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Abstract—In high-speed data streams, recent items are often
much more significant than outdated ones. Therefore, basic
estimation of data streams in hopping windows is an important
topic. Basic estimation tasks include cardinality estimation and
membership query. There are three classic algorithms for basic
tasks in fixed windows. The design goal of this paper is to devise
a generic and near-optimal framework to adapt them to hopping
windows. In this paper, we propose the HoppingTimer, a generic
and near-optimal framework which can adapt fixed-window
algorithms to time-based and count-based hopping windows for
basic tasks. The key idea of HoppingTimer is to use hopping
timestamps and local cleaning to clean outdated items. We apply
HoppingTimer to three algorithms for basic tasks. Experimental
results show that HoppingTimer is near-optimal in hopping
windows, and achieves false positive rate about 1000 times lower
than the state-of-the-art when using metrics of sliding-window
model.1

I. INTRODUCTION

A. Background and Motivation

Approximate data stream processing has been extensively
applied in various fields, including anomaly/intrusion [1], [2],
quality of service [3], [4] and financial data trackers [5],
[6]. Among various tasks in data streams, basic estimation
tasks, including cardinality estimation [7]–[10], and mem-
bership query [11], [12], have obtained the widest studies
and applications. Cardinality refers to the number of distinct
items appearing in the data stream; Membership query refers
to whether an item appears in the data stream. In many
applications, such as caching strategy [13], KV-store [14],
DDos detection [15] and load balancing [16], data and queries
are time-sensitive, i.e., recent items are often more significant
than outdated ones. This requires the basic estimation tasks to
be time-sensitive.

Approximate estimation in hopping windows is time-
sensitive, where hopping windows refer to consecutive win-
dows which hop forward one step in time by a constant period.
As pointed by Panes [17], when the step size gradually ap-
proximates 0, the hopping-window model becomes the sliding-
window model. Therefore, we mainly focus on the hopping-
window model in this paper. Estimation in hopping windows
is more challenging than in fixed windows, as it needs to clean
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the information of outdated items out of the hopping window,
which is time-consuming or memory-consuming. In this paper,
we claim an algorithm in hopping windows is optimal when
this algorithm can completely clean all outdated information
of outdated items at every hop.

There are two typical models for hopping windows: 1)
count-based window model (contains a certain number of
items); 2) time-based window model (contains items arriving
in a certain amount of time). Supporting time-based win-
dow model is more useful, important and challenging than
supporting count-based window model. Count-based window
model is just a special case of time-based window model, as
it assumes that all items arrive at a constant interval, which
is often not true in practice. Therefore, it’s both desirable
and challenging to support both window models with high
accuracy. The design goal of this paper is to devise a generic
and near-optimal framework which can be applied to both
time-based and count-based window models, providing basic
estimation of data streams in hopping windows.

B. Prior Art and Limitations

While a great many works focus on solutions for basic tasks
in fixed windows, time-sensitive solutions in hopping windows
are much fewer and much more challenging. Existing time-
sensitive solutions can be divided into two kinds. The first kind
can only address one specific task, including Timing Bloom
Filter [18], Counter Vector Sketch [19], Sliding Hyperloglog
[20], etc. The second kind can address multiple tasks. SWAMP
[21]–[24] is a framework which can handle cardinality estima-
tion, membership query and frequency estimation. However,
SWAMP cannot be applied to time-based window model and
is also space-consuming. In summary, no existing work can
achieve the above design goal of this paper.

C. Our Solution

In this paper, we propose the HoppingTimer, a generic
and near-optimal framework which can adapt fixed-window
algorithms to time-based and count-based hopping windows
for basic estimation tasks. We have two key techniques namely
hopping timestamp and local cleaning.

We first explain the rationale of our key techniques. Since
our goal is to devise a framework for both count-based and
time-based window models, we choose to record timestamps
of items in data streams. However, 64-bit timestamps take979-8-3503-6900-7/24/$31.00 ©2024 IEEE



up too much memory. To address this issue, we propose the
hopping timestamp, which is essentially compressed times-
tamp (e.g., 4-bit or 8-bit). To achieve optimal compression
of timestamps, we need to guarantee that every time the hop-
ping window hops forward one step, the hopping timestamp
increments by one. Compressing timestamps could mistake
outdated timestamp for correct timestamp, which will incur
error, and we call this error timestamp error in this paper. To
eliminate timestamp error, we propose two solutions namely
global cleaning and local cleaning. Global cleaning globally
traverses the data structure and cleans all items with outdated
hopping timestamps every time the hopping window hops
forward one step. However, the traversing process is time-
consuming, so it can hardly process high-speed data streams.
To address this issue, we recommend using the local cleaning.
The data structure consists of lots of cells. We group these
cells into many equal-sized groups. When inserting an item,
existing algorithms will hash the item e into 1 or k cells,
which are called hashed cells and the corresponding groups
are called hashed groups. Then we perform the local cleaning:
we locally traverse all cells in the hashed groups and clean
outdated ones. There is no additional memory access in local
cleaning because each group is set small enough to be read in
a single memory access. Local cleaning could not eliminate
timestamp error with a low probability, and we add one bit
to the hopping timestamp to further reduce the probability of
timestamp error. We theoretically prove that both the upper
bound of the probability of timestamp error and the additional
false positive rate caused by timestamp error in membership
query are O

(
e−αf

)
, where f is the number of cells in each

group, α is a positive parameter independent of f . Therefore,
both timestamp error and its influence are almost negligible
when f is set reasonably.

