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Abstract—Approximate queries offer an efficient means of
analyzing massive data streams under acceptable errors. Among
these, subset queries over multiple attributes are common in
many real-world applications. While sketches offer promising
approximate solutions for massive data streams, efficiently sup-
porting subset queries over multiple statistical attributes remains
a significant challenge. To address this, we propose Hyper-
USS, a novel sketching solution that accurately and efficiently
supports subset queries over data streams involving multiple
statistical attributes. With Joint Variance Optimization, Hyper-
USS provides unbiased estimation and optimizes estimation
variance jointly, addressing the challenge of accurately estimating
multiple statistical attributes in the sketch design. The algorithm
records the information of keys and all attributes in one sketch,
ensuring high insertion efficiency. Furthermore, its three speed-
optimized versions are introduced to handle the growing number
of statistical attributes in data streams. Experimental results
show that Hyper-USS and its three speed-optimized versions
consistently surpass state-of-the-art methods that support subset
queries in both estimation accuracy and insertion throughput.
Specifically, Hyper-USS improves accuracy by at least 38%, while
the algorithm and its three speed-optimized versions achieve
throughput improvements of up to 31.90×, 45.31×, 49.21×, and
58.03×, respectively. The code is open-sourced on GitHub1.

Index Terms—Sketch, multi-attribute data streams, subset
query, unbiased estimation

I. INTRODUCTION

A. Background and Motivation

Approximate queries for massive data streams have wide
applications in data analysis [2]–[12], especially when pro-
cessing efficiency is a high priority and a certain level of
error is acceptable. In practice, data streams often involve
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Fig. 1: A typical query use case in network measurement.

multiple attributes, and users may simultaneously estimate
several attributes of interest to support decision-making and
system monitoring [13], [14]. That is, each item in streams
can be denoted as (e, v1, v2, · · · , vn), where e is the key and
v1, v2, · · · , vn are the statistical attributes used for aggregation
analysis. Users can filter data by setting value or range con-
straints on predicate combinations [5]–[7], and then aggregate
statistical attributes to obtain query results over the subset of
items whose keys satisfy these conditions. These queries are
referred to as subset queries over multiple attributes.

Many real-world problems can be abstracted as subset
queries over multiple attributes. For example, in network
measurement [15], [16] (shown in Fig. 1), users need to
query a subset of items where the source IP falls within the
131.2.2.* subnet, the destination IP is 142.1.4.7, and
the protocol is TCP. Under such filtering conditions, users
often focus on multiple statistical attributes simultaneously,
such as total packets, total bytes, and total duration. These
can be used for subset sum as well as ratio and weighted
sum queries across attributes. When treating each data item
as a table row, let i and j denote the indices of the target
attributes, and let w represent the weights. Formulated as:

SELECT SUM (vi), SUM (vj),
SUM(vi) / SUM(vj) AS RATIO,
SUM(vi) * wi + SUM(vj) * wj AS WEIGHTED_SUM
FROM table
WHERE Key in Subset

B. Prior Art and Limitations
To answer approximate queries for massive data streams,

many approximation techniques have been developed, and
sketches are one of the most popular algorithms among them.
Sketches can be classified into two types. Most sketches [17]–
[26] are designed for point queries2, and existing works [3],

2The point query refers to querying the results of a single key.
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Fig. 2: The Joint Variance Optimization in Hyper-USS.

[4], [15] show that such algorithms are inefficient in sup-
porting subset queries. The other type of sketches [3]–[5],
[15] achieves high accuracy and high processing speed in
supporting subset queries. However, they are often designed
for data stream models with a single statistical attribute. When
extended to multiple attributes, a straightforward solution is
to build a separate sketch for each attribute to be aggre-
gated. This method wastes memory by repeatedly recording
the information of keys in all sketches, and inserting one
item requires updating all sketches. Therefore, it suffers from
limited performance in both accuracy and insertion throughput.

Furthermore, as the number of statistical attributes to be
analyzed in data streams continues to grow, the computa-
tional overhead and complexity of existing sketch algorithms
increase accordingly, limiting their practical usability. Conse-
quently, designing sketch algorithms that can support multi-
dimensional and even high-dimensional statistical attributes
while maintaining both efficiency and accuracy remains a
critical and challenging research problem.

C. Our Solution

We propose Hyper-USS, a novel sketching solution de-
signed to efficiently answer subset queries over data streams
involving multiple statistical attributes. Hyper-USS records
the information of keys and all attributes in one sketch.
And the method provides for all statistical attributes unbiased
estimation and optimized estimation variance, which is well
acknowledged as the golden principle for accurate subset
query [3], [4]. Therefore, Hyper-USS achieves high accuracy
and high insertion throughput for the subset query over mul-
tiple statistical attributes.

The challenge in sketch design lies in providing unbiased es-
timation while optimizing variance for all statistical attributes.
To address the problem, we propose our key technique,
namely, Joint Variance Optimization. In order to achieve high
accuracy for all statistical attributes, we set the optimization
goal as minimizing the sum of the estimation variance of
all statistical attributes. As a result, optimizing the sum of
variances will jointly improve the accuracy of all statistical
attributes. Specifically, we generalize the idea of probability
proportional to size sampling to scenarios involving multiple
statistical attributes (see Fig. 2). When two items compete for a
bucket, each item has a probability of winning the competition.
The winning probability of two items is proportional to the
L2 norm of the attributes. If one item successfully stays in the
bucket, all its attributes are divided by its winning probability.

This vector-based evaluation mechanism enhances query accu-
racy while ensuring the unbiasedness of the estimated values.
We present a theoretical analysis of Hyper-USS, showing that
it provides unbiased estimation, minimizes the total variance
across all statistical attributes, and offers a formal error bound.

To address the growing number of attributes in data streams,
we design three speed-optimized versions of Hyper-USS to
further improve insertion efficiency. Each version targets a
specific performance bottleneck: (1) the high computational
overhead of L2 norm calculation, (2) the inefficiency of item
positioning due to multiple hash computations, and (3) the
insufficient use of the inherent parallelism of the algorithm.
First, the Precomputed L2-Norm Optimization introduces a
1-bit memory overhead to distinguish between frequent and
infrequent items. The L2 norm is precomputed only for
infrequent items, which reduces the number of computations.
Second, the Hash Simplification Structure Optimization uses a
single hash function for item positioning, eliminating the speed
bottleneck caused by multiple hash computations. Finally,
the SIMD Parallel Acceleration Optimization fully utilizes
the support for contiguous memory access provided by the
algorithm and employs SIMD techniques [27] to achieve
parallel acceleration. Experimental results show that Hyper-
USS and its speed-optimized versions consistently outperform
SOTA methods in both accuracy and throughput.

In addition, our approach extends support for subset queries
by enabling arbitrary combinations of predicates as filtering
conditions, where individual conditions can be specified using
exact values, wildcards, or ranges. All related codes of Hyper-
USS are provided open-source and available at GitHub [28].

Our main contribution can be summarized as follows.
1 We propose Hyper-USS, which supports subset queries
over data streams with multiple statistical attributes effi-
ciently (§ III).
2 We provide formal theoretical proofs, including unbiased-
ness, variance minimization, and the error bound (§ IV).
3 To further improve insertion efficiency while maintaining
accuracy, we propose three speed-optimized versions (§ V).
4 Extensive experiments validate the efficiency and accuracy
of Hyper-USS. Compared to SOTA sketches for subset queries
involving multiple statistical attributes, it achieves a 31.90×
speedup in insertion, reduces estimation error by at least 38%,
and, with three speed-optimized versions, boosts throughput
by up to 45.31×, 49.21×, and 58.03×, respectively (§ VI).

II. RELATED WORK

A. Sketching Algorithms
Although the traditional hashing technique could provide

exact statistics, its memory usage grows rapidly with data
scale. In contrast, sketching algorithms [17]–[26], [29]–[35]
are compact data structures designed to answer approximate
queries using limited memory. They offer high throughput
and provable error bounds, making them well-suited for large-
scale data stream processing. Most existing sketches typically
support only point queries and focus on a single statistical
attribute. Although recent works have made progress in subset
queries, they still face limitations when dealing with subset
queries involving multiple statistical attributes.
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Fig. 3: The limitations of SOTA sketches (CocoSketch/USS)
on subset query over multiple statistical attributes.

