A Unified Framework for Mining Batch and
Periodic Batch in Data Streams

Zirui Liu*, Xiangyuan Wang*, Yuhan Wu*, Tong Yang*, Kaicheng Yang*,
Hailin Zhang*, Yaofeng Tu*, and Bin Cui*

Abstract—Batch is an important pattern in data streams, which refers to a group of identical items that arrive closely. We find that
some special batches that arrive periodically are of great value. In this paper, we formally define a new pattern, namely periodic
batches. A group of periodic batches refers to several batches of the same item, where these batches arrive periodically. Studying
periodic batches is important in many applications, such as caches, financial markets, online advertisements, networks, etc. This paper
proposes a unified framework, namely the HyperCalm sketch, to detect batch and periodic batch in data streams. HyperCalm sketch
takes two phases to detect periodic batches. In phase 1, we propose a time-aware Bloom filter, called HyperBloomFilter (HyperBF), to
detect batches. In phase 2, we propose an enhanced top-k algorithm, called Calm Space-Saving (CalmSS), to report top-k periodic
batches. Extensive experiments show HyperCalm outperforms the strawman solutions 4 x in term of average relative error and 98.1 x

in term of speed. All related codes are open-sourced.

Index Terms—Data Mining, Data Stream, Sketch, Periodic Batch

1 INTRODUCTION

1.1 Background and Motivation

Batch is an important pattern in data streams [2]], which is
a group of identical items that arrive closely. Two adjacent
batches of the same item are spaced by a minimum interval
T, where T is a predefined threshold. Although batches can
make a difference in various applications, such as cache [2],
networks [3], and machine learning [4], [5], it is not enough
to just study batches. For instance, in cache systems, with
just the measurement results of batches, we are still not able
to devise any prefetching method and replacement policy.
Further mining some special patterns of batches is of great
importance. On the basis of batches, we propose a new
pattern, namely periodic batch. A group of periodic batches
refers to o consecutive batches of the same item, where
these batches arrive periodically. We call « the periodicity.
Finding top-k periodic batches refers to reporting k groups
of periodic batches with the k largest periodicities.
Studying top-k periodic batches is important in practice.
For example, consider a cache stream formed by many
memory access requests where each request is an item,
periodic batches provide insights to improve the cache hit
rate. With the historical information of periodic batches, we
can forecast the arrival time of new batches, and prefetch the
item into cache just before its arrival. For another example,
in financial transaction streams, periodic transaction batches
could be an indicator of illegal market manipulation [6]. By
detecting periodic batches in real time, we can quickly find

* National Key Laboratory for Multimedia Information Processing, School of
Computer Science, Peking University, China.

JrPeng Cheng Laboratory, Shenzhen, China.

fzTE Corporation, China.

The preliminary version of this paper titled “HyperCalm Sketch: One-Pass
Mining Periodic Batches in Data Streams” is published in the 39th IEEE In-
ternational Conference on Data Engineering (IEEE ICDE 2023) [1l], Anaheim,
California, USA, April 3-7, 2023

those suspicious clients that might be laundering money. Pe-
riodic batches are also helpful in recommendation systems
and online advertisements, where the data stream is gen-
erated when users click or purchase different commodities.
A batch forms when users continuously click or purchase
the same type of commodities. In this scenario, periodic
batches imply users’ seasonal and periodic browsing or
buying behaviors [7] (e.g., Christmas buying patterns that re-
peat yearly, or seasonal promotion-related user behaviors).
Studying periodic batches can help us to better understand
customer behavior, so that we can deliver appropriate ad-
vertisements promptly to customers. In addition, periodic
batches are also important in networks. In network stream,
most TCP senders tend to send packets in periodic batches
[8]. If we can forecast the arrival time of future batches, we
can pre-allocate resources to them, or devise better strategies
for load balancing. To our knowledge, there is no existing
work studying periodic batches, and we are the first to
formulate and address this problem.

Finding periodic batches is a challenging issue. First,
finding batches is already a challenging issue. Until now,
the state-of-the-art solution to detect batches is Clock-Sketch
[2], which records the last arrival time of recent items in
a cyclic array, and uses another thread to clean the out-
dated information using CLOCK [9] algorithm. However,
to achieve high accuracy, it needs to scan the cyclic array
very fast, which consumes a lot of CPU resources. Second,
periodic batch is a more fine-grained definition, and thus
finding periodic batches is more challenging than just find-
ing batches. The goal of this paper is to design a compact
sketch algorithm that can accurately find periodic batches
with small space- and time- overhead.

1.2 Our Proposed Solution

This paper proposes a unified framework, called Hyper-
Calm sketch, to detect batch and periodic batch in data

streams in real time. HyperCalm takes two phases to find
top-k periodic batches. In phase 1, for each item e arriving
at time t, we check whether it is the start of a batch. If
so, we query a TimeRecorder queue to get the arrival time
t of the last batch of e, and calculate the batch interval
V =t — {. Then we send this batch and its interval (e, V)
to the second phase. In phase 2, we check periodicity and
manage to record top-k periodic batches, ie., top-k (e, V)
pairs. In phase 1, we devise a better algorithm than the state-
of-the-art algorithm for detecting batches, Clock-Sketch [2].
In phase 2, we propose an enhanced top-k algorithm, which
naturally suits our periodic batch detection scenario.

In phase 1, we propose a time-aware version of Bloom
filter, namely HyperBloomFilter (HyperBF for short), to
detect batches. For each incoming item, phase 1 should
report whether the item is the start of a batch. In other
words, this is an existence detection algorithm. In addi-
tion, phase 1 should be aware of the item arrival time
to divide a series of the same item into many batches.
Bloom filter [10] is the most well-known memory-efficient
data structure used for existence detection. However, the
existence detection of Bloom filter is only low-dimensional,
i.e., it is agnostic to time dimension. Typical work aware of
time dimension is Persistent Bloom filter (PBF) [11]. It is an
elegant variant of Bloom filter, which uses a set of carefully
constructed Bloom filters to support membership testing for
temporal queries (MTTQ) (e.g., has a person visited a website
between 8:30pm and 8:40pm?). MTTQ and batch detection
are different ways to be aware of time dimension. To enable
Bloom filter to be aware of time, our HyperBF extends each
bit in Bloom filter into a 2-bit cell, doubling the memory
usage. Compared to the standard Bloom filter, HyperBF
has the same number of hash computations and memory
accesses for each insertion and query. The only overhead
for time awareness is doubling the memory usage, which is
reasonable and acceptable.

In phase 2, we propose an enhanced top-k algorithm,
called Calm Space-Saving (CalmSS for short), to report
top-k periodic batches. For each incoming batch and its
interval, i.e., (e,V), phase 2 should keep periodic batches
with large periodicities, and evict periodic batches with
small periodicities. In other words, phase 2 keeps frequent
(e, V) pairs, and evicts infrequent (e, V') pairs, which is is
a top-k algorithm. Typical top-k algorithms include Space-
Saving [12], Unbiased Space-Saving [13], and Frequent [14].
However, their accuracy is significantly harmed by cold
items |'| This problem is more serious in our scenario of
periodic batch detection. This is because one infrequent
item may have multiple batches, and one frequent item
may also have multiple batches without periodicity. Both
the two cases above increase the number of cold (e, V)
pairs. To identify and discard cold items, Cold Filter [17]
and LogLogFilter [18] record the frequencies of all items in
a compact data structure. However, considering the large
volume of data stream, this structure will be filled up very
quickly, and needs to be cleaned up periodically. To ensure
the one-pass property of our solution, it is highly desired

1. Cold items refer to items with small frequencies (i.e., infrequent
items), and hot items refer to items with large frequencies (i.e., frequent
items). In practice, most items are cold items, which appear just several
times [15]], [16]

2

to devise a data structure which will never be filled up.
Instead of recording all items, our solution is to just record
the frequencies of some items in the sliding window. Rather
than using existing sliding window algorithms [19], [20],
[21], this paper designs an LRU queue working together
with Space-Saving because of the following reasons. First,
our LRU queue is elastic: users can dynamically tune its
memory usage to maintain a satisfactory accuracy. Second,
our LRU queue has elegant theoretical guarantees (see
details in § [3.3). Third, our LRU queue can be naturally
integrated into the data structure of Space-Saving (see de-
tails in § [3.4): such combination achieves higher accuracy
and higher speed. Our combination is faster because the
LRU queue efficiently filters most cold items, and thus
the complicated replacement operations incurred by cold
items are avoided (see Figure [I5d). Actually, besides the
application of periodic batch detection, our LRU queue can
improve the accuracy/speed of any streaming algorithms.
We can handle any case that Cold filter can handle, and
we are both time- and space- more efficient than Cold filter
(8 . All related codes are open-sourced [22].

1.3 Key Contributions

o We formulate the problem of finding periodic batches in
data streams. We believe this is an important problem.

o We propose an accurate, fast, and memory efficient Hy-
perCalm sketch to detect periodic batches in real time.
Both the two components of HyperCalm, HyperBF and
CalmSS, significantly outperform the SOTA in detecting
batches and finding top-k items, respectively.

o We derive theoretical guarantees for our HyperBF and
CalmsSS, and validate our theories using experiments.

¢ We conduct extensive experiments, and the results show
that HyperCalm outperforms the strawman solutions 4x
in term of error and 98.1x in term of speed.

o We apply HyperCalm to the scenarios of cache and net-
work measurement, showing that periodic batches can
benefit real-world application. We also integrate Hyper-
Calm into Apache Flink [23] and Redis [24].

2 BACKGROUND AND RELATED WORK

2.1 Problem Statement

Batches: A data stream is an infinite sequence of items
where each item is associated with a timestamp. A batch
is defined as a group of identical items in the data stream,
where the time gap between two adjacent batches of the
same item must exceed a predefined threshold 7. For
convenience, in this paper, two adjacent batches mean two
batches belong to the same item by default. The arrival time
of a batch is defined as the timestamp of the first item of
this batch. We define the interval/time gap between two
adjacent batches as the interval between their arrival times.
Periodic batches: A group of periodic batches refers to «
consecutive batches of the same item, where these batches
arrive with a fixed time interval. We call « the periodicity.
Here, the “fixed time interval” is not the exact time, but the
approximate (noise-tolerant) time rounded up to the nearest
time unit (e.g., one millisecond). Finding top-k periodic
batches refers to reporting k groups of periodic batches with
the k largest periodicities. Note that one item may have

more than one group of periodic batches, and thus can be
reported more than once.

Example (Figure [1): We use an example to further clarify
our problem definition. We focus on two distinct items e;
and e in the data stream. For ey, its 6 batches form a group
of periodic batches. For ey, it has two groups of periodic
batches, with the periodicities of 4 and 5, respectively. Note
that some batches of e; just have one item.

Data Stream batch threshold T = 1s T,

iamy wf Kifi & Tasf il F&

g
item ey batch periodicity 6 Q
ll3 o9 3] g3 oJ
S | S 1

o
le— 35 —>I 35 —l«—3s—I
periodicity 4 item e, periodicity 5
@ @ @ @ /) @ (5]5]
=28 —I«—25—>I«—25—>l«— 35 —>l«— 35 —>l«— 35 —l«— 35—

Fig. 1: Example of periodic batches.

Discussion: The definition of periodic batches is a design
choice related to final application. We think our definition
of periodic batches is most general, which can benefit many
real-world applications (see § as an example). How-
ever, certain application may also care about other aspects
of periodic batches, such as batch size and distance. For
example, some application may just want to detect those
periodic batches that are large enough in size. It is not
hard to detect those variants of periodic batches by adding
small modification to our solution. For example, we will
discuss how to detect periodic large batches in § and
demonstrate its application in §

2.2 Related Work

Related work is divided into three parts: 1) algorithms for
batch detection; 2) algorithms for finding top-k frequent
items; and 3) algorithms for mining periodic patterns.
Batch detection: Item batch is defined very recently in [2],
which proposes Clock-Sketch to find batches. Clock-Sketch
consists of an array of s-bits cells. For each incoming item,
it sets the d hashed cells as 2° — 1. For query, if one of
the d hashed cells is zero, it reports a batch. Clock-Sketch
uses an extra thread to cyclically sweep the cell array at a
constant speed and decreases the swept non-zero cells by
one. The sweeping speed is carefully selected to avoid false-
positive errors. Besides Clock-Sketch, some sliding window
algorithms can be applied to find batches, including Time-
Out Bloom Filter (TOBF) [25] and SWAMP [26].

Finding top-k frequent items: To find top-k frequent items
in data streams, existing approaches maintain a synopsis
data structure. There are two kinds of synopses: sketches and
KV tables. 1) Sketches usually consist of multiple arrays, each
of which consists of multiple counters. These counters are
used to record the frequencies of the inserted items. Typical
sketches include CM [27], CU [28], Count [29], and more
(301, [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42]], [43]. However, sketches are memory inefficient because
they record the frequencies of all items, which is actually
unnecessary. 2) KV tables record only the frequent items.
Typical KV table based approaches include Space-Saving
[12], Unbiased Space-Saving [13], Frequent [14], and more
[44]. Space-Saving and Unbiased Space-Saving record the

3

approximate top-k items in a data structure called Stream-
Summary. However, their accuracy is significantly degraded
by cold items. To address this issue, Cold Filter [17] uses
a two-layer CU sketch to filter cold items. However, as
aforementioned, the structure of Cold Filter will be filled up
very quickly, and cleaning the full Cold Filter will inevitably
incur error and time overhead.

