
Hyper-USS: Answering SubsetQuery Over Multi-Attribute Data
Stream

Ruijie Miao
∗†

Peking University

miaoruijie@pku.edu.cn

Yiyao Zhang
‡

Nanjing University

zhangyiyao@smail.nju.edu.cn

Guanyu Qu
§¶

Institute of Computing Technology,

Chinese Academy of Sciences

University of Chinese Academy of

Sciences

quguanyu21@mails.ucas.ac.cn

Kaicheng Yang
∗†

Peking University

ykc@pku.edu.cn

Tong Yang
∗†

Peking University

yangtongemail@gmail.com

Bin Cui
∗

Peking University

bin.cui@pku.edu.cn

ABSTRACT
1
Sketching algorithms are considered as promising solutions for

answering approximate query on massive data stream. In real sce-

narios, a large number of problems can be abstracted as subset
query over multiple attributes. Existing sketches are designed for

query on single attributes, and therefore are inefficient for query

on multiple attributes. In this work, we propose Hyper-USS, an
innovative sketching algorithm that supports subset query over

multiple attributes accurately and efficiently. To the best of our

knowledge, this work is the first sketching algorithm designed to

answer approximate query over multi-attribute data stream. We

utilize the key technique, Joint Variance Optimization, to guaran-

tee high estimation accuracy on all attributes. Experiment results

show that, compared with the state-of-the-art (SOTA) sketches that

support subset query on single attributes, Hyper-USS improves

the accuracy by 16.67× and the throughput by 8.54×. The code is
open-sourced at Github.

CCS CONCEPTS
• Information systems → Data stream mining; • Theory of
computation → Sketching and sampling.

KEYWORDS
Sketch; Multi-attribute Data Stream; Subset Query

∗
National Key Laboratory for Multimedia Information Processing, School of Computer

Science, Peking University, Beijing, China

†
Peng Cheng Laboratory, Shenzhen, China

‡
Department of Computer Science and Technology, Nanjing university, Nanjing, China

§
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¶
University of Chinese Academy of Sciences, Beijing, China

1
Corresponding author: Tong Yang (yangtongemail@gmail.com)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08.

https://doi.org/10.1145/3580305.3599383

ACM Reference Format:
Ruijie Miao, Yiyao Zhang, Guanyu Qu, Kaicheng Yang, Tong Yang, and Bin

Cui. 2023. Hyper-USS: Answering Subset Query Over Multi-Attribute Data

Stream. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3580305.

3599383

1 INTRODUCTION
Approximate query for massive data streams has wide applications

in data analysis, especially when processing efficiency is of high

priority while errors can be tolerated to a certain degree. In real

scenarios, the data stream usually has multiple attributes that users

are interested in. That is, each item of the data stream can be denoted

as (𝑒, 𝑣1, 𝑣2, · · · , 𝑣𝑛), where 𝑒 is the key and 𝑣1, 𝑣2, · · · , 𝑣𝑛 are the

attributes of interest. Users may query for the aggregated results

over a subset of items on any attribute. If we regard each item in

the data stream as one row in a table, the aggregated query can be

expressed as:

SELECT SUM [,AVG] (Attribute)

FROM table

WHERE Key in Subset

We list some potential use cases for subset query over multiple

attributes:

Use case 1: ad click analysis. In the ad click stream, each item

represents one user viewing a specific ad and includes information

such as whether they click the ad, user region and advertising

company. For instance, (user_region, ad_id, company_id) is the key,

and the number of views (in each item this is 1) and the number

of clicks (in each item this is 0 or 1) are attributes. Operators may

query for the total number of views for ads from the same company,

or the total number of clicks of a specific ad from users in a specific

country. These can be expressed as the subset sum over different

attributes. Besides, users may also be interested in the click-through

rate for users in a certain country, which is defined as the number

of clicks over the number of views and can be expressed as subset

average over the number of clicks.

Use case 2: Youtube video statistics. In Youtube video statistics,

each watch record means a user plays a specific video, and the

recorded information includes whether they like the video and

their watch time. Operators may query for the total number of

https://doi.org/10.1145/3580305.3599383
https://doi.org/10.1145/3580305.3599383
https://doi.org/10.1145/3580305.3599383

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

Figure 1: The key technique of Joint Variance Optimization
in Hyper-USS.
plays or the total number of likes for videos in one channel (subset

sum). They may also query for the average watch time for videos

in one channel (subset average).

Use case 3: ecommerce data analytics. For ecommerce data, each

shopping record means a buyer buys a specific product, and include

information such as their rating of products. Users may query for

the sum of sales volume for one store (subset sum), or the average

rating of one product (subset average).

Use case 4: network measurement. In network measurement,

the number of packets and the number of bytes are useful attributes

in many applications [1, 2]. In traffic traces, each packet is sent from

a source IP to a destination IP, with a specific packet size. Users

may query for the total number of packets from a certain source IP

prefix (subset sum), or the average number of bytes of each packet

to one specific destination IP prefix (subset average).

To address approximate query for massive data streams, research

community has developed many approximation techniques, and

sketches are one of the most popular algorithms among them.

Sketching algorithms are typically designed to record information

in limited memory while minimizing querying errors. Sketches can

be classified into two types. Most sketches [3–10] are designed for

point query
2
, and existing works [1, 11, 12] have shown that such

algorithms are inefficient in supporting subset query. The other

type of sketches achieve high accuracy and high processing speed

in supporting subset query. However, they are designed for single-

attribute data stream model. When applied for multi-attribute data

streams, a strawman solution is to build one individual sketch for

each attribute. This method wastes memory by repeatedly record-

ing the information of keys in all sketches, and inserting one item

requires updating all sketches. Therefore, it suffers from limited

performance in both accuracy and insertion throughput.

In this paper, we propose our solution, namelyHyper-USS, which,

to the best of our knowledge, is the first sketching algorithm de-

signed to answer approximate query on multi-attribute data stream

model. Hyper-USS records the information of keys and all attributes

in one sketch. Besides, Hyper-USS provides for all attributes unbi-

ased estimation and optimized estimation variance, which is well

acknowledged as the golden principle for accurate subset query

[11, 12]. Therefore, Hyper-USS achieves high accuracy and high

insertion throughput for subset query over multiple attributes.

The challenge in sketch design lies in how to provide unbiased

estimation while optimizing variance for all attributes. To address

the problem, we propose our key technique, namely Joint Variance
Optimization. In order to achieve high accuracy for all attributes,

we set the optimization goal as minimizing the sum of estimation

variance of all attributes. As a result, optimizing the sum of variance

2
Point query refers to querying the results of a single key.

will jointly improve the accuracy on all attributes. Specifically, we

generalize the idea of probability proportional to size sampling (PPS)

to the multi-attribute scenarios, as shown in Figure 1. When two

items compete for a bucket, each item has a probability to win the

competition. The winning probability of two items is proportional

to the L2 norm of the attributes. If one item successfully stays in the

bucket, all its attributes are divided by its winning probability. The

state-of-the-art sketches on subset query, USS and CocoSketch, can

be regarded as a special case of Hyper-USS in the single-attribute

scenarios.Wewill show in §4 that our techniquemaintains unbiased

estimation while minimizing the sum of variance for all attributes.

While the Joint Variance Optimization technique works in com-

mon cases, it fails to perform uniformly well on all attributes when

the values of different attributes vary by orders of magnitude. In

response, we propose a technique named Fair Evolution, which
achieves better performance under imbalanced attributes by nor-

malizing attributes before calculating winning probability. For the-

oretical analysis, we not only provide formal proof on the unbi-

asedness and the variance optimization, but also study the error

bound of Hyper-USS. Beside subset query, Hyper-USS can be ap-

plied for point query, identifying heavy hitters, detecting heavy

change, finding heavy hitter subsets, and querying the distribution

of values.

Our main contribution can be summarized as follows.

• We propose Hyper-USS, which supports subset query over multi-

attribute data streams efficiently (§3.1).

• To achieve fairness among imbalanced attributes, we propose

Fair Evolution by optimizing normalized errors (§3.2).

• We provide theoretical analysis for Hyper-USS, including the

unbiasedness, variance minimization, and the error bound (§4).

• We conduct rich experiments on Hyper-USS. The results show

that, compared with SOTA sketches for subset query on single

attributes, Hyper-USS can reduce the estimation errors of subset

query by 16.67 times, and speed up insertion by 8.54 times (§6).