Sketches for Point Query. In data stream processing, a point
query refers to retrieving the result associated with a single
key. The research community has defined a lot of fundamental
tasks and designed corresponding sketches in data stream
processing, such as heavy hitter detection [19], [29]–[31],
pattern mining [32], [33], and more [23], [34], [35]. Most
tasks are defined over the data stream model involving a single
statistical attribute, and the corresponding sketches should only
support point queries. For example, in heavy hitter detection
of single keys, users are only interested in those single keys
with a large aggregated sum of value. As pointed out by prior
work [3], [4], sketches for point query suffer from inaccuracy
and low throughput when applied to subset query, since these
sketches support subset query by building one sketch for each
queried subset. As a result, the memory of one specific sketch
is reduced, causing a drop in accuracy, while the insertion
of one item requires updating multiple sketches and limits
insertion throughput.
Sketches for Subset Query. Recently, researchers have noticed
an increased demand for subset queries. Unbiased SpaceSav-
ing (USS) [3] and CocoSketch [4] are the two representative
sketch solutions. The key design of both is similar. An
incoming item will choose a bucket and compete with the
recorded item in the bucket to decide which item stays in the
bucket. The settings of winning probability in both algorithms
follow the idea of probability proportional to size sampling
[36]. Suppose the incoming item (A, VA) competes with the
recorded item (B, VB). With probability VA

VA+VB
, the incoming

item wins and the bucket is updated to (A, VA + VB). With
probability VB

VA+VB
, the recorded item wins and the bucket is

updated to (B, VA+VB). The probabilistic substitution ensures
that one bucket provides unbiased estimation and minimized
variance for two items. To locate the bucket for the incom-
ing item, USS selects the bucket with the minimum value
among all buckets, while CocoSketch selects the bucket with
the minimum value among the hashed buckets. CocoSketch
improves USS throughput while maintaining high accuracy,
and is regarded as the SOTA sketch solution for subset query.

However, directly applying CocoSketch for the subset query
over multiple statistical attributes may suffer from inefficiency
in terms of both memory and throughput. To support multiple
attributes, we have to build one CocoSketch for each attribute.
From the aspect of accuracy, as CocoSketch records keys in
the bucket, multiple CocoSketches will keep multiple copies
of keys, which drags down memory efficiency. From the
aspect of throughput, each insertion should update multiple
CocoSketches, leading to low throughput. Fig. 3 shows an

example of ad click analysis with two attributes: the number of
views and the number of clicks. Building one sketch for each
attribute requires updating two sketches for each incoming
item, causing a halving of throughput. Moreover, both sketches
record the ID of ads, and the duplicated ID records lead to
inefficient memory usage.

B. Multi-Attribute Model

The multi-attribute model naturally arises in many real-
world scenarios and has thus been extensively studied [37]–
[40]. Related research spans various domains, including
multi-attribute databases [41], [42], business application sys-
tems [43], and other areas [44], [45].

A data stream can be modeled as multi-attribute, meaning
that each incoming item contains several different attributes. In
the study of multi-attribute data stream models, Hydra [7] by
Manousis et al. and OmniSketch [5], [6] by Punter et al. are
two of the most representative works. Hydra addresses multi-
dimensional data stream processing under different predicate
combinations and emphasizes some statistical metrics, such as
α-heavy hitters, entropy, and cardinality. And all these metrics
target a statistical attribute, which is the frequency of keys.
Meanwhile, OmniSketch, the successor to Hydra, represents
the SOTA in this area and provides an effective solution
for analyzing multi-dimensional data streams under arbitrary
predicates. It supports filtering over arbitrary combinations
of attributes, with conditions specified as ranges rather than
limited to exact values or wildcards. It currently only supports
queries involving a single statistical attribute: the count of
records that satisfy the filtering conditions.

However, in approximate query research, the “multi-
attribute” nature of data streams when processing is reflected
not only in multi-attribute filtering predicates, but also in
aggregated results containing multiple statistical attributes (as
shown in Fig. 1). Neither of the above solutions considers
queries involving multiple statistical attributes, which repre-
sents a key focus of this paper on multi-attribute data stream
models.

III. THE HYPER-USS
This section begins with a formal definition of the subset

query problem over multi-attribute data streams, followed by
a detailed description of our algorithmic design to answer the
problem. Symbols frequently used are listed in Table I.

TABLE I: Symbols frequently used in this paper.
Notation Meaning

e A distinct item in the data stream.
h(.) Hash function.

d
The number of candidate positions when performing
item competition and replacement.

w The number of hash buckets for each hash function.
ID The key value of the item.
vi The ith statistical attribute of the item.
n The number of item statistical attributes.

(e, V )
The item e with attribute V . Among them, V =
⟨v1, . . . , vn⟩.

Bi[j] The jth bucket in the ith array.
Ci(B[j]) The ith cell in the jth bucket.
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A. Problem Definition

We formally define the subset query problem over multi-
attribute data streams, as it presents the key question we aim
to answer and constitutes the main focus of this paper. The
problem is broadly applicable, as many real-world problems
can be abstracted as instances of this query model.

Problem 1. Suppose the item in multi-attribute data streams
can be denoted as (e, v1, v2, · · · , vn), where e is the key and
v1, v2, · · · , vn are the statistical attributes. Given a target
attribute vi, a subset of keys Sk and an operator f , we apply
the operator on the attribute vi for any key k ∈ Sk. The prob-
lem is to design a sketching solution that supports accurate
and efficient estimation of subset queries over massive data
streams, where each item carries multiple statistical attributes,
under limited memory.

To answer this problem, we introduce the Hyper-USS and
describe how it supports three classic query operators: sum,
ratio, and weighted sum, each involving multiple attributes.
• For f=[sum] on ith attribute over subset Sk,∑

(e,v1,··· ,vn),e∈Sk

vi

• For f=[ratio] on the ith and jth attributes over subset Sk,∑
(e,v1,...vn),e∈Sk

vi∑
(e,v1,...vn),e∈Sk

vj

• For f=[weighted sum] on the ith and jth attributes over
subset Sk, with corresponding weights wi and wj ,

wi ∗
∑

(e,v1,...,vn),e∈Sk

vi + wj ∗
∑

(e,v1,...vn),e∈Sk

vj

B. Basic Design

Hyper-USS Structure & Example
h1

B1[∙]

e, V

...

...
Bi[∙]

Bd[∙]

B1[h1(e)]

Bi[hi(e)]

Bd[hd(e)]

hi

hd

d bucket 
arrays

w hash buckets

B[h(e)]

�� �

v1 v2 vn...

Fig. 4: Data structure & Example of Hyper-USS.

(1) Data Structure (Fig. 4). The hash table serves merely
as a basic implementation structure. Its structure consists of
d bucket arrays, each consisting of w buckets. Each bucket
records a key and n statistical attributes. The attributes are
represented as a vector V = ⟨v1, v2, · · · , vn⟩. Let Bi[j](1 ⩽
i ⩽ d, 0 ⩽ j ⩽ w − 1) be the jth bucket in the ith array. Let
Bi[j].ID be the recorded key in the bucket, and Bi[j].V [t](1 ⩽
t ⩽ n) be the tth recorded attribute. Each bucket array is
associated with one hash function, respectively, and we denote
the corresponding hash function for the ith array as hi(·).

e1,<4,6>

h1(e1) h2(e1)

e1,<1,2> e4,<7,5>

e1,<5,8>

Insert Example 1

update

h1(e3) h2(e3)

e9,<5,12> e7,<6,8>

Insert Example 3

e7,<9,12> e3,<9,12>

update

e2,<1,9>

h1(e2) h2(e2)

e6,<3,2> empty

Insert Example 2

insert

e2,<1,9>

e3,<3,4>

keep 
unchanged

keep 
unchanged

1-P=2/3 P=1/3

keep 
unchanged

Fig. 5: Insertion examples for Hyper-USS (n = 2, d = 2).

(2) Insertion. Insertion strategy is the core of Hyper-USS. To
insert the item (e, V ), we first use d hash functions to hash
the key e to d buckets (Bi[hi(e)], 1 ⩽ i ⩽ d) in d arrays. In
matching the key of the incoming item with existing keys in
the buckets, there are three possible cases:
Case 1: e is recorded in Bk[hk(e)], one of the d buckets. In
this case, we add the attributes v1, · · · , vn to the bucket. To
estimate the frequency of an item, which can be treated as a
statistical attribute, we introduce a virtual attribute vn+1. For
each item, we simply set vn+1 = 1. For each dimension t, the
tth attribute Bk[hk(e)].V [t] is increased by vt.
Case 2: e is not recorded in any one of the d buckets, and
at least one bucket is still empty. In such a case, we select the
first empty bucket to record the incoming item.
Case 3: e is not recorded in any of the d buckets, and
all buckets are occupied. We look for the bucket with the
smallest L2 norm of values. The incoming item e and the
item in the bucket are treated as competing, and we apply
the Joint Variance Optimization technique (Fig. 2). Winning
probabilities are set according to the probability proportional
to size sampling principle [36], where items with greater
statistical importance are more likely to be retained. Suppose
the hashed bucket in the kth array has the smallest L2 norm,
we set the winning probability of the incoming item P as
follows:

P =

√∑
t v

2
t√∑

t v
2
t +

√∑
t Bk[hk(e)].V [t]2

(1)

With probability of P , the recorded item in Bk[hk(e)] is
replaced by (e, V ), and then each attribute is divided by P .
Otherwise, the item in the bucket wins the competition, and
each recorded attribute is divided by 1− P .
1 Insertion Examples (Fig. 5): As shown in the first example,
we aim to insert the item (e1, 4, 6), and we use two associated



5

hash function to locate two buckets, respectively. The bucket
in the first array matches the key, so the recorded attributes
are updated. The hashed bucket in the second array is not
changed. In the second example, we insert the item (e2, 1, 9).
Neither of the two hashed buckets match e2, and there exists
an empty bucket, so the item is inserted to the empty bucket.
In the third example, we insert the item (e3, 3, 4). Neither
of the two hashed buckets match e3, and the L2 norm of the
second bucket is smaller, so we update the second bucket. The
replacement probability P is set to

√
32 + 42/(

√
32 + 42 +√

62 + 82) = 1/3. With probability 1/3, the key is replaced
by e3, and each attribute is divided by 1/3. Otherwise, the key
is unchanged, and all attributes are divided by 2/3.