Mining periodic patterns: Although there have been some
algorithms aiming at mining periodicity in time sequence
data [45], [46], [47], [48], [49], [50], [51], their problem
definitions are different from ours. More importantly, most
of them do not meet the requirements of data stream model
processing: 1) each item can only be processed once; 2) the
processing time of each item should be O(1) complexity and
fast enough to catch up with the high speed of data streams.
For example, TiCom [48] defines a periodical problem in
an incomplete sequence data, and develops an iterative
algorithm with time complexity of O(n?). RobustPeriod [46]
proposes an algorithm based on discrete wavelet transform
with time complexity of O(n logn). Further, there are some
works which elegantly use Fast Fourier Transform (FFT)
or Auto Correlation Function (ACF) to address different
definitions of periodic items, such as SAZED [49]. These
algorithms need to process one item multiple times, and
thus cannot meet the above two requirements.

TABLE 1: Symbols frequently used in this paper.

Symbol Meaning

ID of an item in a data stream

Batch threshold spacing two adjacent batches

Number of arrays in HyperBF

The i'" array of HyperBF

Number of 2-bit cells in each array B;

Number of 2-bit cells in each block

Hash function mapping an item into a cell in B;

Time interval of two adjacent batches of an item

Length of the TimeRecorder queue

An entry in phase 2, which is the concatenation of an item
e and its batch interval V/, i.e., (e, V)
Length of the LRU queue in CalmSS
Promotion threshold of the LRU queue
Number of slots in each bucket
TimeRecorder/LRU-Queue/Space-Saving
Number of buckets in bucketized TimeRecorder/ LRU-
Queue/Space-Saving

Hash function mapping items/entries into buckets in
bucketized TimeRecorder/ LRU-Queue/Space-Saving

L Batch size threshold of periodic large batch

C; The i*" array of CM sketch used to report batch size

of bucketized

3 THE HYPERCALM SKETCH

Overview (Figure [2): The workflow of the HyperCalm
sketch consists of two phases: 1) A HyperBloomFilter (Hy-
perBF) detecting the start of batches; and 2) A Calm Space-
Saving (CalmSS) recording and reporting top-k periodic
batches. In addition, we design a TimeRecorder queue to
record the last batch arrival time for potential periodic
batches. Given an incoming item e arriving at time ¢, we
first propose HyperBF to check whether it is the start of a
batch. If so, we query the TimeRecorder queue to get the
arrival time £ of the last batch of e and calculate the batch
interval V. = ¢ — £. f{ Then we update the arrival time of
last batch of e in the TimeRecorder queue to ¢. Next, we

2. To tolerate noise in batch interval, V' is rounded up according to
the regulations described in the parameter setting part of §

send e and its batch interval V' to CalmSS to detect top-
k periodic batches. We combine the ID of item e and its
interval V to form an entry E = (e, V'), and insert the entry
into CalmSS. CalmSS reports k groups of periodic batches
with the k largest periodicities, i.e., reports top-k entries with
the k largest frequencies, where each entry is an (e, V) pair.
We will discuss that the insertion time complexity of each
component of the HyperCalm sketch is O(1), and thus its
overall time complexity is also O(1). The main symbols used
in this paper are listed in Table

Top-k periodic batches HyperCalm Sketch
Min-Heap @ Keep and report top-k periodic
(Space- Savmg) batches (Top-k Algorithm)
Phase 2
LRU Queue | @© Discard cold entries |
A
| Entry (e, V) (batch with rounded interval V)
T:meRecorder (> Query the arrival time of the
(Circular Queue) last batch £
A Hash Table storing timestamps and indices f
Item batch
Phase 1 | HyperBF | [€@ Detectthe start of batches |

Iteme arrlwng at time t

Fig. 2: HyperCalm sketch workflow.

3.1 The HyperBF Algorithm

Rationale: To enable Bloom filter to be time-aware, the key
technique of HyperBF is to extend every bit in Bloom filter
into a 2-bit cell, and use these cells to compactly record the
approximate last arrival time of recent items. Although we
can also use 3-bit or 4-bit cells, we find that under fixed
memory, using 2-bit cells achieves the best accuracy. Since
2-bit cell can represent 4 states (0~3), HyperBF cyclically
divides the timeline into three kinds of time slices (1~3),
and the length of each time slice is 7, where T is the
predefined batch threshold (see Figure [4a). These time slices
are recorded in the 2-bit cells of HyperBF. HyperBF needs to
clean all outdated time slices efficiently. Rather than using
an extra thread like Clock-Sketch [2], HyperBF incidentally
cleans the outdated cells during each insertion. Compared
to standard Bloom filter, HyperBF has the same number of
hash computations and memory accesses for each insertion
and query. Further, we propose a novel Asynchronous Time-
line technique to significantly reduce the error of HyperBE.
Theoretical guarantees of HyperBF are provided in § 4

Data structure: HyperBF consists of d arrays By, -, Bg.
Each array B; has m 2-bits cells B;[1], - - - , B;[m], which are
evenly divided into “* blocks with [2-bit cells. Each block
can fit into the size of a cache line, and thus could be read
or write through one memory access. When checking one
cell, we can incidentally access the other cells in its block,
which does not incur extra memory accesses. Each array B;
is associated with a hash function h;(-) that maps an item
into a cell in it. As mentioned above, HyperBF divides the
timeline into three kinds of time slices (1~3). Each cell stores
a time slice (1~3) or a zero flag (0). We preserve the zero
value of cells as the batch flag: once an incoming is mapped
into a cell with batch flag, a new batch starts. For example
in Figure |3} HyperBF has 2 cell arrays, each of which has
4 2-bit cells which are divided into 2 blocks. For simplicity,
each block has [= 2 cells here. In practice, we can set the

4

block size to any value no more than 64B (I < 256), i.e., no
more than the cache line size. All cells are initialized to 0.
Insert: For each incoming item e with timestamp ¢, we first
calculate the current time slice s = |+| mod 3 + 1. We
calculate the d hash functions to locate the d hashed cells of e:
Bi[hi(e)], -+, Bqlha(e)]. For each hashed cell, we check the
block which the cell resides, and incidentally clean outdated
cells to zero flag. Specifically, if the current time slice is 1,
time slice 2 is outdated; if the current time slice is 2, time
slice 3 is outdated; if the current time slice is 3, time slice
1 is outdated. Due to the high speed of the data stream, all
outdated cells will be cleaned in time (see theoretical results
in §[4). After cleaning, if any one of the d hashed cells is zero
flag, HyperBF reports the start of a batch. Finally, we update
all d hashed cells to the current time slice s.

Snow =2

ha(ez)

, | [ilo] (al1]|

Snow =1

ha(e1)

B, | [110] [21]|

Example 1
hi(es)

B, | 23] 23]

Example 2
hi(ez)

#, [Ol B3|

GClean Clean{ﬁ Clean{} Clean{}
7 [013] 23] Bz@jBatch) B, |[o[1][2[0]| | [il0] (AI1] |
Update<y Updatedl Update<dl Update{}
3, |[0[23| .| [{0] AT 3, [0 2[0]] .| [0 (12]]
M(ZBfts m 21\)1/?5

Fig. 3: Two examples of HyperBF (d = 2, m =4, = 2).

Example 1 (left of Figure [3): For item e; arriving at time
slice spow = 1, we first locate its two hashed cells 53 [2] and
B2[3] by calculating hq(e1) and ha(e1). Next, we clean the
outdated cells with value 2. For B;[2], we check all cells in
its block (i.e., B1[1] and B1[2]), and clean the outdated cell
B1[1] to zero. For Bs[3], we clean the outdated cell Bs[3] to
zero. After cleaning, since the second hashed cell B;[3] is
zero, we report the start of a batch. Finally, we update the
two hashed cells to s;,04-

Example 2 (right of Figure [3): For item e, arriving at time
slice s,00 = 2, we first locate its two hashed cells B;[3] and
Ba[4]. Next, we check the blocks which the two hashed cells
reside, and clean the outdated cells with value 3, i.e., clean
B1[4] to zero. Since after cleaning, both the two hashed cells
are not zero, we do not report a batch. Finally, we update
B1[3] and B2 [4] to Snow-

Error analysis: HyperBF might miss some batches, but the
reported batches are always correct. The error of HyperBF
comes from three aspects. 1) The error incurred by hash
collision, which is the cause of false positive error of Bloom
filters. 2) The error incurred by outdated cells that are not
cleaned in time. 3) The error incurred by coarse-grained
timeline division. We provide the theoretical analysis of the
three kinds of error in § @ proving that the impact of the
first two kinds of error are negligible. For the third error,
essentially, our 2-bit time slice is a coarse-grained timeline
division: the gain is extremely high memory efficiency, and
the cost is the fuzzy perception of time. Fortunately, the er-
ror incurred by fuzzy perception of time can be significantly
reduced by the following Asynchronous Timeline technique.
Asynchronous Timeline: HyperBF perceives time in a
fuzzy way. When the interval between two adjacent batches
is among T ~ 27, HyperBF might not be able to report
the second batch correctly, depending on the relative offset
of the timeline. Specifically, only when the interval span
three time slices can HyperBF be able to report the second

batch. This issue is illustrated in Figure Although the
time interval between the two occurrences of e; exceeds
T, HyperBF cannot correctly divide them into two batches
because the interval span just two time slices. Therefore,
when the current time slice is 1, time slice 3 is not outdated.
To address this issue, we propose the Asynchronous Timeline
technique. Our key idea is to use d different timeline offsets
for the d arrays to enhance the ability of batch perception.
In this way, as long as the interval spans three time slices
in any one of the d timelines, HyperBF can perceive the
second batch correctly. As shown in Figure @b} after using
the Asynchronous Timeline technique, the interval spans three
time slices in the second array. In this example, HyperBF can
correctly perceive the second batch. We derive theoretical
guarantees for Asynchronous Timeline using linear program-
ming model in Theorem §.3)in § [} proving that the time
division error can be reduced by d times when using d
evenly distributed timelines.

| Synchronous | - ! I Asynchronous 127 :

1 e = e . & ﬂel ,

O W=~ ? bl B OL11218 1 w21,

| mypL2L8LBe2L, | T

1 time division error ! E B, 171 d H
(a) Synchronous. (b) Asynchronous.

Fig. 4: Optimization using Asynchronous Timeline
Analysis on computational cost: The insertion operation
of HyperBF requires d hash calculations (hy(e),- -, hq(e))
and d memory accesses (B1[hi(e)], - - - , Ba[ha(e)]). For each
memory access, HyperBF checks [cells within a block and
cleans all outdated cells therein. We will see that this proce-
dure can be accomplished with SIMD AVX-512 instructions
without the need for looping (§ [3.6). Therefore, the time
complexity of HyperBF is O(d). In practice, we usually
set d to a small value (d = 8 by default). Thus, the time
complexity of HyperBF can be approximate to O(1).

3.2 The TimeRecoder Algorithm

To record the last arrival time of batches, a strawman so-
lution is to use a huge hash table to store the arrival time
of the last batches for all items. This is memory inefficient,
because most batches are not periodic. To address this issue,
we propose TimeRecorder aiming to only store the time
for those batches that are potential top-%k periodic batches.
The data structure of TimeRecorder is essentially a circular
queue, which is implemented as a doubly linked list of ¢
nodes. Each node records an item ID. We build the first hash
table index (Index_1) for TimeRecorder. For each item e in
the TimeRecorder queue, we store the arrival time t of its
last batch in Index_1.

For each incoming batch of item e at time ¢, we first
query Index_1 to check whether the arrival time of its last
batch is recorded. 1) If so, we calculate the batch interval
V = t — t. Then we combine the item ID e and its batch
interval V to form an entry F = (e, V), and send the entry
to CalmsSS. Finally, we update the timestamp of e to the
current time ¢ and move it to the front of the circular queue.
2) If not, we insert e into the TimeRecorder queue, and
store the arrival time ¢ of its last batch in Index_1. If the
TimeRecorder queue is already full before insertion, we evict
the oldest (least recently accessed) item e to make room for
e. Note that if eg has periodic batches (i.e., it is maintained in

5

CalmSS), we still preserve the arrival time of its last batch in
Index_1. For the implementation details, please see §
Our TimeRecorder evicts the following items: 1) Items
that are old and do not show periodicity; and 2) Items whose
batches have long periods, which have little potential to
become top-k periodic batches. The TimeRecorder keeps the
items that are highly likely to have top-k periodic batches,
and discard other items which are the major part of the data
stream. Therefore, our TimeRecoder queue is much more
memory efficient than the above strawman solution.
Analysis on computational cost: In the insertion operation
of TimeRecorder, we first query Index_1 (implemented as
a hash table with O(1) time complexity). If item e exists
in Index_1, we update its last arrival time in Index_1
and move it to the front of the circular queue. Notice that
we can acquire the position of e in the circular queue from
Index_1.If eisnotin Index_1, we insert it into Index_1
and the front of the circular queue, and evict the oldest item
from the tail of the circular queue. All these operations can
be accomplished with O(1) time complexity, and thus the
overall time complexity of TimeRecorder is also O(1).

Abatch of item e U E=(e,V)

Filter cold entries

77777 Min-Heap
Space-Saving)
Top-k Algorithm

T v
Top-k periodic !
batches End

(a) Data structure. (b) Insertion workflow.
Fig. 5: Data structure and workflow of CalmSS.