2 BACKGROUND AND MOTIVATION
In this section, we first give a formal definition for the problem of

subset query over multi-attribute data stream, and then we describe

the related work.

2.1 Problem Definition
The single-attribute model successfully abstracts the data stream in

many scenarios, which is widely studied in the research community.

However, in more complicated scenarios, there exists requirements

of subset query over multiple attributes. We provide the formal defi-

nition for the problem as follows.

Problem 1 (SubsetQuery Over Multiple Attributes). Sup-
pose the item in the multi-attribute data stream can be denoted as
(𝑒, 𝑣1, 𝑣2, · · · , 𝑣𝑛). Given a target attribute 𝑣𝑖 , a subset of keys S𝑘 and
an operator 𝑓 , we apply the operator on the attribute 𝑣𝑖 for any key
𝑘 ∈ S𝑘 .

In this paper we aim to support two classic operators: sum and

average.
• For the operator sum on 𝑖𝑡ℎ attribute over subset S𝑘 , we compute∑︁

(𝑒,𝑣1,· · · ,𝑣𝑛),𝑒∈S𝑘

𝑣𝑖

Hyper-USS: Answering Subset Query Over Multi-Attribute Data Stream KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 2: The limitations of SOTA sketches (CocoSketch/USS)
on subset query over multiple attributes.
• For the operator average on 𝑖𝑡ℎ attribute over subset S𝑘 , we
compute ∑

(𝑒,𝑣1,· · · ,𝑣𝑛),𝑒∈S𝑘
𝑣𝑖

|{(𝑒, 𝑣1, · · · , 𝑣𝑛) | 𝑒 ∈ S𝑘 }|

2.2 Related Work
2.2.1 Sketching Algorithms.
Sketches are a class of compact data structures designed to answer

approximate query with limited memory. Sketching algorithms

have the advantages of high throughput and provable error bounds,

and are therefore suitable for large data stream processing. Most

existing sketching algorithms are discussed in the single-attribute

data stream model and only support point query. Some recent

works advanced in supporting subset query. Below we discuss

these two kinds of sketches and their limitations for subset query

over multiple attributes.

Sketches for Point Query. Research community has defined a

lot of fundamental tasks and designed corresponding sketches in

data stream processing, such as heavy hitter detection [5, 8, 13, 14],

pattern mining [15, 16], and more [7, 17, 18]. Most tasks are defined

over the single-attribute data stream model, and the corresponding

sketches should only support point query, i.e., query the aggregate

result of a single key. For example, in heavy hitter detection of

single keys, users are only interested in those single keys with large

aggregated sum of value.

As pointed out by prior work [11, 12], sketches for point query

suffer from inaccuracy and low throughput when applied to subset

key query, due to the fact that these sketches support subset query

by building one sketch for each queried subset. As a result, the

memory of one specific sketch is reduced, causing drop in accuracy,

while the insertion of one item requires updating multiple sketches

and limits insertion throughput.

Sketches for Subset Query. Recently, researchers have noticed
increased demand for subset query. Unbiased SpaceSaving (USS)

[11] and CocoSketch [12] are the two representative sketch solu-

tions. The key design for both USS and CocoSketch is similar. An

incoming item will choose a bucket and compete with the recorded

item in the bucket to decide which item stays in the bucket. The

settings of winning probability in both algorithms follow the idea

of probability proportional to size sampling (PPS) [19]. Suppose

the incoming item (𝐴,𝑉𝐴) competes with the recorded item (𝐵,𝑉𝐵).
With probability

𝑉𝐴
𝑉𝐴+𝑉𝐵

, the incoming item wins and the bucket is

updated to (𝐴,𝑉𝐴 +𝑉𝐵). With probability
𝑉𝐵

𝑉𝐴+𝑉𝐵
, the recorded item

wins and the bucket is updated to (𝐵,𝑉𝐴 +𝑉𝐵). The probabilistic
substitution ensures one bucket providing unbiased estimation and

minimized variance for two items. To locate the bucket for the

Figure 3: Three insertion examples for Hyper-USS (𝑛 = 2, 𝑑 =

2).

incoming item, USS selects the bucket with the minimum value

among all buckets, while CocoSketch selects the bucket with mini-

mum value among the hashed buckets. CocoSketch improves USS

in terms of throughput while maintaining high accuracy, therefore

regarded as the state-of-the-art sketch solution on subset query.

However, directly applying CocoSketch for subset query over

multiple attributes may suffer from inefficiency in terms of both

memory and throughput. In order to support multiple attributes,

we have to build one CocoSketch for each attribute. From the aspect

of accuracy, as CocoSketch records keys in the bucket, multiple

CocoSketches will keep multiple copies of keys, which drags down

memory efficiency. From the aspect of throughput, each insertion

should update multiple CocoSketches, leading to low throughput.

Figure 2 shows an example of ad click analysis with two attributes:

the number of views and the number of clicks. Building one sketch

for each attribute requires updating two sketches for each incoming

item, causing a halving of throughput. Besides, both sketches record

the ID of ads, and the duplicated ID records lead to inefficient

memory usage.

2.2.2 Multi-attribute Model.
The multi-attribute model arises naturally from many real-world

scenarios, and therefore has been widely studied. Skyline query

aims to find items no less than any other items on any attribute.

Many algorithms [20, 21] are proposed to answer skyline query.

Spatio-temporal data mining [22] provide analysis on items with at

least one spatial attribute and at least one temporal attribute, which

can be used in real-world applications such as traffic management

and weather forecast. Research on multi-attributes model also in-

volve multi-dimensional databases [23, 24], business application

systems [25], and more [26, 27].

To the best of our knowledge, we are the first to introduce sketch-

ing algorithms under the multi-attribute model, with support for

subset query on any attribute.

3 THE HYPER-USS ALGORITHM
3.1 Basic Design
Data Structure: The data structure consists of 𝑑 bucket arrays,

and each consisting of𝑤 buckets. Each bucket records a key and

𝑛 attributes. Let B𝑖 [𝑗] (1 ⩽ 𝑖 ⩽ 𝑑, 1 ⩽ 𝑗 ⩽ 𝑤) be the 𝑗𝑡ℎ bucket in

the 𝑖𝑡ℎ array. Let B𝑖 [𝑗] .𝐾 be the recorded key in the bucket, and

B𝑖 [𝑗] .𝑉 [𝑡] (1 ⩽ 𝑡 ⩽ 𝑛) be the 𝑡𝑡ℎ recorded attribute. Each bucket

array is associated with one hash function respectively, and we

denote the corresponding hash function for 𝑖𝑡ℎ array as ℎ𝑖 (·).
Insertion: To insert the item (𝑒, 𝑣1, 𝑣2, · · · , 𝑣𝑛), we first use 𝑑 hash

functions to hash the key 𝑒 to 𝑑 buckets (B𝑖 [ℎ𝑎𝑠ℎ𝑖 (𝑒)], 1 ⩽ 𝑖 ⩽ 𝑑)

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

Figure 4: A query example of Hyper-USS (𝑛 = 2).

in 𝑑 arrays. In matching the key of incoming item with existing

keys in the buckets, there are three possible cases:

Case 1: 𝑒 is recorded in B𝑘 [ℎ𝑎𝑠ℎ𝑘 (𝑒)], one of the 𝑑 hashed buck-

ets. In this case, we add the attributes 𝑣1, · · · , 𝑣𝑛 to the bucket. For

each dimension 𝑡 , the 𝑡𝑡ℎ attribute B𝑘 [ℎ𝑎𝑠ℎ𝑘 (𝑒)] .𝑉 [𝑡] is increased
by 𝑣𝑡 .

Case 2: 𝑒 is not recorded in any one of the 𝑑 buckets, and at least

one bucket is still empty. In such case, we select one empty bucket

to record the incoming item.