TABLE II: Complexity analysis of Hyper-USS for (e, V ).
Operation Time Complexity Space Complexity
Insertion O(dn) O(dwn)

Query O(d) O(d)

2 Analysis on Computational Cost for Insertion: We ana-
lyze the time and space complexity (shown in Table II).
Time Complexity Analysis. 1. Hashing: The e is hashed into d
positions using d independent hash functions. The time com-
plexity of hashing is O(d). 2. Key Matching: The algorithm
searches the d hashed buckets to check if the key of e already
exists. The time complexity of this operation is also O(d). 3.
Handling Different Cases: If the key is found in one of the
buckets, the attributes are updated in O(n) time (Case 1). If
an empty bucket is available, the new item and its attributes
are inserted in O(n) time (Case 2). If d buckets are occupied,
the L2 norm of each bucket must be computed, taking O(dn)
time (Case 3). The probability calculation for replacement is
performed in O(n), and attribute updates take O(n) time.

Given that Case 3 incurs the highest computational cost, the
worst-case time complexity per insertion is O(dn).
Space Complexity Analysis. The space complexity is deter-
mined by the data structure, which consists of d bucket arrays,
each containing w buckets. Each bucket stores a key and
n attributes: The total number of buckets is d × w. Each
bucket stores one key and n attributes, contributing to a space
complexity of O(d ·w · (1+n)), which simplifies to O(dwn).
Notably, the number of hash functions d is typically small, and
w is determined by the memory size allocated before algorithm
execution. The number of item attributes n significantly im-
pacts performance, so our optimization versions (§ V) extend
the approach to handle larger n.
3 Dealing with Imbalanced Attributes: The winning proba-
bility depends on the L2 norm of n equal-weighted attributes,
and all attributes contribute equally. However, in real scenar-
ios, the values of different attributes may have different orders
of magnitude. Such attributes with large values will dominate
the L2 norm, thus dominating the update process and hurting
the sketch performance on other attributes.

To deal with imbalanced attributes, we introduce the tech-
nique named Fair Evolution. The key design is to normalize
n attributes before calculating the L2 norm for the winning
probability. During the insertion, we compute the average of all
past items on all n attributes, Ai, 1 ⩽ i ⩽ n. The ith attribute
is divided by Ai before calculating the L2 norm. Therefore,

Subset Query Result

{e4,e8,e11} Ratio of v1 and v2 2.11

{e1,e3,e4}
Weighted Sum

 of 3*v1 and 2*v2
7416

{e1,e4,e11} Sum on v1 299

Key

e1

e3

e4

e8

Attributure v1

252

1249

47

151

Attributure v2

900

401

85

9

Query Example

Fig. 6: A query example of Hyper-USS (n = 2).

the winning probability of the incoming item is set according
to the following adjusted formula,

P =

√∑
t(vt/At)2√∑

t(vt/At)2 +
√∑

t(Bk[hk(e)].V [t]/At)2
(2)

When the attributes are imbalanced, the L2 norm in the
algorithm can be replaced with a normalized one to improve
accuracy, while the rest of the algorithm remains unchanged.
(3) Query. We extract all non-empty buckets in the resulting
sketch to query the subset sum and build a table with n + 1
columns (one key and n attributes). Then we output the query
result of the subset sum over the table.
Support for Subset Ratio: The ratio of subsets can be expressed
as the division of the sum of the two subsets. Among them, if
the subset sum serving as the denominator is zero, the query
result will return ‘ERROR’.
Support for Subset Weighted Sum: Subset weighting can be
expressed as the sum of weighted subsets, with fixed weights
assigned to each query. The weights of each group of queries
can be preconfigured according to specific needs.
1 Query Example (Fig. 6): The table shows an example of
a table built from the result sketch. To query the sum over the
subset {e1, e4, e11} on the attribute v1, we apply the operations
on the table. For e1 and e4, we aggregate the first and the
third rows in the v1 column of the table. For e11, as it does
not appear in the table, its attributes are all estimated as 0.
The query result is 252+ 47+ 0 = 299. To query the ratio of
attributes v1 to v2 for the subset {e4, e8, e11}. We sum the last
two rows of the table separately in the v1 and v2 columns, and
then compute the ratio of the two sums. The query result is
(47+151)/(85+9) = 2.11. When querying the weighted sum
of attributes v1 and v2 for the subset {e1, e3, e4}, weights are
assigned as w1 = 3 for v1 and w2 = 2 for v2. We accumulate
the attribute values of the first three rows, then multiply by
their respective weights and sum them up. The query result is
3 ∗ (252 + 1249 + 47) + 2 ∗ (900 + 401 + 85) = 7416.
2 Analysis on Computational Cost for Query: As all at-
tributes corresponding to the item are updated simultaneously
during insertion, querying for e only requires hashing to locate
the buckets, matching the ID, and acquiring all the attribute
values. Since the number of locations to be checked, d, is
typically small, the time and space complexity of the query
operation can be considered O(d) ≈ O(1) (shown in Table II).
For subset queries, we only need to scan the table (see Fig. 6).
3 Support for Arbitrary Predicate Combinations: Since
the ID of each item is constructed by concatenating the
attributes that are allowed in filtering conditions, our algorithm
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supports subset queries with arbitrary predicate combinations.
For example (see Fig. 1), the ID is composed of the five-
tuple of a packet: {ipSrc, ipDest, portSrc, portDest, protocol}.
Users can filter keys by specifying any combination of the five
attributes (e.g., {ipSrc, ipDest, protocol} or {ipSrc, portDest})
and setting exact values or ranges for each selected attribute.

C. The Rationale of Hyper-USS
As the subset ratio and subset weighted sum queries can be

reduced to the subset sum query, the high accuracy on subset
sum estimation is the key problem. We provide the rationale
behind the design of Hyper-USS.

Firstly, as pointed out by prior work [4], accurate subset sum
estimation requires unbiased estimation. Applying a biased
sketch, e.g., CM sketch [17], to subset sum estimation, will
result in unacceptably accumulated errors. The design of
Hyper-USS ensures that, when two items compete for one
bucket (Case 3 in the Insertion), it still provides unbiased
estimation on any attribute for both items. To this end, Hyper-
USS assigns a winning probability to each item and adjusts
the attributes of the selected winner based on that probability.
The detailed proof is shown in § IV-A.

TABLE III: Optimization goals of different sketches.
Si(·), Ŝi(·) denote the real and estimated sum on the ith

statistical attribute respectively.
Sketch Optimization Goal

USS/CocoSketch minimize
∑

e

(
Si(e)− Ŝi(e)

)2

Hyper-USS minimize
∑

i

∑
e

(
Si(e)− Ŝi(e)

)2

Given the unbiasedness, we achieve accurate subset sum
estimation by optimizing the variance of the estimation. As
shown in Table III, the SOTA sketches on subset query over
single statistical attributes, USS and CocoSketch, minimize
the sum of estimation variance on all single keys. Hyper-USS
aims to provide accurate estimation of all statistical attributes
and therefore minimizes the sum of variances for all keys and
attributes. It is noticeable that, for the insertion of Hyper-USS,
the specific choice of the winning probability P does not affect
the unbiasedness property. By setting the winning probability
proportional to the L2 norm of all attributes, Hyper-USS
accomplishes the optimization goal. Besides, selecting the
bucket with the smallest L2 norm for updating also targets
the optimization goal. The detailed proof is shown in § IV-B.

IV. MATHEMATICAL ANALYSIS

In this section, we provide mathematical analysis for Hyper-
USS. We first prove the unbiasedness of the subset sum
estimation on any statistical attribute in § IV-A. Then we
prove how the Hyper-USS achieves their optimization goals
of variance optimization in § IV-B. We further provide the
analysis of the error bound in § IV-C.

A. Unbiasedness of Hyper-USS
Theorem 1. For any statistical attribute vi, Hyper-USS pro-
vides unbiased sum estimation for any subset S,

E
[
Ŝi(S)

]
= Si(S)

Here Ŝi(·) denotes the estimated subset sum on ith attribute,
and Si(·) denotes the real subset sum on ith attribute.