Pl

Delete E from LRU Queue
and insert into Min-Heap

3.3 The CalmSS Algorithm

Rationale: Phase 2 uses a top-k algorithm to report top-%
periodic batches. The most well-known top-k algorithm is
Space-Saving [12], which works by maintaining a Min-Heap
of m bins. For each incoming entry E; = (e, V1), if itis in
the heap, it increments its counter by one; otherwise, it up-
dates one of the smallest bins (E,,irn, fiin) to (1, fmin +1).
In this way, each incoming entry increments a counter in
Space-Saving. Recall that in phase 2, most entries are cold
entries, which appear just several times. All increments
by cold entries are unnecessary, and significantly increase
the overestimation error. Therefore, we propose CalmSS to
minimize the influence of cold entries. The key idea of
CalmSS is to use a queue to discard cold entries. The queue
records the frequency of entries in the sliding window. This
queue follows the LRU strategy: the least recently visited
cold entry will be discarded, and hot entries will be moved
to Space-Saving. Specifically, each incoming entry is first
inserted into the queue: if it appears too few times in the
sliding window, it will be discarded; otherwise, it will be
moved to Space-Saving. This LRU Queue can be considered
as a guardian of Space-Saving to keep cold entries outside.
Data structure (Figure [5a): CalmSS consists of an LRU
queue and a Space-Saving (it is essentially an Min-Heap):
1) The LRU queue uses a sliding window of w bins to keep
the recent w distinct entries. Each bin stores a key-value pair
(E, f), where the key is an entry ID and the value is a small

Batch of item e]
N2 Bucketized TimeRecorder

Bucketized LRU Queue

Bucketized Space-Saving

Bucketized Batch of item e Entry E Entry E with frequency P
TimeRecorder g(e)! bucket array g(E)j bucket array g(E)/ bucket array
eny|EZ(eV) I CT T T T 1 I O Y
CalmSS| | T e L e T e e T T e
P#ﬁkgtl'é%% fp(e) = 12; current time = 70 sorted by time fp(E) = 14 E=<24,7> P=4
Filter cold entries FP |Time FP |Time FP |[Freq. FP |Freq. ID [Freq. ID |Freq.
14 | 68 12 1 70 45 3 14 1 <35, 3>[135 <35, 3>[135
Bucketized 78 | 64 |C>| 14 | 68 12 | 4 |op[45 | 3 <75, 2> 56 |G [<75, 2>] 56
Space-Saving 45 | 35 78 | 64 34 [2 12 | 4 <18, 8>[34 <24, 7>| 38
Top-k Algorithm 23 [7 45 [35 43 | 5 34 | 2 <36, 9> 63 <36, 9> 63
Top-k ;eriodic evict the least recent item evict the least recent entry evict the least frequent entry

batches

(a) Overview. (b) TimeRecorder.

(c) LRU Queue. (d) Space-Saving.

Fig. 6: Bucketized Partition Optimization (b = 4).

counter recording the frequency of . The LRU queue uses a
predefined threshold P (called promotion threshold) to filter
out cold entries: Once the counter of an entry E reaches P,
it means it is not a cold entry, and thus we remove E from
the LRU queue and insert it into the Space-Saving. 2) The
Space-Saving uses a Stream-Summary [12] and a hash table
to achieve O(1) time complexity to locate and update the
entries. Similar to the TimeRecoder, we build the second
and third hash table indices (Index_2 and Index_3) for
the LRU queue and the Space-Saving.

Insert (Figure [5b): For each incoming entry E = (e, V), we
first query it in the hash indices: 1) If E is in the Space-
Saving, we just increment its counter by one. 2) If E is in
the LRU queue, we increment the small counter of £ in the
LRU queue by one. After increment, if the small counter
reaches the predefined promotion threshold P, we remove
E from the LRU queue and insert (E,P) into the Space-
Saving. Specifically, if the Min-Heap is already full before
inserting E, we update the smallest node (Epin, fmin) in
the Space-Saving to (E, fymin + P). 3) If E is not in the
LRU queue, we insert (E, 1) into the LRU queue. If the LRU
queue is already full before inserting £, we evict the least
recently accessed entry to make room for E.

Analysis on computational cost: In the insertion operation
of CalmSS, we first query the hash indices (with O(1)
time complexity) to obtain the positions of entry E in
Space-Saving and LRU queue. Subsequently, we update
the frequency of E in either Space-Saving or LRU queue.
If the frequency in the LRU queue exceeds threshold P,
we insert (E,P) into Space-Saving. Notice that the update
operation of Space-Saving has a time complexity of O(1)
[12]. Therefore, the time complexity of CalmSS is also O(1).
Report: To report top-k periodic batches, CalmSS reports
the k entries with the £ largest frequencies in the Min-Heap.
The time complexity of this procedure is O(k). Note that
one item could have multiple groups of periodic batches,
and thus could be reported more than once.

3.4 Implementation

In our implementation, we combine the three hash indices
(Index_1, Index_2, and Index_3) into one hash table
index Index_all. For each key-value pair in the hash
table Index_all, it includes one key (item ID) e and three
values: 1) A timestamp #, which is the arrival time of the last
batch of e; 2) Two entry lists List_1 and List_2, which
record the corresponding entries of e (they are essentially

some batch intervals of e) that are in the LRU queue and
the Space-Saving (Min-Heap), respectively. Each node in the
two entry lists uses a pointer to index the location of the
LRU queue or the Space-Saving. 3) A counter recording the
sum of several parts: the number of appearances of e in the
TimeRecorder, and the lengths of the two lists. We delete e
from the hash table once its counter is decremented to zero.
In this way, for all items that have periodic batches, their
last batch arrival time is maintained in Index_all even if
they are not in the TimeRecorder queue.

3.5 Optimization: Bucketized Partition

In the TimeRecorder and CalmSS algorithm, for each in-
coming item/entry, we need to first check whether the
item/entry is recorded in TimeRecorder/CalmSS. In the
basic version of HyperCalm, to accelerate the checking
process, we build a hash table to index each item/entry with
O(1) time complexity. However, this data structure doubles
the memory usage, and it is also time inefficient because of
many pointer operations. To address this issue, we propose
the Bucketized Partition optimization, which removes the
hash table from our HyperCalm sketch while maintaining
its O(1) time complexity.

Data structure (Figure[6): As shown in Figure[6a] we remove
the hash table from HyperCalm sketch. As shown in Fig-
ure the data structure of optimized TimeRecorder/
LRU-Queue/Space-Saving is an array of z buckets. We use
a hash function g(+) to map each item/entry into one bucket
in the array. Each bucket has b slots. In bucketized TimeRe-
corder (Figure [6b), each slot stores a 16-bit fingerprint of an
item and a timestamp recording its last batch arrival time. In
bucketized LRU Queue (Figure , each slot stores a 16-bit
fingerprint of an entry and a counter recording its frequency.
In bucketized Space-Saving (Figure [d), each slot stores an
entry ID and a counter recording its frequency.

Insertion: As shown in Figure we process each item
batch reported by HyperBF in a one-pass manner. For each
batch of item e at time ¢, we first query the bucketized
TimeRecorder to acquire its last batch arrival time ¢ and
calculate its batch interval V' = ¢ — £. Then we send the
entry E = (e, V) to bucketized CalmSS, which reports top-
k frequent entries, i.e., top-k periodic batches. Specifically,
we first check whether E is recorded in bucketized Space-
Saving. If so, we increment its frequency by one. Otherwise,
we insert F into bucketized LRU Queue. Below we describe
the insertion operation of the three algorithms.

1) Bucketized TimeRecorder: Each bucket in bucketized
TimeRecorder works independently as a small circular
queue. The items in each bucket are sorted in time order,
i.e., the first item is the most recent item and the last item
is the least recent item. For each incoming batch of item
e at time t, we first calculate hash function g(e) to locate
the g(e), bucket (called the hashed bucket of ¢). Then we
calculate a hash function to acquire the fingerprint fp(e). If
e is recorded in the hashed bucket (i.e., fp(e) is recorded in
this bucket), we update its timestamp to ¢ and move this
item to the first slot. Otherwise, we evict the least recent
item (i.e., the last item in the bucket) if the bucket is full, and
then insert (fp(e),t).

Example (Figure [6b): We first calculate hash functions to
locate the hashed bucket and acquire the fingerprint fp(e) =
12. Since fp(e) is not recorded in the hashed bucket, we
evict the least recent item (23, 7) and then insert (fp(e), t).
2) Bucketized LRU Queue: Similar to bucketized TimeRe-
corder, each bucket in bucketized LRU Queue works inde-
pendently as a small LRU queue. The entries in each bucket
are sorted in time order. For each incoming entry E, we first
calculate hash function g(F) to locate its hashed bucket and
calculate hash function fp(E) to acquire its fingerprint. If £
is recorded in the hashed bucket, we increment its counter
by one and move E to the first slot. If the counter reaches
the promotion threshold P after increment, we remove F
from the bucket and insert (£, P) into Space-Saving. If E is
not recorded in the hashed bucket, we evict the least recent
entry, and insert (fp(E), 1) into this bucket.

Example (Figure [6c): To insert entry E, we first calculate
hash functions to locate its hashed bucket and acquire its
fingerprint fp(FE) = 14. Since fp(FE) is not recorded in the
hashed bucket, we evict the least recent entry (i.e., the last
entry) and insert (fp(E), 1) into this bucket. After insertion,
the entries in this bucket are also kept in time order.

3) Bucketized Space-Saving: Each bucket in bucketized
Space-Saving works independently as a small Space-Saving.
For each incoming entry E and its frequency P, we first
calculate hash function to locate the hashed bucket. If
is recorded in this bucket, we increment its frequency by
P. Otherwise, we check the hashed bucket to find the
slot recording the entry with the smallest frequency, i.e.,
(Emin, fmin), and then update this slot to (E, fiimn + P).
Example (Figure [6d): To insert entry E with frequency P,
we first calculate hash function to locate its hashed bucket.
Since F is not recorded in the hashed bucket, we evict the
least frequent entry E,,;, = (18,8) and insert (F, 34 + P).
Report: To report top-k periodic batches, we traverse all
buckets in bucketized Space-Saving, and reports the entries
with top-k largest frequencies. The time complexity of this
traversal procedure is O(z X b).

Discussion: Bucketized Partition optimization has the fol-
lowing advantages. First, bucketized HyperCalm sketch is
more memory efficient because it removes the hash table
index. In addition, it replaces the IDs in TimeRecorder
and LRU Queue with compact fingerprints, which further
saves memory. Second, bucketized HyperCalm sketch has
faster insertion speed. It processes each item in a one-pass
manner and has O(1) time complexity. Third, bucketized
HyperCalm sketch is cache-friendly and can be further

7

accelerated using SIMD instructions [52] to achieve better
data parallelism, which will be described in §

Analysis on computational cost: In the insertion op-
eration of Bucketized TimeRecorder/LRU-Queue/Space-
Saving, we first calculate hash function to locate one hashed
bucket. Then we update the timestamp or frequency of the
item/entry within its hashed bucket. The entire insertion
operation requires one hash calculation and one mem-
ory access. Therefore, the time complexity of Bucketized
TimeRecorder/LRU-Queue/Space-Saving is O(1).

3.6 Optimization: SIMD Acceleration

Single instruction, multiple data (SIMD) [52] is a widely-
used data parallel processing technology that can perform
the same operation on multiple data simultaneously. This
technology well suits the data structure of the HyperCalm
sketch using Bucketized Partition. Below we describe how
to use SIMD instructions to accelerate HyperCalm.
HyperBF acceleration: In HyperBE for each incoming item,
we first locate d hashed blocks and clean all cells in these
blocks. To ensure that outdated cells can be cleaned timely,
the block size is set to 64B (cache line size). In our basic
implementation, we use a loop to clean these cells, which
can be accelerated using SIMD. Currently, AVX-512 instruc-
tion set provides 512-bit wide SIMD registers (ZMM). We
can load a block into one 512-bit register and use 512-bit
bit operations to efficiently clean this block, eliminating the
complicated loops and improving efficiency.

Bucketized TimeRecorder/CalmSS acceleration: In buck-
etized TimeRecorder/LRU-Queue/Space-Saving, we treat
the b slots as uniform data points and uses SIMD in-
structions to simultaneously process them in parallel. To
ensure memory continuity, in each bucket, we record IDs
(or fingerprints) and frequencies (or timestamps) in two
arrays separately, which are called the ID array and the
information array. In insertion process, we first check the ID
array. If we find a matched ID/fingerprint, we update the
corresponding frequency/timestamp. Otherwise, we check
the information array to find the item/entry to be evicted
(e.g., the least recent item in TimeRecorder). We can use
SIMD instructions to accelerate three processes: 1) finding
mathed ID/fingerprint; 2) sorting items according to time
order; 3) finding the minimum counter. The implementation
details can be found in our supplementary materials [53].

3.7 Extension: Mining Periodic Large Batches

Motivation: In § we define periodic batches without
considering the size of batches. Under such definition, a
group of periodic items is also treated as a group of periodic
batches, even if each batch only has one item. However,
in many applications, users are more interested in periodic
batches with large sizes. For example, in the scenario of
streaming database, many data processing requests arrive
with periodicity. It is possible to identify periodic batches
and predict the arrival time of each batch, so as to pre-
allocate resources (e.g., CPU and I/O) to handle the in-
creased load more efficiently. In this scenario, it’s more
beneficial to prioritize pre-allocating resources for larger
batches as opposed to smaller ones due to their higher
demand for resources and their potential to impact system
performance more significantly. Another example can be

seen in the context of network traffic load balancing. Here,
the network operator can identify periodic batches and
schedule these batches to balance the load (e.g., schedule
each batch to the least loaded path). In this case, the operator
only needs to schedule large batches and can neglect small
batches, because only large batches have the potential to
cause load imbalance [54].

In this subsection, we present the definition of periodic
large batches and extend our HyperCalm sketch to identify
them. Specifically, we extend HyperBF to report the size
of each batch, and we only send the batches with large
estimated sizes to the next phase. In this way, we maintain
the information of periodic large batches in CalmSS.

Problem statement: A group of periodic large batches refers
to o« consecutive batches of the same item, where these
batches arrive with a fixed time interval, and the size of
each batch is larger than a predefined threshold £. Similar
to the definitions in § we define o as the periodicity
and define top-k periodic large batches as the k groups of
periodic large batches with the k largest periodicities.

Data structure: We extend HyperBF to report batch size by
combining it with a Count-Min (CM) sketch [27]. Consider
a HyperBF with d arrays By, - - - , Bg, each of which has m
2-bit cells. We build a CM sketch with d arrays Cy,--- ,Cq,
each of which has m counters. In this way, each 2-bit cell is
associated with one counter in CM sketch, and we call this
counter as the associated counter of the cell.