To verify the generality of our framework, we apply Hop-
pingTimer to three algorithms for two basic estimation tasks:
Bitmap [25], Bloom filter [26], [27] and Bloom filter with
hopping counters, where hopping counter is also a technique
proposed in this paper. First, the accuracy of our framework is
near-optimal: our experimental results show that the average
accuracy difference between our framework and the optimal
accuracy is less than 0.1%. Second, as the state-of-the-art
algorithms focus on the sliding-window model, we compare
our framework with them using the metrics of sliding-window
model. 1) For cardinality estimation, HoppingTimer achieves
relative error about 1000 times lower than SWAMP; 2) For
membership query, HoppingTimer achieves false positive rate
about 1000 times lower than SWAMP.

II. RELATED WORK

For measurement tasks in approximate data stream process-
ing, there are mainly fixed-window algorithms and sliding-
window algorithms. Fixed-window algorithms estimate ag-
gregate information of consecutive disjoint windows while
sliding-window algorithms care about the most recent informa-
tion. Sliding window is always containing the latest items and
continuously changing, so measurement on sliding-window

model is much harder and more important than that on fixed-
window model. In this section, we introduce prior work for
fixed windows and sliding windows respectively.

A. Prior Art for Fixed Windows

Fixed-window algorithms can be classified to two kinds
based on the smallest memory unit used in their data struc-
tures. In this section, we introduce both two kinds fixed-
window algorithms.
Bit-based algorithms: HoppingTimer can adapt all fixed-
window algorithms of this kind to hopping windows. This
kind of algorithms uses bits as their smallest memory units.
For example, for the membership query, the Bloom filter [26],
[27] maintains a large bit array. Each arriving item e is mapped
to k bits by k pairwise-independent hash functions and these
k bits are set to 1. When querying an item, we check whether
all the k bits associated with it have been set to 1. For each
incoming item, the Bitmap [25] only maps it to 1 bit and set
it to 1. When a window expires, the Bitmap counts u, the
number of 0 in the bit array, using Maximum Likelihood Esti-
mator (MLE) to estimate the cardinality. Besides, many other
bit-based algorithms have been proposed, such as Compact
Spreader Estimator (CSE) [28], which provides SuperSpreader
estimation in network streams.
Counter-based algorithms: This kind of algorithms maintains
counter arrays. For example, HyperLogLog [29] counts the
number of leading 0 bits of the hash value of each item and
records the maximum in counters. Then HyperLogLog uses
the maximum to estimate cardinality. Counting Bloom Filter
[30], which is a variant of Bloom filter, changes the bit array
to a counter array, enabling it to support deletion.

B. Prior Art for Sliding Windows

SWAMP [21] is the state-of-the-art generic algorithm, sup-
porting many sliding window tasks. SWAMP records the fin-
gerprints of all the items in the sliding window, so its memory
usage is proportional to the number of items in the sliding
window. In time-based window model, the number of items
in the sliding window varies with time. Since data streams
can be bursty (e.g. network flows), SWAMP with its pre-
allocated memory may not be able to record the fingerprints
of all the items in the sliding window. Timing Bloom Filter
(TBF) [18] supports membership queries. In order to clean
outdated information, TBF changes each bit in the Bloom
filter to a timestamp recording the relative time when the
bit is set in the window. Sliding HyperLogLog (SHLL) [20]
adopts the method of HyperLogLog to provide cardinality
estimation. It uses a monotone priority queue to evict outdated
information. Counter Vector Sketch (CVS) [19] changes each
bit in Bitmap to a counter. The counter is set to C (a predefined
constant) each time it is mapped. At set intervals, the algorithm
randomly chooses a few counters and reduce them by one.
In this way, CVS approximates the cardinality in the sliding
window. Timestamp-vector algorithm (TSV) [31] changes the
bit array in Bitmap to a 64-bit double typed timestamp vector.
For each incoming item, it is mapped to a timestamp, which



is set to the current time. By comparing each timestamp value
with the current time, TSV can estimate the cardinality in the
latest window.

All the above representative sliding window algorithms have
their shortcomings. SWAMP is not applicable to time-based
sliding window, which is more useful and practical. TBF,
CVS, SHLL and TSV can be applied to time-based sliding
window, but they are not generic, i.e., they can only address
one measurement task.

III. THE HOPPINGTIMER FRAMEWORK

In this section, we first introduce our framework for
hopping-window measurements, HoppingTimer, with two key
techniques namely hopping timestamp and local cleaning.
Second, we apply our framework to three typical algorithms:
Bitmap, Bloom filter and Bloom filter with a counter. Third,
we analyze the potential errors in HoppingTimer and how to
control these errors. Fourth, we discuss that, with a proper ap-
proximation, HoppingTimer can also provide sliding-window
measurements. Important notations and their meanings are
demonstrated in Table I.

TABLE I: Notations used in the paper.
Notation Meaning

S a data stream
e an item in the data stream
t arrival time of an item
W size of hopping window
s hopping step size
d bit width of hopping timestamp
Ts a hopping timestamp
m number of cells
C[i] ith cell
f number of cells per group
k number of hash functions
h(.) hash functions from items to cells
δT () timestamp difference between two hopping

timestamps

A. Preliminaries

Data streams: A data stream S is a sequence of items, i.e.,
S = {e1, e2, ...}. Each item in S could occur once or more
than once.
Hopping-window model (Fig. 1): Hopping windows are a
series of consecutive windows which hop forward one step in
time by a constant period. The disjoint time interval between
two adjacent hopping window is called the hopping step.
Data structure model: The data structure consists of an array
of cells, and is associated with one or several hash functions.
Typically each cell stores a bit. Our framework can be applied
to any algorithm in fixed windows conforming to this model
by extending the 1-bit cells to proper bit width.

