller than LC,
SS, CSS, CM and CU.
Analysis. Sketch-based algorithms need to record frequencies
of all items, which is space-consuming, leading to poor
accuracy. As for Space-Saving, when the data structure is

full of items, since most items are infrequent, the strategy of
increment would lead to huge overestimation error. In contrast,
we propose Long-tail Replacement strategy: every infrequent
item only decrements (rather than replace) the current smallest
item by 1, and replacement only happens when the frequency
of the smallest item is decremented to 0. The frequency of
the new item can be accurately restored thanks to the long-tail
distribution. Therefore, LTC achieves much better performance
than other related algorithms, and the above experimental
results fully verify this conclusion.

G. Comparisons on Finding Persistent Items

In this set of experiments, we set α = 0, β = 1, which
means the significance of an item is only related to its
persistency. We compare the performance of LTC with PIE,
CM and CU. Note we use T times of the default memory size
for PIE, where T is the number of periods. In other words,
when other algorithms use hKB, PIE will use 200*hKB,
1000*hKB, and 500*hKB on Social dataset, Network dataset,
and CAIDA dataset respectively.
1) Precision vs. memory size (Figure 12(a)-(c)). LTC has the
highest precision for all memory settings. In this experiment,
we set k = 100, and vary the memory size from 25KB to
300KB for LTC, CM and CU. As shown in Figure 12(a), for
the CAIDA dataset, the precision of CM, CU, PIE, and LTC
is respectively changed from 6% to 80%, 2% to 95%, 66%
to 94%, and 70% to 100%. As shown in Figure 12(b), for
the Network dataset, the precision of CM, CU, PIE and LTC
is respectively changed from 4% to 86%, 2% to 99%, 64%
to 99%, and 75% to 99%. As shown in Figure 12(c), for the
Social dataset, all the algorithms have a high precision. The
reason for the perfect performance of PIE is that the memory
size is T times that of the other three algorithms.
2) ARE vs. memory size (Figure 13(a)-(c)). LTC has the
lowest ARE for all memory settings. The configuration of this
experiment is the same as the previous experiment. As shown
in Figure 13(a), for the CAIDA dataset, the ARE of LTC is
respectively between 3020 and 370384 times, 145 and 301294
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Fig. 12: Measuring precision on finding persistent items.
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Fig. 13: Measuring ARE on finding persistent items.

times, 23 and 184 times smaller than CM, CU and PIE. As
shown in Figure 13(b), for the Network dataset, the ARE of
LTC is respectively between 106 and 49224 times, 3 and 47230
times, 26 and 44 times smaller than CM, CU and PIE. As
shown in Figure 13(c), for the Social dataset, the ARE of
LTC is respectively between 6 and 25 times, 5 and 23 times
smaller than CM and CU, and approximately the same as PIE.
3) Precision vs. k (Figure 12(d)). LTC has the highest
precision for all k settings. In this experiment, we set the
memory size to 100KB for LTC, CM and CU, and vary k
from 100 to 1000. Due to space limitation, we just show the
results on Network dataset. As shown in Figure 12(d), when
k = 100, the precision of CM, CU and PIE is respectively
60%, 93% and 91.5%, while the one of LTC reaches 99%.
Furthermore, as k increases, the precision of LTC is always
larger than 95%.
4) ARE vs. k (Figure 13(d)). LTC has the lowest ARE for all
k settings. The configuration of this experiment is the same as
the previous experiment. As shown in Figure 13(d), the ARE
of LTC is respectively between 52942 and 108 times, 32 and
108 times, 7 and 50 times smaller than CM, CU and PIE.
Varying the number of periods. We also conduct experiments
of varying the number of periods. Due to space limitation, we
present the results in the appendix of the technical report [33].
The results show that LTC has the highest precision and lowest
ARE for all settings of the number of periods.
Analysis. Sketch-based algorithms still have their shortcom-
ings. They need to record persistencies of all items and allocate
about half of the size of memory to record whether an item
appears in the current period. As for PIE, it needs to maintain
a data structure for every period to record persistencies of all
items, which also fails to achieve high memory efficiency. In
contrast, LTC leverages the spirit of the well known CLOCK
[27], [28] algorithm to increment the persistentcy by one for
any item that appears once or more than once in one period.
Since we just use two flags (two bits) for every cell, it saves
memory efficiently.