Insert: For each incoming item e arriving at time ¢, we
insert it into the modified HyperBF as follows. First,
we calculate hash functions to locate the d hashed cells
Bi[hi(e)], - ,Bglha(e)] and their d associated counters
Ci[hi(e)],- -+ ,Calha(e)]. For each hashed cell, we check its
block and clean the outdated cells according to the rule of
basic HyperBF described in § In this procedure, if a
cell is cleaned to zero, we additionally clean its associated
counter in the CM sketch to zero. Afterwards, we update
all d hashed cells to the current time slice, and increment
each of the d associated counters by one. We estimate the
size of the current batch of e as the minimum values among
the d counters Ci[hi(e)], - ,Caq[ha(e)], and if the current
estimated size exceeds the predefined large batch threshold
L (i.e., its estimated size reaches £ + 1), we report a large
batch of e to the next phase of HyperCalm sketch.

Report: We record periodic large batches and their period-
icities in CalmSS. To report top-k periodic large batches, we
reports the k entries with the k largest frequencies.

Discussion: Recall that in § we define the arrival time
of each batch as the arrival time of its first item, and we
use this time to calculate the time interval between two
adjacent batches. However, the extended HyperBF reports
a batch to the next phase only when its estimated frequency
reaches £ + 1. This introduces a time lag in the estima-
tion of the batch’s arrival time. As different batches might
have different item arrival speed, and the CM sketch has
overestimation errors, the calculated batch interval might
not be very accurate. However, our experimental results
show that even with the time lag of batch arrival time and
overestimation error of CM sketch, HyperCalm still has high
accuracy in finding periodic large batches (> 0.96 F1 score).

3.8 Extension: Dynamic Memory Adjustment

In practice, the density of data streams and the available
memory resources might vary dynamically [55]. It is de-
sirable to perform on-the-fly reconfiguration on the sketch
size to adapt to these dynamic variations. Towards this
goal, we propose the dynamic memory adjustment oper-
ations for HyperBF and Bucketized TimeRecorder/LRU-
Queue/Space-Saving, by which we can dynamically com-
press and expand their sizes by any integer factor. These
operations allow us to dynamically adjust the memory
usage for HyperCalm sketch without losing the previ-
ously recorded information. The time complexity of the
memory adjustment operations for HyperBF and Bucke-
tized TimeRecorder/LRU-Queue/Space-Saving are O(m)
and O(z) respectively.

Dynamic memory adjustment on HyperBF: We introduce
the dynamic memory adjustment operations of HyperBF to
expand/compress its size by any integer factor. 1) To expand
the size of HyperBF by r times, for each of its array B5;,
we perform the memory copy operation to copy its m cells
by r times and get B; (with m’ = m x r cells). Then we
modify hash function h;(-) = H(-)%m to h}(-) = H(-)%m/.
Notice that h}(-) € {hi(-), hs(-)+m,- -+, hi(-)+(r—1) x m}.
Therefore, the time information recorded in B;[h;(e)] can
still be retrieved in B}[h}(e)] after expansion. 2) To compress
the size of HyperBF by r times, for each of its array B;, we
first split its cells into r groups, each of which has m/r cells.
Then we merge every r cells with the same index in the
r groups into one cell and get B, (with m’ = m/r cells).
For example, we merge B;[0], B;[™],--- ,Bi[(r — 1) x ©]
to Bj[0], merge Bi[1], B;[™ + 1],--- , Bi[(r — 1) x = + 1]
to B;[1], etc. The merging operation is performed by taking
the most recent state among the r cells. We set the resulting
cell to 0 if the r cells are all outdated. Finally, we modify
hash function h;(-) = H(-)%m to hj(-) = H(-)%m'. Asm
is divisible by m/, we have h;(-)%m’ = hl(-). Therefore,
the time information recorded in B;[h;(e)] will be merged to
B.[Rh}(e)] after compression.

Examples (Figure [7): We take the first array B; as an
example to further illustrate the procedure of expand-
ing/compressing a HyperBF by r = 2 times. 1) In the
expansion operation, we just copy By by r = 2 times to
get Bi, where B{[0] = Bi[4], Bi[1] = B}[5], etc. 2) In the
compression operation, we first split By into r = 2 groups.
Then we merge every r = 2 cells with the same index in the
two groups to get B. Specifically, we merge 51[0] and B [4]
to get BB [0], which is set to the more recent state 51 [4] = 2.
Similarly, we merge B;[1] and B;[5] to get Bj[1], etc. For
B} [3], as both B1[3] and B;[7] are outdated, we set it to 0.

hy(e) = H(e)%m Compression hy(e) = H(e)%m

Expansion

B, | 3, |[12]2[0] | [2[3] [2[1)|
{ | I |
Copy | <7 Expand Merge < Compress
;| [113][2]0]| [1]3][2[0] | B |

hi(e) = H(e)%m' m'=2m m =m/2

hi(e) = ;[(e)%m’

Fig. 7: Dynamic memory expansion/compression on Hy-
perBF (m = 4/8,1 = 2, r = 2, current state S, = 3).

Dynamic memory adjustment on Bucketized TimeRe-
corder/ LRU-Queue/Space-Saving: Similarly, we introduce

the dynamic memory adjustment operations of Bucketized
TimeRecorder/LRU-Queue/Space-Saving. Below we take
a bucket array A with z buckets to explain the expan-
sion/compression operations. 1) To expand the memory by
r times, we perform the memory copy operation to copy the
z buckets by r times and get A’ (with 2’ = z xr buckets). We
modify hash function g(-) = G(-)%z to ¢'(-) = G(-)%z’. For
bucketized Space-Saving, when executing the memory copy
operation, for each entry F in bucket A'[{], we compute
hash function to check whether it should be retained in
A'[i]. Specifically, we check whether ¢'(E) = i, and if not,
we remove E from A’[i]. As discussed above, this design
guarantees that the information of item e (or entry) in
Alg(e)] can be retrieved in A'[¢’(e)] after expansion. 2) To
compress the memory by r times, we also split A into r
groups, each of which has z/r buckets. We merge every
r buckets with the same index in the r groups into one
bucket and get A’ (with 2’ = z/r buckets). In the merging
operation, we preserve the following b fingerprints/entries.
For bucketized TimeRecorder, we preserve the most recent b
fingerprints. For bucketized LRU-Queue, we approximately
select the most recent b fingerprints in a round-robin fashion
among the 7 bucket and preserve them. For bucketized
Space-Saving, we preserve the most frequent b entries. This
design guarantees that the information of item e (or entry)
in Alg(e)] can only be stored in A’[¢’(e)] after compression.

Examples (Figure [8): We take bucketized Space-Saving
as an example to illustrate the procedure of expand-
ing/compressing a bucket array A by r = 2 times. 1)
In the expansion operation, we copy A by r = 2 times
to get A’. For each entry E, we calculate hash function
g'(E) to check whether it should be retained in its bucket.
As ¢'((35,3)) = 3, we delete (35,3) from A'[0]. Similarly,
as ¢'((75,2)) = 0, we delete (75,2) from A'[3]. 2) In the
compression operation, we split A into r = 2 groups and
merge every two buckets with the same index to get A’.
For example, when merging A[0] and A[3] to get A'[0], we
preserve the b = 2 entries with the largest frequencies.

Expansion (¢) = G(e)%z Compression g(e) = G(e)%z
; _ AL T T T T T 1
ID_|Freq.) ID Freq: - 1D Freq:

<35,3>| 133 | 9'(353)) =3 <35,3>| 74 |[<86,5>] 133
<75,2>| 27 | g'((752) =0 <65, 4>| 35 |[<31,3>] 54
Copy | < Expand Merge <L Compress
AL T T T T _T 1 o‘l;]
D [Freq.] [ID [Frea. “ID_[Freq.
35-3>1433 | [<35, 3> 133 <86, 5> 133
<75,2>| 27 | [<752o1=27 <35,3>| 74
g'e)=g6)%z z'=2z g'e)=g6)%z z'=z/2

Fig. 8: Dynamic memory expansion/compression on Buck-
etized Space-Saving (z = 3/6, b = 2, r = 2).

4 MATHEMATICAL ANALYSIS

In this section, we provide theoretical analysis for Hyper-
Calm sketch, and validate our theoretical analyses using
experiments. We focus on the following four issues.

e How accurate can HyperBF detect batches? We derive
the error bound of HyperBF in Lemma and Theo-
rem and conduct experiments to validate our bound

9

in Figure The results show that both theoretical and
experimental error are smaller than 0.01 in common cases.

« How accurate can CalmSS detect top-k periodic batches?
We derive the error bound of CalmSS in Theorem 4.2} and
conduct experiments to validate our bound in Figure
The results show that both theoretical and experimental
error rate are smaller than 0.01 in common cases.

¢ Is the Asynchronous Timeline technique of HyperBF
effective? We theoretically analyze the accuracy gain of
Asynchronous Timeline technique in Theorem and con-
duct experiments to validate it in Figure oth theo-
retical and experimental results show that Asynchronous
Timeline technique improves the accuracy of HyperBFE.

e How accurate can bucketized Space-Saving report the
periodicity of periodic batches? We derive the error
bound of bucketized Space-Saving in Theorem and
Theorem and conduct experiments to validate the
theoretical bounds.

4.1 Error Rate of HyperBF

We first prove the error rate of HyperBF in Theorem
A data stream can be formulated by two variables: den-
sity a and activity 3, where density « is the number of
distinct items observed at each moment, and activity (3
is the number of distinct items emerging/dying per unit
time. Consider two consecutive time interval 77 and T5.
The numbers of distinct items observed in 17 and 15 are
a + B17 and o + BT5, respectively. And the number of
distinct items observed in the two intervals is o+ 5(T1 +1%).
Most data streams can be formulated by these two variables.
Take CAIDA [56] dataset as an instance, Figure shows
the average number (£5std) of distinct items observed
in time intervals of different length. We can see that the
linear relationship almost holds where o = 3195.2 and
B = 35238.9. Next, consider two adjacent occurrences of
item e at t1 and to, where to —t; > 27 . Let K = L’%J - _%J
Let 7, = a + AnT denote the number of distinct items
observed in a time interval of length n7".

t Part 1
0 Part 2
Rig Rk—1 Rk Re Rs Ry Ry R, Ry RoiFart3
1 1 1 1 1 1 1 1 1 1 1 1 >
oftT 2r 3T 1 cleaning (K-1)T KT|(K+1)T
151 Lo L

Fig. 9: Error rate analysis of HyperBF.

As shown in Figure[9} consider two adjacent occurrences
of an item e in the data stream. Assume the timestamps of
the two occurrences are ¢1 and ¢, respectively. Assume t3 —
t; > 27, meaning that the second occurrence of e is the start
of a batch and there is no time division error. Next, we derive
the error rate of HyperBF in Theorem [4.1] (and Lemma [4.4),
which is defined as the probability that HyperBF does not
report a batch at t5. The detailed proofs are provided in our
supplementary materials [53].

Lemma 4.4. Let P be the probability that a certain hashed
cell of item e (e.g., B;i[hi(e)]) is zero at to. Let m' = ™

-1
{%} Let Ky = |5 -1, K, = [K2] -1,

= | £52| — 1. Then the lower bound of P is P’ =
_ Y3k+2 _ 73k43)
— € m ,

P + Py + P, where P = /% (e

K _ Y3k43 _ Y3k+t4 _u3k43
P, = 3.2 (e mo —e T m) (1 —e " w |, and
V3k+4 Y3k+5 Yuzk+44
Py =Y, (e‘ mo —e T m) <1 —e T)

Theorem 4.1. We define the error rate £ of HyperBF (without
Asynchronous Timeline) as the probability that HyperBF does not
report a batch at 5. Then we have:

E<(1-P)

where P’ is the lower bound in Lemma

d

Experimental analysis (Figure [10b): We conduct experi-
ments on CAIDA [56] to validate the bound in Lemma
We use the HyperBF that just has one array (d = 1), and
allocate 4KB of memory to it (m = 16000). The results show
that the experimental error rate is always well bounded by
theoretical bound. As the volume of CAIDA data stream
is very large, almost all outdated cells in HyperBF can be
cleaned promptly. Therefore, the experimental error rate
does not vary with K. As K grows larger, our theoretical
bound becomes more accurate. Note that we only focus
on a single array of HyperBF here. If we use the HyperBF
consisting of d = 8 arrays, the error rate will be < 0.01.

N
=]

0.8
— Average Number

//////

0.1 0.2 0.3 0.4 5 10 15 20
Time Interval Length (s) K

(a) Data stream. (b) Error rate.
Fig. 10: Error rate of HyperBE.
4.2 Error Rate of CalmSS
We define the error rate ¢ of CalmSS as the probability that
a cold item fails to be discarded by LRU queue, i.c., the
probability that a cold item enters the top-k algorithm in
CalmSS. Next, we derive the upper bound of .

We assume the data stream consists of two types of
items: cold items and hot items, and all items of the same
type have the same arrival speed. The data stream is es-
sentially the sum of many independent Poisson processes
of two kinds (hot items and cold items). Let Ay, and A. be
the parameters of the two Poisson processes, respectively.
Let np and n. be the number of distinct hot items and
cold items, respectively. Notice that n;, > w and n. > w.
Therefore, we can assume that in a short time interval,
all arriving items are distinct. Consider a cold item e, we
assume all items that arrives between the time when e enters
the LRU queue and the time when e is removed from the
LRU queue are distinct hot items. Here, we assume all of
these items are hot because we want to derive an upper
bound of ¢. Cold items only promote the LRU queue to
discard e, resulting in a smaller (. We derive the error upper
bound of CalmSS in Theorem The detailed proofs are
provided in our supplementary materials [53].

