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Abstract—Nowadays, research on temporal membership queries is indispensable. Generally, temporal membership queries exist in
two modalities: fixed windows and sliding windows, the latter having obvious advantages. The first sketch that implements temporal
membership queries is the persistent Bloom filter (PBF). PBF has two shortcomings: it does not support sliding windows nor frequency
queries. Here, we propose HoppingSketch to promote the original PBF. It is the first sketch that implements temporal membership
queries for sliding windows. HoppingSketch is a general and efficient data stream processing framework, able to implement different
tasks thanks to different atomic sketches. When the atomic sketches are Bloom filters and we apply them to PBF, HoppingSketch can
achieve significantly higher temporal membership query accuracy than the original PBF. When the atomic sketches are sketches of
Count- Min, Conservative Update, and Count, HoppingSketch can achieve more accurate frequency query than by applying PBF on the
corresponding sketches. Our experimental results demonstrate the advantages of HoppingSketch compared with the state-of-the-art.

Index Terms—Temporal membership query, Sliding windows, Frequency query, Accuracy, Atomic sketch, Bloom filter, CM sketch, CU
sketch, Count sketch
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1 INTRODUCTION

1.1 Background and Motivation

Membership queries refer to querying whether an item
occurs in a set. Among membership queries, temporal mem-
bership queries play an increasingly important role. We
first introduce the definition of temporal membership query.
Given an item e and a time range [ti, tj ] ⊆ [1, T ], a temporal
membership query refers to querying whether an item e
appears within time range [ti, tj ], where T is the upper
bound on the time dimension. For example, the system
administrator of a website wants to know whether the IP
address of interest has visited the website within an specific
time range [1].

Temporal membership queries exist in two modalities:
fixed windows and sliding windows. Fixed windows refer
to dividing the data stream into a series of windows of
the same size in terms of time or number of items, and
each window has independent statistics. Sliding windows
refer to the statistics of the most recent time window or a
certain number of most recent items [2]. In practice, sliding
windows often have clear advantages over fixed windows.
For example, heavy hitters detection [3] is an important
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task, i.e., finding the items whose frequency is larger than
a predefined threshold. With fixed windows, heavy hitters
will easily be unreported. Sliding windows can handle such
situations well because they are much more flexible than
the fixed windows. Further, they can better describe and
process temporal membership queries. However, it is more
challenging to apply sliding windows to temporal member-
ship queries, because the oldest items need to be found and
cleared in time, which requires higher execution time and
space costs.

1.2 Prior Art and Limitations
The recent seminal work, persistent Bloom filter (PBF) [1],
defines temporal membership and proposes a sketch (a kind
of probabilistic data structure) composed of many Bloom
filters. Therefore, Bloom filter is a constituent unit of PBF.
In this paper, each constituent unit of a larger data structure
like this is called an atomic sketch. Further, PBF uses a tree
structure: each node in the tree represents a period of time,
and a Bloom filter is used to store all items corresponding
to this period of time. Its key idea is to decompose the
timestamp in binary and store it in Bloom filters from leaf
to root along the tree. When querying the item, PBF queries
from the root to the leaves. In this way, PBF keeps a low
false positive rate and low memory consumption while im-
plementing temporal membership queries. Unfortunately,
PBF has two shortcomings: First, it does not support sliding
windows. Second, it does not support frequency queries,
i.e., reporting the number of occurrences of the given items.

1.3 Our Solution and Contributions
The main contributions of this paper are summarized as
follows: We propose HoppingSketch to promote the orig-
inal PBF. It is a novel and efficient sketch framework. By
proposing the corresponding sketch-based sliding window
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algorithms on PBF and further converting atomic sketches,
it realizes more accurate temporal membership queries and
frequency queries, respectively.