Proof. We first prove that Hyper-USS gives unbiased sum
estimation for any single key e on any attribute. Consider
inserting the item (e, v1, v2, · · · , vn). If one bucket matches
e, the ith attribute in the bucket will increase by vi, and the
increment of estimation for e is unbiased. If no matched bucket
is found, the bucket with the smallest L2 norm is updated,
and we suppose the updated bucket is Bt[ht(e)]. After the
insertion, the expected increment of estimation for the key e
on attribute vi is,

vi
P
· P + 0 · (1− P) = vi

The expected increment for the key Bt[ht(e)].ID is,

(
Bt[ht(e)].V [i]

1− P
−Bt[ht(e)].V [i])·(1−P)−Bt[ht(e)].V [i]·P = 0

As a result, during the insertion, the estimated sum of any key
is unbiased. For any subset S, we have

E
[
Ŝi(S)

]
=

∑
e∈S

E
[
Ŝi(e)

]
=

∑
e∈S

Si(e) = Si(S)

B. Variance Optimization in Hyper-USS

Analysis for the choice of P . We first consider the basic
version of Hyper-USS with only one array and one associated
hash function, and discuss why the choice of winning proba-
bility P is theoretically optimal for the optimization goal.

Theorem 2. In the basic version with d = 1, Hyper-USS
minimizes the sum of variances of all keys on all attributes,
shown as follows.

minimize
n∑

i=1

∑
e

(
Si(e)− Ŝi(e)

)2

(3)

Proof. We consider the increment of Eq. (3) for the insertion
of each item (e, v1, · · · , vn). If one bucket matches e or
there is at least one empty bucket, ith attribute of item e
has an increment of vi, and the increment of Eq. (3) is 0.
Otherwise, suppose the updated bucket is B[h(e)], and the
record attributes are ui, 1 ⩽ i ⩽ n. The increment variance
only involves the keys of e and B[h(e)].ID, and we have,
n∑

i=1

∑
e

∆
(
Si(e)− Ŝi(e)

)2
=

n∑
i=1

P ·
((vi

P
− vi

)2
+ u2

i

)

+ (1− P) ·
(
v2i +

(
ui

1− P
− ui

)2
)

=

∑n
i=1 v

2
i

P
+

∑n
i=1 u

2
i

1− P
−

n∑
i=1

v2i −
n∑

i=1

u2
i

When setting

P =

√∑
i v

2
i√∑

i v
2
i +

√∑
i u

2
i

the variance increment is minimized.
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Analysis for selecting the bucket with minimal L2 norm.
We then analyze the general case of Hyper-USS and discuss
why we chose to update the bucket with the minimal L2 norm.

Theorem 3. In the basic version with d > 0, Hyper-USS
minimizes the sum of the variance of all keys on all attributes,
shown as follows.

minimize
n∑

i=1

∑
e

(
Si(e)− Ŝi(e)

)2

(4)

Proof. Suppose the incoming item is (e, v1, · · · , vn). Accord-
ing to the proof in Theorem 2, when there is no matched
bucket and no empty bucket, suppose the updated bucket is
Bt[ht(e)], and its attributes are ui, 1 ⩽ i ⩽ n. The minimal
increment of Eq. (4) will be,
n∑

i=1

∑
e

∆
(
Si(e)− Ŝi(e)

)2
=

∑n
i=1 v

2
i

P
+

∑n
i=1 u

2
i

1− P
−

n∑
i=1

v2i −
n∑

i=1

u2
i

= 2 ·

√√√√ n∑
i=1

v2i ·

√√√√ n∑
i=1

u2
i

For the insertion of Hyper-USS, we look for the bucket with
the minimal L2 norm among d hashed buckets as the updated
bucket. Therefore, when d > 0, Eq. (4) is also minimized.

C. Error Bound Analysis

This section presents an analysis of the error bounds asso-
ciated with Hyper-USS.

Lemma 4. During the insertion of Hyper-USS, for the updated
bucket, the increment of L2 norm is no larger than the L2
norm of the incoming item. Furthermore, for a bucket which
has been updated for k times, the L2 norm of the values of
the bucket has an upper bound kL.

Proof. Suppose the incoming item (e, v1, · · · , vn) updates the
bucket Bt[ht(e)] and ui = Bt[ht(e)].V [i].
If the key in the bucket matches e, the increment of L2 norm
is, √√√√ n∑

i=1

(ui + vi)2 −

√√√√ n∑
i=1

u2
i ≤

√√√√ n∑
i=1

v2i

Otherwise, recall that we have the winning probability as
follows.

P =

√∑n
i=1 v

2
i√∑n

i=1 v
2
i +

√∑n
i=1 u

2
i

If e wins the competition, the increment of L2 norm is,√∑n
i=1 v

2
i

P2
−

√√√√ n∑
i=1

u2
i =

√√√√ n∑
i=1

v2i

If the key in the bucket wins, the result L2 norm is,√∑n
i=1 u

2
i

(1− P)2
−

√√√√ n∑
i=1

u2
i =

√√√√ n∑
i=1

v2i

Therefore, the increment of L2 norm is no larger than the L2
norm of incoming item, and it is obvious that after k updates,
the L2 norm of the bucket has an upper bound kL.

Lemma 5. During the insertion of Hyper-USS, for an update
to a bucket which has been updated for k times, the increment
of total variance of items in the bucket has an upper bound
2kL2.

Proof. By Theorem 3, the increment of total variance is,

n∑
i=1

∑
e

∆
(
Si(e)− Ŝi(e)

)2

= 2 ·

√√√√ n∑
i=1

v2i ·

√√√√ n∑
i=1

u2
i ≤ 2kL2

Lemma 6. For a bucket which has been updated for M times,
the variance of the estimated value Ŝ for an arbitrary key
mapped to the certain bucket and an arbitrary attribute has
an upper bound (M + 1)ML2.

Proof. For key e and an arbitrary attribute j, the estimated
value of Hyper-USS is Ŝj(e). By Lemma 5, the variance can
be bounded by summing up all increments of variance for each
update,

Var
[
Ŝj(e) |M

]
≤

∑
e′:h(e′)=h(e)

n∑
i=1

Var
[
Ŝi(e

′) |M
]

≤
M∑
k=1

2kL2 = (M + 1)ML2

Theorem 5. In the basic design, the error of Hyper-USS’s
estimation on an arbitrary attribute of an arbitrary key can
be bounded as follows, where U is the total number of inserted
items and L is the upper bound of L2 norm for each inserted
item.

Pr
[
|Ŝj(e)− Sj(e)| ⩾ ϵ

]
⩽

4U2L2

w2ϵ2

Proof. Recall that the estimated value by Hyper-USS is un-
biased by Theorem 1. For each update, the probability that
the inserted item is hashed to the same bucket is p = 1

w .
By Lemma 6, the variance of estimated value Ŝj(e) can by
bounded,

Var
[
Ŝj(e)

]
= E

[
Var

[
Ŝj(e) |M

]]
+Var

[
E
[
Ŝj(e) |M

]]
= E

[
Var

[
Ŝj(e) |M

]]
≤

U∑
M=0

(
U

M

)
pM (1− p)U−M (M + 1)ML2

≤ 4U2L2

w2

According to Chebyshev’s inequality, we have

Pr
[
|Ŝj(e)− Sj(e)| ⩾ ϵ

]
≤

Var
[
Ŝj(e)

]
ϵ2

≤ 4U2L2

w2ϵ2

Corollary 1. The error of Hyper-USS’s estimation on an
arbitrary attribute of a subset T can be bounded as follows.

Pr
[
|Ŝj(T )− Sj(T )| ⩾ ϵ

]
⩽

4 |T |U2L2

w2ϵ2
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V. SPEED OPTIMIZATION FOR HYPER-USS

We propose three speed-optimized versions, each addressing
a key factor that affects insertion efficiency when the number
of statistical attribute n continues to grow: (1) the high
computational overhead of L2 norm calculation (§ V-A), (2)
the inefficiency of item positioning due to multiple hash
computations (§ V-B), and (3) the insufficient use of the
inherent parallelism of the algorithm (§ V-C). In data stream
processing, insertion performance is often more critical than
query performance. This is because streaming data arrives
continuously at high speed, making insertion the bottleneck
of the main processing pipeline, while queries are triggered
relatively infrequently. Therefore, we focus primarily on im-
proving insertion speed in this section.

A. Precomputed L2-Norm Optimization

In this section, we introduce Precomputed L2-Norm Opti-
mization (PLNO), which precomputes the L2 norm of high-
dimensional attributes, trading a modest increase in space
complexity for a substantial improvement in data insertion
throughput. Network data streams typically exhibit a skewed
distribution: frequent items change rapidly, while infrequent
items evolve more slowly. Effectively distinguishing between
these two types is critical to improving algorithmic efficiency.

