IEEE/ACM TRANSACTIONS ON NETWORKING

HeavyKeeper: An Accurate Algorithm
for Finding Top-£ Elephant Flows

Tong Yang™, Haowei Zhang, Jinyang Li~, Junzhi Gong"™, Steve Uhlig™, Shigang Chen, and Xiaoming Li

Abstract— Finding top-k elephant flows is a critical task in net-
work traffic measurement, with many applications in congestion
control, anomaly detection and traffic engineering. As the line
rates keep increasing in today’s networks, designing accurate
and fast algorithms for online identification of elephant flows
becomes more and more challenging. The prior algorithms are
seriously limited in achieving accuracy under the constraints of
heavy traffic and small on-chip memory in use. We observe
that the basic strategies adopted by these algorithms either
require significant space overhead to measure the sizes of all
flows or incur significant inaccuracy when deciding which flows
to keep track of. In this paper, we adopt a new strategy,
called count-with-exponential-decay, to achieve space-accuracy
balance by actively removing small flows through decaying, while
minimizing the impact on large flows, so as to achieve high
precision in finding top-k elephant flows. Moreover, the proposed
algorithm called HeavyKeeper incurs small, constant process-
ing overhead per packet and thus supports high line rates.
Experimental results show that HeavyKeeper algorithm achieves
99.99% precision with a small memory size, and reduces the error
by around 3 orders of magnitude on average compared to the
state-of-the-art.

Index Terms— HeavyKeeper, top-k, sketch, network measure-
ments, elephant flow.

I. INTRODUCTION
A. Background and Motivation

INDING the largest k£ flows, also referred to as the top-k

elephant flows, is a fundamental network management
function, where a flow’s ID is usually defined as a combination
of certain packet header fields, such as source IP address,
destination IP address, source port, destination port, and pro-
tocol type, and the size of a flow is defined as the number
of packets of the flow. Elephant flows contribute a large

Manuscript received August 13, 2018; revised May 18, 2019; accepted
July 8, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor M. Schapira. This work was supported in part by the Primary
Research & Development Plan of China under Grant 2018YFB1004403 and
Grant 2016YFB1000304, in part by the NSFC under Grant 61672061,
and in part by the Shenzhen Peacock Innovation Program under Grant
KQJSCX20180323174744219. The preliminary version of this paper has been
published in USENIX ATC 2018 [1]. (Corresponding author: Shigang Chen.)

T. Yang is with the Department of Computer and Science, Peking University,
Beijing 100871, China, and also with the Shenzhen Graduate School, Peking
University, Beijing 100871, China (e-mail: yangtongemail @gmail.com).

H. Zhang, J. Li, J. Gong, and X. Li are with the Department of
Computer and Science, Peking University, Beijing 100871, China (e-mail:
lijinyang @pku.edu.cn).

S. Uhlig is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (e-mail:
steve @eecs.qmul.ac.uk).

S. Chen is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sgchen@ufl.edu).

This article has supplementary downloadable material
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2019.2933868

available at

portion of network traffic. Many management applications
can benefit from a function that can find them efficiently,
such as congestion control by dynamically scheduling elephant
flows [2], network capacity planning [3], anomaly detec-
tion [4], and caching of forwarding table entries [5]. Such
a function not only is important in networking measure-
ments [6]-[9], [9]-[14], but also has applications beyond
networking in areas such as data mining [15]-[17], information
retrieval [18], databases [19], and security [20].

In real network traffic, it is well known that the distribution
of flow sizes (the number of packets in a flow), is highly
skewed [21]-[28], i.e., the majority are mouse flows, while
the minority are elephant flows. Most flows are small while a
few flows are very large. The small flows are usually called
mouse flows, while the large ones are called elephant flows.

Finding the top-k elephant flows (or top-% flows for short) in
high-speed networks is a challenging task [29]. Extremely high
line rates of modern networks make it practically impossible
to accurately track the information of all flows. Consequently,
approximate methods have been proposed in the literature
and gained wide acceptance [23], [30]-[36]. In order to keep
up with the line rates, these algorithms are expected to use
on-chip memory such as SRAM whose latency is around
Ins [37], [38], in contrast to a latency of around 50ns when
off-chip DRAM is used [38]. However, on-chip memory is
small. Adding to the challenge, it is highly desirable to keep
per-packet processing overhead small and constant, which
helps pipelining.