Case 3: 𝑒 is not recorded in any of the 𝑑 buckets, and all buckets

are occupied. In such cases, we look for the bucket with the smallest

L2 norm of values. The incoming item 𝑒 and the item in the bucket

are considered as in competition, and we apply the technique of

Joint Variance Optimization. Suppose the hashed bucket in the 𝑘𝑡ℎ

array has the smallest L2 norm, we set the winning probability of

the incoming item P according to the following formula:

P =

√︃∑
𝑡 𝑣

2

𝑡√︃∑
𝑡 𝑣

2

𝑡 +
√︁∑

𝑡 B𝑘 [ℎ𝑎𝑠ℎ𝑘 (𝑒)] .𝑉 [𝑡]2

With probability of P, the recorded item in B𝑘 [ℎ𝑎𝑠ℎ𝑘 (𝑒)] is re-
placed by (𝑒, 𝑣1, · · · , 𝑣𝑛), and then each attribute is divided by P.

Otherwise, the item in the bucket wins the competition, and each

recorded attribute is divided by 1 − P.

Insertion Examples (Figure 3): In the first example, we aim to

insert the item (𝑒1, 4, 6), and we use two associated hash function

to locate two buckets, respectively. The bucket in the first array

matches the key, so the recorded attributes are updated. The hashed

bucket in the second array is not changed. In the second example, we

insert the item (𝑒2, 1, 9). Neither of the two hashed buckets match 𝑒2,

and there exists an empty bucket, so the item is inserted to the empty

bucket. In the third example, we insert the item (𝑒3, 3, 4). Neither
of the two hashed buckets match 𝑒3, and the L2 norm of the second

bucket is smaller, so we update the second bucket. The replacement

probability P is set to

√
3
2 + 4

2/(
√
3
2 + 4

2 +
√
6
2 + 8

2) = 1/3. With

probability 1/3, the key is replaced by 𝑒3, and each attribute is

divided by 1/3. Otherwise, the key is unchanged, and all attributes

are divided by 2/3.
Query: To query the subset sum, we extract all non-empty bucket

in the result sketch and build a table with 𝑛 + 1 columns (one key

and 𝑛 attributes). Then we output the query result of the subset

sum over the table.

Support for Subset Average: Subset average can be represented

by the division of two subset sums: the subset sum of one attribute,

and the frequency sum of the subset. We can estimate the latter by

creating a virtual attribute 𝑣𝑛+1. For each item, we set the virtual

attribute 𝑣𝑛+1 = 1. The subset average over the attribute 𝑣𝑖 is the

subset sum of attribute 𝑣𝑖 over the subset sum of attribute 𝑣𝑛+1.

Query Example (Figure 4): The left table shows an example of the

table built from the result sketch. To query the sum over the subset

{𝑒1, 𝑒4, 𝑒11} on the attribute 𝑣1, we apply the operations on the table.

We aggregate the first and the third rows in the table. For 𝑒11, as it

does not appear in the table, its attributes are all estimated as 0. The

query result is 252 + 47 + 0 = 299. To query the average over the

subset {𝑒3, 𝑒8, 𝑒11} on the attribute 𝑣2, we compute the subset sum

on 𝑣2 over the subset sum on the added virtual attribute (denoted

as Count). The query result is (401 + 9 + 0)/(182 + 18 + 0) = 2.05.

3.2 Dealing with Imbalanced Attributes
In the basic version, the winning probability depends on the L2

norm of 𝑛 equal-weighted attributes. However, in real scenarios, the

values of different attributesmay have different orders of magnitude.

Such attributes with large values will dominate the L2 norm, thus

dominate the update process and hurt the sketch performance on

other attributes. To better illustrate the problem, consider video

statistics with two attributes: the number of views and the number

of likes. The number of views can be orders of magnitude larger

than the number of likes. Therefore, when calculating the L2 norm

of these two attributes, it is often dominated by the number of

views. Such updating process will lead to unacceptable errors in

the estimation of the number of likes.

To deal with imbalanced attributes, we propose the technique

named Fair Evolution. The key design is to normalize 𝑛 attributes

before calculating the L2 norm for the winning probability. During

the insertion, we compute the average of all past items on all 𝑛

attributes, 𝐴𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛. The 𝑖𝑡ℎ attribute is divided by 𝐴𝑖 before

calculating the L2 norm. Therefore, the winning probability of the

incoming item is set according to the following adjusted formula,

P =

√︁∑
𝑡 (𝑣𝑡/𝐴𝑡)2√︁∑

𝑡 (𝑣𝑡/𝐴𝑡)2 +
√︁∑

𝑡 (B𝑘 [ℎ𝑎𝑠ℎ𝑘 (𝑒)] .𝑉 [𝑡]/𝐴𝑡)2

Besides, in the third case of the insertion when there is no matched

bucket and no empty bucket, instead of looking for the bucket with

smallest L2 norm, we look for the bucket with smallest normal-

ized L2 norm. In other word, all L2 norm in the basic version is

replaced by the normalized L2 norm, and the rest of the algorithm

is unchanged.

3.3 The Rationale of Hyper-USS
As the subset average query is reduced to subset sum query, the

high accuracy on subset sum estimation is the key problem. In this

section, we provide the rationale behind the design of Hyper-USS.

Firstly, as pointed out by prior work [12], accurate subset sum

estimation requires unbiased estimation. Applying a biased sketch,

e.g., CM sketch [3], to subset sum estimation, will result in unac-

ceptably accumulated errors. The design of Hyper-USS ensures that,

when two items compete for one bucket (case 3 in the insertion),

Hyper-USS still provides unbiased estimation on any attribute for

both items. To do so, Hyper-USS lets each item has a probability to

win the competition, and scale all attributes of the winning item

according to its winning probability. The detailed proof is shown

in §4.1.

Given the unbiasedness, Hyper-USS achieves accurate subset

sum estimation by optimizing the variance of the estimation. As

shown in Table 1, the SOTA sketches on subset query over single

Hyper-USS: Answering Subset Query Over Multi-Attribute Data Stream KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Sketch Optimization Goal

USS/CocoSketch minimize

∑
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

The basic version minimize

∑
𝑖

∑
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

The optimized version minimize

∑
𝑖

1

𝑊 2

𝑖

∑
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

Table 1: Optimization goals of different sketches. 𝑆𝑖 (·), 𝑆𝑖 (·)
denote the real and estimated sum on 𝑖𝑡ℎ attribute respec-
tively. 𝑊𝑖 (·) denotes the average value of all items on 𝑖𝑡ℎ

attribute.

attributes, USS and CocoSketch, minimize the sum of estimation

variance on all single keys. Hyper-USS aims to provide accurate

estimation on all attributes, and therefore minimizes the sum of

variance for all keys on all attributes. It is noticeable that, for the

insertion of Hyper-USS, the specific choice of the winning proba-

bility P does not affect the unbiasedness property. By setting the

winning probability proportional to the L2 norm of all attributes,

Hyper-USS accomplishes the optimization goal. Besides, selecting

the bucket with the smallest L2 norm for updating also targets at

the optimization goal. The detailed proof is shown in §4.2.

From the view of the optimization goal, under imbalanced at-

tributes, the larger attributes usually have larger variance. There-

fore, simply optimizing the sum of variance of all attribute will be

more beneficial for those larger attributes, as they have more room

for optimization. A more reasonable optimization goal is to normal-

ize the sum of variance on the 𝑖𝑡ℎ attribute according to the average

value on 𝑖𝑡ℎ attribute𝑊𝑖 . During the processing of the data stream,

the precise value of𝑊𝑖 is not known, as the future data cannot be

accessed. Hyper-USS uses the average value 𝐴𝑖 of historical items

to approximate𝑊𝑖 . By normalizing attributes before calculating the

winning probability, the optimized version accomplishes the new

optimization goal, and the proof is shown in §4.2. Intuitively, the

basic version can be regarded as optimizing “sum of errors”, while

the optimized version targets at “sum of normalized errors”. The

latter is thus more suitable for imbalanced attributes.

4 ANALYSIS
In this section, we provide mathematical analysis for Hyper-USS.

We first prove the unbiasedness of subset sum estimation on any

attribute in §4.1. Then we prove how the basic and the optimized

version achieve their optimization goals of variance optimization

in §4.2. We further provide the analysis of the error bound in §4.3.

4.1 Unbiasedness of Hyper-USS
Theorem 1. For any attribute 𝑣𝑖 , Hyper-USS provides unbiased

sum estimation for any subset S,

E
[
𝑆𝑖 (S)

]
= 𝑆𝑖 (S)

Here 𝑆𝑖 (·) denotes the estimated subset sum on 𝑖𝑡ℎ attribute, and 𝑆𝑖 (·)
denotes the real subset sum on 𝑖𝑡ℎ attribute.