H. Comparisons on Finding Significant Items
There is no prior work on finding significant items, thus we

combine the best algorithm on finding frequent items with the

best algorithm on finding persistent items to find significant
items. Notice that sketch-based algorithms are the best algo-
rithms except LTC on both finding frequent items and finding
persistent items, therefore we modify them to find significant
items. To make the experiments more comprehensive, we set
three pairs of parameters: 1) α = 1, β = 10, 2) α = 1, β = 1
and 3) α = 10, β = 1. For convenience, we use LTC 1:10,
LTC 1:1, and LTC 10:1 to denote the performance of LTC
on the corresponding parameters, where the first value is α
and the second value is β. The denotations of CM and CU
on corresponding parameters are similar. We observe that the
performance of CU is much better than that of CM. Therefore,
below we just illustrate the details about LTC and CU.
1) Precision vs. memory size (Figure 14(b)-(d)). The pre-
cision of LTC is higher than that of CM and CU. In this
experiment, we set k = 100, and vary the memory size from
25KB to 300KB. As shown in Figure 14(b), for the CAIDA
dataset, when the memory size is 50KB, the precision of LTC
reaches 99% no matter on which pair of parameters. And the
precision of CU is respectively 68%, 41%, and 71% on each
pair of parameters. As shown in Figure 14(c), for the Network
dataset, when the memory size is 25KB, the precision of LTC
reaches 70% no matter on which pair of parameters, while
the one of CU is respectively 27%, 12%, and 28% on each
pair of parameters. As shown in Figure 14(d), for the Social
dataset, when the memory size is 25KB, the precision of CU is
respectively 82%, 78%, and 73% on each pair of parameters,
while the one of LTC is always larger than 90% no matter on
each pair of parameters.
2) ARE vs. memory size (Figure 15(b)-(d)). The ARE of LTC
is lower than that of CM and CU. The configuration of this
experiment is the same as the previous experiment. As shown
in Figure 15(b), for the CAIDA dataset, the ARE of LTC is
respectively between 1683 and 128520 times, 850 and 37120
times, 1650 and 1920182 times smaller than CU on each pair
of parameters. As shown in Figure 15(c), for the Network
dataset, the ARE of LTC is respectively between 15 and 53928
times, 1958 and 1952018 times, 32 and 29185 times smaller
than CU on each pair of parameters. As shown in Figure 15(d),
for the Social dataset, the ARE of LTC is respectively between
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(c) Varying memory size (Network).
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Fig. 14: Measuring precision on finding significant items.
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(c) Varying memory size (Network).
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Fig. 15: Measuring ARE on finding significant items.

1.01 and 857 times, 192 and 3219 times, 15 and 7293 times
smaller than CU on each pair of parameters.
3) Precision vs. k (Figure 14(a)). The precision of LTC is
higher than that of CM and CU. In this experiment, we set
the memory size to 100KB, and vary k from 100 to 1000.
Due to space limitation, we just show the results on Network
dataset. As shown in Figure 14(a), as k increases, the precision
of CU is respectively changed from 93% to 23%, 53% to 17%,
and 94% to 21% on each pair of parameters, while the one of
LTC is always larger than 94% on any k or pair of parameters.
4) ARE vs. k (Figure 15(a)). The ARE of LTC is lower than
that of CM and CU. The configuration of this experiment is the
same as the previous experiment. As shown in Figure 15(a),
the ARE of LTC is respectively between 128592 and 108

times, 182059 and 108 times, 92730 and 108 times smaller
than CU on each pair of parameters.
Varying the number of periods. We also conduct experiments
of varying the number of periods. Due to space limitation, we
present the results in the appendix of the technical report [33].
The results show that the precision of LTC is higher than that
of CM and CU, and the ARE of LTC is lower than that of CM
and CU.
Analysis. Sketch-based algorithms need to record frequencies
and persistencies of all items, while LTC only records signif-
icant items. Therefore, our LTC is much more memory effi-
cient. When we combine these two metrics into significance,
the gap of performance becomes larger.

I. Experiments on Throughput

We also conduct experiments of measuring throughput. Due
to space limitation, we present the results in the appendix of
the technical report [33]. The results show that the throughput
of LTC is much higher than that of other algorithms.

VI. OTHER APPLICATIONS

A. Application1

In practice, users may tend to use such a definition of sig-
nificance: the items with frequency at least x and persistency
at least y. Fortunately, our LTC can also work well. We can
simply use two LTCs, one for finding items with frequency at
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Fig. 16: Comparisons between LTC and sketch-based algorithms.

least x by setting β to 0; and the other for finding items with
persistency at least y by setting α to 0.

We also conduct experiments to compare LTC with CM
and CU. Suppose that the correct significant set is φ, and the
reported set is ψ. Let P = |φ∩ψ|

|φ| and Q = |φ∩ψ|
|ψ| . The f1 score

is defined as 2∗P∗Q
P+Q . For the first experiment (Figure 16(a)), the

dataset we use is the Network dataset. We set x = 1000, y =
300, and vary the memory size from 25KB to 300KB. The
results show that the f1 score of LTC is much higher than
that of CM and CU. For the second experiment (Figure 16(b)),
we set the memory size to 100KB, x = 1000, y = 300. The
results show that the throughput of LTC is also much higher
than that of CM and CU.

B. Application2
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Fig. 17: Real-time queries.

We can apply LTC to
real-time queries. For every
query, we report the top-k
significant items recorded in
the lossy table. In this exper-
iment, we set k = 1000 and
the memory size to 100KB.
The dataset we use is the

Network dataset. For every 106 items, we query top-k sig-
nificant items. As shown in Figure 17, the results show that
our LTC still achieves a high precision on real-time queries.

VII. CONCLUSION

In this paper, we abstract a problem named finding top-k
significant items, which is encountered in many applications
but not studied before. To accurately find top-k significant



items with small memory size, we propose a new algorithm,
namely LTC. It has two key techniques, Long-tail Replacement
and a modified CLOCK algorithm. We derive the theoretical
bound of correct rate and error for LTC. Extensive experiments
on 3 real datasets show that our LTC achieves high accuracy
and high speed with small memory. The source codes of LTC
and other related algorithms are available on Github [33].
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