Traditional solutions to finding the top-k flows follow
two basic strategies: count-all and admit-all-count-some. The
count-all strategy relies on a sketch (e.g., CM sketch [23]) to
measure the sizes of all flows, while using a min-heap to keep
track of the top-k flows. For each incoming packet, it records
the packet in the sketch and retrieves from the sketch an
estimate 7n; for the size of the flow f; that the packet belongs
to. If n; is larger than the smallest flow size in the min-heap,
it replaces the smallest flow in the heap by flow f;. As a large
sketch is needed to count all flows, these solutions are not
memory efficient.

The admit-all-count-some strategy is adopted by Fre-
quent [39], Lossy Counting [33], Space-Saving [31] and
CSS [30]. These algorithms are similar to each other. To save
memory, Space-Saving only maintains a data structure called
Stream-Summary to count only some flows (e.g., m flows).
Each new flow will be inserted into the summary, replacing
the smallest existing flow. The initial size of the new flow is set
as Mynin + 1, Where 7,4y, 18 the size of the smallest flow in the
summary. By keeping m flows in the summary, the algorithm
will report the largest £ flows among them, where m > k.
It assumes every new incoming flow is an elephant flow, and
expels the smallest one in the summary to make room for the
new one. But most flows are mouse flows. Such an assumption

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-2484-4390
https://orcid.org/0000-0002-8939-9120
https://orcid.org/0000-0001-6251-6836

causes significant error, especially under tight memory (for a
limited value of m).

In addition to the above two categories of algorithms for
finding top-%k flows, there are many recent works [40]-[43]
introducing a lot of new strategies, and we divide them as the
third category. The Elastic sketch uses votes to decide whether
a flow should be recorded or evicted; HeavyGuardian uses
the strategy of exponential decay to address five typical mea-
surement tasks; Cold Filter uses a two-layer filter to prevent
mouse flows from entering some data structures (e.g., Space-
Saving, the CM sketch); and Counter Tree uses the strategy
of two-dimensional counter sharing and derives mathematical
formulas to estimate flow sizes.

B. Our Proposed Solution

In this paper, we propose a new algorithm, HeavyKeeper,
which uses the similar strategy introduced from [41], called
count-with-exponential-decay. It keeps all elephant flows while
drastically reducing space wasted on mouse flows. Heavy-
Guardian can handle five different tasks, but not including
top-k elephant flows detection, while the algorithm we pro-
posed just focuses on finding top-k elephant flows. Heavy-
Keeper uses multiple arrays, and thus can scale well while
HeavyGuardian cannot.

Unlike count-all, our strategy only keeps track of a small
number of flows. Unlike admit-all-count-some, we do not
automatically admit new flows into our data structure and the
vast majority of mouse flows will be by-passed. For a small
number of mouse flows that do enter our data structure, they
will decay away to make room for true elephants. The decay
is not uniform for the flows in our data structure. The design
of exponential decay is biased against small flows, and it has
a smaller impact on larger flows. This design works extremely
well with real traffic traces under small memory.

II. PRELIMINARIES
A. Problem Statement

Simply speaking, finding top-k flows refers to finding the
largest k flows. Let P = Py, Py, --- Py be a network stream
with N packets. Each packet P; (1 < [< N) belongs to a
flow f;, where f; € F = {f1, fa,---, fum} and F is the set of
flows. Let n; be the real flow size of flow f; in P. We order
all flows (f1, fo, -, fam) sothat ny > mno > -+ = nyy.

Given an integer k£ and a network stream P, the output of
top-k is a list of k flows from F with the largest flow sizes,

ie., f15f27" : afk"

B. Prior Art and Limitations

1) The Count-All Strategy: As mentioned above, the count-
all strategy uses sketches (such as the CM sketch [23] or the
Count sketch [32]) to record the sizes of all flows, and uses a
min-heap to keep track of the top-k flows, including the flow
IDs and their flow sizes. Take the CM sketch as an example.
It records packets in a CM sketch, consisting of a pool of
counters. For each arrival packet, it hashes the packet’s flow
ID f to d counters and increases these d counters by one. The
smallest value of the d counters is used as the estimated size
of the flow, which is used to update the min-heap.