If attribute frequencies are uniformly updated and the L2
norm is recalculated for all data streams upon arrival to
determine item replacement probabilities within buckets, such
indiscriminate processing may significantly increase compu-
tational load, particularly for frequent items with rapidly
changing attributes. Based on the insertion design of the
basic version (§ III-B), we know that during the bucket
competition phase, which determines the replacement position,
it is primarily necessary to identify items with smaller L2
norms, which typically correspond to infrequent items.

This insight lays the foundation for our speed optimization:
instead of precomputing the L2 norm for every incoming data
stream, we focus only on infrequent items. To this end, we
introduce a differentiated processing strategy into Hyper-USS
to accelerate the computation of replacement probabilities.
Specifically, before selecting replacement positions, we update
and record the L2 norms of attributes only for infrequent items.
(1) Data Structure. The data structure of PLNO remains
consistent with the basic version design. It consists of d bucket
arrays, each containing w hash buckets. Each bucket records
a key, an n-dimensional attribute vector V , the precomputed
L2 norm |V | of the vector, and a 1-bit Flag. The additional
fields introduced in this version are |V |, which represents the
L2 norm of V = ⟨v1, . . . , vn⟩, and the Flag, which is used to
distinguish between frequent and infrequent items.
(2) Insertion. Our design is shown in Algorithm 1. To insert
an item (e, V ), we use d hash functions to map the key of e
to d buckets (Bi[hi(e)], 1 ⩽ i ⩽ d). When matching the key
of the incoming e with those already recorded in the buckets,
there are three possible cases:
Case 1: e is already recorded in one of the d hash buckets,
specifically Bk[hk(e)]. We increase and update the attributes
⟨v1, . . . , vn⟩ in the bucket Bk[hk(e)], without the need to

update the L2 norm. The Flag is set to false, marking that the
current L2 norm is not up to date. If selected for replacement,
the L2 norm must be recalculated.
Case 2: e is not recorded in any of the d hash buckets, and
at least one bucket is still empty. We select the first empty
bucket to record the newly arriving e. Upon the first insertion
of an item, we update the L2 norm and set the Flag to true.

Algorithm 1: Insertion of (e, V ) into bucket arrays
(Optimized version: PLNO)
Input: Incoming item e, its attribute vector

V =< v1, v2, ..., vn >
Output: Updated bucket arrays with the item e

inserted
Function ReplaceCompetingItem(i, j, e, V ):

if Bi[j].F lag is false then
Bi[j].|V | ←

√∑n
t=1(Bi[j].vt)2;

else
Use the stored L2 norm Bi[j].|V |;

Calculate L2 norm of V , |V | ←
√∑n

t=1(vt)
2;

Calculate winning probability P for e via Eq. (1)
if random number a ∈ [0, 1], a ≤ P then

Replace item in Bi[j] with e;
foreach t ∈ {1, 2, . . . , n} do
Bi[j].vt ← Bi[j].vt/P;

Bi[j].|V | ← |V |;
return;

else
foreach t ∈ {1, 2, . . . , n} do
Bi[j].vt ← Bi[j].vt/(1− P);

return;
return;

for i← 1 to d do
j ← hi(e);
Record Bi[j] in BucketRecords[i];
if key of the item e matches key in Bi[j] then

foreach t ∈ {1, 2, . . . , n} do
Bi[j].vt ← Bi[j].vt + vt;

Bi[j].Flag← false;
return;

else if there is an empty bucket is Bi[j] then
Store (e, V ) in the empty bucket of Bi[j];
return;

Find the bucket BucketRecords[k] with the smallest
L2 norm of attributes within BucketRecords;
ReplaceCompetingItem(k, hk(e), e, V );
return;

Case 3: e is not recorded in any of the d hash buckets,
and all buckets are occupied, we will find the bucket with the
smallest L2 norm of its values. Then, e uses the previously
mentioned Joint Variance Optimization technique to compete
with the item in that bucket with the smallest L2 norm.
Notably, here we adjust the strategy so that it is not always
necessary to ensure the accuracy of the L2 norms of all
items. Only after the replacement position has been selected
do we need to compute and update the L2 norms of the two
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Insert Example 2

e1,<2,4>
h1(e1) h2(e1)

e1,<3,5>,
|V|=6,Flag=true

e4,<5,2>,
|V|=1,Flag=false

e1,<5,9>,
|V|=6,Flag=false

keep 
unchanged

e2,<5,12>
h1(e2) h2(e2)

e6,<2,3>,
|V|=4,Flag=false

empty

keep 
unchanged

e2,<5,12>,
|V|=13,Flag=true

Insert Example 1

Insert Example 3

update insert

10>3
e9,<6,8>,

|V|=10,Flag=true
e7,<17,7>,

|V|=18,Flag=true

keep 
unchanged

insert

10<18

P=1/31-P=2/3

e3,<9,12>,
|V|=15,Flag=true

e9,<9,12>,
|V|=15,Flag=true

e3,<3,4>
h1(e3) h2(e3)

e3,<3,4>
h1(e3) h2(e3)

e3,<3,4>
h1(e3) h2(e3)

e3,<3,4>
h1(e3) h2(e3)

e9,<6,8>,
|V|=10,Flag=true

keep 
unchanged

e7,<12,5>,
|V|=3,Flag=false

e7,<12,5>,
|V|=13,Flag=true

insert

update

1-P=13/18 P=5/18

e7,<17,7>,
|V|=18,Flag=true

e3,<11,14>,
|V|=18,Flag=true

Fig. 7: Insertion examples for PLNO (n = 2, d = 2).

competing items. This deviation in the L2 norm does not
affect the unbiasedness of the technique when searching for a
replacement in the d hash buckets.
Insertion Examples (Fig. 7): We present three examples of
inserting items where the number of attributes is n = 2,
and the number of hash functions is d = 2. In the first
example, we insert the item (e1, 2, 4). The bucket in the first
array corresponds to the key, so its attribute information V is
updated. In this case, the insertion of e1 does not update the
|V |, and the Flag is set to false. In the second example, we
insert the item (e2, 5, 12). As neither bucket matches the key
and one is empty, e2 is inserted into the empty bucket, where
V and |V | are updated, with the Flag set to true.

In the third example, we insert the item (e3, 3, 4). Neither
of the two hash buckets matches the key of e3 , and both
are occupied. The algorithm then selects the bucket in the
second array with the smallest recorded |V |. Two cases may
occur: First, if the recorded |V | accurately reflects the true
value (i.e., Flag is true), the item can be replaced as described
earlier. Alternatively, if the recorded |V | underestimates the
actual value, the existing item may be incorrectly selected
for replacement. In this case, the new item e3 replaces it
with a probability P . However, since |V | is updated during
replacement, this mistake will be corrected in future updates
(as illustrated in Insert Example 3 of Fig. 7). This example
highlights the good fault tolerance of our algorithm.

B. Hash Simplification Structure Optimization

In this section, we propose the second speed-optimized
version of Hyper-USS, called Hash Simplification Structure
Optimization (HSSO). Our engineering analysis indicates that
the main performance bottleneck of Hyper-USS lies in the
computation of hash functions. The frequent use of multiple

HSSO Structure & Example

B[0]

e, V
h(e)

d cells

B[h(e)] B[w-1]

C1B[h(e)]

C2B[h(e)]

...

CdB[h(e)]

...
...

C1B[0]

C2B[0]

CdB[0]

...

C1B[w-1]

C2B[w-1]

CdB[w-1]

...

SIMD-Accelerated Operations in SPAO

(2) Attribute Update on Key Match

(3) Probabilistic Attribute 
Update on Competition

�1

�2

�3

�4

�1
′

�2
′

�3
′

�4
′

e, V C2B[h(e)].V

�1
′′

�2
′′

�3
′′

�4
′′

C2B[h(e)].V

�1

�2

�3

�4

e, V C4B[h(e)].V

�1
′′

�2
′′

�3
′′

�4
′′

P

e.g., d=4, n=4(1) Key Matching within Bucket

C1B[h(e)].ID C2B[h(e)].ID C3B[h(e)].ID C4B[h(e)].ID

Compare

e e e e

Update

Parallel Processing

Fig. 8: Data structure & examples of HSSO and SPAO.
v1, v2, . . . represent the attribute values carried by the incom-
ing item e; v′1, v

′
2, . . . denote the attribute values stored in the

cells matched by e; v′′1 , v′′2 , . . . indicate the updated attribute
values in the corresponding cell during the competition.

hash functions results in prolonged processing time, account-
ing for over 50% of the total data insertion time. Unlike
existing sketch solutions that build one or more sketches for
each attribute and update all of them upon the arrival of each
data item, our design updates only one sketch. Under this
structure, the cost of computing multiple hashes constitutes a
significant portion of the total insertion time. To address this
issue, HSSO reduces the number of hash functions used and
relies on only a single hash function to satisfy the algorithm’s
process requirements.
(1) Data Structure (Fig. 8). In the HSSO, a single hash func-
tion is employed, which has been switched from the original
BobHash to MurmurHash, known for its high performance and
low collision rate. The data structure is comprised of w hash
buckets, each containing d cells. The information recorded in
each cell is consistent with that in each bucket of PLNO. We
define Ci(B[j]) (where 1 ⩽ i ⩽ d, 0 ⩽ j ⩽ w − 1) as the ith

cell in the jth bucket. All w hash buckets share the same hash
function, denoted as h(·).
(2) Insertion. To insert an item (e, V ), we now utilize a
solitary hash function h(·) to associate the key of e with
a specific bucket B[h(e)] among w hash buckets. When
comparing the key of the incoming e with the keys of items
already recorded in the d cells of the bucket:
Case 1: If e is already recorded in one of the d cells,
the algorithm updates the corresponding attribute V without
recalculating the L2 norm at this stage. The Flag is set to false
to indicate that the L2 norm is outdated. If this cell is later
selected for replacement, the L2 norm will be recalculated.
Case 2: If e is not recorded in any of the d cells, and there
is at least one empty bucket available, we opt to record e in
an unoccupied cell. Notably, upon the initial insertion, the L2
norm is refreshed, and the Flag is set to true.
Case 3: If e is not recorded in any of the d cells and all
cells within the bucket are filled, we identify the cell with the
smallest L2 norm. e is put in contention with the minimum
item in the cell, following a process similar to PLNO.