— Upper bound
Experimental

@
)
~

Error Rate
o o
15 o

Distinct Items (K)
o 5\

o
~

o
e
w

25 30

Theorem 4.2. For a cold item e, the probability ¢ that it fails to
be discarded by CalmsSS, i.e., the error rate of CalmSS, is

P-1
vl R®
<=<Zxrmwnwrﬂwﬂg

z=0

10
where R = ™2t and T'(z) represents the Gamma function.

Experimental analysis (Figure [I1): We conduct experi-
ments to validate our theoretical bound in Theorem
We set w = 16, P = 4, and generate the data stream
using two kinds of Poisson processes where n; = 50
and n. = 1. The results show that the experimental error
rate is always bounded by the theoretical upper bound.
Note that when R < 50, the intensity of cold items . is
smaller than the intensity of hot items)\j, meaning that
cold items are actually not cold. Therefore, when R is
small, CalmSS has large theoretical and experimental error.
As R increases, our data stream
assumption will be closer to 10
truth. When R > 50, A\, < Ap, \
meaning that the cold items are
really cold. When R = 125, the
theoretical error rate is 1072 — Upper bound
Experimental
0 50 100 150
R (A1/A2)
Fig. 11: Error of CalmSS.

0

Error Rate
8\

=)
!
A

and the experimental error rate 10
is 1074, showing that CalmSS

is highly effective in filtering
cold items in real cases.

4.3 Effectiveness of Asynchronous Timeline

Theorem 4.3. After using the Asynchronous Timeline technique,
the time division error is minimized when the d timelines are
evenly distributed, i.e., when the timeline offset for the i array
iso; = (’;1) T, where the minimized error is reduced by d times
compared to the synchronous version.

Detailed proofs are in our supplementary materials [53].
Experimental analysis (Figure [12): We conduct experi-
ments on CAIDA [56] to validate Theorem We set the
batch threshold 7 to 1.454 pus, and fix the memory usage
of HyperBF to 50KB. We find that Asynchronous Timeline
technique significantly improves the accuracy of HyperBE
We also find that when using Asynchronous Timeline, Hy-
perBF using d evenly distributed timelines is more accu-
rate than HyperBF using d randomly distributed timelines.
For example, when using d =
8 arrays, the RR of the ba- "o
sic HyperBF is 61%, while
that of the HyperBF using
Asynchronous Timeline is about
80%. Specifically, the RR of the
HyperBF using randomly dis- x_Even Async.
tributed timelines is 80.07%, 2 fgt 8
while that of the HyeprBF us- Fig. 12: Time division er-
ing evenly distributed time- ror of HyperBF.
lines is 81.95%.

PR

o
®

35—
v X
Y
g
Pl S e ¢

o
o

Recall Rate
o
=

+- Synchronous
Random Async.

o
)

o
=)

4.4 Error Rate of Bucketized Space-Saving

We theoretically analyze the error of bucketized Space-
Saving in estimating the periodicities of periodic batches.
We first prove bucketized Space-Saving inherits the prop-
erty of basic Space-Saving in Theorem Then we derive
an error bound that is related to the parameters of bucke-
tized Space-Saving in Theorem 4.6 The detailed proofs are
provided in our supplementary materials [53].

Theorem 4.4. For an arbitrary entry E that is recorded in
bucketized Space-Saving, let f and f be the real and estimated

frequency of E respectively (i.e., f and f are the real and estimated
periodicities of periodic batch E). We have that

0 <]E_ f < fmin
where fyin is the smallest counter in the hashed bucket of E.

Theorem 4.5. For an arbitrary entry E with real frequency f >
Y f||1, let P be the probability that E is recorded in bucketized
Space-Saving. We have that

1
21— -—
P byz
where || f||1 is the frequency sum of all entries, b is the number of
slots in each bucket, and z is the number of buckets.

Theorem 4.6. For an arbitrary entry E that is recorded in
bucketized Space-Saving, let f and f be the real and estimated
frequency of E respectively. We have that

Pr(ff<6.||f|1) 2171

S €

where || f||1 is the frequency sum of all entries, and S = zb is the
number of slots in bucketized Space-Saving.

Experimental analysis (Figure[13): We conduct experiments
using CAIDA [56] dataset to validate the theoretical bounds
in Theorem and Theorem where we set b = 16.
Figure shows the experimental and theoretical prob-
ability in Theorem We can see that the experimental
probability is well bounded by the theoretical bound, and
when 7||f]l1 > 500, both the experimental and theoret-
ical probability are larger than 90%. Figure shows
the experimental and theoretical guaranteed probability in
Theorem We can see that the experimental guaranteed
probability is well bounded by the theoretical probability.

£10 P Y
2 /
s 0.8
S y
& 06 /
o)
. D04y
T € /
©02 — Experimental ©021¢ -+ Experimental
S Theoretical S Theoretical
S S
1] 0.0 o 0.0

250 500 750 1000 0 1500 3000 4500 6000

ViIfl, elfl/s

(a) Theorem (b) Theorem

Fig. 13: Accuracy of Bucketized Space-Saving.

5 EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the effective-
ness of HyperCalm and its benefits to real-world applica-
tions. Our experiments focus on the following five issues.

« Can HyperBF accurately and efficiently detect batches?
We compare HyperBF with SOTA Clock-Sketch [2],
SWAMP [26], and Time-Out Bloom filter [25]. The results
show that the accuracy and speed of HyperBF always
outperform SOTA under the same memory usage. (§

e Can CalmSS accurately and efficiently detect top-k
items? We compare CalmSS with SOTA Space-Saving
[12], Unbiased Space-Saving [13], and Cold filter [17].
The results show that the accuracy and speed of CalmSS
always outperform SOTA under the same memory. (§

e Can HyperCalm accurately and efficiently detect pe-
riodic batches? We combine the SOTA algorithms in
detecting batches and finding top-k items to form one

11

strawman solution for finding periodic batches, and com-
pare HyperClam against it. The results show that Hyper-
Calm outperforms the strawman solutions 4x in term of
average relative error and 98.1x in term of speed. (§
¢ Can periodic batches benefit real-world application? We
apply the HyperCalm sketch to two applications: cache
(8 and network measurement (§ [5.9). The results
show that HyperCalm can well improve the hit rates
of LFU/LRU caches, and it achieves high accuracy in
detecting network anomalies.
¢ Can HyperCalm work well in mainstream streaming
framework and database? We implement HyperCalm on
top of Apache Flink [23] (§ and Redis [24] (§ 5.17),
showing that HyperCalm can be easily deployed into pop-
ular streaming processing framework and KV database.
We implement HyperCalm sketch and the other algo-
rithms with C++. We use three datasets: small-scale CAIDA
dataset with 30M items (default), large-scale CAIDA dataset
with 1.5G items, Criteo dataset with 45M items. For more
details about the platform, setting, datasets, and metrics, please
refer to our supplementary materials [53].

5.1 Experiments on HyperBF

Parameter setting: We compare HyperBF with Clock-Sketch
[2], SWAMP [26]], and Time-Out Bloom filter (TOBF) [25]. We
setd = 8 and [= 32 by default. For CAIDA, we set the time-
based batch threshold 7 to 0.72 seconds. For Criteo, we set
the count-based batch threshold 7 to 40,000. Under such
settings, there are about 0.96M batches in CAIDA dataset,
and about 4.9M batches in Criteo dataset.

Accuracy of detecting batches (Figure [14a): We find that
HyperBF always achieves the best accuracy. In fact, HyperBE,
Clock, and TOBF always have 100% PR, but HyperBF
achieves better RR than Clock and SWAMP. SWAMP always
has 100% RR because it reports all unrecorded items as
batches, but its PR is less than 40% as it suffers high false
positive errors. When using 256KB of memory, HyperBF
achieves 97% Fj score, significantly outperforms Clock
(90%), SWAMP (28%), and TOBF (73%).

Impact of cell line size (/) (Figure[14b): We find that a larger
value of cell line size | goes with higher RR of HyperBF, and
when the cell line size exceeds 8, HyperBF achieves the optimal
accuracy. When setting [= 2 and using more than 256KB
of memory, the RR of HyperBF decreases as the memory
usage increases because the outdated cells are not cleaned
in time. The two curves of [= 8 and | = 16 are highly
in coincidence, meaning that [= 8 is already enough to
achieve the optimal accuracy.

Impact of number of arrays (d) (Figure [14d): We find that
HyperBF performs well when using d = 4 or d = 8 arrays.
When the memory usage is small, smaller d goes with higher
RR. This is because when the total memory usage is fixed,
smaller d leads to larger size of each array, and thus leads to
less hash collisions in each array. When the memory usage is
large, larger d goes with higher Recall Rate. This is because
if the array size is too small, the outdated cells cannot
be cleaned in time, which compromises the accuracy of
HyperBE. When setting d = 8 and using 256KB of memory,
the RR of HyperBF exceeds 95%.

Impact of Asynchronous Timeline (Figure [14d): We find
that Asynchronous Timeline can significantly improve the RR

12

10 = e 10 10 [S 10 Q0| HyperBF - SWAMP
Vi Clock -o TOBF
0.8 [0.8 ——————¢]
o v Los % //: -, ,3 0.8 i I R S e
506 / 4 0615/ e @ ¥ =2
it / =06 = |¥/ =o06{ 2
Doal / # & HyperBF | 8 - 1=2 S04l / d=1| G < y
* 02ld e €04 =4 1 2.1/ 422 Po4) / Drop T
021§ »—7/"" v SWAMP v 1=8 0.2 v d=4 o/ + Synchronous e
00le—e— < o TOBF 02 e 1=16 0.0 o d=8 02 3 Asynchronous =
: 24 26 28 210 24 26 8 210 : 24 26 28 210 24 26 28 210 0 24 26 28 2“0
Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)
(a) F1 score. (b) Cell line size (1). (c) # arrays (d). (d) Timeline distr. (e) Processing speed.
Fig. 14: Performance of HyperBF (CAIDA).
1
10
10 o CamssS| & | o camss -~ uss 10 — 0 e oo 7‘
10018 ss g0 ss o CF4SS ~ p=2 -
208 27" © 08 @08 = -
= AN = USS SoltToe—o 5 ® - P=4
E oo & 10" Sep e CF#SS | 3 TR | 206 Eoof e P=6
® - CalmSS < N —e £ ® - w=0 s /
g N \ il i 2| Sos w=8 | Sos4 /
ss e } =)
0.4 10 = 3 S
& v USS | 2rofe—e—eT « v w=16| %
02 o~ CF+8S 107 3| E 021 g7~ - w=32 02
: 0
23 25 27 29 23 5 7 29 3 5 7 9 25 26 27 26 29 25 26 27 28 29
Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)
(a) Recall. (b) ARE. (c) Processintg speed. (d) Queue length (w). (e) Promotion thld. (P).
Fig. 15: Performance ot CalmSS (CAIDA).
1.0 1.0 ——= 10° 107 _10fe
AT P ~+ HyperCalm 3 .
© 08—/ 008 A Clock+USS g e
5 ;! g, 2 107" <
& o6y / xos poe w w | o HyperCalm E -+ HyperCalm
] Tos x [\ L o Clock+USS g, Clock+USS
04 o0 o)
& K 107 2ot 3
0.2 -+ HyperCalm 021 4 HyperCalm T — ‘\\ g 2
Clock+USS 00| 7 Clock+uss , D) | F
’ 10° 3

0.0

20 60 100

Memory Usage (KB)
(a) Recall (CAIDA).

140 320 640 960

Memory Usage (KB)
(b) Recall (Criteo).

1280 20 60

Memory Usage (KB)
(c) ARE (CAIDA).

10 620 960

Memory Usage (KB)
(d) ARE (Criteo).

1280 20 60 100

Memory Usage (KB)
(e) Speed (CAIDA).

100 140 320 140

Fig. 16: Performance of HyperCalm (CAIDA and Criteo).

of HyperBF. Here, the Asynchronous Timeline technique uses d
evenly distributed timelines. When using 256KB of memory,
HyperBF using Asynchronous Timeline achieves 97% RR,
significantly outperforms that of the basic version (82%).

Processing speed (Figure [14e): We find that HyperBF is
faster than other algorithms. The results show that under
different memory constraints, the throughput of HyperBF
is always 21 Mops, while that of TOBF and SWAMP are
about 15 Mops and 12 Mops, respectively. The throughput
of Clock drops rapidly with the increase of memory usage
because when using more memory, Clock needs to clean
more cells per insertion. When using 1024KB of memory, the
throughput of Clock is only one-third of that of HyperBE

5.2 Experiments on CalmSS

Parameter setting: We compare CalmSS with Space-Saving
(SS) [12], Unbiased Space-Saving (USS) [13], and Cold filter
[17] + Space-Saving (CF+SS). For CalmSS, we set w = 16
and P = 4 by default. We set £k = 100 and conduct the
experiments using CAIDA.

Accuracy of finding top-k items (Figure [15a): We find that
CalmSS always has better RR than SS, USS, and CF+SS. The
RR of CalmSS reaches 78% even if the memory size is only
32KB, while that of SS and USS are about 50%. As the
memory size exceeds 128KB, the RR of CalmSS is very close
to 100%. The RR of CF+SS is smaller than ours because the
large volume of data stream fill it up very quickly.
Frequency estimation for top-k items (Figure [I5b): We find
that CalmSS always achieves smaller ARE than SS, USS, and
CF+SS. When using 32KB of memory, the ARE of CalmSS
is 0.1, about 4 times lower than that of the other algorithms.
When using 512KB of memory, the ARE of CalmSS is 7.5 x
10~4, while that of SS, USS, CF+SS are 1.8 x 1073, 1.1x 1073,
and 2.1 x 1072, respectively.