B. The HoppingTimer Framework

In this part, we introduce the HoppingTimer with its two key
techniques namely hopping timestamp and local cleaning.
Hopping timestamp is used to record coarse-grained temporal
information of incoming items. The key idea of hopping
timestamp is to compress timestamps so as to balance the
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Fig. 1: Hopping windows.

memory usage and accuracy. For measurements in hopping
windows, we need to clean the items out of the hopping
window. To address this issue, we propose two cleaning
methods: global cleaning and local cleaning. Global cleaning
can clean all outdated information without error, but is time-
consuming. Local cleaning is much faster, and can clean
outdated information with small error. In HoppingTimer, we
adapt local cleaning to clean outdated information.
Hopping Timestamp: Hopping timestamp is the compression
of the 64-bit precise timestamp. It is coarse-grained but much
more memory-efficient. For example, 8-bit integer is a typical
instance for a hopping timestamp, which costs 1/8 memory
of the precise timestamp. A d-bit hopping timestamp ranges
from 1 to 2d−1. Every time the hopping window hops forward
one step, the hopping timestamp increments by 1, and comes
back to 1 when exceeding to the upper bound, i.e., 2d−1. We
reserve 0 to indicate that there is no item in a cell. Therefore,
when the window size is fixed, smaller hopping steps require
longer hopping timestamps, i.e., larger memory size. Hopping
timestamps are stored in cells. If a cell is hashed to by an
incoming item, the hopping timestamp stored in the cell will
be updated to the real-time hopping timestamp; If a cell has
not been accessed/updated for a hopping window, the hopping
timestamp stored in the cell is expected to be cleaned, i.e., set
to 0 by the cleaning method.
Global Cleaning: The compression in hopping timestamps
may mistake an outdated hopping timestamp as if it was
accessed within the current hopping window, which incurs
timestamp error. Global cleaning can eliminate the times-
tamp error. Specifically, all the cells are traversed and all
the outdated hopping timestamps are cleaned instantly every
time the hopping window hops a step. This scheme totally
eliminates the timestamp error since the hopping timestamp
is cleaned once it is outdated. Further, due to the instant
cleaning, the range of the hopping timestamp is fully utilized,
which leads to the optimal fine-grained timescale. Specifically,
when the hopping window hops and the hopping timestamp
updates, only the hopping timestamps that are the same as
the new hopping timestamp are actually outdated and need
to be cleaned, because older hopping timestamps have been
certainly cleaned before. With global cleaning, all hopping
timestamps are valid within the current hopping window.
Therefore, if an algorithm uses both hopping timestamp and



global cleaning, we consider it as optimal in hopping windows.
However, the traversing process in global cleaning needs to
visit the entire data structure, resulting in thousands or more
memory accesses. Such many memory accesses occurring
every time the hopping window hops forward one step are
time-consuming and may incur interruptions of the stream
processing.
Local Cleaning: Local cleaning approximately cleans out-
dated information with small error. It does not need the travers-
ing access, and thus is much faster than global cleaning. Every
time a cell is accessed/updated, a small number of adjacent
cells are traversed for cleaning. The arrival rate of items is
fast, indicating that a great many cells will be accessed/updated
per second. Therefore, as long as the arrival rate of items is
fast enough, outdated information will be totally cleaned in
time. The details of local cleaning are illustrated as follows.
The cells are divided consecutively into equal-sized groups.
The memory size of each group is small enough to be visited
within a single memory access. For example, if the bit width
of a cell is typically set to 8, we can group 8 cells as a 64-
bit integer, which can be visited in one memory access in
most modern operating system and hardware device. When
an item is inserted into a cell, all the outdated cells in the
same group are cleaned simultaneously. Due to the theoretical
proof presented in Section IV-A, it is nearly impossible that
timestamp error occurs in any cell. The hopping step in local
cleaning is inappropriate to set to the same size as that in
global cleaning, since we have to leave enough time for the
outdated cells to be accessed/updated and cleaned locally. If
we want to maintain the same hopping step size as global
cleaning, an extra bit should be used.

C. HoppingTimer for Bloom filter

The data structure of Bloom filter can provide membership
query in fixed windows. We make an extension to this data
structure to support membership query in hopping windows.
Data structure: The data structure extends the m-bit array
in the Bloom filter to an array of m cells, associated with k
hash functions, h1, h2, ..., hk, each of which is used to map
incoming items to one of the cells. Each cell stores a d-bit
hopping timestamp. The ith cell is denoted by C[i] and the
hopping timestamp in the ith cell is denoted by C[i].T s.
Initialization: All cells in the data structure are initialized to 0.
The cells are divided into g groups equally and consecutively.
With the size of hopping windows W and the hopping step
size s specified by the user, the bit width of hopping timestamp
d is set to log2(

W
s ) + 1, since we have to leave enough time

for the outdated cells to be updated and cleaned at the cost of
1 bit. For easier understanding, in the formulas of the rest of
this paper, we use d instead of s.
Insertion: To insert an item ei with arrival time ti, we first
calculate its corresponding hopping timestamp Tsi by the
following formula:

Ts =

⌊
t
W

2d−1

⌋
mod (2d − 1) + 1 (1)