As outlined in Algorithm 2, the algorithm employs a single
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Algorithm 2: Insertion of (e, V ) into buckets
(Optimized version: HSSO)

Input: Incoming item e, its attribute vector
V =< v1, v2, ..., vn >

Output: Updated buckets with the item e inserted
Function ReplaceCompetingItem(i, j, e, V ):

if Ci(B[j]).F lag is false then
Ci(B[j]).|V | ←

√∑n
t=1(Ci(B[j]).vt)2;

else
Use the stored L2 norm Ci(B[j]).|V |;

Calculate L2 norm of V , |V | ←
√∑n

t=1(vt)
2;

Calculate winning probability P for e via Eq. (1)
if random number a ∈ [0, 1], a ≤ P then

Replace item in Ci(B[j]) with e;
foreach t ∈ {1, 2, . . . , n} do
Ci(B[j]).vt ← vt/P

Ci(B[j]).|V | ← |V | return;
else

foreach t ∈ {1, 2, . . . , n} do
Ci(B[j]).vt ← Ci(B[j]).vt/(1− P)

return;
return;

j ← h(e);
for i← 1 to d do

Record Ci(B[j]) in CellRecords[i];
if key of e matches key in Ci(B[j]) then

foreach t ∈ {1, 2, . . . , n} do
Ci(B[j]).vt ← Ci(B[j]).vt + vt;

Ci(B[j]).Flag← false;
return;

else if there is an empty cell in Ci(B[j]) then
Store (e, V ) in the empty cell of Ci(B[j]);
Calculate L2 norm of V for e,
Ci(B[j]).|V | ←

√∑n
t=1(vt)

2;
Ci(B[j]).Flag← true;
return;

Find the cell CellRecords[k] with the smallest L2
norm of attributes within CellRecords;
ReplaceCompetingItem(k, j, e, V );
return;

hash function in place of the previous d hash functions.
Concerning data insertion, the operations conducted on hash
buckets in the PLNO are translated to cell operations in the
HSSO, with the rest of the process remaining consistent.

C. SIMD Parallel Acceleration Optimization

In this section, we introduce the SIMD Parallel Acceleration
Optimization (SPAO) version, which fully exploits the inherent
support of our algorithm for consecutive memory access in
order to adapt to the Single Instruction, Multiple Data (SIMD)
parallel strategy [27] for performance acceleration.

Parallel processing strategies typically rely on data being
stored in contiguous memory. The single-hash optimization
based on HSSO aggregates relevant data into the same bucket,
allowing them to be stored in contiguous memory and thereby

enhancing the inherent parallelism of the algorithm. The
core advantage of SIMD lies in its ability to exploit vector
instruction sets available in modern processors (e.g., SIMD
instruction sets such as the AVX instruction set from Intel and
the NEON instruction set from ARM) for efficient parallel
execution and data-intensive computation. Combined with
the structural characteristics of our algorithm, this further
improves insertion performance. Specifically, SPAO leverages
the SIMD strategy to optimize computational efficiency by
parallelizing three main parts of our algorithm (shown in
Fig. 8): (1) matching the key of the new item with the d
cells in the bucket, (2) updating the corresponding attributes
if a match is found, and (3) probabilistically updating each
attribute with probability P or 1− P during a competition.

It is important to note that this optimization is only ef-
fective when the execution environment supports it. That is,
the CPU could provide the necessary SIMD instruction sets.
Compared to previous versions, this optimization achieves the
best performance when a large number of attributes can be
processed in parallel and memory alignment is satisfied, which
is constrained by the width of SIMD registers. For example,
suppose the processor supports AVX or AVX2 (with 256-bit
registers) and each attribute is 32 bits in size. In that case,
the performance gain is most significant when the number of
updated attributes is a multiple of 8, allowing fully aligned
batch updates without incurring additional overhead. This is
confirmed in our subsequent experimental evaluation (§ VI-B).

VI. EXPERIMENTAL RESULTS

We conduct extensive experiments to compare Hyper-USS
and its speed-optimized versions with the SOTA sketch so-
lutions [3]–[6] on subset queries over multi-attribute data
streams, aiming to answer the following questions:
Q1: How does the insertion throughput of our methods
compare with USS [3] and CocoSketch [4] when multiple
statistical attributes are involved (§ VI-B);
Q2: How does the accuracy of our methods compare with
USS and CocoSketch when multiple statistical attributes are
involved (§ VI-C);
Q3: How is the performance of our methods affected by
different parameter settings (§ VI-D);
Q4: How does our algorithm perform when subset query
support is extended to arbitrary predicate combinations, as fil-
tering conditions compared with Omnisketch [5], [6] (§ VI-E).

In particular, OmniSketch supports subset queries with
arbitrary predicate combinations (§ II-B) by maintaining a
separate sketch for each filtering attribute. To straightforwardly
support multiple statistical attributes, one needs to build a
separate OmniSketch instance for each. Since each instance
already contains multiple sketches, this greatly reduces the
practicality of the algorithm. Therefore, for queries involving
multiple statistical attributes, we adopt USS and CocoSketch
as baselines, while OmniSketch remains the best candidate for
supporting arbitrary predicates over one statistical attribute.

A. Experimental Setup
Implementation: We implement Hyper-USS and its competi-
tors, and the code is open-sourced on GitHub [28]. As in
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previous work [3], we implement a throughput-enhanced USS
with a hash table and a double-linked list, because the naive
USS is too slow. In the optimized USS, the hash table is used
to accelerate the process of checking whether and where a key
is stored in the data structure, and the double link list is used to
accelerate finding the minimal bucket by sorting buckets. For
CocoSketch, we use the recommended parameters in [4]. For
OmniSketch, we follow the experimental settings and datasets
used in [5], [6]. In the default configuration for Hyper-USS
and its speed-optimized versions, the parameter d is set to
4. And we set the key length to 16 bytes and the length of
each statistical attribute to 4 bytes. The number of attributes3

carried by each data item is denoted as n.
Computation Platform: We conduct all the experiments on
a single-socket CPU server (Intel(R) Core(TM) i9-10980XE
CPU@3.00GHz) with a total of 36 cores (18 cores per socket
with 2 threads per core), accompanied by 128GB of memory.
The CPU supports a range of SIMD instruction sets, including
SSE (128-bit registers) and AVX/AVX2 (256-bit registers).
Datasets: We use one synthetic and three real-world datasets.
(1) The Synthetic dataset. The keys in the synthetic dataset are
randomly generated integers. To simulate the heavy-tailed dis-
tribution in real-world workload, the frequency of keys follows
the Zipf distribution [46] with skewness 1.5 according to [23],
[47]. The dataset contains 50M items, each with a configurable
key size and a configurable number of statistical attributes.
Attribute values are sampled from exponential distributions
with means ranging from 1 to 16.
(2) The Criteo dataset. The Criteo dataset [48] contains feature
values and click feedback for millions of display ads over 24
days. The Criteo dataset contains 26 categorical features and
13 integer features. USS [3] uses this dataset to evaluate subset
queries. We select 4 categorical features as the key and 13
integer features as attributes and use the first 50M items.
(3) The CAIDA dataset. The CAIDA dataset [49] contains one
hour of anonymous network traces collected from the Equinix-
Chicago monitor in 2018. We use the source IP and destination
IP as the ID of items and use two statistical attributes: the
packet size and the packet interval. We use 1-minute intervals,
which contain around 27M items and 85K distinct items.
(4) The SNMP dataset. The SNMP dataset [5] contains records
collected from the wireless network of Dartmouth College
during the fall of 2003, and contains 8.2 million records with
11 fields. All 11 fields are selected as the key. A statistical
attribute is defined as the count of keys matching filters over
selected subsets of these fields.
Metrics: We use the following metrics to evaluate insertion
efficiency and estimation accuracy.
(1) Throughput (Mips). Millions of items per second. The
throughput numbers are the median value among 5 inde-
pendent trials. Insertion time and throughput are reciprocal,
assuming consistent units.
(2) Average Relative Error (ARE). 1

|Ψ|
∑

S∈Ψ
|f(S)−f̂(S)|

f(S) ,
where f(S) is the ground truth, f̂(S) is the output query result,
and Ψ is the query set.
(3) Average Absolute Error (AAE).