Specifically, HoppingSketch overcomes two shortcom-
ings of PBF: (1) Since PBF does not support any sliding
window at present, we naturally adapt sliding window1

to temporal membership queries for the first time through
HoppingSketch, which overcomes load imbalance and sig-
nificantly improves accuracy; (2) Since PBF does not support
frequency queries, we design HoppingSketch as a general
framework, which can flexibly implement different tasks by
transforming different atomic sketches. Therefore, we only
need to replace its atomic sketches with sketches of Count-
Min (CM) [4], Conservative Update (CU) [5], Count (C) [6],
etc. that support frequency queries, and we can flexibly
implement frequency queries.

HoppingSketch consists of m Bloom filters and main-
tains k windows in each Bloom filter. The main challenge
is that new items are easily added, but removing the oldest
items in time is challenging under high-speed and limited
memory conditions. To address the above problems, a sim-
ple idea is to clear the information of the oldest window
among the m Bloom filters before allocating freed memory
for the latest window w. This method needs to allocate
many Bloom filters and may suffer load imbalance, and we
introduce memory-sharing technique to avoid this issue, see
Section 3 for more details. Based on the above methodology,
HoppingSketch is the first solution that implements the
temporal membership query for the sliding window, which
improves the performance of PBF well. Further, we have
expanded the functionality of HoppingSketch to support
frequency queries. More details are provided in Section 4.
Finally, we conducted extensive experiments, see Section 5
for details. The experimental results show that when Hop-
pingSketch is applied to the PBF (PBF-H), the false positive
rate (FPR) of PBF-H is reduced by between 38.7% and 47.2%
than the original PBF on average. When using CM [4], CU
[5] and C [6] as the atomic sketches, HoppingSketch can
achieve up to 7.2, 5.6 and 2.6 times lower ARE than the
PCM, PCU, and PC2 for frequency queries, respectively. We
have open-sourced all code of HoppingSketch at GitHub [7].

2 RELATED WORK

2.1 Persistent Bloom Filter (PBF)

PBF [1] is used for time membership queries in a compact
space, including two versions, PBF-1 and PBF-2. PBF-1 per-
forms binary decomposition on the time query range, and
constructs a Bloom filter (BF) for the corresponding items
of each time range generated by the binary decomposition.
The insertion and query processing is similar to the classic
segment tree operation. PBF-2 improves on PBF-1, using
only one BF in the entire decomposition level instead of

1. Actually, we use the hopping window to approximate the sliding
window. The difference between sliding windows and hopping win-
dows is: sliding windows always query the past k items, where k is
the window size; while hopping windows divide k items into a whole
window, and insert, query, or delete in units of windows rather than
items.

2. Here, PCM, PCU and PC refer to the new algorithms that we
directly apply PBF to CM, CU and C for comparison in Section 5.2.

using one BF in each time interval of each level. This reduces
the space overhead of PBF-1, but the drawback is time
instability when performing temporal membership queries.

2.2 Classic sketches for Data Streams

They mainly include the Bloom filter (BF) [8], the CM sketch
(CM) [4], the CU sketch (CU) [5] and the Count sketch
(C) [6], etc. Among them, BF is designed for membership
queries, while the others for frequency queries. A standard
BF consists of u bits array along with v hash functions. Each
bit is set to 0 at the beginning. For each incoming item, its
v mapped bits are set to 1. For membership queries, BF
checks its v mapped bits to see if all of them have been
set to 1. CM and CU consist of Λ arrays, each array Az
(1 ≤ z ≤ Λ) has Φ counters, and is associated with a hash
function hz(.). When inserting an item e, CM increments
the mapped counters Az[hz(e)] by 1. CU is very similar to
CM. The difference is that when inserting an item e, CU
only increments the mapped counter with the minimum
value by 1. Also, it does not support delete operations. C
is similar to CM and CU except that each array is associated
with two hash functions hz(.) and gz(.), and gz(.) maps each
item to -1 or +1 with the same probability. When inserting
an item e, C calculates all hash functions and adds gz(e)
to the counters Az[hz(e)] for each z. When querying an
item e, C only reports the median of A1[h1(e)] × g1(e),
A2[h2(e)] × g2(e), · · · , AΛ[hΛ(e)] × gΛ(e). Therefore, C has
double-sided errors, and CM and CU have one-sided errors.