Then, for each hash function hj , we determine its hashed cell
C[L], where L is the result of the hash function, hj(ei). Then
we update C[L].T s to Tsi.
Cleaning: We adopt our proposed key technique, local clean-
ing, to clean the outdated items. We first determine the hashed
groups to which the hashed cells belong. Then we locally
traverse all cells in the hashed groups and set the outdated
ones to 0. To judge whether a cell is outdated, We perform
the following two steps. First, for cell C[L], if C[L].T s = 0,
then C[L] is not outdated because no item has visited it.
Second, if C[L].T s 6= 0, we estimate the timestamp difference,
δT (Tsi, C[L].T s), according to the following formula:

δT (Ts1, T s2) = (Ts1 − Ts2) mod (2d − 1) (2)

If δT (Tsi, C[L].T s) ≥ 2d−1, we consider that no item has
been inserted into the cell for at least 2d−1 steps, i.e., a
hopping window, then C[L] is considered as outdated, and
we set C[L].T s to 0. Otherwise, C[L] is considered as not
outdated and remains unchanged.
Query: To query the membership of item ei, we first calculate
the hopping timestamp of current time, denoted by TsN . Then,
for each hashed cell C[L], we check whether C[L].T s = 0
and δT (TsN , C[L].T s) ≥ 2d−1. If no hopping timestamp in
the hashed cells meets the condition, we answer that item ei
is in the current hopping window. Otherwise, we answer that
item ei is not in the current hopping window.

D. HoppingTimer for BitMap

The data structure of Bitmap can provide cardinality es-
timation in fixed windows. We make an extension to this
data structure to support cardinality estimation in hopping
windows.
Data structure: HoppingTimer for Bitmap has a similar data
structure to that for Bloom filter. The only difference is that
there is only one hash functions, h1.
Initialization: The initialization is the same as that for Bloom
filter.
Insertion: The insertion is similar to that for Bloom filter.
The difference is that we only update one hashed cell with
one hash function.
Cleaning: The cleaning is similar to that for Bloom filter. The
difference is that we only clean one hashed group to which
the hashed cell belongs.
Query: The number of no hashed bits u is initialized to 0. To
query the cardinality in the hopping window, we first calculate
the hopping timestamp of current time, denoted by TsN .
Then, for each cell C[L], we check whether C[L].T s = 0
and δT (TsN , C[L].T s) ≥ 2d−1. If so, we increment u by 1.
After traversing all the cells in the data structure, the estimated
cardinaility is calculated as −mln u

m , where m is the number
of cells in the data structure. Finally, we return the estimated
cardinaility as the result.

E. HoppingTimer for Bloom filter+Hopping Counters

The data structure consisting of Bloom filter and a counter
can provide cardinality estimation in fixed windows. Each
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Fig. 2: HoppingTimer for Bloom filter and Hopping Counters.
The Bloom filter is divided into 3 groups and each group
has 3 cells. To insert item e with hopping timestamp Ts, we
calculate the hash functions to get k hashed cells, pick out
the oldest hopping timestamp Tso from the hashed cells. For
the Bloom filter, we update the hopping timestamps in the
hashed cells to Ts and locally clean the hashed groups. For
the hopping counters, we insert Tso to them by incrementing
a series of hopping counters by 1 and set the previous hopping
counter to 0.

time when the Bloom filter identifies a new inserted item,
the counter increments by 1. We make an extension to this
data structure to support cardinality estimation in hopping
windows.
Data Structure (Fig. 2): Compared to the data structure for
Bloom filter, there is an additional circular array consisting of
2d−1 counters. We call counters in the circular array hopping
counters. We randomly choose a counter from the array as
the first hopping counter. The jth hopping counter, denoted
by HC[j], is used to record the cardinality in the hopping
window which ends at hopping timestamp j.
Initialization: The initialization is the same as that for Bloom
filter, except that all the hopping counters are set to 0.
Insertion: The insertion consists of two parts, the insertion in
Bloom filter and the insertion in hopping counters. The first
part is for membership query, which is the same as Hopping-
Timer for Bloom filter, and the second part is for cardinality
estimation. Suppose item ei arrives at ti, of which the hopping
timestamp is Tsi. Before the hashed cells in the Bloom filter
are cleaned, we query ei in the Bloom filter and temporally
maintain the query result, i.e., the hopping timestamp for the
last arrival time of ei, which is denoted by Tso. We first judge
whether Tso is within the current hopping window by formula
2. If Tso is out of the current hopping window, meaning
that ei is a new item for the current hopping window and its
next 2d−1 − 1 hopping windows, then we increment counter
HC[Tsi] and its next 2d−1 − 1 counters by 1. Otherwise, we
consider that ei is not outdated for current hopping window.
Further, the cardinality of the next 2d−1 − 1 − δT (Tsi, T so)

hopping windows has already counted ei in. Therefore, we
only increment counter HC[Tsi +2d−1 − δT (Tsi, T so)] and
its next δT (Tsi, T so)− 1 counters by 1.
Cleaning: Except the local cleaning, we set counter HC[Tsi−
1] to 0 in addition.
Query: The membership query is the same as that in Bloom
filter. To estimate the cardinality in the hopping window, we
first calculate the hopping timestamp of current time, denoted
by TsN . Then we return the value of counter HC[TsN ] as
the cardinality.
Extension: The HoppingTimer can also implement the func-
tion of estimating the number of items in the hopping windows
after slight adjustment. The only difference is the insertion
operation. To insert an item ei arriving at hopping timestamp
Tsi, instead of the former update scheme of hopping counter,
we increment HC[Tsi] and its next 2d−1 − 1 counters by 1
in any case.