∑
S∈Ψ|f(S)−f̂(S)|

|Ψ| .

3Unless stated otherwise, “attributes” refer to statistical attributes.

B. Throughput Evaluation

We evaluate the insertion throughput of Hyper-USS and its
three speed-optimized versions by comparing them with two
SOTA sketches, CocoSketch and USS, under subset queries
involving multiple statistical attributes on the Synthetic and
Criteo datasets. We evaluate the insertion throughput of algo-
rithms under varying memory sizes in both high-dimensional
and low-dimensional settings, determined by the number of
attributes. Settings with more than 8 attributes are considered
high-dimensional, and those with fewer are low-dimensional.
This threshold is based on the 256-bit SIMD registers used in
our implementation, which can process 8 or any multiple of 8
attributes in parallel. We validate our tests under both common
memory settings (around 300–700 KB) [3], [4], [20]–[22], [26]
and small memory settings (around 20–60 KB). The evaluation
under the small memory settings is further conducted to
maximize the likelihood that the sketch runs entirely within
the L1/L2 cache, thereby improving computational efficiency.

The tests show that Hyper-USS and its speed-optimized
versions achieve higher insertion throughput. For high-
dimensional attribute data insertion, SPAO performs best when
the number of attributes is a multiple of 8, as this fully utilizes
the 256-bit SIMD registers; in other cases, HSSO proves to
be the most efficient, while PLNO offers a balanced trade-off
between efficiency and accuracy (§ VI-C).

1) Experiments on the Synthetic Dataset:
Since the number of attributes is configurable, we generate

the dataset with up to 32 statistical attributes.
High-Dimensional Attribute Data Insertion(Fig. 9(a)): Ex-
perimental results show that the speed-optimized versions
of Hyper-USS achieve significant acceleration under small
memory. Specifically, when the number of statistical attributes
n=32, the average throughput of the basic version and three
speed-optimized versions reaches nearly 12.60 Mips, 17.74
Mips, 19.23 Mips, and 22.61 Mips, respectively. In compari-
son, CocoSketch and USS achieve only 1.04 Mips and 0.383
Mips. As shown in Table IV, the speedup of Hyper-USS over
CocoSketch and USS ranges from 11.12× to 20.74× and from
31.90× to 58.03×, respectively. Additionally, under common
memory ranging from 300 to 700 KB, our algorithms achieve
speedups ranging from 17.18× to 23.52× over CocoSketch and
from 49.29× to 66.82× over USS.

TABLE IV: Throughput Improvement over SOTA (20-60 KB).

Algorithm Comparison Throughput Improvement
Synthetic Dataset

Our Baseline n=32 n=4

Hyper-USS CocoSketch 11.12× 2.58×
USS 31.90× 8.34×

PLNO CocoSketch 16.06× 2.51×
USS 45.31× 8.15×

HSSO CocoSketch 17.49× 3.53×
USS 49.21× 10.81×

SPAO CocoSketch 20.74× 3.22×
USS 58.03× 10.01×

Low-Dimensional Attribute Data Insertion(Fig. 9(b)): Ex-
perimental results on low-dimensional attribute insertion under
both small and common memory show that HSSO achieves the
best optimization performance. This is because the accelera-
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(a) High-dimensional attributes (n = 32)
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(b) Low-dimensional attributes (n = 4)

Fig. 9: Experimenting for insertion throughput on the Synthetic Dataset.
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(a) High-dimensional attributes (n = 13)
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(b) Low-dimensional attributes (n = 4)

Fig. 10: Experimenting for insertion throughput on the Criteo Dataset.
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Fig. 11: Experiments for the subset query on the Synthetic dataset.

tion of SPAO depends on a large and well-aligned number of
attributes. When the number of attributes is smaller than what
the SIMD register can process at once, additional overhead
is incurred to manage batch processing, making SPAO less
efficient than HSSO in such cases. The insertion throughput
of HSSO reaches 42.12 Mips, while CocoSketch and USS
achieve 9.12 Mips and 3.62 Mips, respectively. This increases
the throughput by 3.62× and 10.64×, respectively.

2) Experiments on the Real-World Dataset:
Following [3], we use the Criteo dataset as a representative

real-world dataset for evaluation in this subsection.
High-Dimensional Attributes Data Insertion(Fig. 10(a)):
For high-dimensional attribute data under small memory,
SPAO and HSSO achieve nearly identical throughput, reach-
ing approximately 25.04 Mips. In contrast, CocoSketch and
USS only reach 1.95 Mips and 0.54 Mips, corresponding to
improvements of 11.83× and 45.40×, respectively. It is worth
noting that the dataset contains at most 13 attributes, which is

not a multiple of 8. As a result, the advantage of SPAO is less
pronounced, and it even performs slightly worse than HSSO
under common memory.
Low-Dimensional Attributes Data Insertion(Fig. 10(b)):
For low-dimensional attribute data processed under common
memory conditions, the HSSO that we proposed achieves
a throughput of 46.02 Mips, representing improvements of
4.13× and 11.26×, respectively.

C. Accuracy Evaluation
We evaluate the accuracy of algorithms on both subset

queries with multiple attributes and point queries. We compute
the average metric across all trials and all statistical attributes
on selected items. It is worth noting that large AAE values
may result from the high magnitudes of statistical attributes
in some datasets. Our evaluation focuses on the relative
AAE differences across algorithms. ARE remains the primary
accuracy metric, particularly when its value is below 1. In
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Fig. 12: Experiments for the point query on the Synthetic dataset.
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Fig. 13: Experiments for the subset query on the Criteo dataset.
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Fig. 14: Experiments for the point query on the Criteo dataset.

subset queries, only part of the item ID is matched, with the
rest treated as wildcards; in point queries, the entire ID is
matched.

1) Experiments on the Synthetic Dataset:
We evaluate accuracy on the synthetic dataset, where each

item carries 32 statistical attributes (i.e., n=32).
Subset query (Fig. 11(a) - 11(d)): We use subset sum and sub-
set ratio estimation as representatives of the subset query for
evaluation. Experimental results show that Hyper-USS is more
accurate for subset queries than the SOTA sketch solutions
when handling multiple statistical attributes simultaneously.
For subset sum estimation, Hyper-USS lowers the ARE and
AAE by approximately 38% and 46%, respectively, compared
to CocoSketch. It lowers both the ARE and AAE by one order
of magnitude compared to USS. For subset ratio estimation,
Hyper-USS lowers both the ARE and AAE by nearly one order
of magnitude compared to CocoSketch, and by more than one
order of magnitude compared to USS. It, along with its speed-
optimized versions, outperforms CocoSketch and USS in ARE
and AAE.
Point query (Fig. 12(a) - 12(d)): Similarly, we use point sum
and point ratio estimation as examples of the point query with
multiple statistical attributes for evaluation. The experimental
results show that Hyper-USS achieves the highest accuracy for
point queries. Meanwhile, its three speed-optimized versions
also deliver higher accuracy than CocoSketch and USS. As the
memory increases, the accuracy with the Hyper-USS improves

more significantly. As the memory increases to 600 KB,
Hyper-USS achieves ARE and AAE that are more than one
order of magnitude lower than those of the two baselines.

2) Experiments on the Real-World Dataset:
We evaluate the accuracy of subset queries and point queries

using the Criteo dataset, where each item carries 4 statistical
attributes (i.e., n=4). Specifically, subset queries are assessed
on the heavy hitter subsets, while point queries are evaluated
on the individual heavy hitters [30], [31], [50].
Subset query (Fig. 13(a) - 13(d)): Experimental results
indicate that Hyper-USS is the most accurate method among
the compared algorithms. For subset sum and ratio estimation,
Hyper-USS lowers the ARE by 57% and 92% compared to Co-
coSketch, and by more than one order of magnitude compared
to USS, respectively. And the AAE shows a consistent trend
with ARE. Meanwhile, the three speed-optimized versions also
achieve higher accuracy than the compared algorithms.
Point query (Fig. 14(a) - 14(d)): For point sum estimation,
Hyper-USS lowers the ARE by 71% and more than one order
of magnitude compared to CocoSketch and USS, respectively.
For point ratio estimation, it lowers the ARE by 47% and 51%
compared to the two baselines, respectively.

D. Parameter Settings

We evaluate the effect of different parameters on our algo-
rithms using the synthetic dataset by default, unless otherwise
specified, to explore a wider range of parameter settings.
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Fig. 15: Experiments on the number of candidate positions d.
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Fig. 16: Experiments on the number of statistical attributes.
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Fig. 17: Experiments on the key length.