3 BASIC HOPPINGSKETCH

In this section, we describe the basic HoppingSketch, which
uses the Bloom filters (BFs) as the atomic sketches.

3.1 Problem Statement

Given the length K of a single window, a data stream S is
defined as S = {(e1, t1), (e2, t2), . . . , (ei, ti), . . .}, where ei
is an item belonging to the set U = {1, 2, . . . , N}, and ti ∈
Z+ is a monotonically increasing timestamp indicating the
time item ei occurs. The items are partitioned into windows
according to their timestamps. Window i ∈ Z+ contains
items at time ((i − 1)K, iK]. It is not possible to store an
infinite data stream with limited memory, so all queries are
about the M latest windows.
Temporal Membership Query. Given an item e from the
w-th window, and l ≤ r, we want to know whether item e
appears in windows l, l + 1, . . . , r.

1,2,3 2,3,4 3,4,5 4,5,6 5,6 6

2,3,4 3,4,5 4,5,6 5,6,7 6,7 7

3,4,5 4,5,6 5,6,7 6,7,8 7,8 8

B3 B4 B5 B6 B7 B8

B4 B5 B6 B7 B8 B9

B5 B6 B7 B8 B9 B10

query 3 insert 6

query 3 insert 7

query 3 insert 8

HoppingSketch Operations

Fig. 1: The basic HoppingSketch, where the atomic sketch
is Bloom filter and m = 6, k = 3
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3.2 Data Structure

As shown in Figure 1, the data structure of basic HoppingS-
ketch consists of m (M ≤ m ≤ M + k − 1) Bloom filters.
We assume m =M by default. We use Bi to denote the i-th
Bloom filter created by HoppingSketch.

Instead of inserting to one Bloom filter with k hash
functions, we insert items to k Bloom filters with one hash
function. Each Bloom filter has a size of n bit, uses one hash
function and stores items from at most k windows.

When items from a new window (call it window w)
arrives, the oldest Bloom filter among m Bloom filters is re-
moved and the freed memory is used to create a new Bloom
filter Bw+k−1. Then, items from window w is inserted to
Bloom filter Bw, Bw+1, . . . , Bw+k−1.
Analysis. By inserting items to k Bloom filters, the memories
are shared among k Bloom filters. Suppose the i-th window
contains ni items. The false positive rate of inserting one
Bloom filter with k hash functions is about 1 − e−

1
mkni ,

while the false positive rate of inserting k Bloom filter with
one hash function is about 1−e−

1
m

∑k−1
j=0 ni−k (m denotes the

number of bits in the Bloom filter). If some ni is significantly
larger than others, our algorithm will have better false
positive rate for window i queries.

3.3 Operations

3.3.1 Implementation:

The pseudocode of the new window allocation operation is
shown in Algorithm 1. We use an array R of size m to store
all the Bloom filters and use a variable lat to record the ID
of the latest window, which is initialized to 0. The m newest
Bloom filters Blat+k−m, Blat+k−(m−1), . . . , Blat+k−1 are
stored in R (assume lat ≥ m). The Bloom filter Bk is stored
at R[k mod m].

Algorithm 1: New window allocation procedure for
basic HoppingSketch

1 lat← lat+ 1
2 if lat+ k − 1 > m then
3 delete the oldest Bloom filter Blat+k−1−m stored

at R[(lat+ k − 1) mod m]

4 create Bloom filter Blat+k−1 at
R[(lat+ k − 1) mod m]

3.3.2 Insertion:

The pseudocode of the insertion operation is shown in
Algorithm 2. For item e from the w-th window, we insert
(e, w) into Bw, Bw+1, . . . , Bw+k−1. If some of them has
already been removed, we just skip it. When inserting (e, w)
into the i-th Bloom filter, we use the unique hash function
hi(.) in the i-th Bloom filter to hash e, i.e., set the bit
Bi[(hi(e) +w) mod n] to 1, where n is the bit size of Bloom
filter.