Proof. We first prove that Hyper-USS gives unbiased sum esti-

mation for any single key 𝑘 on any attribute. Consider inserting the

item (𝑒,𝑤1,𝑤2, · · · ,𝑤𝑛). If one bucket matches 𝑒 , the 𝑖𝑡ℎ attribute

in the bucket will increase by 𝑣𝑖 , and the increment of estimation

for 𝑒 is unbiased. If no matched bucket is found, the bucket with

smallest L2 norm is updated, and we suppose the updated bucket is

B𝑡 [ℎ𝑡 (𝑒)]. After the insertion, the expected increment of estimation

for the key 𝑒 on attribute 𝑣𝑖 is,

𝑤𝑖

P · P + 0 · (1 − P) = 𝑤𝑖

The expected increment for the key B𝑡 [ℎ𝑡 (𝑒)] .𝐾 is,

(B𝑡 [ℎ𝑡 (𝑒)] .𝑉 [𝑖]
1 − P −B𝑡 [ℎ𝑡 (𝑒)] .𝑉 [𝑖]) · (1−P)−B𝑡 [ℎ𝑡 (𝑒)] .𝑉 [𝑖] ·P = 0

As a result, during the insertion the estimated sum of any key is

unbiased. For any subset 𝑆 , we have

E
[
𝑆𝑖 (S)

]
=
∑︁
𝑒∈S
E
[
𝑆𝑖 (𝑒)

]
=
∑︁
𝑒∈S

𝑆𝑖 (𝑒) = 𝑆𝑖 (S)

□

4.2 Variance Optimization in Hyper-USS
Analysis for the choice of P. We first consider the basic version

of Hyper-USS with only one array and one associated hash function,

and discuss why the choice of winning probability P is theoretically

optimal for the optimization goal.

Theorem 2. In the basic version with 𝑑 = 1, Hyper-USS minimizes
the sum of variance of all keys on all attributes, shown as follows.

minimize
𝑛∑︁
𝑖=1

∑︁
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

(1)

Proof. We consider the increment of Eq. (1) for the insertion

of each item (𝑒,𝑤1, · · · ,𝑤𝑛). If one bucket matches 𝑒 or there is at

least one empty bucket, 𝑖𝑡ℎ attribute of item 𝑒 has an increment of

𝑤𝑖 , and the increment of Eq. (1) is 0. Otherwise, suppose the updated

bucket is B[ℎ(𝑒)], and the record attributes are 𝑢𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛. The

increment variance only involves the keys of 𝑒 and B[ℎ(𝑒)] .𝐾 , and
we have,

𝑛∑︁
𝑖=1

∑︁
𝑒

Δ
(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

=

𝑛∑︁
𝑖=1

P ·
((𝑤𝑖

P −𝑤𝑖

)
2

+ 𝑢2𝑖
)

+ (1 − P) ·
(
𝑤2

𝑖 +
(𝑢𝑖

1 − P − 𝑢𝑖
)
2

)
=

∑𝑛
𝑖=1𝑤

2

𝑖

P +
∑𝑛
𝑖=1 𝑢

2

𝑖

1 − P −
𝑛∑︁
𝑖=1

𝑤2

𝑖 −
𝑛∑︁
𝑖=1

𝑢2𝑖

When setting

P =

√︃∑
𝑖 𝑤

2

𝑖√︃∑
𝑖 𝑤

2

𝑖
+
√︃∑

𝑖 𝑢
2

𝑖

the variance increment is minimized. □

Analysis for selecting the bucket with minimal L2 norm. We

then analyze the general case of the basic version, and discuss why

we choose to update the bucket with the minimal L2 norm.

Theorem 3. In the basic version with 𝑑 > 0, Hyper-USS minimizes
the sum of variance of all keys on all attributes, shown as follows.

minimize
𝑛∑︁
𝑖=1

∑︁
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

(2)

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

Proof. Suppose the incoming item is (𝑒,𝑤1, · · · ,𝑤𝑛). According
the the proof in Theorem 2, when there is no matched bucket and

no empty bucket, suppose the updated bucket is B𝑡 [ℎ𝑡 (𝑒)], and its

attributes are 𝑢𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛. The minimal increment of Eq. (2) will

be,

𝑛∑︁
𝑖=1

∑︁
𝑒

Δ
(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

=

∑𝑛
𝑖=1𝑤

2

𝑖

P +
∑𝑛
𝑖=1 𝑢

2

𝑖

1 − P −
𝑛∑︁
𝑖=1

𝑤2

𝑖 −
𝑛∑︁
𝑖=1

𝑢2𝑖

= 2 ·

√√
𝑛∑︁
𝑖=1

𝑤2

𝑖
·

√√
𝑛∑︁
𝑖=1

𝑢2
𝑖

For the insertion of Hyper-USS, we look for the bucket with the

minimal L2 norm among 𝑑 hashed buckets as the updated bucket.

Therefore, when 𝑑 > 0, Eq. (2) is also minimized. □

Analysis for the optimized version. Then we show that the

optimized version minimizes the normalized sum of errors.

Theorem 4. Suppose the average of value on 𝑖𝑡ℎ attribute is fixed,
denoted as𝑊𝑖 . In the optimized version, Hyper-USS minimizes the
normalized sum of variance, shown as follows.

minimize
𝑛∑︁
𝑖=1

1

𝑊 2

𝑖

∑︁
𝑒

(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

(3)

Proof. Since𝑊𝑖 is fixed throughout the insertion, the 𝐴𝑖 main-

tained by the optimized version is exactly equal to𝑊𝑖 . We can divide

the 𝑖𝑡ℎ attribute of each item by𝑊𝑖 , and then the algorithm and the

optimization goal become the same as those of the basic version.

The proof is the same as the proof of Theorem 2 and Theorem 3. □

4.3 Error Bound
In this section, we provide analysis on the error bound for the basic

version of Hyper-USS. The proof is deferred to Appendix A.

Theorem 5. In the basic version, the error of Hyper-USS’s estima-
tion on an arbitrary attribute of an arbitrary key 𝑒 can be bounded
as follows, where 𝑈 is the total number of inserted items and 𝐿 is the
upper bound of L2 norm for each inserted item.

Pr

[
|𝑆 𝑗 (𝑒) − 𝑆 𝑗 (𝑒) | ⩾ 𝜖

]
⩽

4𝑈 2𝐿2

𝑤2𝜖2

Corollary 1. In the basic version, the error of Hyper-USS’s es-
timation on an arbitrary attribute of a subset T can be bounded as
follows.

Pr

[
|𝑆 𝑗 (T) − 𝑆 𝑗 (T)| ⩾ 𝜖

]
⩽

4 |T |𝑈 2𝐿2

𝑤2𝜖2

5 DISCUSSION
Supporting negative attributes.We propose different schemes

to support negative attributes for following two different cases.

• Negative attribute value −𝑥 should have the same winning prob-

ability with positive attribute value +𝑥 . In such cases, we can

treat negative attributes in the same manner as we treat non-

negative attributes, because the winning probability depends on

the square of 𝑥 .

• Negative attribute value −𝑥 should have lower winning probabil-

ity compared with positive attribute value +𝑥 , and suppose the

attribute has a lower bound −𝑅. In such cases, for the incoming

item with attribute −𝑥 , we will consider the attribute as −𝑥 + 𝑅
and insert the item, and subtract 𝑅 · EstimatedCount from the

results when querying.

Supporting other applications. In addition to subset sum query

and subset average query, Hyper-USS also supports:

• Point query. Point query is the special case of subset query where
the subset consists only one key.

• Heavy hitter [8, 13, 14, 28]. Heavy hitters on attribute 𝑣𝑖 refers to

keys whose aggregated sum on attribute 𝑣𝑖 are above a threshold,

which can be reduced to point query.

• Heavy change [29]. For two adjacent windows, heavy change

refers to the itemswhose frequency change is larger than a thresh-

old. By detecting heavy hitters in both windows and compare

the difference, Hyper-USS can support heavy change detection.

• Heavy hitter subset (hierarchical heavy hitter [30–32]). Finding
heavy hitter subsets is an extension of finding heavy hitters.