F. Discussion

In this section, we discuss two kinds of errors in hopping
windows. Further, we propose how to approximate the sliding
windows.
Fixed-window Error: Fixed-window error is the error caused
by the mechanism of fixed-window algorithms (e.g. Bitmap
or Bloom filter). Multiple different items mapped into a same
cell incurs hash collisions, which lead to a typical fixed-
window error. For example, when querying the membership
of an item in the Bloom filter, if all its hashed cells have been
unfortunately mapped into by other items, the queried item
will be considered in the hopping window though it has never
appeared. An ideal and optimal hopping-window algorithm
may eliminate all the errors caused by the window hopping,
but is incapable to correct fixed-window errors.
Timestamp Error: Timestamp error is caused by hopping
timestamps. Local cleaning might not clean outdated hopping
timestamps completely. For example, several groups may have
not been cleaned for a long time because of local cleaning.
As a result, all items remain in these group are outdated.
Also, items long apart in time may have the same hopping
timestamp, which result in that part of the outdated cells will
not be cleaned when these groups are finally locally cleaned.
In Section IV, we theoretically prove that the upper bound of
the probability that timestamp error occurs is O(e−αf ), where
f is the number of cells in each group and α is an positive
parameter independent of f . Therefore, there is almost only
fixed-window error when applied to hopping-window model
if f is reasonably set.
HoppingTimer for Sliding Windows: When the hopping step
is set to 1 and the hopping timestamp is 64-bit width, the
hopping-window model is equivalent to the sliding-window
model. Therefore, we can use hopping windows to approxi-
mate sliding windows by gradually increasing the length of
hopping timestamps and reducing the size of the hopping
steps. Further, to avoid the potential false negative error, we
increment the threshold of timestamp difference, which is used
to determine whether outdated, by 1.



IV. MATHEMATICAL ANALYSIS

In this section, we first provide a theoretical analysis for
the probability of timestamp error caused by local cleaning in
Section IV-A. Then, we provide a theoretical analysis for the
additional false positive rate caused by the timestamp error
in Section IV-B. We prove that the timestamp error and the
additional false positive rate for membership query are both
limited by the bound that is inverse of an exponential function
of the number of cells in each group.

Since in time-based hopping window model, the distribution
of the arrival time of the items in the data stream is completely
random, we analyze the data stream in the count-based window
model. Let W be the size of hopping windows, d be the length
of hopping timestamp, m be the number of cells in the data
structure, k be the number of hash functions and f be the
number of cells in each group.

A. Probability of Timestamp Error

In this section, we provide a theoretical analysis for the
probability of timestamp error caused by local cleaning.

Theorem 1: The probability of timestamp error is O
(
e−αf

)
,

where α = (2d−1−1)k
2d−1(2d−1)mW , and satisfies that

Pr{error} ≤ m

e
(2d−1−1)k(f+1)

2d−1(2d−1)m
W − 1

(3)

Proof: The timestamp error will occur if and only if there
is outdated hopping timestamp remaining in the data structure.
We split the time into pieces to analyze timestamp error. Let
tc be the current time, tc = xW

2d−1 , where x ≥ 2d−1 and x is an
integer. Then we try to calculate the probability that there is
an outdated hopping timestamp in a fixed cell and its arrival
time is in (tc − (i+1)W

2d−1 , tc − iW
2d−1 ], where i ≥ 2d−1 and i is

an integer.
We use Ai to denote the event that an outdated hopping

timestamp with arrival time in (tc− (i+1)W
2d−1 , tc− iW

2d−1 ] remains
in the fixed cell, Xi to denote the event that at least one item
is inserted to the fixed cell in (tc − (i+1)W

2d−1 , tc − iW
2d−1 ], Yi to

denote the event that no local cleaning in its group considers
the cell as outdated and cleans it and no item is inserted to
the cell after tc − iW

2d−1 . As discussed above, Ai happens if
and only if both Xi and Yi happen. Because Xi and Yi are
obviously independent, it follows directly that

Pr{Ai} = Pr{Xi}Pr{Yi} (4)

First, we calculate the probability that an hopping timestamp
is inserted to the fixed cell in (tc − (i+1)W

2d−1 , tc − iW
2d−1 ]. For

each incoming item, the probability that it is not hashed to the
fixed cell is

Pr{not hit1} = (1− 1

m
)k (5)

As the number of items in the time interval is W
2d−1 , we

have
Pr{Xi} = 1− Pr{not hit1}

W

2d−1

= 1− (1− 1

m
)

kW

2d−1

(6)

Second, we calculate the probability that no local cleaning
cleans it and no item is inserted into this cell after tc− iW

2d−1 . We
use Tsa to denote the hopping timestamp of the arrival time of
an incoming item and Tsc to denote the hopping timestamp of
the item in the cell. According to the mechanism of our local
cleaning, We divided the incoming items after tc − iW

2d−1 to
two kinds. The first kind of items satisfy δT (Tsa, T sc) ≥W ,
while the second kind of items satisfy δT (Tsa, T sc) < W .
For the first kind of items, the fixed cell will not be cleaned
or updated if and only if the incoming item is inserted into
other groups. We have

Pr{not clean or hit} = (1− f

m
)k (7)

For the second kind of items, the fixed cell will not be
cleaned or updated if and only if the incoming item is not
inserted into itself. We have

Pr{not hit2} = (1− 1

m
)k (8)

Then we need to count the number of the first kind of items
and the number of the second kind of items to calculate the
probability of Yi. We denote them by N(K1) and N(K2), and
denote the total number of items after tc − iW