The problem is that all flows are pseudo-randomly mapped
to the same pool of counters through hashing. Each counter
may be shared by multiple flows, and thus record the sum of
sizes of all these flows. Consequently, a small flow may be

IEEE/ACM TRANSACTIONS ON NETWORKING

treated as an elephant flow if all its d counters are shared with
real elephant flows.

2) The Admit-All-Count-Some Strategy: As mentioned
above, quite a few algorithms use the admit-all-count-
some strategy, including Frequent [39], Lossy counting [33],
and Space-Saving [31]. Take Space-Saving as an example.
It counts only the sizes of some flows in a data structure
called Stream-Summary, which incurs O(1) overhead to search
a flow or update the smallest flow. For each arrival packet, if its
flow ID is not in the summary, the flow will be admitted into
the summary, replacing the smallest existing flow. The new
flow’s initial size is set tO 7y, + 1, Where 7,5, is the smallest
flow size in the summary before replacement. A recent work
CSS [30] is proposed based on Space-Saving. It inherits the
above strategy, but redesigns the data structure of Stream-
Summary by using TinyTable [44] to reduce memory usage.

The strategy of admit-all-count-some is to admit all new
flows while expelling the smallest existing ones from the
summary. To give new flows a chance to stay in the summary,
their initial flow sizes are set as 7,4, + 1. Such a strategy
drastically over-estimates sizes of flows, and we show an
example here. Assume 7,,;, = 10,000 and the summary is
already full. Given a new flow, it will directly replace the
flow with the smallest size in the summary and set its size
to be 10,001. If this new flow is a mouse flow, it is largely
over-estimated. Therefore, numerous mouse flows will cause
significant over-estimation errors.

III. THE DESIGN OF HEAVYKEEPER

In this section, we present the data structure and algorithm
of our HeavyKeeper, and show how to find the top-k flows.

A. Rationale

We aim to use a small hash table to store all elephant flows.
As there are a great number of flows, each bucket of the hash
table will be mapped by many flows, and we aim to store only
the largest flow with its size, which cannot be achieved with
no error when using small memory. Therefore, we leverage
a probabilistic method called exponential-weakening decay.
Specifically, when the incoming flow is not found in the hashed
bucket, we decay the flow size with a probability, which
exponentially decreases as the flow size increases. If the flow
size is decayed to O, it replaces the original flow with the
new flow. In this way, mouse flows can easily be decayed
to 0, while elephant flows can easily keep stable in the bucket.
There are two shortcomings: 1) With a small probability we
elect the wrong flow as the largest flow; 2) The reported flow
size might be under-estimated because of the decay operations.
To address these problems, we use multiple hash tables with
different hash functions. An elephant flow could be stored
in multiple hash tables, we choose the recorded largest size,
minimizing the error of flow sizes.

B. The HeavyKeeper Structure

As shown in Figure 1, HeavyKeeper is comprised of d
arrays, and each array is comprised of w buckets. Each bucket
consists of two fields: a fingerprint field and a counter field.!

IThe fingerprint of a flow is a hash value generated by a certain function
(for example, if we use hy(.) as the fingerprint hash function, the fingerprint
of flow f; is hy(f;)). Although there can be hash collisions among flows,
the probability is quite small. For example, if we set the fingerprint size to
16 bits, and there are 10000 buckets in the array, the probability of fingerprint
collisions is 1.52 % 1073,

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS 3

w buckets

A
\
“. darrays

Ps belongs to flow f3 ARl IeliinaiEllel C: counter field

Fig. 1.

r

hy(f3)

F;

The data structure of HeavyKeeper.

if C=0
C=C+1=1

I8 1 | Case 1:

Case 2:

if C>0 && FP=F3
C=C+1

)8 C-1| Case3: ifC>0 & FP #F3

C=C-1with prob.=b"C

Fig. 2. The main insertion cases of HeavyKeeper. Note: 1) Fg is the
fingerprint of flow f3.2) b > 1land b = 1 (e.g., b = 1.08). 3) In Case 3,
when C' is decayed to 0, the fingerprint field will be replaced by F3, and then
counter C is set to 1.