Here k insertions to Bloom filters are performed in total.
So the time complexity is O(k) per insertion.

Algorithm 2: Insertion procedure for basic Hop-
pingSketch

Input: An item e from window w(w ≤ lat)
1 for i← 0 to k − 1 do
2 if w + i ≥ lat+ k −m then
3 add (e, w) to R[(w + i) mod m]

3.3.3 Query:
The pseudocode of the query operation is shown in Algo-
rithm 3. For item e from the w-th window, we query the
existence of (e, w) in Bw, Bw+1, . . . , Bw+k−1. Report “not
present” if and only if one of the queried Bloom filters
reports “not present”, i.e., ∃w ≤ i ≤ w + k − 1, Bi has
not been removed and Bi[(hi(e) + w) mod n] = 0.

Here at most k queries to Bloom filters are performed in
total. So the time complexity is O(k) per query.

Algorithm 3: Query procedure for basic HoppingS-
ketch

Input: An item e from window w(w ≤ lat)
1 for i← 0 to k − 1 do
2 if w + i ≥ lat+ k −m then
3 query (e, w) in R[(w + i) mod m]
4 if R[(w + i) mod m] reports “not present” then
5 return “not present”

6 return “present”

3.3.4 Example:
As shown in Figure 1, the structure consists of m = 6 Bloom
filters. For each Bloom filter, we label it as B1, B2, · · · , B6.
Also, we set k = 3 and use one hash function in each Bloom
filter.
Insertion: For item e from 8-th window, as shown, we insert
(e, 8) intoBw, Bw+1, . . . , Bw+k−1, that isB8,B9,B10. Then,
we use the unique hash function in the Bloom filter to hash
item e. For example, in Figure 1 phase 3, when we insert
(e, 8) into B9, we set the bit B9[(h9(e) + 8) mod n] to 1.
Query: In Figure 1 phase 3, for item e from 3-th win-
dow, we query if item (e, 3) is in the window w = 3.
Then, we query for presence in Bw, Bw+1, . . . , Bw+k−1, i.e.,
B3, B4, B5. Since B3, B4 have been emptied (or saved to
external storage) in phase 3, we just skip them and queryB5.
The item (e, 3) exists if the Bloom filter reports “present”,
i.e., B5[(h5(e) + 3) mod n] = 1.

4 APPLICATIONS

In this section, we show how to apply the HoppingSketch
to existing sketches. We use the persistent Bloom filter (PBF)
[1], CM [4], CU [5] and C [6] as case studies.

4.1 Temporal Membership Query
We apply HoppingSketch, described in Section 3, to the PBF-
1 of PBF [1].
Data Structure: As shown in Figure 2, the data structure
consists of L levels. For level ` ∈ [0, L − 1], we maintain

3
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1, 2, 3 2, 3, 4 3, 4, 5 4, 5, 6 5, 6, 7 6, 7, 8 7, 8 8

1, 2, 3, 4, 5, 6 7, 83, 4, 5, 6, 7, 8 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8 5, 6, 7, 8

1,  2,  3,  4,  5,  6,  7,  8

Fig. 2: HoppingSketch’s application on PBF (PBF-H) and
its binary tree version (connected by green dotted line).

a HoppingSketch that can store at most M` = bM−2K`
c + 2

windows of length K` = 2L−1−`. We use W`,w to denote
the w-th window of level `. Window W`,w is consist of K`

windows from level L− 1, i.e. window (w− 1)K`+1, (w−
1)K` + 2, . . . , wK`.

By the definition of W`,w, W`,w =W`+1,2w−1 ∪W`+1,2w

for l = 0, 1, . . . , L − 2. This structure can be represented
by a binary tree. Each node represents a window W`,w.
For convenience, we call ‘the node representing window
W`,w’ by node W`,w. Each node W`,w(` < L − 1) has two
children, node W`+1,2w−1 and node W`+1,2w. The binary
tree in Figure 2 shows the structure of the PBF-H. This
illustrates the connection between our algorithm and the
PBF3.