Suppose all keys are partitioned into several subsets, heavy hitter

subset query on attribute 𝑣𝑖 aims to find those subsets whose

subset sum on 𝑣𝑖 is above a threshold. Heavy hitter subset query

can be reduced to subset sum query and thus be supported By

walking through the different levels of the hierarchy and finding

heavy hitter subsets, Hyper-USS supports hierarchical heavy

hitter.

• Distribution of values. Given a key/subset of keys, Hyper-USS

supports query for the distribution of values in 𝑖𝑡ℎ attribute: how

many items come with value 𝑣 in the 𝑖𝑡ℎ attribute, for all different

𝑣? To do so, we can duplicate the 𝑖𝑡ℎ attribute as an additional

field of the key, and the problem reduces to the subset sum query.

Hyper-USS cannot support arbitrary user-defined functions, as it is

primarily designed for subset sum estimation. However, we believe

an efficient support of subset sum query covers a wide range of

real-world applications.

6 EVALUATION
We conduct rich experiments to compare Hyper-USS with the SOTA

sketches on subset query over single attributes, USS [11] and Co-

coSketch [12], and show that:

• Inmulti-attribute scenarios, how accurate Hyper-USS can achieve

on different tasks compared with USS and CocoSketch;

• How fast Hyper-USS processes items compared with USS and

CocoSketch;

• How parameters of Hyper-USS and the datasets influence the

sketch performance;

• How the optimized version of Hyper-USS outperforms the basic

version under imbalanced attributions.

6.1 Experiment Setup
Datasets:

(1) The synthetic dataset. The keys in the synthetic dataset are

randomly generated integers. To simulate the heavy-tailed distribu-

tion in real world workload, the frequency of keys follows the Zipf

distribution [33] with skewness 1.5 according to prior works [7, 34].

Hyper-USS: Answering Subset Query Over Multi-Attribute Data Stream KDD ’23, August 6–10, 2023, Long Beach, CA, USA

For each item, the value of each attribute follows exponential dis-

tribution. We choose exponential distribution to generate positive

integers. The synthetic dataset contains 50M items, and each item

consists of a 40-byte key and 10 attributes. For 10 attributes we

select values between 1 and 16 as the mean of exponential distribu-

tions.

(2) The Criteo dataset. The Criteo dataset [35] contains feature

values and click feedbacks for millions of display ads over a period

of 24 days. The Criteo dataset contains 13 integer features and 26

categorical features. USS [11] uses this dataset to evaluate subset

query over single attributes. We select 5 categorical features as the

key and 5 count features as attributes, and use the first 50M items.

(3) The NBA dataset. The NBA dataset [36] contains player sta-

tistics from the 2004 season onwards. Each player is identified by 4

keys. For each game, there are 19 statistical indicators provided for

each player, and we select all 19 fields as attributes.

(4) The CAIDA dataset. The CAIDA dataset [37] contains one

hour of anonymous network traces collected from the Equinix-

Chicago monitor in 2018. We use the source IP and destination IP

as the ID of items, and use two attributes: the packet size and the

packet interval. We use 1-minute interval, which contains around

27M items and 85K distinct items.

Metrics:

• F1 Score: F1 Score is 2·𝑅𝑅 ·𝑃𝑅
𝑅𝑅+𝑃𝑅 . Here, RR is the recall rate, defined

as the ratio of the number of correctly reported instances to the

number of ground truths. PR is the precision rate, defined as the

ratio of the number of correctly reported instances to the number

of reported items. F1 score is used to evaluate the accuracy on

finding heavy hitters and heavy hitter subsets.

• Average Absolute Error (AAE):
∑

S∈Ψ

���𝑓 (S)−𝑓 (S)
���

|Ψ | , where 𝑓 (S) is
the ground truth, 𝑓 (S) is the output query result, and Ψ is the

query set.

• Average Relative Error (ARE): 1

|Ψ |
∑

S∈Ψ
| 𝑓 (S)−𝑓 (S) |

𝑓 (S) .

• Throughput: Million items per second (Mips). The throughput

numbers are the median value among 5 independent trials.

CPU Implementation: We implement Hyper-USS and its com-

petitors in C++, and the code is open-sourced at Github [38]. As

in previous work [12], we implement a throughput-enhanced USS

with a hash table and a double link list, because the naive USS is

too slow. In the optimized USS, the hash table is used to accelerate

the process of checking whether and where a key is stored in the

data structure, and the double link list is used to accelerate finding

the minimal bucket by sorting buckets. For CocoSketch we use the

recommended parameters in paper [12]. For Hyper-USS, we set

𝑑 = 2 by default.

FPGA Implementation: We also implement Hyper-USS on the

Xilinx XC7VX690T FPGA. The evaluation of the FPGA implemen-

tation is shown in Appendix D.

6.2 Accuracy
6.2.1 Experiments on the Synthetic Dataset.
We evaluate the accuracy of subset query and point query on the

synthetic dataset. For subset query, we randomly select 1000 subsets,

each of size 1000, and compute their average metric for all trials on

all attributes. For point query, we compute the average metric for

all attributes on 1000 random items.

Subset query (Figure 5): The experimental results show that,

Hyper-USS is more accurate for subset query on the synthetic

dataset. Compared with USS and CocoSketch, for subset sum esti-

mation, Hyper-USS reduces the estimation AAE by up to 16.69×,
5.65×, and reduces ARE by up to 13.83×, 4.84×, respectively. For
subset average estimation, Hyper-USS reduces AAE by up to 32.15×,
16.67×, and reduces ARE by up to 28.13×, 12.20×, respectively.
Point query (Figure 6):The experimental results show that, Hyper-

USS achieves higher accuracy for point query on the synthetic

dataset. Compared with USS and CocoSketch, for point sum es-

timation, Hyper-USS reduces AAE by up to 55.26×, 21.13×, and
reduces ARE by up to 20.75×, 13.07×, respectively. For point aver-
age estimation, Hyper-USS reduces AAE by up to 21.72×, 21.36×,
and reduces ARE by up to 19.52×, 18.84×, respectively. Besides,
Hyper-USS requires much more memory for accurate point query

than subset query. This is because Hyper-USS provides unbiased

estimation for a single key, and thus it can achieve accurate subset

query even when the point query is not accurate enough.

6.2.2 Experiments on the Real Datasets.
We evaluate the accuracy for subset query and point query on

the Criteo dataset. We evaluate the subset query on the heavy

hitter subsets and the point query on the heavy hitters. For each

attribute, we set the heavy hitter threshold to the 10
−5

of the total

sum on that attribute. Recall that in the Criteo dataset, the key of

each item consists of 5 features. For heavy hitter subsets, a natural

way is to partition according to values in a certain subset of the 5

features (e.g., when partitioning according to the first 3 features,

the result subsets are (1, 2, 3, ∗, ∗), (5, 3, 4, ∗, ∗), etc.). By doing so we

detect heavy hitters on a specific subset of the 5 features. To prove

universality, we go through all 𝐶1

5
+𝐶2

5
+𝐶3

5
+𝐶4

5
= 30 subsets of

features for partitioning.

We also conduct evaluations on the NBA dataset in Appendix

B, and evaluate the performance of Hyper-USS on other tasks in

Appendix C, including heavy hitter, heavy hitter subset, heavy

change and distribution of values.

Subset query (Figure 7): The experimental results show that,

Hyper-USS is more accurate for subset query in the Criteo dataset.

Compared with USS and CocoSketch, for subset sum estimation,

Hyper-USS reduces AAE by up to 30.91×, 7.51×, and reduces ARE

by up to 14.78×, 2.91×, respectively. For subset average estimation,

Hyper-USS reduces AAE by up to 12.70×, 10.28×, and reduces ARE
by up to 13.02×, 8.63×, respectively.
Point query (Figure 8):The experimental results show that, Hyper-

USS also achieves higher accuracy for point query on the Criteo

dataset. Compared with USS and CocoSketch, for point sum esti-

mation, Hyper-USS reduces AAE by up to 275.87×, 14.62×, and
reduces ARE by up to 74.06×, 6.07×, respectively. For point average
estimation, Hyper-USS reduces AAE by up to 16.88×, 9.99×, and
reduces ARE by up to 32.26×, 13.73×, respectively.