Processing speed (Figure[15c): We find that CalmSS is slightly
faster than USS and significantly faster than SS and CF+SS.
CF+SS is slow because Cold filter needs extra memory ac-
cesses and hash computation. Surprisingly, CalmSS is faster
than SS and USS because it sends only hot items to Space-
Saving, resulting in fewer memory accesses to Space-Saving.
Impact of LRU queue length (w) (Figure[15d): We find that
CalmSS performs well when the length of the LRU queue w is
just 8. When using 256KB memory, the RR of CalmSS using
an LRU queue of length w = 8 is 91%, while that of Space-
Saving (w = 0) is 77%. Since the three curves of w = 8,
w = 16, and w = 32 are highly in coincidence, we conclude
that w = 8 is enough to achieve satisfactory accuracy.
Impact of promotion threshold (P) (Figure [15€): We find that
the optimal promotion threshold P is 4 or 6. When using 256KB
memory, the RR of CalmSS with P = 2 or P = 4 is about
92%, while that of Space-Saving (P = 0) is 76%. Note that
the optimal P is highly correlated with the dataset.

5.3 Experiments on HyperCalm

Parameter setting: We combine the state-of-the-art Clock-
Sketch and Unbiased Space-Saving to form a strawman
solution for finding top-k periodic batches (Clock+USS), and
compare our HyperCalm with it. The parameters (including
memory proportion) of HyperCalm and the strawman solu-
tion are empirically set so that they achieve relatively good
performance. For HyperBF, we set d = 8 and [= 32. For
CalmSS, we set P = 7. We set k = 200 by default.

1) Setting on CAIDA: We set the time-based batch threshold
T to 0.072 millisecond. Each batch interval V' is rounded
to the nearest multiple of 0.72 millisecond. Under such
settings, there are about 4.1M periodic batches in CAIDA.
2) Setting on Criteo: We set the count-based batch threshold
T to 20,000. Each batch interval V is rounded to the nearest

multiple of 100,000. Under such settings, there are about
14.7M periodic batches in Criteo dataset.

Accuracy of finding periodic batches (Figure [16alj16b): We
find that the RR of HyperCalm always outperforms the strawman
solution on two datasets. On CAIDA, when using 60KB of
memory, the RR of HyperCalm is 94%, while that of the
strawman solution is 78%. On Criteo, when using 800KB
of memory, the RR of HyperCalm is 90%, while that of the
strawman solution is 85%.

Periodicity estimation of periodic batches (Figure [16¢
[16d): We find that HyperCalm always has smaller ARE than
the strawman solution on two datasets. On CAIDA, when
using 60KB of memory, the ARE of HyperCalm is about
6.9 x 103, which is 4 times lower than that of the strawman
solution. On Criteo, when using 800KB of memory, the ARE
of HyperCalm is about 1.3 x 10~%4, which is 4.6 times lower
than that of the strawman solution.

Processing speed (Figure [16€): We find that the processing
speed of HyperCalm always outperforms the strawman solution on
two datasets. When using 60KB of memory, the throughput
of HyperCalm is 8.54 Mops, which is 98.1 times higher than
that of the strawman solution. The gap between HyperCalm
and Clock+USS is huge because Clock needs to clean many
cells per insertion, which is very inefficient.

Experiments on large-scale dataset (Figure [17): We find that
on large-scale dataset, HyperCalm still has high accuracy in find-
ing periodic batches and fast insertion speed. In this experiment,
we use the 1-hour CAIDA dataset with 1.5G items, and
build larger HyperCalm sketch to detect periodic batches.
We can see that when using 512KB memory, HyperCalm
achieves 99% RR and 12.4 Mops throughput.

1.0 .
4 W 450] —+ Basic
° A a2 Bucketized w/o SIMD
W09 A 2,5/ v Bucketized w/ SIMD
© / 5 [SIS E— T
H o
[- £ 12,0
osfe 5
-+ Basic HyperCalm o 15
Bucketized HyperCalm £
07 F ool
5 6 7 8 9 5 6 7 8 9

T2 2 2 2 2 2 2 2 2 2
Memory Usage (KB) Memory Usage (KB)

(a) Recall. (b) Throughput.
Fig. 17: Performance of HyperCalm on large-scale dataset.

Time for detecting batches and periodic batches (Fig-
ure [18): We evaluate the time for HyperBF to detect item
batches (Figure and the time for HyperCalm to report
periodic batches (Figure [I8b). As shown in Figure the
reaction time for HyperBF to detect batches is always < 0.25
microsecond. For example, when using 64KB memory, the
detection time for HyperBF with/without SIMD accelera-
tion is only 0.047/0.191 microsecond. The detection time of
HyperBF is very short because HyperBF processes items in a
one-pass manner with O(1) time complexity, which is very
efficient. As shown in Figure the time for HyperCalm
to report top-k (k = 200) periodic batches is always < 1.6
millisecond. For example, when using 256KB memory, the
reporting time for HyperCalm with/without the Bucketized
Partition Optimization is 0.879/0.0034 millisecond. The re-
porting time for Bucketized HyperCalm is longer because it
needs to traverse the entire bucket array with O(z x b) time
complexity to select the top-k entries (periodic batches).
By contrast, basic HyperCalm can directly report the most
frequent k entries from the Stream-Summary structure (a

13

doubly-linked list sorted by frequency) with O(k) time com-
plexity. In summary, our framework achieves microsecond-
level batch detection and millisecond-level periodic batch
reporting, which it very efficient.

o
I
3

e
‘//*

—+- Bucketized HyperCalm
Basic HyperCalm

o
)
=)

o

ad e
e

©

—
—+ HyperBF wi/o SIMD
HyperBF w SIMD

o
o
=)

e

o
o
=)
s

Detection Time (us)
Reporting Time (ms)
s

o
o
o

o

-3
16 64 256 1024 32 64 128 256 512
Memory Usage (KB) Memory Usage (KB)

(a) Time for HyperBF to (b) Time for HyperCalm
detect item batch. to report periodic batch.

Fig. 18: Time for detecting batches and periodic batches.
Performance improvement in statistical significance tests
(Table [2): We add statistical tests to show the significance
of our HyperBF and HyperCalm on detecting batches and
periodic batches over existing methods. 1) For batch de-
tection task, we fix the memory usage of HyperBF and
existing methods (Clock [2], SWAMP [26], TOBF [25]) to
32KB, and repeat the experiments 100 times to collect 100
sets of paired samples on F1 Score and Throughput. Next,
we use these samples to conduct Wilcoxon signed-rank test
[57]. We define our one-sided alternative hypothesis such
that the difference between the paired samples (e.g., the F1-
Score/Throughput difference between HyperBF and Clock)
is stochastically greater than a distribution symmetric about
A. We carry out multiple tests and use binary search to find
the maximum performance improvement A satisfying the
condition of p-value < 0.005, which are displayed in Ta-
ble[2 The results show that HyperBF demonstrates a signif-
icant improvement (p-value < 0.005) in both F1 Score (up
to +81.85%) and Throughput (up to +11.99 M/s) compared
to existing methods. 2) For periodic batch detection task,
we fix the memory usage of HyperCalm (with Bucketized
Partition Optimization) and existing method (Clock+USS) to
32KB. Similarly, we collect 100 sets of samples on Recall and
Throughput, and carry out multiple Wilcoxon signed-rank
tests to find the maximum performance improvement A
satisfying p-value < 0.005. The results show that Hyper-
Calm demonstrates a significant improvement (p-value
< 0.005) in both Recall (+43.75%) and Throughput (+9.18
M/s) compared to existing method (Clock+USS).

TABLE 2: Maximum performance improvement (A) satisfy-
ing the condition of p-value< 0.005.

Methods F1 Score/Recall ~ Throughput
HyperBF vs. Clock +2.50% +8.10 M/s
HyperBF vs. SWAMP +60.65% +11.99 M/s
HyperBF vs. TOBF +81.85% +5.13 M/s
HyperCalm vs. Clock+USS +43.75% +9.18 M/s

5.4 Experiments on Bucketized Partition Optimization
We evaluate the performance of Bucketized CalmSS on
finding top-k items under the setting of § We evaluate
the performance of HyperCalm sketch using Bucketized
TimeRecorder, LRU-Queue, and Space-Saving on finding
periodic batches under the setting of § By default,
we allocate 3KB memory to HyperBF, and allocate the
rest memory to Bucketized TimeRecorder, LRU-Queue, and

14

10 10” -+ Basic CalmSS 10 - 10" -+ Basic HyperCalm m —+- Basic HyperCalm
B 3 [N
09 A Bucketized CalmSS ° Bucketized HyperCalm o4 Bucketized HyperCalm
2 ' w0 Fos 10° =
@08 / o S ® T 51
3 < T 8 £
o7 5 —a_ Qo6 2 2
—e ~
@ 10 & -+ Basic HyperCalm b) e g8 e
06 -+ Basic CalmSS yp —| E —
P Bucketized CalmSS 04 Bucketized HyperCalm N = —4
05 107 T g 7 g g 10 5 g 7 g 55 g 7 g g
10 30 50 70 90 10 30 50 70 90 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)
(a) Recall of CalmSS. (b) ARE of CalmSS. (c) Recall of HyperCalm. (d) ARE of HyperCalm. (e)Speed of HyperCalm.

Fig. 19: Performance of Bucketized Partition Optimization.

Space-Saving in a ratio of 7:1:7. We set the number of slots
per bucket in TimeRecorder, LRU-Queue, and Space-Saving
to 32, 32, and 16, respectively, and we use 16-bit fingerprints
in TimeRecorder and LRU-Queue.

Accuracy on finding top-k items (Figure [19al19b): We
find that our Bucketized Partition technique effectively improves
the Recall Rate and ARE of CalmSS on finding top-k items.
When using 30KB memory, Bucketized Partition improves
the Recall Rate of CalmSS from 83% to 98%, and improves
the ARE from 0.046 to 0.010.

Accuracy on finding periodic batches (Figure [19¢|{19d): We
find that our Bucketized Partition technique effectively improves
the Recall Rate and ARE of HyperCalm on finding periodic
batches. When using 32KB memory, Bucketized Partition
improves the Recall Rate of HyperCalm from 57% to 95%,
and improves the ARE from 0.583 to 0.039. As discussed
in § Bucketized HyperCalm achieves memory efficient
by removing the hash table index, and thus achieves higher
accuracy under the same memory usage.

Processing speed (Figure[19¢): We find that Bucketized Hyper-
Calm sketch has faster speed than the basic version. When using
32KB memory, Bucketized Partition improves the insertion
speed from 7.65 Mops to 12.48 Mops. Bucketized Hyper-
Calm is faster because it reduces the number of memory
access, and avoid complicated pointer operations.

N
=3

1.0 —————F
/’ A

P m .
® Vs g e —*
- /) /] = —
© 0.8 i <24 -
= /// 5 -
= / o
g |v// g S et
/
Sos 7 o b=4 Sa2y T o b=4
/ b=8 g7 b=8
¢ + b=16 (S = b=16
450 3 =0 70 90 2% 30 50 70 90
Memory Usage (KB) Memory Usage (KB)
(a) Recall. (b) Speed.

Fig. 20: Impact of number of slots per CalmSS bucket (b).

Impact of number of slots per bucket in CalmSS ()
(Figure 20): We find that larger b goes with higher accuracy and
slower speed. This is because using large buckets allows us
to better approximate the theoretical results of basic Space-
Saving, but this requires us to probe more slots simulta-
neously. In practice, when using 32-bit ID, we recommend
to set b = 16, so that the access of each bucket can be
accelerated with AVX-512 SIMD instructions (§ [5.5).

5.5 Experiments on SIMD Optimization

We evaluate the speed improvement of the SIMD optimiza-
tion described in § For HyperBF, we set d = 8 and
I = 256. Under such setting, each block of HyperBF is of 512-
bit, which can be accelerated using AVX-512 instructions.
We use Bucketized TimeRecorder, LRU-Queue, and CalmSS,
where we use 16-bit fingerprints and set their numbers of
slots per bucket to 32, 32, and 16, respectively. Under such

== HyperBF w/o SIMD
== HyperBF w/ SIMD

== HyperCalm w/o SIMD
mm HyperCalm w/ SIMD

Throughput (Mops)

o

16 32 64 128 256 32 64
Memory Usage (KB)

(a) HyperBE.

128 256 512
Memory Usage (KB)

(b) HyperCalm.
Fig. 21: Impact of SIMD acceleration.

setting, the IDs/fingerprints in each bucket occupy 512 bits,
which again can be accelerated with AVX-512 instructions.
Speed of HyperBF (Figure 21a): We find that SIMD instruc-
tions improve the speed of HyperBF by 25.7%~26.1%. When
using 16KB memory, the insertion throughput of HyperBF
without and with SIMD acceleration are 21.04 Mops and
26.50 Mops, respectively. We can see that SIMD instructions
effectively optimize the speed of HyperBf by using 512-bit
vectorization operations on each block.

Speed of HyperCalm (Figure 21b): We find that SIMD
instructions improve the speed of HyperCalm by 30.3%~37.6%.
When using 32KB memory, the insertion throughput of
HyperCalm sketch without and with SIMD acceleration
are 9.07 Mops and 12.48 Mops. We can see that SIMD
instructions effectively optimize the speed of HyperCalm
by accelerating HyperBF and accelerating the access to the
buckets of TimeRecorder/LRU-Queue/Space-Saving.