The binary tree structure is similar to a well known data
structure called segment tree. In this structure, each node
W`,w represents a time interval [(w − 1)K` + 1, wK`] and
every query interval can be decomposed into several sub-
intervals which can be found in the binary tree.

Theorem 4.1. For every query interval [a, b] (a < b < a+M ),
let the query result be Wq =

⋃
i∈[a,b]WL−1,i, there exists a set

R0 = {(`i, wi)} satisfying Wq =
⋃

(`,w)∈R0
W`,w and |R0| ≤

2L+ 4.

Proof. Let RL−1 = {(L − 1, k)}bk=a be the initial set. R0 is
the desired set.

For l = L − 1, L − 2, . . . , 1, let Tl = {w|(l, 2w −
1), (l, 2w) ∈ Rl}, then Rl−1 = {(l − 1, w)|w ∈ Tl} ∪
{(i, w)|i 6= l ∨ w /∈ Tl}.

We can prove by induction that Tl contains all
items in [minTl,maxTl]. By definition, TL−1 contains all
items in [b(a + 1)/2c, bb/2c]. If Tl contains all items in
[minTl,maxTl], then Tl−1 contains all items in [b(minTl +
1)/2c, bmaxTl/2c].

Hence, ∀1 ≤ l < L, |{(l, w) ∈ R0}| ≤ 2. Only
(l,minTl+1), (l,maxTl+1) (let TL = {i|a ≤ i ≤ b} for
convenience) may be items of R0. There are at most 4
windows in level 0, so we have |R0| ≤ 2L+ 4.

Denote Bl,w as the w-th Bloom filter of level l.
When data from a new window w arrives, for those

levels satisfying w mod K` = 1, a new window must be
allocated to them (see the previous section).
Insertion: For item e from window w, for every level
` = 0, 1, . . . , L − 1, we insert a new item e to Bloom

3. In short, compared with the original PBF-1 structure, each node of
PBF-H maintains HoppingSketch instead of the standard Bloom filter.

filter B`,b(w−1)/K`c+1. The insertion of HoppingSketch is
described in the previous section. Here L insertions to Hop-
pingSketch are performed in total, so the time complexity is
O(Lk) = O(k logm) per insertion.
Query: From Theorem 4.1, we can decompose the query
interval [x, y] intoO(logM) sub-intervals on the binary tree.
The decomposition procedure is shown below (Algorithm
4). Here L queries to HoppingSketch are performed in total,
so the time complexity is O(Lk) = O(k logm) per query.

Algorithm 4: Decomposition procedure for Hop-
pingSketch.

Input: Time interval X,Y
Output: Intervals {(xi, yi)}ki=1 s.t.

[X,Y ] =
⋃k
i=1[xi, yi]

1 Function decomp(x, y,X, Y ):
2 if X = Y then
3 return {(X,X)}
4 mid := bX+Y

2 c
5 if Y ≤ mid then
6 return decomp(x,mid,X, Y )

7 else if X > mid then
8 return decomp(mid+ 1, y,X, Y )

9 else
10 return decomp(x,mid,X, Y ) ∪

decomp(mid+ 1, y,X, Y )

11 return s

4.2 Frequency Query
HoppingSketch can be used to implement frequency queries
by using CM, CU and C as the atomic sketches, respectively.
It can query the number of occurrences of an item in a
certain time period.
Allocation & Insertion. As long as the atomic sketch supports
creation (create a new sketch), deletion (delete an existing
sketch) and insertion (insert an element pair (e, w) into
the sketch), we can always generalize Algorithm 1 and
Algorithm 2 to the new atomic sketch.
Query. The query procedure should be crafted to the task at
hand. The key principle is to imitate the query procedure of
atomic sketch. Most of the atomic sketches first maps e to
k indices i1, i2, . . . , ik by k hash functions, then obtain the
query results by the k values on indices i1, i2, . . . , ik. For
HoppingSketch, we first maps (e, w) to k indices in k atomic
sketches, then obtain the query results by the k query results
from atomic sketch in the same way. We show the query
procedure of HoppingSketch applied to CM Sketch as an
example (Algorithm 5).