2d−1 by N(V ),
which is iW

2d−1 . For every hopping timestamp, in each whole
window of size 2d−1

2d−1 W , there are 2d−1−1
2d−1 W items of the first

kind and W items of the second kind. As the items just after
tc − iW

2d−1 are of the second kind, we can conclude that

N(K1) ≤ N(K2) ≤
2d−1

2d−1 − 1
N(K1) +

2d−1 − 1

2d−1
W (9)

It is obvious that

N(K1) +N(K2) = N(V ) =
iW

2d−1
(10)

From (9) and (10), We get that

N(K1) ≥
(2d−1 − 1)(i− 2d−1 + 1)

2d−1(2d − 1)
W (11)

Then, we can calculate the upper bound of the probability
that Yi happens. We have

Pr{Yi} = Pr{not clean or hit}N(K1)Pr{not hit2}N(K2)

= (1− f

m
)kN(K1)(1− 1

m
)kN(K2)

≤ (1− f

m
)kN(K1)(1− 1

m
)kN(K1)

≤ e−
k(f+1)N(K1)

m

≤ e−
(2d−1−1)(i−2d−1+1)k(f+1)

2d−1(2d−1)m
W

(12)
Then we calculate the probability that an outdated hopping

timestamp with arrival time in (tc− (i+1)W
2d−1 , tc− iW

2d−1 ] remains
in the fixed cell. We have



Pr{Ai} = Pr{Xi}Pr{Yi}

≤ (1− (1− 1

m
)

kW

2d−1 )e
− (2d−1−1)(i−2d−1+1)k(f+1)

2d−1(2d−1)m
W

≤ e−
(2d−1−1)(i−2d−1+1)k(f+1)

2d−1(2d−1)m
W

(13)
Using the union bound for i, we conclude that the upper

bound of the probability that an outdated hopping timestamp
occurs in a fixed cell. We have

Pr{error in a cell} ≤ Pr{∃i ≥ 2d−1, Ai}

≤
+∞∑

i=2d−1

Pr{Ai}

≤
+∞∑

i=2d−1

e
− (2d−1−1)(i−2d−1+1)k(f+1)

2d−1(2d−1)m
W

=
1

e
(2d−1−1)k(f+1)

2d−1(2d−1)m
W − 1

(14)
Again, using the union bound for all cells, we can get

the upper bound of the probability that an outdated hopping
timestamp occurs in the array. We have

Pr{error} ≤ mPr{error in a cell}

=
m

e
(2d−1−1)k(f+1)

2d−1(2d−1)m
W − 1

(15)

Obviously the probability that timestamp error occurs, i.e.,
Pr{error} is O

(
e−αf

)
, where α = (2d−1−1)k

2d−1(2d−1)mW .

B. Additional False Positive Rate Caused by Timestamp Error

In this section, we provide a theoretical analysis for the
additional false positive rate caused by the timestamp error.

Theorem 2: The additional FPR caused by the timestamp
error is O

(
e−αf

)
, where α = (2d−1−1)k

2d−1(2d−1)mW .
Proof: The false positive error happens if an item that never

appears in the window is considered as appeared. To calculate
the additional false positive rate (short for FPR) caused by the
timestamp error, we calculate the FPR of the HoppingTimer
in fixed windows and in hopping windows, and then get the
difference.

We first calculate the FPR of the HoppingTimer without
timestamp error, i.e., the FPR in fixed windows. An item will
be considered as appearing in the window if and only if each of
its hashed cells records a hopping timestamp. For an arbitrary
cell, we can calculate the probability that the cell records a
hopping timestamp. We have

Pr{hit1} = 1− (1− 1

m
)kW (16)

Then, for an item that never appears in the window, we
can calculate the probability that all its hashed cells record
timestamps, i.e., the FPR. We have

FPR{fixed} = Pr{hit1}k

= (1− (1− 1

m
)kW )k

(17)

Second, we calculate the FPR of the HoppingTimer in
hopping windows. If a hopping timestamp is recorded in a
cell, either an item is hashed to the cell in the latest window,
or a timestamp error occurs in the cell. Using the union bound,
we can conclude the probability that an arbitrary cell records
a timestamp is less than or equal to the sum of the probability
that timestamp error occurs and the probability that the cell is
hashed to by an item in the window. We have

Pr{hit2} ≤ Pr{hit1}+ Pr{error in a cell} (18)

Then, we can get the FPR with timestamp error. We have

FPR{hopping} = Pr{hit2}k

≤ (Pr{hit1}+ Pr{error in a cell})k
(19)

Finally, from (17) and (19), we can calculate the additional
FPR. Let Pr{hit1} be a, Pr{error in a cell} be b. We have

FPR{add} = FPR{hopping} − FPR{fixed}
≤ (a+ b)k − ak

=

k∑
i=1

(
k

i

)
ak−ibi

=

k∑
i=1

(
k

i

)
Pr{hit1}k−iPr{error in a cell}i

(20)
Since Pr{hit1} < 1 and Pr{error in a cell} is O

(
e−αf

)
,

we can conclude that the additional false positive rate is also
O
(
e−αf

)
, where α = (2d−1−1)k

2d−1(2d−1)mW .

V. EXPERIMENTAL RESULTS

In this section, we call the HoppingTimer HT for short.
We first show the experimental setup. Then we show the
performance of algorithms of HT compared to the optimal
conditions in hopping windows when parameters vary, where
optimal conditions mean that no outdated hopping timestamp
is recorded by HT. Finally, we compare algorithms of HT to
the prior work, using metrics of sliding-window model.