5.6 Experiments on Dynamic Memory Adjustment

We conduct experiments to evaluate the performance
of HyperBF/HyperCalm under dynamic memory adjust-
ment operations. We conducted experiments using CAIDA
dataset. Initially, we build HyperBF/HyperCalm and in-
sert the first 10% of the dataset into them. Subsequently,
we execute the expansion/compression operations on Hy-
perBEF/HyperCalm to expand/compress them by different
ratios (r). Afterwards, we proceed to insert the remaining
90% of the dataset. We report the time taken by the expan-
sion and compression operations, along with the final Recall
Rate for detecting batches and periodic batches.
Performance of HyperBF on dynamic memory adjustment
(Figure[22al22b): We find that HyperBF can flexibly manage
the trade-off between its accuracy and memory usage via
the memory adjustment operations. Moreover, the mem-
ory adjustment operations of HyperBF can be efficiently
completed within milliseconds. In Figure we build an
initial HyperBF of 16KB, and expand it by four different
ratios (r = 2,4, 8, 16). The results show that by expanding
its size by r = 2 times, HyperBF improves its Recall Rate
from 81.5% to 94.0%, and it only takes 0.38ms to complete
the expansion operation. In Figure we build an initial
HyperBF of 256KB, and compress it by four different ratios

©
o
S
®

1.00

—e— Recall —e— Recall
6.46

_6 o 095 @ _6 095 g
@ © 4] ©

4.60
é4 // 090E §,4 ses 1 oeon—‘
Py 0= Py 3.6 0=
£ / 267 9 £ 226 9
F2 0.850 2 : 0850

/ 1.13
0.38
0.80 0 0.80
1. 2 4 8 16 1 2 4 8 16

Expansion Ratio (r)

(a) Exp. on HyperBE.

Compression Ratio (r)

(b) Comp. on HyperBF.

15

6.0 1.0 8 1.0
—o— Recall .“\‘\‘

45 09 @ 6{—¢— Recall 55100 g
m " m 5.08 ®
é 3.43 4 g o

3.0 0.8= 4 3.74 08=
Q]

g 1.70 § g \ §
Fais - 07 Fo 0.7%
é 0.79 3

0.32
0.0 06 0 06
i 2 4 8 16 i 2 4 8 16

Expansion Ratio (r)

(c) Exp. on HyperCalm.

Compression Ratio (r)

(d) Comp. on HyperCalm.

Fig. 22: Performance of dynamic memory adjustment.

100 0 1.00 —— -1
— 10 r=2 1.0 — e 10" fo
80 —" ~ Tica — =t P e
_ - RN v =8 © 09 T e 2 7 ,
T 0 / w10 TN, e c=16] 5 = & 09514 ,/'/'—. w1
g © A S = / 4
E 40 < * \V':':zﬂ “’_’ 087" - L£=1 8 // - £=1 < - L£=1 %
o / 102 Y c=2| @oso| / r£=2 107 r£=2 \\
201/ AN 07 v r£=4 v L£=4 v L£=4 —
o J 73 ‘"""”"r—w,,4 s o £=8 085 P o L£=8 A £=8
10 . . 10
20 21 22 23 24 25 25 26 27 28 29 26 27 28 29 2\0 25 26 27 28 29 Z5 26 27 25 29
Batch Size Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)

(a) Batch size distr. (b) ARE of batch size.

(c) F1 of large batch.

(d) Recall of PLB. (e) ARE of PLB.

Fig. 23: Performance of estimating batch sizes and mining Periodic Large Batches (PLB).

(r = 2,4,8,16). The results show that after compressing
HyperBF by r = 2 times, its Recall Rate only drops from
97.4% to 97.3%, and it only takes 2.26ms to complete the
compression operation.

Performance of HyperCalm on dynamic memory adjust-
ment (Figure 22d22d): We find that HyperCalm sketch
can flexibly manage the trade-off between its accuracy and
memory usage via the memory adjustment operations, and
it also achieves millisecond-level memory adjustment. In
Figure we build an initial HyperCalm of 16KB, and
expand it by four different ratios (r = 2,4, 8,16). Specif-
ically, we perform the expansion operation on all of its
components (HyperBEF, Bucketized TimeRecorder, Bucke-
tized LRU-Queue, and Bucketized Space-Saving). The re-
sults show that by expanding its size by r = 2 time, Hyper-
Calm improves its Recall Rate from 67.3% to 91.6%, and it
only takes 0.32ms to complete the expansion operation. In
Figure we build an initial HyperCalm of 256KB, and
compress it by four different ratios (r = 2,4,8,16). The
results show that after compressing HyperCalm by r = 2
times, its Recall Rate only drops from 98.7% to 98.2%, and
it only takes 3.74ms to complete the compression operation.

5.7 Experiments on Mining Periodic Large Batches

We evaluate the performance of our extended HyperCalm
sketch in estimating batch sizes and mining periodic large
batches. The experiments are conducted using CAIDA
dataset under the setting in § By default, we use
[log(L)]-bit counters in our CM sketch.

Batch size distribution (Figure 23a): We first study the
batch size distribution in CAIDA dataset. We can see that the
batch size distribution is highly skewed, where most batches
are of small sizes and only a few batches have large sizes.
For example, there are 70.1%/91.8% batches whose sizes are
smaller than 4/16. Therefore, after efficiently filtering small
batches, we can significantly reduce the memory overhead
of TimeRecorder and CalmsSS.

Accuracy on estimating batch sizes (Figure 23b): We find
that the extended HyperBF achieves high accuracy on estimating
batch sizes for small batches. We evaluate the ARE of the

estimated size for the batches whose real sizes are not larger
than L. We can see that when using 512KB total memory, the
ARE for batches whose sizes are smaller than 16 is < 0.018.
Accuracy on finding large batches (Figure 23d): We find that
the extended HyperBEF achieves high accuracy on finding large
batches. When using 1024KB memory, extended HyperBF
achieves > 0.963 F1 score on reporting batches whose sizes
are larger than 8. Thus, extended HyperBF can accurately
detect periodic large batches.

Accuracy on finding periodic large batches (Figure 23d):
We find that the extended HyperCalm achieves high accuracy
on finding periodic large batches. When using 128KB total
memory, our HyperCalm achieves > 95% Recall Rate in
finding periodic batches with sizes larger than 8.

Accuracy on periodicity estimation for periodic large
batches (Figure [23e): We find that the extended HyperCalm
achieves high accuracy on estimating the periodicity of periodic
large batches. When using 512KB total memory, the ARE for
periodic batches with sizes larger than 8 is 0.048.

08 = 3 0.55
-+ Baseline -~ -+ Baseline
Clock p //‘ HyperCalm
o6l ™ HyperCalm -~ / ® 0.50
© -]
¥]
N y'd © 045
= / =
Tos & T b "
e 0.40
02 ‘3‘ L z -
2 2 2 2 035160 135 150 175 200
Cache Size (x10) Memory Usage (KB)
(a) LFU. (b) LRU.

Fig. 24: Optimization to cache replacement policy.

5.8 Applying HyperCalm to Cache Systems

We apply HyperCalm to a simulated cache system. Hyper-
Calm yields two insights to optimize cache performance.
First, with the help of real-time batch detection, we can find
out the batches that are still active now. When cache is full,
we do not discard those items that still have active batches
because they are highly likely to arrive again in the near
future. Second, with the historical knowledge of periodic
batches, we can forecast the arrival time of new batches,
so as to prefetch data into cache before their arrival. We
implement a fully associative cache simulator that mimics

10 10° —+- Basic HyperCalm
__—* = Bucketized HyperCalm
0.9 e 10 {4
S ot w ™~ -
o // -2 Aoy
Nog e E 10 S
T | 0° T
0.71- —+ Basic HyperCalm A
Bucketized HyperCalm 107

S 2 2 2 22

Memory Usage (KB) Memory Usage (KB)
(a) F1 on packet drops. (b) Batch size ARE.

16

10 0] —- Basic HyperCalm
1 10 h
0.8 /o Bucketized HyperCalm
2 / 10-1 01\1
So6 e w S~
A € ~__
- _* <10 T
L 044~ —e
02l * Basic HyperCalm 107°
! Bucketized HyperCalm

107
2 2 2 2P 2 2 22 2 2 2

Memory Usage (KB) Memory Usage (KB)
(c) F1 on inflated delay. (d) Batch timespan ARE.

Fig. 25: Performance of HyperCalm on network measurement.

the behavior of a hardware cache. We use CAIDA [56] and
treat source IP address (4 bytes) as memory access request.
We use the measurement results of HyperCalm to improve
the cache hit rate as described above.

Experiments on LFU (Figure 24a): We find that HyperCalm
significantly improves the hit rate of LFU with small memory
overhead, and HyperCalm outperforms Clock-Sketch [2]] in both
hit rate and processing speed. We set the memory of Hyper-
Calm and Clock to 20KB. The results show that HyperCalm
always has higher hit rate than Clock and the LFU baseline.
With the cache size of 1280, the hit rate of HyperCalm is
67%, while that of Clock and LFU are 60% and 48%.
Experiments on LRU (Figure 24b): We find that HyperCalm
improves the hit rate of LRU, and the hit rate grows higher as
the memory of HyperCalm grows larger. We set the cache
size to 640 lines (about 80KB) and change the memory of
HyperCalm. The results show that HyperCalm always has
higher hit rate than the LRU baseline. When using 20KB of
memory, HyperClam improves the hit rate from 41% to 45%.

5.9 Applying HyperCalm to Network Measurement

We apply our HyperCalm sketch to the scenario of network
traffic measurement. In this scenario, each item in the data
stream is a packet in the network traffic, whose ID is defined
as the 5-tuple of a flow. We deploy one HyperCalm sketch
on each hop (e.g., switch) inside the network to report pe-
riodic large batches and some batch-level information (e.g.,
batch size, sequence number range, etc.). A central analyzer
periodically collects these information from all switches,
and further analyze these information to identify abnormal
events. We focus on two abnormal events: packet drops
and inflated queuing delays. The experiments are conducted
using CAIDA [56] dataset, where we simulate two switches
connected by a link. To create abnormal events, we configure
the link to proactively drop packets or increase the packet
intervals for some batches. Then we analyze the batch-
level information of periodic large batches reported by
upstream/downstream switches to find abnormal events.
Finding packet drops (Figure 25a[25b): We find that Hyper-
Calm achieves > 95% F1 score in finding packet drops. In this
experiment, we configure HyperCalm to report the size and
the TCP Sequence Number range for each batch, which is
implemented by adding three fields to each slot in LRU-
Queue/Space-Saving. The analyzer first use the Sequence
Number range to trace each batch, and it reports a batch
experiencing packet drops if its size suddenly decreases.
We can see that even with 32KB memory, HyperCalm still
achieves nearly 90% F1 score on finding packet drops. We
also evaluate the ARE of HyperCalm in estimating batch
sizes in Figure We can see that when using 512KB
memory, HyperCalm achieve < 10~* ARE, showing that
HyperCalm has high accuracy in estimating batch sizes.

Finding inflated queuing delays (Figure 25c¢{25d): We find
that HyperCalm achieves > 95% F1 score in finding inflated
queuing delays. In this experiment, we configure HyperCalm
to report the timespan and the TCP Sequence Number
range for each batch, which is implemented by adding
four fields to each slot in LRU-Queue/Space-Saving. The
analyzer first use the Sequence Number range to trace each
batch, and it reports a batch experiencing inflated queuing
delay if its timspan suddenly increases. We can see that
when using 128KB memory, HyperCalm achieves > 90% F1
score in finding inflated delays. We also evaluate the ARE
of HyperCalm in estimating batch timespans in Figure
We can see that when using 512KB memory, HyperCalm
achieves < 2 x 10~* ARE, showing that HyperCalm has
high accuracy in estimating batch timespans.

5.10 Integration into Apache Flink

Experimental setup: We run the experiments at a Flink
cluster with 1 master and 5 workers using CAIDA [56].
We deploy a Hadoop Distributed File System (HDFS) with
one NameNode (master) and 5 DataNodes (workers) in our
cluster. Each node has 4 virtual CPU cores of Inte]l XEON
Platinum 8369B, and 8 GB main memory. The job manager
and each task manager of Flink are configured with 1 GB of
memory. Each node uses Flink 1.13.1, Java 11 and Hadoop
2.8.3 running on Ubuntu 20.04 LTS. All experiments are
repeated 10 times and average (£std) throughput is plotted.
Experimental results (Figure 26): We find that HyperCalm
can smoothly work on top of Flink framework. As shown
in Figure in local mode experiments, the throughput
linearly increases up to 3 parallel instances (parallelism).
Afterwards, the throughput growth becomes less linear.
As shown in Figure in cluster mode, the throughput
linearly scales up with more nodes used in the cluster.

3.0 5

— —e —

S S

S 25 g4 DY
z z

020 03

2 2

]]

Q15 P

i1} it}

1.0

1 2 3 4 1 2 3 4 5
Number of parallel instances Number of nodes

(a) Local mode. (b) Cluster mode.
Fig. 26: Throughput on Apache Flink.

5.11 Integration into Redis Database

We implement HyperCalm in Redis database, a popular
in-memory data structure store widely used by database,
cache, and streaming engine, showing that HyperCalm can
be easily integrated into mainstream KV databases.
Experimental setup: We implement our HyperBF/CalmSS/
HyperCalm using Redis module, where we provide API for

users to create sketches, insert items, and query top-k peri-
odic batches. The experiments are conducted on a machine
with dual 18-core CPUs (36 threads, Intel(R) Core(TM) i9-
10980XE CPU @ 3.00GHz) and 125GB DRAM memory.

Experimental results (Figure R7): We find HyperBF/
CalmSS/HyperCalm achieve 0.234/0.227/0.115 Mops inser-
tion throughput in Redis, which are not affected by memory
usage. This is because the speed bottleneck of Redis lies in
the communication with Redis server rather than sketch in-
sertion, and thus the memory has little effect on throughput.

mm HyperBF == CalmSS mm HyperCalm

o
N
@

I
N}
o

o
o

o
o

Throughput (Mops)
o
=S
o

o
o
=}

16 32 64 128 256 512 1024

Memory Usage (KB)
Fig. 27: Throughput in Redis.

6 CONCLUSION

This paper proposes a new pattern in data streams, namely
periodic batches, which is useful in many applications. We
propose the HyperCalm sketch, to accurately detect batches
and periodic batches in real time. The two key compo-
nents of HyperCalm, HyperBF and CalmSS, significantly
outperform state-of-the-art solutions in detecting batches
and finding top-k items, respectively. We provide theoretical
guarantees for HyperBF and CalmSS. Extensive experimen-
tal results demonstrate the effectiveness of our approach.
All related codes are available at GitHub [22].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
suggestions. This work is supported by Key-Area Re-
search and Development Program of Guangdong Province
2020B0101390001, and National Natural Science Foundation
of China (NSFC) (No. U20A20179, 61832001).