5 EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments to evalu-
ate the performance of HoppingSketch.

5.1 Experimental Setup
Our experimental setup includes the algorithms we com-
pare against, the datasets used, the evaluation metrics, and
default settings.

4
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Algorithm 5: Query procedure for HoppingSketch
applied to CM sketch.

Input: An item e from window w(w ≤ lat)
1 s :=∞
2 for i← 0 to k − 1 do
3 if w + i > lat−m then
4 s := min(s,R[(w + i) mod m].query(e, w))

5 return s

5.1.1 Datasets
The following two real-world datasets and one Synthetic

Dataset are used in our experiments.
• IP Trace Dataset. The IP Trace Dataset is a public dataset

that includes anonymized IP traces from high-speed In-
ternet Backbone links collected by CAIDA [9]. Each item
contains a source IP address (4 bytes) and a destination IP
address (4 bytes), 8 bytes in total.

• WebDocs Dataset. The WebDocs is a collection of web
HTML documents built by a number of web pages [10].
Each item in the Web page dataset is 8 bytes.

• Synthetic Datasets. We generate the Synthetic Dataset
that follows the Zipf [11] distribution using Web Poly-
graph [12], an opensource performance testing tool. The
length of each item ID is 4 bytes.

5.1.2 Implementation
All the algorithms are implemented in C++. The hash

function we adopted in these algorithms is the Bob
hash [13]. All programs are run on a server with 128 GB
system memory and a 18-core CPU (36 threads, Intel(R)
Core(R) CPU i9-10980XE @4.00GHz). We set the number
of hash functions to 3 for all algorithms, which usually
gives nearly optimal performance. For every dataset, we
set a memory limit for temporal membership query and
frequency query. The size of atomic sketches are adjusted
base on the memory limits.

Since few algorithms can perform both membership
query and frequency estimation like HoppingSketch, we
need to separately select the algorithms that implement
membership query and frequency query together for com-
parison.
Temporal Membership Query: The first is the original
persistent Bloom filter [1] (PBF), and we use PBF-1 version
for comparison. The second is HoppingSketch applied to
PBF-1 described in Section 4 (PBF-H). Therefore, for the
temporal membership query task: PBF v.s. PBF-H.
Frequency Query: We use the following schemes for com-
parison: 1) PBF applied to CM [4] (PCM) v.s. HoppingSketch
applied to PCM (PCM-H); 2) PBF applied to CU [5] (PCU)
v.s. HoppingSketch applied to PCU (PCU-H); 3) PBF applied
to C [6] (PC) v.s. HoppingSketch applied to PC (PC-H). Note
that we only need to change the atomic sketch of PBF from
BF to CM, CU, and C to efficiently implement PCM, PCU,
and PC.

5.1.3 Evaluation Metrics
We choose three typical metrics, including FPR, ARE

and efficiency (insertion time and query time), to measure
the above tasks. In the following, we regard S as the data

stream, and (e, w) ∈ S as item e arrived in the w-th time
window at least once.
• FPR (False Positive Rate, temporal membership query):

For every time windoww, we define the false positive rate
as FPRw = 1

|Ew|
∑
e∈Ew

f̂(e,w). Where Ew = {e|(e, w) /∈
S ∧ ∃w′, (e, w′) ∈ S} and f̂(e,w) represents the mem-
bership query result (0 or 1) of item i in the w-th time
window.

• Efficiency (Insertion Time and Query Time, temporal
membership query): We sample 100,000 random items
from IP Trace Dataset to investigate the insertion and
query cost by examining the amortized cost of inserting
and querying one item when we vary the value of query
length |q|.