For convenience, we use A;[t] to represent the ¢'* bucket in
the j' array, and use A;[t].FP and A;[t].C to represent
its fingerprint field and counter field, respectively. Arrays
Ay ... Ay are associated with hash functions hq(.)...hg(.),
respectively. These d hash functions hi(.) ... h4(.) need to be
2-way independent.

1) Insertion: Initially, all fingerprint fields are null, and all
counter fields are 0. For each incoming packet P; belonging
to flow f;, HeavyKeeper computes the d hash functions, and
maps f; to d buckets A;[h;(f;)] (1 < j < d) (one bucket in
each array), which we call d mapped buckets for convenience.
As shown in Figure 2, for each mapped bucket, HeavyKeeper
applies different strategies for the following three cases:

Case 1: When A;[h;(f;)].C = 0. It means that no flow
has been mapped to this bucket, then HeavyKeeper sets
Aj[h](fz)]FP = Fi and A][hj(fz)]C = 1, where Fz
represents the fingerprint of f;.

Case 2: When A;[h;(f;)].C > 0 and A;[h;(f;)].FP =T,.
It means A;[h;(fi)].C' is possibly the estimated size of f;.
In this case, HeavyKeeper increments A;[h;(f;)].C by 1.

Case 3: When A;[h;(f)].C > 0 and A;[h;(f)]
FP #T,. It means that A;[h;(f;)].C is not the estimated size
of f;. In here, HeavyKeeper applies the exponential-weakening
decay strategy to this bucket: it decays A,;[h;(f;)].C' by
1 with a probability Pjecq,. After decay, if A;[h;(f;)].C =
0, HeavyKeeper replaces A;[h;(f;)].FP with F;, and sets
Aj[hi(fi)].C to 1. Therefore, as long as flows are mapped
to a bucket, its counter field will never be 0.

Note that at any time the values of counters are non-
negative, since decay only happens in Case 3 and Case 3
happens only when the value of the counter is larger than 0.
And in Case 3, when a counter is decayed to zero, the new
flow is inserted to this bucket and the counter is set to be 1
immediately.

2) Query: To query the size of a flow f;, HeavyKeeper first
computes the d hash functions to get d buckets A;[h;(fi)]
(1 € j < d). Among the d mapped buckets, it chooses
those buckets whose fingerprint fields are equal to F;. It then
reports the maximum counter field of those buckets, i.e.,
mazij<a{A;lh; (fi)].C} where Ajlh;(fi)].FP =F;.

For convenience, for those d mapped buckets of f;,
if Ajlh;(fi)].FP = F,, we say that f; is held at bucket
A;[h;(fi)]. Ignoring the limited impact of fingerprint colli-
sions, we prove that the reported size for each flow is equal
to or smaller than the real flow size in Section B. If a flow is
held at no mapped bucket, it reports that it is a mouse flow.
If a flow is held at multiple buckets, HeavyKeeper reports the
maximum counter field.

3) Decay Probability: The key problem is how to choose a
function to calculate the probability. Based on our experimen-
tal results on real and synthetic datasets, we find that as long
as the parameters are set reasonably, functions satisfying the
following condition all have a good performance: the larger the
value in the current counter field is, the smaller the probability
is. We finally choose the exponential function

Pdecay = b_c (b > 1)

where C' is the value in the current counter field and b (b > 1
and b ~ 1, eg, b = 1.08) is a predefined exponential
base number. This is because the function has the following
properties. 1) As the value increases, the rate of probability
reduction gradually increases and maps to [0,1]. 2) When the
value is large enough (e.g., 50), the probability is close to 0,
so we can regard the probability as 0, so as to accelerate
the throughput of our algorithm. 3) When the value is small
(e.g., 3), the recorded flow can hardly be an elephant flow, and
at the same time the probability is close to 1, which exactly
matches this condition.

Indeed, there are many other functions, which have a good
performance, such as C-b, %, etc. We have conducted
experiments to compare those functions, and the experimental
results show that the performances are similar with different
decay functions.

Therefore, the larger size a flow has, the harder it is to decay
its size. For elephant flows, it is held at several buckets, and the
corresponding counter fields are incremented regularly, while
decayed with a very small probability. Therefore, the error rate
for estimated sizes of elephant flows is very small.