REFERENCES

[1] Z.Liu, C.Kong, K. Yang, T. Yang, R. Miao, Q. Chen, Y. Zhao, Y. Tu,
and B. Cui, “Hypercalm sketch: One-pass mining periodic batches
in data streams,” in 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 2023.

[2] P.Chen, D.Chen, L. Zheng,J. Li, and T. Yang, “Out of many we are
one: Measuring item batch with clock-sketch.” SIGMOD, 2021.

[3] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control
for datacenter networks,” in NSDI, 2017.

[4] T.Lévai, F. Németh, B. Raghavan, and G. Rétvari, “Batchy: Batch-
scheduling data flow graphs with service-level objectives,” in
NSDI, 2020.

[5] R. Lei, P. Wang, R. Lj, P. Jia, J. Zhao, X. Guan, and C. Deng, “Fast
rotation kernel density estimation over data streams,” in SIGKDD,
2021.

[6] C. Pirrong, “Energy market manipulation: definition, diagnosis,
and deterrence,” Energy L], vol. 31, p. 1, 2010.

[7] T. Chen, H. Yin, H. Chen, H. Wang, X. Zhou, and X. Li, “Online
sales prediction via trend alignment-based multitask recurrent
neural networks,” KAIS, 2019.

[8] Z.-L. Zhang, V.]J. Ribeiro, S. Moon, and C. Diot, “Small-time
scaling behaviors of internet backbone traffic: An empirical study,”
in INFOCOM, 2003.

(9]

[10]

[11]

[12]

(13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

17

F.]J. Corbato, “A paging experiment with the multics system,”
MASSACHUSETTS INST OF TECH CAMBRIDGE PROJECT
MAUC, Tech. Rep., 1968.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422426,
1970.

Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom
filter: Membership testing for the entire history,” in SIGMOD,
2018.

A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computa-
tion of frequent and top-k elements in data streams,” in ICDT.
Springer, 2005.

D. Ting, “Data sketches for disaggregated subset sum and frequent
item estimation,” in SIGMOD, 2018.

E. D. Demaine, A. Lépez-Ortiz, and]J. I. Munro, “Frequency
estimation of internet packet streams with limited space,” in ESA.
Springer, 2002.

P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and
more accurate stream processing,” in SIGMOD, 2016.

G. Cormode, “Sketch techniques for approximate query process-
ing,” Foundations and Trends in Databases. NOW publishers, 2011.

Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig, “Cold
filter: A meta-framework for faster and more accurate stream
processing,” in SIGMOD, 2018.

P. Jia, P. Wang, J. Zhao, Y. Yuan, J. Tao, and X. Guan, “Loglog
filter: Filtering cold items within a large range over high speed
data streams,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). 1EEE, 2021, pp. 804-815.

L. Zhang and Y. Guan, “Frequency estimation over sliding win-
dows,” in ICDE. IEEE, 2008, pp. 1385-1387.

R. B. Basat, R. Friedman, and R. Shahout, “Stream frequency over
interval queries,” Proceedings of the VLDB Endowment, vol. 12, no. 4,
pp. 433445, 2018.

S. Sun, J. Zheng, and D. Li, “Hee-sketch: an efficient sketch for
sliding-window frequency estimation over skewed data streams,”
in ISPA, 2019.

“Hypercalm sketch source codes,”
HyperCalmSketch /HyperCalmSketch!

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a
single engine,” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 36, no. 4, 2015.

“The redis in-memory data store,” https://redis.io,

S.Kong, T. He, X. Shao, C. An, and X. Li, “Time-out bloom filter: A
new sampling method for recording more flows,” in ICOIN, 2006.
E. Assaf, R. B. Basat, G. Einziger, and R. Friedman, “Pay for
a sliding bloom filter and get counting, distinct elements, and
entropy for free,” in INFOCOM. IEEE, 2018.

G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, 2005.

C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,”
TOCS, vol. 21, no. 3, 2003.

M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in Automata, Languages and Programming,
2002.

T. Akiba and Y. Yano, “Compact and scalable graph neighborhood
sketching,” in SIGKDD, 2016.

Y. Yang, Y. Zhang, W. Zhang, and Z. Huang, “Gb-kmv: An
augmented kmv sketch for approximate containment similarity
search,” in 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE). 1EEE, 2019, pp. 458—469.

P. Jia, P. Wang, J. Zhao, S. Zhang, Y. Qi, M. Hu, C. Deng, and
X. Guan, “Bidirectionally densifying Ish sketches with empty
bins,” in SIGMOD, 2021.

D. Ting, J. Malkin, and L. Rhodes, “Data sketching for real time
analytics: Theory and practice,” in SIGKDD, 2020.

P. Wang, Y. Qi, Y. Zhang, Q. Zhai, C. Wang, J. C. Lui, and
X. Guan, “A memory-efficient sketch method for estimating high
similarities in streaming sets,” in SIGKDD, 2019.

D. Ting, “Count-min: Optimal estimation and tight error bounds
using empirical error distributions,” in SIGKDD, 2018.

A. Santos, A. Bessa, C. Musco, and J. Freire, “A sketch-based
index for correlated dataset search,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2022.

https://github.com/

https://github.com/HyperCalmSketch/HyperCalmSketch
https://github.com/HyperCalmSketch/HyperCalmSketch
https://redis.io

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

[48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]
[57]

R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik,
“Salsa: self-adjusting lean streaming analytics,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp- 864-875.

A. Santos, A. Bessa, C. Musco, and]. Freire, “A sketch-based
index for correlated dataset search,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE), 2022.

B. Zhao, X. Li, B. Tian, and etal, “Dhs: Adaptive memory layout
organization of sketch slots for fast and accurate data stream
processing,” in SIGKDD, 2021.

Z. Fan, R. Wang, Y. Cai, R. Zhang, T. Yang, Y. Wu, B. Cui, and
S. Uhlig, “Onesketch: A generic and accurate sketch for data
streams,” IEEE Transactions on Knowledge and Data Engineering,
2023.

D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux, “D 22 histosketch:
Discriminative and dynamic similarity-preserving sketching of
streaming histograms,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 10, pp. 1898-1911, 2018.

D. Yang, B. Qu, J. Yang, L. Wang, and P. Cudre-Mauroux, “Stream-
ing graph embeddings via incremental neighborhood sketching,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5,
pp- 5296-5310, 2022.

W. Xie, E. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch:
Real-time bursty topic detection from twitter,” IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 8, pp. 2216-2229,
2016.

Y. Wu, Z. Liu, X. Yu, J. Gui, H. Gan, Y. Han, T. Li, O. Rottenstreich,
and T. Yang, “Mapembed: Perfect hashing with high load factor
and fast update,” in SIGKDD, 2021.

K. Amphawan, P. Lenca, and A. Surarerks, “Efficient mining
top-k regular-frequent itemset using compressed tidsets,” in New
Frontiers in Applied Data Mining: PAKDD 2011 International Work-
shops, Shenzhen, China, May 24-27, 2011, Revised Selected Papers 15.
Springer, 2012, pp. 124-135.

Q. Wen, K. He, L. Sun, Y. Zhang, M. Ke, and H. Xu, “Robustperiod:
Robust time-frequency mining for multiple periodicity detection,”
in Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 2328-2337.

M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Stagger: Period-
icity mining of data streams using expanding sliding windows,”
in Sixth International Conference on Data Mining (ICDM’06). IEEE,
2006, pp. 188-199.

Q. Yuan,]. Shang, X. Cao, C. Zhang, X. Geng, and J. Han,
“Detecting multiple periods and periodic patterns in event time
sequences,” in CIKM, 2017.

M. Toller, T. Santos, and R. Kern, “Sazed: parameter-free domain-
agnostic season length estimation in time series data,” Data Mining
and Knowledge Discovery, vol. 33, no. 6, pp. 1775-1798, 2019.

Z. Fan, Y. Zhang, T. Yang, M. Yan, G. Wen, Y. Wu, H. Li, and
B. Cui, “Periodicsketch: Finding periodic items in data streams,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022.

Z. 1i, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2010, pp. 1099-1108.

M. Flynn, “Some computer organizations and their effectiveness.
ieee trans comput ¢-21:948,” Computers, IEEE Transactions on Com-
puters, vol. C-21, pp. 948 — 960, 10 1972.

“Supplementary materials of hypercalm sketch,”
https:/ /github.com/HyperCalmSketch/HyperCalmSketch/
blob/main/HyperCalm_Supplementary.pdf,

Z.Liu, Y. Zhao, Z. Fan, T. Yang, X. Li, R. Zhang, K. Yang, Z. Zhong,
Y. Huang, C. Liu, J. Hu, G. Xie, and B. Cui, “Burstbalancer: Do less,
better balance for large-scale data center traffic,” in Proceedings of
the IEEE 30th International Conference on Network Protocols (ICNP).
IEEE, Nov. 2022, pp. 1-13.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-
wide measurements,” in SIGCOMM, 2018, pp. 561-575.

“CAIDA dataset,” Available: http:/ /www.caida.org/home.

F. Wilcoxon, “Individual comparisons by ranking methods,” in
Breakthroughs in statistics: Methodology and distribution. ~Springer,
1992, pp. 196-202.

0

18

Zirui Liu received the B.S. degree in computer
science from Peking University in 2021. He is
currently a third-year Ph.D. student in the School
of Computer Science of Peking University, ad-
vised by Prof. Bin Cui and Prof. Tong Yang. His
research interest is probablistic data structures,
and their application in network measurement
and streaming data mining. He published papers
in SIGMOD, SIGCOMM, NSDI, SIGKDD, ICDE,
ICNP, etc.

Xiangyuan Wang is currently an undergraduate
student of Peking University majoring in Infor-
mation and Computing Sciences. His research
interests include data structures and algorithms
in network measurement.

Yuhan Wu received his bachelor degree in the
Department of Electrical Engineering and Com-
puter Science at Peking University in 2021. Cur-
rently he is a CS PhD student in School of
Computer Science at Peking University, advised
by Tong Yang. His research interests lie in the
fields of computer network and database, includ-
ing key-value stores, network measurement, and
sketches.

Tong Yang (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Uni-
versity in 2013. He visited the Institute of Com-
puting Technology, Chinese Academy of Sci-
ences (CAS). He is currently an Associate Pro-
fessor with the School of Computer Science,
Peking University. His research interests include
network measurements, probabilistic algorithms,
and KV stores. He has published more than 20
papers in SIGCOMM, SIGMOD, and SIGKDD.

Kaicheng Yang received his B.S. degree in
Computer Science from Peking University in
2021. He is currently pursuing the Ph.D. de-
gree in the School of Computer Science, Peking
University, advised by Tong Yang. His research
interests include network measurement and pro-
grammable data plane. He published papers
in SIGCOMM, SIGMOD, NSDI, ICDE, WWW,
ICNP, etc.

Hailin Zhang received the B.S. degree in com-
puter science from Peking University in 2020.
He is currently pursuing the Ph.D. degree with
the School of Computer Science, Peking Uni-
versity, advised by Prof. Bin Cui. His Research
interests include machine learning systems and
distributed systems. He published papers in SIG-
MOD, VLDB, SCIS, etc.

Yaofeng Tu received the Ph.D. degree from
Nanjing University of Aeronautics and Astronau-
tics. China, in 2019. He is currently a research
professor in ZTE company. His main research
interests include distributed computing, big data
system, and machine learning.

https://github.com/HyperCalmSketch/HyperCalmSketch/blob/main/HyperCalm_Supplementary.pdf
https://github.com/HyperCalmSketch/HyperCalmSketch/blob/main/HyperCalm_Supplementary.pdf
http://www.caida.org/home

Bin Cui (Senior Member, IEEE) is a professor
and Vice Dean in School of CS at Peking Univer-
sity. He obtained his Ph.D. from National Univer-
sity of Singapore in 2004. His research interests
include database system architectures, query
and index techniques, big data management and
mining. He is serving as Vice Chair of Techi-
cal Commettee on Database China Computer
Federation (CCF) and Trustee Board Member of
VLDB Endowment, is also in the Editorial Board
of Distributed and Parallel Databases, Journal of
Computer Science and Technology, and SCIENCE CHINA Information
Sciences, and was an assocaite editor of IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) and VLDB Journal.

19

	Introduction
	Background and Motivation
	Our Proposed Solution
	Key Contributions

	Background and Related Work
	Problem Statement
	Related Work

	The HyperCalm Sketch
	The HyperBF Algorithm
	The TimeRecoder Algorithm
	The CalmSS Algorithm
	Implementation
	Optimization: Bucketized Partition
	Optimization: SIMD Acceleration
	Extension: Mining Periodic Large Batches
	Extension: Dynamic Memory Adjustment

	Mathematical Analysis
	Error Rate of HyperBF
	Error Rate of CalmSS
	Effectiveness of Asynchronous Timeline
	Error Rate of Bucketized Space-Saving

	Experimental Results
	Experiments on HyperBF
	Experiments on CalmSS
	Experiments on HyperCalm
	Experiments on Bucketized Partition Optimization
	Experiments on SIMD Optimization
	Experiments on Dynamic Memory Adjustment
	Experiments on Mining Periodic Large Batches
	Applying HyperCalm to Cache Systems
	Applying HyperCalm to Network Measurement
	Integration into Apache Flink
	Integration into Redis Database

	Conclusion
	References
	Biographies
	Zirui Liu
	Xiangyuan Wang
	Yuhan Wu
	Tong Yang
	Kaicheng Yang
	Hailin Zhang
	Yaofeng Tu
	Bin Cui