6.3 Throughput
We evaluate the insertion throughput of Hyper-USS, and compare

it with USS and CocoSketch on both the synthetic dataset and the

Criteo dataset.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

300 400 500 600 700
Memory (KB)

104

105

106

AA
E

Ours
Coco
USS

(a) Subset sum - AAE

300 400 500 600 700
Memory (KB)

10 3

10 2

10 1

AR
E

Ours
Coco
USS

(b) Subset sum - ARE

300 400 500 600 700
Memory (KB)

0.00

0.05

0.10

0.15

0.20

AA
E

Ours
Coco
USS

(c) Subset average - AAE

300 400 500 600 700
Memory (KB)

0.00

0.01

0.02

0.03

0.04

AR
E

Ours
Coco
USS

(d) Subset average - ARE

Figure 5: Experiments on the subset query on the synthetic dataset.

800 900 1000 1100 1200
Memory (KB)

0

2

4

AA
E

1e3
Ours
Coco
USS

(a) Point sum - AAE

800 900 1000 1100 1200
Memory (KB)

0

1

2

3

AR
E

Ours
Coco
USS

(b) Point sum - ARE

800 900 1000 1100 1200
Memory (KB)

0

1

2

AA
E Ours

Coco
USS

(c) Point average - AAE

800 900 1000 1100 1200
Memory (KB)

0.0

0.1

0.2

0.3

0.4

AR
E Ours

Coco
USS

(d) Point average - ARE

Figure 6: Experiments on the point query on the synthetic dataset.

300 400 500 600 700
Memory (KB)

104

105

106

107

AA
E

Ours
Coco
USS

(a) Subset sum - AAE

300 400 500 600 700
Memory (KB)

10 2

10 1

100

AR
E

Ours
Coco
USS

(b) Subset sum - ARE

300 400 500 600 700
Memory (KB)

0

10

20

30

AA
E

Ours
Coco
USS

(c) Subset average - AAE

300 400 500 600 700
Memory (KB)

0.2

0.4

0.6

AR
E

Ours
Coco
USS

(d) Subset average - ARE

Figure 7: Experiments on the subset query on the Criteo dataset.

300 400 500 600 700
Memory (KB)

103

104

105

106

AA
E

Ours
Coco
USS

(a) Point sum - AAE

300 400 500 600 700
Memory (KB)

10 1

100

101

AR
E

Ours
Coco
USS

(b) Point sum - ARE

300 400 500 600 700
Memory (KB)

0

20

40

AA
E

Ours
Coco
USS

(c) Point average - AAE

300 400 500 600 700
Memory (KB)

0.00

0.25

0.50

0.75

1.00

AR
E

Ours
Coco
USS

(d) Point average - ARE

Figure 8: Experiments on the point query on the Criteo dataset.

300 400 500 600 700
Memory (KB)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (

M
ip

s) Ours
Coco
USS

(a) The synthetic dataset

300 400 500 600 700
Memory (KB)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (

M
ip

s)

Ours
Coco
USS

(b) The Criteo dataset

Figure 9: Experiments on the insertion throughput.

Experimental results (Figure 9): The results show that, Hyper-

USS greatly speeds up the insertion process. Hyper-USS provides

more than 21.01×, 8.54× speed up on the synthetic dataset, and

more than 14.04×, 4.79× speed up on the Criteo dataset. Hyper-

USS achieves around 6.08Mips on the synthetic dataset, and around

9.99Mips on the Criteo dataset. It achieves higher insertion through-

put on the Criteo dataset, because in the Criteo dataset the length

of key and the number of attributes is smaller.

6.4 Microbenchmark
In this section, we evaluate the effect of different parameters in the

dataset and the algorithm.

Hyper-USS: Answering Subset Query Over Multi-Attribute Data Stream KDD ’23, August 6–10, 2023, Long Beach, CA, USA

20 40 60 80 100
Key Length (B)

0.0

0.5

1.0

1.5

AR
E

1e-2
Ours
Coco
USS

(a) ARE

20 40 60 80 100
Key Length (B)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (

M
ip

s) Ours
Coco
USS

(b) Throughput

Figure 10: Experiments on the key length.

1 5 10 15 20 25
Attributes

10 4

10 3

10 2

AR
E

Ours
Coco
USS

(a) ARE

1 5 10 15 20 25
Attributes

0

5

10

Th
ro

ug
hp

ut
 (

M
ip

s) Ours
Coco
USS

(b) Throughput

Figure 11: Experiments on the number of attributes.

1 2 3 4 5
d

10 4

10 3

10 2

AR
E

(a) ARE

1 2 3 4 5
d

6

7

8

9

10

Th
ro

ug
hp

ut
 (

M
ip

s)

(b) Throughput

Figure 12: Experiments on the number of arrays 𝑑 .

The effect of the key length (Figure 10):We fixed the number of

attributes to be 5, and vary the key length in the synthetic dataset

from 20 bytes to 100 bytes. The experimental results show that, as

the key length increases, the effect on the accuracy of Hyper-USS

is more significant. When the key length is 100 bytes, the ARE

of Hyper-USS is 0.0013, while those of CocoSketch and USS are

0.0050, 0.0128, respectively. The throughput of Hyper-USS drops as

key length grows, but is still higher than 3.70Mips. The drop rate

is higher than other algorithms because other algorithms are too

slow.

The effect of the attribute number (Figure 11): We fixed the

key length to be 20 bytes, and vary the number of attributes in the

synthetic dataset from 1 to 25. The experimental results show that,

as the number of attribute increases, the effect on the accuracy of

Hyper-USS is more significant. When the number of attribute is

25, the ARE of Hyper-USS is 0.0024, while those of CocoSketch

and USS are 0.0056, 0.0220, respectively. The throughput of Hyper-

USS decreases as the number of attributes grows, but maintains

higher than 5.54Mips.When the number of attribute is 1, Hyper-USS

degenerates to CocoSketch. However, it is worth noting that even

with only two attributes, Hyper-USS still outperforms CocoSketch,

achieving 1.50× lower ARE and 2.07× higher throughput.

Point Query Subset Query
0.00

0.02

0.04

M
ea

n
Av

er
ag

e
AR

E

Basic Optimized

(a) The Criteo dataset

Point Query Subset Query
0.00

0.02

0.04

0.06

M
ea

n
Av

er
ag

e
AR

E

Basic Optimize

(b) The CAIDA dataset

Figure 13: Experiments on the optimized version.
The effect of 𝑑 (Figure 12):We vary the number of arrays from

1 to 5 in the Hyper-USS. The experimental results show that, the

parameter 𝑑 in Hyper-USS serves as a trade-off between accuracy

and throughput. When 𝑑 increases from 1 to 5, the accuracy im-

proves as the ARE decreases from 0.013 to 0.00007, and the insertion

throughput decreases from 9.64Mips to 7.28Mips. Setting 𝑑 = 2 is

a reasonable choice that balances the accuracy and the insertion

throughput.

6.5 The Optimization
In this section, we compare the basic version and the optimized

version of Hyper-USS on the Criteo dataset and the CAIDA dataset.

For the Criteo dataset, to simulate imbalanced attributes, we scale

one attribute of each item by 10
5
. For the CAIDA dataset, the value

of packet interval is around 10
−6
, and the value of packet size is

usually 10
3
, and thus two attributes are already imbalanced. With

imbalanced attributes, ARE is more suitable metric for accuracy. In

each trial, we perform subset query and point query respectively

on heavy hitter subsets / heavy hitters, and then record the average

ARE. We conduct 1000 trials and calculate the mean of average ARE.

Experimental results (Figure 13): The results show that, the

optimized version performs better when attributes are imbalanced.

In both point query and subset query, the mean ARE is reduced

by up to 21% on the Criteo dataset and 75% on the CAIDA dataset,

which indicates the optimized version has improved accuracy.

7 CONCLUSIONS
A wide range of practical problems can be abstracted as subset

query over multi-attribute data stream. While sketching algorithms

are considered as promising solutions for processing large data, few

are designed to adequately support query over multiple attributes.

We propose Hyper-USS, the first sketching solution that provides

subset query over multiple attributes accurately and efficiently.

With Joint Variance Optimization, Hyper-USS provides unbiased

estimation and optimizes estimation variance jointly, addressing

the challenge of accurately estimating multiple attributes in the

sketch design. Our evaluations show that Hyper-USS outperforms

existing solutions in both accuracy and insertion throughput in

multi-attribute scenarios. The code is available at Github [38].