Note: Our data structure of d arrays and d 2-way inde-
pendent hash functions may show some similarity with that
of CM [23]. But similarity stops there. CM records the sizes
of all flows; we record the sizes of a small number of flows.
CM does not store flow IDs; we do. CM stores information
of each flow in d counters; we keep each flow mostly in one
bucket, while d-hashing helps find an empty bucket. CM does
not have to worry about the issue of kicking out existing flows
to make room for new ones, which is what our exponential
delay does.

Example: As shown in Figure 1, given an incoming
packet P; belonging to flow f3, we compute the d hash
functions to obtain one bucket in each array. In the mapped
bucket of the first array, the fingerprint field is not equal to '3
and the counter field is 21, thus we decay the counter field
from 21 to 20 with a probability of 1.08 2! (assume b = 1.08).
In the second mapped bucket, the fingerprint field is not s
either, and with a probability of 1.08 !, we decay the counter
field from 1 to 0. If the counter field is decayed to 0, we set
the fingerprint field to I3, and set the counter field to 1. In the
last mapped bucket, the fingerprint field is F3, we increment
the counter field from 7 to 8.

Analysis: HeavyKeeper uses fingerprint to identify and
keep elephant flows. If a mouse flow with a small flow size
is held at a bucket, it will be replaced by other flows mapped
to this bucket soon, because each flow mapped to this bucket

with a different fingerprint will decay the counter field with a
high probability (b~¢ — 1 when C' is small). If an elephant
flow is held at a bucket, the corresponding counter field can
easily be incremented to a large value since elephant flows
have many incoming packets. Moreover, the decay probability
becomes very small (b~¢ — 0 when C' is large) as the counter
field increases to a large value. Therefore, mouse flows can
hardly be held in HeavyKeeper for a long time, and thus
have a large probability to be passers-by of HeavyKeeper.
However, elephant flows can keep stable in HeavyKeeper, and
the estimated sizes of elephant flows are accurate.

C. Basic Version for Finding Top-k Elephant Flows

To find top-k elephant flows, our basic version just uses a
HeavyKeeper and a min-heap. The min-heap is used to store
the IDs and sizes of top-k flows. For each incoming packet
P, belonging to flow f;, we first insert it into HeavyKeeper.
Suppose that HeavyKeeper reports the size of f; as n;. If f; is
already in the min-heap, we update its estimated flow size with
max(n;, min_heap|f;]), where min_heap|f;] is the recorded
size of f; in min-heap. Otherwise, if 7, is larger than the
smallest flow size which is in the root node of the min-heap,
we expel the root node from the min-heap, and insert f; with
n; into the min-heap. To query top-k flows, we simply report
the k£ flows in the min-heap with their estimated flow sizes.

Note that in our implementation, we use Stream-Summary
instead of min-heap, as the function of min-heap and Stream-
Summary is similar, and Stream-Summary can achieve O(1)
update complexity. For better understanding, we use min-heap
to explain in our paper.

D. Optimizations

In this section, we propose further optimization methods to
avoid accidental errors and improve speed. For convenience,
We Use 7, to denote the minimal flow size in the min-heap.

Optimization I: Fingerprint Collisions Detection.

Problem: Assume that there is a bucket in HeavyKeeper
where flow f; is held, and a mouse flow f; mapped to the same
bucket has the same fingerprint as f;, i.e., F; = F; due to hash
collisions. Then, the mouse flow f; is also held at this bucket,
and its estimated size is drastically over-estimated. In the worst
case, if flow f; has a fingerprint collision in all d arrays,
the mouse flow f; will probably be inserted into the min-heap.
It can hardly be expelled due to its drastically over-estimated
size. One effective solution is to store the entire IDs of flows
instead of using fingerprints, which can definitely avoid hash
collisions. However, in real data streams, the number of bits of
a flow’s ID is usually very large (e.g., more than 100 bits in 5-
tuple), leading to a waste of memory. Indeed, the better the
memory efficiency is, the higher the accuracy of algorithms
will be. Our design goal is to find a solution to alleviate
hash collisions without increasing the number of recorded
bits. Therefore, our solution is to store fingerprints instead
of entire IDs. In order to reduce the impact of hash collisions,
we propose a solution based on the following Theorem.