A. Experimental Setup

1) Datasets:

• CAIDA: As many other papers do, we use the public
traffic dataset which is released by CAIDA [32] to test all
algorithms in HT and other algorithms.

• Webpage: Webpage [33] is collected from websites by
crawling a number of webpages.

• Campus: Campus consists of IP traces which are collected
from the main gateway in our campus.
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Fig. 3: Stability of HT as the time goes by.
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Fig. 4: Adaptability to different window sizes.

2) Evaluation Metrics :

• FPR (False Positive Rate): δ = n
m , where m denotes the

number of queried items that do not appear in the latest
hopping window or sliding window, n denotes the number
of items that are mistaken for the items in the latest window.
Our algorithm does not have false-negative, so we only use
FPR to evaluate the accuracy of the membership query in
HT.

• RE (Relative Error of Cardinality): |D−D̂|D , where D
denotes the number of distinct items in the latest window
and D̂ denotes the estimated value of D. We use RE
to evaluate the accuracy of our algorithm in cardinality
estimation.

• Throughput: We use MIPS (million insertions per second)
to evaluate the throughput of insertion for each algorithm.
3) Default Settings :
We test our algorithms on CPU platform and implement
them in C++. The default parameters are set as follows.
The number of cells in each group, denoted by f , is 8. The
length of hopping timestamp, denoted by d, is 8-bit. The
size of count-based window is 65536 and the size of time-
based window is 0.1 second. The number of hash functions,
denoted by k, is 8. In all experiments, We use BOB Hash
[34] to calculate 32-bit hash values of items. More detailed
settings for other algorithms are listed below.

• HT-BM and HT-HC: For cardinality estimation in sliding
windows, we compare HT-BM (short for HoppingTimer for
Bitmap) and HT-HC (short for HoppingTimer for Bloom
filter+Hopping counters) to SWAMP [21], CVS [19] and
TSV [31]. For SWAMP, we set the length of its fingerprint
to 16-bit. For CVS, we set the size of its counter to 4-bit.
For TSV, we set the length of its timestamp to 64-bit.

• HT-BF: For membership query in sliding windows, we
compare our HT-BF (short for HoppingTimer for Bloom
filter) to SWAMP and TBF [18]. For SWAMP, we also
set the length of its fingerprint to 16-bit. For TBF, we set
the length of its timestamp to 18-bit and number of hash
functions to 8. Though HT-HC can also provide membership
query, we don’t compare it with other algorithms because it
is strictly inferior than HT-BF in membership query.

B. Impact of Parameters in Hopping Windows

Performance vs. time (Fig. 3): The experimental results show
that HT is near-optimal and stable as the time goes by. We test
algorithms of HT every half window with two different sizes
of memory on CAIDA, using time-based window model, and
compare them to the optimal conditions. The performance of
HT-HC and HT-BF is stable and quite close to the optimal
conditions when given enough memory. HT-BM is not so
stable, but it is near-optimal and keeps low RE.



Performance vs. window size (Fig. 4): The experimental
results show that HT is near-optimal and adaptable as the
window size varies. We test our algorithms with two different
sizes of memory on CAIDA, using time-based window model,
and compare them to the optimal conditions. The performance
of all algorithms of HT is adaptable and quite close to the
optimal conditions when the window size varies.
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Fig. 5: Performance vs. d on HT-BM.
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Fig. 6: Performance vs. d on HT-BF.
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Fig. 7: Performance vs. d on HT-HC.

Performance vs. d on HT-BM (Fig. 5): The experimental
results show that within a certain range of memory, longer
hopping timestamp can achieve lower RE. We test the RE
of HT-BM with three different lengths of hopping timestamp
on CAIDA and Webpage rspectively, varying the memory

size from 4KB to 32KB. The performance of 8-bit hopping
timestamp is always better than that of 4-bit and 6-bit.
Performance vs. d on HT-BF (Fig. 6): The experimental
results show that within a certain range of memory, shorter
hopping timestamp can achieve lower FPR. We test the RE of
HT-BM with three different lengths of hopping timestamp on
CAIDA and Webpage rspectively, varying the memory size
from 16KB to 128KB. The performance of 4-bit hopping
timestamp is always better than that of 6-bit and 8-bit.
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Fig. 8: Performance vs. k on CAIDA.
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Fig. 9: Performance vs. k on Webpage.
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Fig. 10: Performance vs. k on Campus.

Performance vs. d on HT-HC (Fig. 7): The experimental
results show that when the memory size is small, shorter hop-
ping timestamp can achieve lower RE; when the the memory



size is large, longer hopping timestamp can achieve lower
RE. We test the RE of HT-HC with three different lengths
of hopping timestamp on CAIDA and Webpage respectively,
varying the memory size from 16KB to 128KB. When the
memory is less than 32KB, 4-bit hopping timestamp achieves
the lowest RE. When the memory is larger than 32KB and
less than 64KB, 6-bit hopping timestamp achieves the lowest
RE. When the memory is larger than 64KB, 8-bit hopping
timestamp achieves the lowest RE.
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Fig. 11: Performance vs. f on HT-BM.
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Fig. 12: Performance vs. f on HT-BF.
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Fig. 13: Performance vs. f on HT-HC.