• ARE (Average Relative Error, frequency query): For
every window w, we define the average relative error

as AREw = 1
|Ww|

∑
e∈Ww

|f(e,w)−f̂(e,w)|
f(e,w)

. Here, Ww =

{e|(e, w) ∈ S}, and f(e,w) and f̂(e,w) represent the ac-
tual and estimated frequency of item e in the w-th time
window respectively.

5.2 Comparison with Prior Art
FPR vs. query length |q| (Figure 3(a)-3(c)): This experiment
shows that the FPR of PBF-H is much lower than the original
PBF. Here |q| denotes the length of each query interval. Therefore,
compared with original PBF, PBF-H has obvious advantages
in handling queries of longer query intervals. We find that,
on the Synthetic Dataset, the FPR of PBF-H is about 47.2%
lower than the original PBF. When compared in multiples,
the FPR of PBF-H is about 9.6 times lower than the original
PBF. On the two real-world datasets, the FPR of PBF-H is
about 38.7% lower than the original PBF. When compared
in multiples, the FPR of PBF-H is about 7.1 times lower
than the original PBF. Specifically, the FPR of PBF-H and
PBF both increase with the increase of query length |q|, but
PBF-H grows only slightly as |q| increases exponentially and
stays as low as less than 7.5% even when |q| is over 210 on all
datasets. The initial FPR of the original PBF is much larger
than PBF-H, and it increases rapidly as |q| increases.
Insertion time and query time vs. query length |q| (Fig-
ure 5(a)-5(b)): This experiment shows that the insertion time and
query time of PBF-H are slightly slower than the original PBF.
Specifically, the insertion time of PBF-H is about 0.43ms
longer than PBF, and the query time of PBF-H is around
0.3ms longer than PBF. Although PBF-H has no obvious
advantages over the original PBF in terms of insertion time
and query time, its efficiency is still acceptable.
ARE vs. query length |q| (Figure 4(a)-4(c)): This experiment
shows that the ARE of PCM-H, PCU-H and PC-H is much lower
than the corresponding PCM, PCU and PC. The details are as
follows.

1) PCM v.s. PCM-H. We find that, on the Synthetic
Dataset, the ARE of the PCM-H is around 7.2 times
lower than PCM. On the two real-world datasets, the
ARE of PCM-H is about 4.5 times lower than PCM as
the query length |q| increases.

2) PCU v.s. PCU-H. We find that, on the Synthetic Dataset,
the ARE of the PCU-H is around 5.6 times lower than
PCU. On the two real-world datasets, the ARE of PCU-
H is about 3.5 times lower than PCU as the query length
|q| increases.
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(c) Synthetic
Fig. 3: FPR v.s. query length |q|.
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Fig. 4: ARE v.s. query length |q|.
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Fig. 5: Efficiency v.s. query length |q|.

3) PC v.s. PC-H. We find that, on the Synthetic Dataset,
the ARE of the PC-H is around 1.5 times lower than
PC. On the two real-world datasets, the ARE of PC-H
is about 2.2 times lower than PC as the query length |q|
increases.

6 CONCLUSION

This paper proposes a novel sketch framework HoppingS-
ketch, which is the first sketch to implement temporal
membership queries on the sliding window, and can flex-
ibly implement different tasks by transforming different
atomic sketches. When the atomic sketch is Bloom filter, it
achieves significantly higher accuracy of temporal member-
ship query than the original PBF. Further, when the atomic
sketch is CM, CU or C, it achieves more accurate frequency
query than the PBF’s application on CM, CU and C. Our
experimental results show that HoppingSketch achieves
higher accuracy: the FPR of PBF-H is between 38.7% to
47.2% lower than the original PBF, and the ARE of PCM-
H, PCU-H and PC-H achieves up to 7.2, 5.6 and 2.2 times
lower ARE than PCM, PCU and PC as the query length |q|
increases, respectively.
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