Theorem 1: When there is no fingerprint collision, after a
flow f; is inserted into HeavyKeeper, if its estimated size n;
is larger than N, (recall that we use Ny, to denote the
minimal flow size in the min-heap), then we must have

i = Namin + 1

IEEE/ACM TRANSACTIONS ON NETWORKING

The proof of this Theorem is not hard to derive and we skip
it due to space limitations.

Solution: Based on Theorem 1, if f; is not in the min-heap
but 7; > nn +1, then f; is a mouse flow whose size is dras-
tically over-estimated due to fingerprint collision. Therefore,
we should not insert f; into the min-heap in this case.

Optimization II: Selective Increment.

Problem: 1f a flow f; is not in the min-heap, then the
estimated flow size should be no larger than n,,;,. However,
due to fingerprint collisions, there could be some mapped
buckets of flow f; where the fingerprint field is F; and the
counter field is larger than 7,,;,. In this case, flow f; is not
the flow that is held at this bucket, and thus increasing the
corresponding counter field can only incur extra error.

Solution: In this case, instead of incrementing or decaying
the corresponding counter field, we make no change.

E. Hardware Parallel Version

Based on the basic version, we propose a new version using
the above two optimization methods. It is called Hardware
Parallel version (Parallel version for short) because
for each insertion, the operation in each array can be
implemented in parallel on hardware platforms (e.g., FPGA,
ASIC, or P4Switch). We will propose a more accurate ver-
sion (named Software Minimum version, Minimum
version for short in Section IV) at the cost of sacrificing
the parallel property. The insertion and query processes of
the Parallel version of our algorithm are presented as follows
(see pseudo-code in Appendix A Algorithm 1 of our technical
report [45]).

Insertion: All counters and fingerprints in HeavyKeeper and
the min-heap are initialized to 0. For each incoming packet [P,
belonging to flow f;, these are the following three steps for
each insertion:

Step 1: We check whether flow f; is already monitored
by the min-heap, which is shown in line 1-3 in Appendix A
Algorithm 1. We use a boolean variable flag to represent the
result.

Step 2: We insert f; into HeavyKeeper, which is shown
in line 4-22 in Appendix A Algorithm 1. According to
Optimization II, for each mapped bucket, if the fingerprint
field is equal to F;, we increment the counter field only when
flag = true or C' < nynipn, where C' is the original value in
the counter field.

Step 3: We get an estimated size n; of flow f; from
HeavyKeeper, which is shown in line 23-27 in Appendix A
Algorithm 1. According to Optimization I, if flag is true,
we update the estimated size of flow f; in the min-heap
with n;. If flag is false, we insert flow f; into the min-
heap with n; in only two cases: 1) the number of flows that
are in the min-heap is less than k; 2) n; = npin + 1.

Query top-k flows: It reports the k flows recorded in the
min-heap and their estimated flow sizes.

Analysis: Since HeavyKeeper achieves very small error
rate on the flow size estimation of elephant flows, it can
significantly reduce the error in finding top-k elephant flows.
Furthermore, the first two optimizations reduce the impact of
fingerprint collisions, and enhance the precision of finding top-
k elephant flows and their flow size estimation.

F. Limitations and a Solution

As mentioned before, when the exponential-weakening
decay is performed on a bucket, if its counter value is large

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS 5

enough (e.g., 50), the probability of reducing its value is close
to 0. Therefore, in the worst case, when a new flow arrives,
if all values of its mapped d counters are large enough, it could
never be inserted into some buckets. In fact, this limitation
means that the current memory size is too tight to record top-
k elephant flows. To address this problem, we propose to use
an extra global counter to record how many times this situation
happens. As long as the value of the extra counter is larger than
a predefined threshold, we add a new array, i.e., the d + 1th
array. In this way, the new flow will have a chance to record
its information.

Besides, our proposed algorithm cannot handle other flow
measurement tasks (e.g., flow size estimation, entropy detec-
tion) and cannot support weighted updates. However, thanks to
the fact that HeavyKeeper is designed mainly to handle top-%
flows detection, it achieves higher accuracy than other related
algorithms, which will be detailed in Section VI-E.

IV. SOFTWARE MINIMUM VERSION

In the above section, we describe the Hardware Parallel
Version of HeavyKeeper, in which all the d arrays can be
inserted or queried in parallel. We observe that its accuracy
can be further improved by sacrificing the parallel property.
In this section, we propose the Software Minimum Version to
further enhance the accuracy.