Summary and Analysis of Parameter d: On HT-BM, larger
d performs better. That is because within the memory range

that we set, the error caused by hash collision is less than the
error caused by coarse-grained hopping timestamp. Therefore
the more precise timestamp can perform better. On HT-BF,
smaller d performs better. That is because within the memory
range that we set, the error caused by hash collision is more
than the error caused by coarse-grained hopping timestamp.
Therefore the shorter timestamp can perform better. On HT-
HC, when the memory size is small, shorter hopping times-
tamp can achieve lower RE; when the the memory size is
large, longer hopping timestamp can achieve lower RE. That is
because when the memory is large enough, the error caused by
hash collision is negligible while the error caused by coarse-
grained hopping timestamp can be persistently improved.
Therefore the longer timestamp can perform better with large
memory.
Performance vs. k (Fig. 8, Fig. 9, Fig. 10): The experimental
results show that there is always an optimal number of hash
functions when the other parameters are fixed. We test our
algorithms HT-BF and HT-HC with three different sizes of
memory on CAIDA, Webpage and Campus respectively. As
k increases, the performance of all algorithms with all kinds
of memory sizes gets better and then gets worse. We find that
under the experimental conditions, k = 8 performs nearly the
best. Therefore we choose k = 8 as our default setting.
Summary and Analysis of Parameter k: As k increases, the
performance of all algorithms with all kinds of memory sizes
gets better and then gets worse. That is because when k is
small, a large amount of memory is not utilized; when k is
large, hash collisions seriously hurt the performance.
Performance vs. f on HT-BM (Fig. 11): The experimental
results show that the performance of HT-BM becomes better
when f becomes larger. We test HT-BM with three different
sizes of cell group and compare it to the optimal condition
by varying the memory size from 4KB to 16KB on CAIDA
and Webpage respectively. We find when each group contains
8 cells, the performance is almost optimal when the memory
is less than 16KB.
Performance vs. f on HT-BF (Fig. 12): The experimental
results show that the performance of HT-BF becomes better
when f becomes larger. We test HT-BF with three different
sizes of cell group and compare it to the optimal condition by
varying the memory size from 16KB to 128KB on CAIDA
and Webpage respectively. We find when each group contains
8 cells, the performance is almost optimal when the memory
is less than 128KB.
Performance vs. f on HT-HC (Fig. 13): The experimental
results show that the performance of HT-HC becomes better
when f becomes larger. We test HT-HC with three different
sizes of cell group and compare it to the optimal condition by
varying the memory size from 16KB to 128KB on CAIDA
and Webpage respectively. We find when each group contains
8 cells, the performance is almost optimal when the memory
is less than 128KB.
Summary and Analysis of Parameter f: As f increases, the
performance of all algorithms with all kinds of memory sizes
gets better. That is because when f increases, more outdated



hopping timestamps are cleaned.
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Fig. 14: Accuracy comparison on CAIDA.
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Fig. 15: Accuracy comparison on Webpage.
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Fig. 16: Accuracy comparison on Campus.

C. Accuracy Performance Comparison in Sliding Windows

We compare the accuracy of HT to the state-of-the-art
algorithms. As not all algorithms can support time-based
sliding window, we test them based on count-based windows.
HT-BM and HT-HC vs. Others (Fig. 14a, Fig. 15a,
Fig. 16a): The experimental results show when estimating
the cardinality, our HT-BM and HT-HC work better than
other algorithms. We can choose an appropriate algorithm
from either of the two depending on the amount of memory
available. We test HT-BM and HT-HC and compare them
to other algorithms by varying the memory size from 16KB
to 256KB on CAIDA, Webpage and Campus respectively.
We find when the memory is limited, HT-BM can achieve

the lowest RE among all algorithms. When the memory is
sufficient, HT-HC can further reduce the RE.
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Fig. 17: Throughput Comparison of HT-BM and HT-HC.
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Fig. 18: Throughput Comparison of HT-BF.

HT-BF vs. Others (Fig. 14b, Fig. 15b, Fig. 16b): The
experimental results show when querying the membership, our
HT-BF achieves better performance than other algorithms. We
test HT-BF and compare it to other algoritgms by varying the
memory size from 16KB to 256KB on CAIDA, Webpage and
Campus respectively. We find when the memory is 256KB,
HT-BF achieves about 1000 times lower FPR than TBF and
SWAMP.

D. Throughput Comparison

In this section, we compare the throughput of HT to the
state-of-the-art algorithms.
HT-BM and HT-HC vs. Others (Fig. 17): The experimental
results show that the throughput of HT-BM and HT-HC is
slower than TSV and SWAMP, and faster than CVS We test
HT-BM and HT-HC and compare them to other algorithms
on CAIDA, Webpage and Campus respectively. Though our
algorithms are slower than part of other algorithms, our
accuracy performance is always better than them.
HT-BF vs. Others (Fig. 18): The experimental results show
that the throughput of HT-BF is slower than SWAMP, and
faster than TBF. We test HT-BF and compare it to other
algorithms on CAIDA, Webpage and Campus respectively.
Though our algorithm is slower than part of other algorithms,
our accuracy performance is always better than them.

VI. CONCLUSION

In this paper, we propose the HoppingTimer for basic
estimation of high-speed data streams in hopping windows. It



is a near-optimal and generic framework which can adapt three
fixed-window algorithms to hopping windows for basic esti-
mation tasks. With key techniques namely hopping timestamp
and local cleaning, HoppingTimer is applicable for both time-
based hopping windows and count-based hopping windows.
We theoretically analyze the probability that timestamp error
occurs, finding that almost no outdated hopping timestamps
will remain if the number of cells in each group is set rea-
sonably. HoppingTimer can also approximate sliding windows
by increasing the length of hopping timestamps. Experimental
results show that, HoppingTimer is near-optimal in hopping
windows, and achieves a false positive rate about 1000 times
lower than the state-of-the-art.
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