ACKNOWLEDGMENT
We thank all anonymous reviewers for their help in improving this

paper. We also thank Yikai Zhao for his valuable suggestions in the

algorithm design and theoretical analysis. This work is supported

by Key-Area Research and Development Program of Guangdong

Province 2020B0101390001, and National Natural Science Founda-

tion of China (NSFC) (No. U20A20179 and 61832001).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

REFERENCES
[1] Ran Ben-Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez

Waisbard. Constant time updates in hierarchical heavy hitters. In SIGCOMM
2017. ACM, 2017.

[2] Michel Cukier, Robin Berthier, Susmit Panjwani, and Stephanie Tan. A statis-

tical analysis of attack data to separate attacks. In International Conference on
Dependable Systems and Networks (DSN’06), pages 383–392. IEEE, 2006.

[3] Graham Cormode and S. Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. J. Algorithms, 2005.
[4] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent

items in data streams. Theor. Comput. Sci., 2004.
[5] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In Thomas Eiter and Leonid

Libkin, editors, ICDT 2005, Lecture Notes in Computer Science. Springer, 2005.

[6] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. Elastic sketch: adaptive and fast network-wide

measurements. In SIGCOMM 2018. ACM, 2018.

[7] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and

more accurate stream processing. In Proceedings of the 2016 International Confer-
ence on Management of Data, pages 1449–1463, 2016.

[8] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong

Zhang. Wavingsketch: An unbiased and generic sketch for finding top-k items

in data streams. In KDD ’20, pages 1574–1584. ACM, 2020.

[9] Daniel Ting. Count-min: Optimal estimation and tight error bounds using

empirical error distributions. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2319–2328, 2018.

[10] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Salsa:

self-adjusting lean streaming analytics. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 864–875. IEEE, 2021.

[11] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein,

editors, SIGMOD 2018. ACM, 2018.

[12] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: high-performance sketch-

based measurement over arbitrary partial key query. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, pages 207–222, 2021.

[13] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. Dhs: Adaptive

memory layout organization of sketch slots for fast and accurate data stream

processing. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2285–2293, 2021.

[14] Prashant Pandey, Shikha Singh, Michael A Bender, Jonathan W Berry, Martín

Farach-Colton, Rob Johnson, Thomas M Kroeger, and Cynthia A Phillips. Timely

reporting of heavy hitters using external memory. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 1431–1446,
2020.

[15] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong. Finding

persistent items in data streams. Proceedings of the VLDB Endowment, 10(4):289–
300, 2016.

[16] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-

based change detection: methods, evaluation, and applications. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet measurement, 2003.

[17] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data

sketching. In Proceedings of the 2015 ACM SIGMOD international conference on
Management of Data, pages 795–810, 2015.

[18] Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, and Jeff M Phillips. At-the-

time and back-in-time persistent sketches. In Proceedings of the 2021 International
Conference on Management of Data, pages 1623–1636, 2021.

[19] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for

estimation of arbitrary subset sums. J. ACM, 2007.

[20] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries. In Proceedings
of the 32nd international conference on Very large data bases, pages 751–762, 2006.

[21] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and

progressive algorithm for skyline queries. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 467–478, 2003.

[22] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data mining:

A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4):1–41,
2018.

[23] Marc Gyssens and Laks VS Lakshmanan. A foundation for multi-dimensional

databases. In VLDB, volume 97, pages 106–115. Citeseer, 1997.

[24] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning

multi-dimensional indexes. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 985–1000, 2020.

[25] Jelena Lukić, Miloš Radenković, Marijana Despotović-Zrakić, Aleksandra Labus,

and Zorica Bogdanović. A hybrid approach to building a multi-dimensional

business intelligence system for electricity grid operators. Utilities Policy, 41:95–
106, 2016.

[26] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi. Indexing

multi-dimensional data in a cloud system. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 591–602, 2010.

[27] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Statistical

change detection for multi-dimensional data. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
667–676, 2007.

[28] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh Srivas-

tava. Conditional heavy hitters: detecting interesting correlations in data streams.

The VLDB Journal, 24:395–414, 2015.
[29] Robert T. Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible

sketches for efficient and accurate change detection over network data streams.

In Alfio Lombardo and James F. Kurose, editors, IMC 2004. ACM, 2004.

[30] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick G. Duffield, and Carsten Lund.

Online identification of hierarchical heavy hitters: algorithms, evaluation, and

applications. In IMC 2004. ACM, 2004.

[31] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh

Srivastava. Finding hierarchical heavy hitters in data streams. In Proceedings
2003 VLDB Conference, pages 464–475. Elsevier, 2003.

[32] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Diamond

in the rough: Finding hierarchical heavy hitters in multi-dimensional data. In

Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, pages 155–166, 2004.

[33] David MW Powers. Applications and explanations of zipf’s law. In New methods
in language processing and computational natural language learning, 1998.

[34] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang, Yi Wang,

and Bin Cui. Sliding sketches: A framework using time zones for data stream

processing in sliding windows. In KDD ’20. ACM, 2020.

[35] The Criteo 1TB Click Logs dataset. https://ailab.criteo.com/download-criteo-

1tb-click-logs-dataset/.

[36] The NBA dataset. https://www.kaggle.com/datasets/nathanlauga/nba-games/.

[37] Anonymized internet traces 2018. https://catalog.caida.org/details/dataset/

passive_2018_pcap. Accessed: 2022-6-29.

[38] Source code related to Hyper-USS. https://github.com/HyperUSS/HyperUSS.

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www.kaggle.com/datasets/nathanlauga/nba-games/
https://catalog.caida.org/details/dataset/passive_2018_pcap
https://catalog.caida.org/details/dataset/passive_2018_pcap
https://github.com/HyperUSS/HyperUSS

Hyper-USS: Answering Subset Query Over Multi-Attribute Data Stream KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A PROOFS
In this section, we prove Theorem 5 in §4.3. First of all, we make

some assumptions as follows.

• The total number of items inserted into Hyper-USS is𝑈 .

• For every item inserted, its L2 norm has an upper bound 𝐿.

Lemma 6. During the insertion of Hyper-USS, for the updated
bucket, the increment of L2 norm is no larger than the L2 norm of the
incoming item. Furthermore, for a bucket which has been updated for
𝑘 times, the L2 norm of the values of the bucket has an upper bound
𝑘𝐿.

Proof. Suppose the incoming item (𝑒,𝑤1, · · · ,𝑤𝑛) updates the
bucket B𝑡 [ℎ𝑡 (𝑒)] and 𝑢𝑖 = B𝑡 [ℎ𝑡 (𝑒)] .𝑉 [𝑖].
If the key in the bucket matches 𝑒 , the increment of L2 norm is,√√

𝑛∑︁
𝑖=1

(𝑢𝑖 +𝑤𝑖)2 −

√√
𝑛∑︁
𝑖=1

𝑢2
𝑖
≤

√√
𝑛∑︁
𝑖=1

𝑤2

𝑖

Otherwise, recall that we have the winning probability as follows.

P =

√︃∑𝑛
𝑖=1𝑤

2

𝑖√︃∑𝑛
𝑖=1𝑤

2

𝑖
+
√︃∑𝑛

𝑖=1 𝑢
2

𝑖

If 𝑒 wins the competition, the increment of L2 norm is,√︄∑𝑛
𝑖=1𝑤

2

𝑖

P2
−

√√
𝑛∑︁
𝑖=1

𝑢2
𝑖
=

√√
𝑛∑︁
𝑖=1

𝑤2

𝑖

If the key in the bucket wins, the result L2 norm is,√︄ ∑𝑛
𝑖=1 𝑢

2

𝑖

(1 − P)2
−

√√
𝑛∑︁
𝑖=1

𝑢2
𝑖
=

√√
𝑛∑︁
𝑖=1

𝑤2

𝑖

Therefore, the increment of L2 norm is no larger than the L2 norm

of the incoming item and it is obvious that after 𝑘 updates, the L2

norm of the bucket has an upper bound 𝑘𝐿. □

Lemma 7. During the insertion of Hyper-USS, for an update to a
bucket which has been updated for 𝑘 times, the increment of total
variance of items in the bucket has an upper bound 2𝑘𝐿2.