The effect of d (Fig. 15(a) - 15(b)): We vary the number
of candidate positions d from 20 to 24 in the Hyper-USS,
i.e., 1 to 16. Set n = 32 and set the small memory size
to 30 KB and the common memory size to 300 KB for the
experiment. The experimental results show that the parameter
d in Hyper-USS and its speed-optimized versions is a trade-off
between accuracy and throughput. When d increases from 1,
the accuracy first decreases and then slightly increases. When
the memory size is small, the best results are achieved at d = 4
for Hyper-USS and its speed-optimized algorithm, with accu-
racies of 0.012, 0.023, 0.034, and 0.047, and corresponding
throughputs of 7.23 Mips, 7.23 Mips, 7.23 Mips, and 7.23
Mips. For common memory sizes, the accuracies for SPAO
and HSSO are 0.0049 at d = 8, corresponding throughputs of
22.09 Mips and 18.16 Mips. Both cases can achieve a balance
between accuracy and insertion throughput.
The effect of the attribute number (Fig. 16(a) - 16(b)):
We fix the key length to 16 bytes and vary the number of
attributes from 20 to 25, i.e., 1 to 32. When the number
of attributes is 32, the ARE of Hyper-USS is 0.0067, while
those of CocoSketch and USS are 0.0201, 0.0655, respectively.
The throughput of Hyper-USS decreases as the number of
attributes grows, but maintains higher than 17.41 Mips. We
propose Hyper-USS and its speed-optimized versions, ordered
by throughput in descending order: SPAO, HSSO, PLNO, and
Hyper-USS. This is consistent with the results in § VI-B.
When the number of attributes is 1, Hyper-USS degenerates to
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Fig. 18: Experiments on normalization of attribute values.

CocoSketch. However, even with only two attributes, Hyper-
USS still outperforms CocoSketch, achieving nearly one order
of magnitude lower ARE and 2.15× higher throughput.
The effect of the key length (Fig. 17(a) - 17(b)): We fix
the number of attributes to 32 and vary the key length in the
synthetic dataset from 16 bytes to 80 bytes. The experimental
results indicate that as the key length increases, the advantage
of Hyper-USS in accuracy becomes more significant. When
the key length is 80 bytes, the ARE of Hyper-USS is 0.040,
while those of CocoSketch and USS are 0.262 and 0.729,
respectively. The throughput of Hyper-USS drops as key
length grows, but is still higher than 6.23 Mips. The drop
rate is higher than SOTA because they are too slow.
The effect of attribute value normalization (Fig. 18(a) -
18(b)): We compare the effect of using Eq. 1 and Eq. 2 to
compute the replacement probability P in Hyper-USS on real-
world datasets with imbalanced statistical attributes. For the
Criteo, to simulate imbalanced statistical attributes, we scale
one attribute of each item by 105. For the CAIDA, the value
of packet interval is around 10−6, and the value of packet
size is usually 103; thus, two statistical attributes are already
imbalanced. With imbalanced statistical attributes, ARE is a
more suitable metric for accuracy. In each trial, we perform a
subset query and a point query, respectively, and then record
the average ARE. We conduct 1000 trials and calculate the
average of ARE. The results show that the normalized setting
performs better when attributes are imbalanced. In both point
query and subset query, the mean ARE is reduced by up to
21% on the Criteo dataset and 75% on the CAIDA dataset,
indicating the normalized setting improves accuracy.

E. Evaluation on Extended Tasks

To more comprehensively support subset queries over
multi-attribute data streams, we allow arbitrary combinations
of query predicates to serve as filtering conditions. Each
condition can be specified using an exact value, a wild-
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card, or a range. OmniSketch represents the SOTA solu-
tion in this area (§ II-B). We compare our approach with
OmniSketch(OmniSketch S1, its best-performing version) in
terms of insertion time, estimation accuracy, and query ex-
ecution time using the SNMP dataset. The query task is to
retrieve the total number of items that satisfy the filtering
conditions under different predicate combinations. Given that
OmniSketch supports only a single statistical attribute as the
aggregated result, we adopt the basic version of Hyper-USS
as our representative algorithm. All experimental settings and
the dataset follow those used in the OmniSketch work [5], [6].

The SNMP dataset contains up to 11 filterable attributes that
can be used for predicate composition. We use p to denote

the number of attributes in a predicate combination that are
assigned either exact values or ranges. For each of these p
attributes, whether it is assigned a value or a range depends
on whether the attribute supports range specification. The
remaining attributes are treated as wildcards (*). For example,
when evaluating subset queries over a predicate combination
consisting of 5 filterable attributes, p = 2 means that any 2
attributes are specified with exact values or ranges, while the
remaining 3 are treated as wildcards (*). In our algorithm,
the ID of each item is composed of all attributes that support
querying in the filtering conditions, and only a single sketch is
maintained. In contrast, Omnisketch needs to build a separate
sketch for each filterable attribute.
Support for Arbitrary predicate combinations (Fig. 19 -
20: Fast insertion is the key requirement for stream processing
and summarization. In terms of insertion time, compared to
OmniSketch, our method improves the performance approxi-
mately 94.95% to 98.56% (i.e., reduces the time from 4.95 to
70.84 seconds to just 0.25 to 1.02 seconds) (shown in Fig. 19),
as it only needs to update a single sketch per item, whereas
OmniSketch must update multiple sketches simultaneously.
As for query accuracy, measured by the ARE, the difference
between the two algorithms is small, as shown in Fig. 20.
And our algorithm achieves slightly better accuracy than
Omnisketch. We also compare query execution times under
different memory sizes with different p (Table V). Although
our algorithm takes slightly longer for queries compared to
OmniSketch, query operations occur far less frequently than
insertions in practice. Therefore, query operations usually have
lower performance requirements than insertions.

TABLE V: Query Execution Time in milliseconds, for queries
with different numbers of predicates p.

Algorithm (Memory) Predicate Count p
2 4 6 8

Hyper-USS

10MB 20.02 17.37 16.68 15.21
50MB 24.32 21.80 22.56 19.71

100MB 30.62 26.92 24.58 24.04
200MB 33.66 30.18 28.03 28.61

OmniSketch

10MB 0.18 0.13 0.12 0.09
50MB 0.98 0.79 0.68 0.44

100MB 2.02 1.61 1.25 1.13
200MB 6.38 4.33 2.85 2.64

F. Case Study on Network Measurement

To further validate the practicality of our algorithm, we
conduct a case study on network measurement using the
CAIDA dataset [49], with query tasks including subset sum
and subset ratio. Results are shown in Table VI. The tasks
include queries such as “the total number of packets from
a certain source IP prefix” and “the number of packets per
second to a particular destination IP address”. We use the
five-tuple of the packet as the ID, and consider packet size
and packet interval as the two statistical attributes.

Notably, we need to construct two separate CocoSketch
and USS for the two statistical attributes, respectively. In
contrast, we use Hyper-USS only a single sketch to record both
attributes simultaneously. In subset ratio queries, CocoSketch
and USS struggle to compute packet rates that need two at-
tributes due to the difficulty of ensuring that the same item can
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TABLE VI: Subset Query and Results for Network Measurement Case Study

Query Task Ground
Truth

Query Results Query
TypeOurs Coco USS

Total number of packets from source IP prefix 116.247.99.244/28 1,324,081 1,324,915 1,325,581 1,253,375 Subset Sum
Total number of packets sent to destination IP prefix 212.30.198.222/23 12,865,452 12,902,686 13,140,834 13,721,793 Subset Sum
The number of packets per second (PPS) from source IP address 116.247.99.244 1,103.42 1,196.46 – – Subset Ratio
The number of packets per second (PPS) sent to destination IP address 212.30.198.222 28,159.22 28,427.3 – – Subset Ratio

be simultaneously matched across separate sketches, as they
replace items based on different attribute values, respectively.
More specifically, when acquiring total packet size records in
one sketch, the corresponding total packet interval in the other
may fail to be retrieved. Our approach effectively addresses
this limitation. Consequently, in practical query scenarios, our
algorithm outperforms SOTA methods.

VII. CONCLUSION

A wide range of practical problems can be abstracted as
subset queries over multiple attributes. Existing sketches are
designed for single-attribute queries, making them inefficient
for multi-attribute queries. We propose Hyper-USS, a novel
sketching solution that provides the subset query over data
streams involving multiple statistical attributes accurately and
efficiently. With Joint Variance Optimization, Hyper-USS pro-
vides unbiased estimation and optimizes estimation variance
jointly, addressing the challenge of accurately estimating mul-
tiple attributes in the sketch design. Further, our evaluation of
Hyper-USS and its three speed-optimized versions shows that
all algorithms surpass the SOTA in both query accuracy and
insertion speed, highlighting their advanced capabilities and
broad potential for future applications.
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