Proof. The L2 norm of the bucket before the update has an

upper bound, √√
𝑛∑︁
𝑖=1

𝑢2
𝑖
≤ 𝑘𝐿

The L2 norm of the inserted item has an upper bound,√√
𝑛∑︁
𝑖=1

𝑤2

𝑖
≤ 𝐿

By Theorem 3, the increment of total variance is,

𝑛∑︁
𝑖=1

∑︁
𝑒

Δ
(
𝑆𝑖 (𝑒) − 𝑆𝑖 (𝑒)

)
2

= 2 ·

√√
𝑛∑︁
𝑖=1

𝑤2

𝑖
·

√√
𝑛∑︁
𝑖=1

𝑢2
𝑖
≤ 2𝑘𝐿2

□

Lemma 8. For a bucket which has been updated for𝑀 times, the
variance of the estimated value 𝑆 for an arbitrary key mapped to
the certain bucket and an arbitrary attribute has an upper bound
(𝑀 + 1)𝑀𝐿2.

Proof. For key 𝑒 and an arbitrary attribute 𝑗 , the estimated value

of Hyper-USS is 𝑆 𝑗 (𝑒). By Lemma 7, the variance can be bounded

by summing up all increments of variance for each update,

Var

[
𝑆 𝑗 (𝑒) | 𝑀

]
≤

∑︁
𝑒′ :ℎ (𝑒′)=ℎ (𝑒)

𝑛∑︁
𝑖=1

Var

[
𝑆𝑖 (𝑒′) | 𝑀

]
≤

𝑀∑︁
𝑘=1

2𝑘𝐿2

= (𝑀 + 1)𝑀𝐿2

□

Theorem 5. In the basic version, the error of Hyper-USS’s estima-
tion on an arbitrary attribute of an arbitrary key can be bounded as
follows, where 𝑈 is the total number of inserted items and 𝐿 is the
upper bound of L2 norm for each inserted item.

Pr

[
|𝑆 𝑗 (𝑒) − 𝑆 𝑗 (𝑒) | ⩾ 𝜖

]
⩽

4𝑈 2𝐿2

𝑤2𝜖2

Proof. Recall that the estimated value byHyper-USS is unbiased

by Theorem 1. For each update, the probability that the inserted

item is hashed to the same bucket is 𝑝 = 1

𝑤 . By Lemma 8, the

variance of estimated value 𝑆 𝑗 (𝑒) can by bounded,

Var

[
𝑆 𝑗 (𝑒)

]
= E

[
Var

[
𝑆 𝑗 (𝑒) | 𝑀

]]
+ Var

[
E

[
𝑆 𝑗 (𝑒) | 𝑀

]]
= E

[
Var

[
𝑆 𝑗 (𝑒) | 𝑀

]]
≤

𝑈∑︁
𝑀=0

(
𝑈

𝑀

)
𝑝𝑀 (1 − 𝑝)𝑈 −𝑀 (𝑀 + 1)𝑀𝐿2

≤ 2𝑈𝑝𝐿2 + 3

𝑈∑︁
𝑀=2

(
𝑈

𝑀

)
𝑝𝑀 (1 − 𝑝)𝑈 −𝑀𝑀 (𝑀 − 1)𝐿2

≤ 2𝑈𝑝𝐿2 + 3𝑈 2𝑝2𝐿2
𝑈∑︁

𝑀=2

(
𝑈 − 2

𝑀 − 2

)
𝑝𝑀−2 (1 − 𝑝)𝑈 −𝑀

≤ 4𝑈 2𝐿2

𝑤2

According to Chebyshev’s inequality, we have

Pr

[
|𝑆 𝑗 (𝑒) − 𝑆 𝑗 (𝑒) | ⩾ 𝜖

]
≤

Var

[
𝑆 𝑗 (𝑒)

]
𝜖2

≤ 4𝑈 2𝐿2

𝑤2𝜖2

□

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruijie Miao et al.

30 40 50 60 70
Memory (MB)

101

102

103

AA
E

Ours
Coco
USS

(a) Subset sum - AAE

30 40 50 60 70
Memory (MB)

10 3

10 2

10 1

100

AR
E

Ours
Coco
USS

(b) Subset sum - ARE

30 40 50 60 70
Memory (MB)

10 1

100

101

AA
E Ours

Coco
USS

(c) Subset average - AAE

30 40 50 60 70
Memory (MB)

10 3

10 2

10 1

100

AR
E

Ours
Coco
USS

(d) Subset average - ARE

Figure 14: Experiments on the subset query on the NBA dataset.

30 40 50 60 70
Memory (MB)

10 1

100

101

102

AA
E

Ours
Coco
USS

(a) Point sum - AAE

30 40 50 60 70
Memory (MB)

10 4

10 3

10 2

10 1

100

AR
E

Ours
Coco
USS

(b) Point sum - ARE

30 40 50 60 70
Memory (MB)

10 2

100

102

AA
E Ours

Coco
USS

(c) Point average - AAE

30 40 50 60 70
Memory (MB)

10 5

10 3

10 1

101

AR
E

Ours
Coco
USS

(d) Point average - ARE

Figure 15: Experiments on the point query on the NBA dataset.

300 400 500 600 700
Memory (KB)

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Ours
Coco
USS

(a) Heavy hitter

300 400 500 600 700
Memory (KB)

0.7

0.8

0.9

1.0

F1
 S

co
re

Ours
Coco
USS

(b) Heavy hitter subset

300 400 500 600 700
Memory (KB)

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Ours
Coco
USS

(c) Heavy change

3 4 5 6 7
Memory (MB)

10 2

100

AR
E

Ours
Coco
USS

(d) Distribution of values

Figure 16: Evaluations on other tasks.

1 2 3 4
d

62.3

62.4

62.5

Th
ro

ug
hp

ut
 (

M
ip

s)

Figure 17: Experiments on the FPGA platfrom.
B EVALUATIONS ON THE NBA DATASET
Subset query (Figure 14): The experimental results show that,

Hyper-USS is more accurate for subset query in the NBA dataset.

Compared with USS and CocoSketch, for subset sum estimation,

Hyper-USS reduces AAE by up to 4.49×, 11.71×, and reduces ARE

by up to 6.22×, 56.14×, respectively. For subset average estimation,

Hyper-USS reduces AAE by up to 41.99×, 299.00×, and reduces

ARE by up to 19.56×, 136.35×, respectively.
Point query (Figure 15): The experimental results show that,

Hyper-USS also achieves higher accuracy for point query on the

NBA dataset. Compared with USS and CocoSketch, for point sum

estimation, Hyper-USS reduces AAE by up to 12.70×, 198.28×, and

reduces ARE by up to 8.28×, 123.56×, respectively. For point average
estimation, Hyper-USS reduces AAE by up to 426.46×, 5280.64×,
and reduces ARE by up to 103.96×, 1233.80×, respectively.

C EVALUATIONS ON OTHER TASKS
Experimental results (Figure 16): For heavy hitters and heavy

hitter subsets, we conduct evaluation as described in §6.2.2. For

heavy change, we divide the Criteo dataset into two equal parts as

two windows and evaluate heavy change detection. For distribution

of value, we evaluate the performance on the attribute that indi-

cating whether or not the ad is clicked. The experimental results

show that, Hyper-USS achieves higher accuracy than CocoSketch

and USS in tasks including heavy hitter, heavy hitter subset, heavy

change and distribution of values.

D EVALUATIONS ON THE FPGA PLATFORM
Experimental results (Figure 17): We fix the memory consump-

tion to 44KB, and vary the 𝑑 from 1 to 4. The results show that, the

throughput drops as the 𝑑 grows. When 𝑑 ranges between 1 and 4,

the throughput maintains higher than 62.26Mips, which is much

higher than the throughput of the CPU implementation.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Definition
	2.2 Related Work

	3 The Hyper-USS Algorithm
	3.1 Basic Design
	3.2 Dealing with Imbalanced Attributes
	3.3 The Rationale of Hyper-USS

	4 Analysis
	4.1 Unbiasedness of Hyper-USS
	4.2 Variance Optimization in Hyper-USS
	4.3 Error Bound

	5 Discussion
	6 Evaluation
	6.1 Experiment Setup
	6.2 Accuracy
	6.3 Throughput
	6.4 Microbenchmark
	6.5 The Optimization

	7 Conclusions
	References
	A Proofs
	B Evaluations on the NBA dataset
	C Evaluations on other tasks
	D Evaluations on the FPGA platform