A. Problem

We observe that it is unnecessary to decay all the mapped
counters in the basic version. Specifically, when inserting an
incoming packet P; belonging to flow f;, HeavyKeeper com-
putes d hash functions and maps f; to d buckets A;[h;(f;)]
(1 < j < d) (one bucket in each array). For each bucket,
HeavyKeeper applies different strategies for three differ-
ent cases. We focus on the third case below. In Case 3,
Ajlh;i(fi)].C > 0 and Aj[h;(f;)].FP # F;, HeavyKeeper
decays Aj[h;(f;)].C by 1 with a probability Pgecqy, and
after decay, if A;[h;(f;)].C = 0, HeavyKeeper replaces
Ajlhi(f:)].FP with F;, and sets A;[h;(f;)].C to 1. However,
for a bucket A[hr(f;)] (1 < k < d) in HeavyKeeper where
an elephant flow f; is held, if another flow f; is mapped to the
same bucket due to hash collisions, i.e., f; # f; and F; =T},
then A[hi(fi)] is decayed by 1 with a probability Piccay, but
such decay is not always necessary and could be harmful for
the following reasons.

First, if f; is a mouse flow which only has a few packets,
the elephant flow f; can hardly be replaced by it, but f;’s
counter field is possibly decayed for a few times (e.g., decayed
from 1000 to 999). Such decay can hardly cause a replacement,
but at the same time, it makes f;’s recorded flow size in this
bucket less than its real flow size, which will degrade the
accuracy of queries.

Second, if f; is an elephant flow which has a large number
of packets, whether Ay [hy(f;)].C will be decayed to 0 and
Ag[hi(f;)].FP will be replaced with F; depends on the
following packets of f; and f;. In such a contest of the two
elephant flows, the counter in this bucket may be decayed
many times. There are two results. 1) If f; wins and keeps
held in this bucket, i.e., Ai[hx(f;)].C never reaches 0, then
Ag[hi(f:)].C will be much less than the real flow size of f;.
When querying the size of flow f;, HeavyKeeper reports the
maximum counter field of all the mapped buckets. As an
elephant flow, f; is likely to be kept in several buckets, and
the counter fields in other buckets may well be larger than

w buckets

1

d arrays
Fs D
P3 belongs to flow f3 : situation 1
P4 belongs to flow f4 : situation 2 ESSIITINNIEIEN C: counter field
P6 belongs to flow f6 : situation 3

Fig. 3. Examples of the insertion of parallel version.

Aglhi(f:)]-C, so Ag[hi(fi)].C makes no contribution to the
accuracy of queries. 2) If f; wins and replaces f; in the
bucket A [hi(f;)], after replacement, the counter starts from 1,
so Ag[hk(fi)].C is much less than the real flow size of f;.
Also, this counter makes no contribution to the query results
of flow f;. In summary, it is unnecessary and unhelpful to
decay large counters.

It is possible that f; will always occupy a bucket if we
do not perform any decay on it. In the worst case, if f; is
not an elephant flow, this strategy will make new flows not
have a choice to be inserted into that bucket. In other words,
this method is not friendly to late-arrival elephant flows.
However, this situation happens only when for a new flow, all
values of its mapped d counters are very large. As mentioned
in Section I'V-C, we can use an extra counter and automatically
add a new array to avoid this situation.

B. Solution: Minimum Decay

To address the above problem, we propose a solution, and
the key technique is called “Minimum Decay”. Its key idea is
that we choose to decay the smallest one instead of decaying
all the mapped counters. Below we show the details of our
solution. For each incoming packet P; belonging to flow f;,
HeavyKeeper computes d hash functions and maps f; to d
buckets A;[h;(fi)] (1 < j < d) (one bucket in each array).
For the d mapped buckets, suppose F; is the fingerprint of f;.
There are three situations.

Situation 1: If one of the d mapped buckets has the same
fingerprint as [;, we just increment the corresponding counter
by 1.

Situation 2: If all d mapped buckets do not have the
fingerprint IF;, but one or more of the mapped buckets are
empty. In this situation, we just insert f; into the first empty
bucket.

Situation 3: If all d mapped buckets are full and do not have
the fingerprint F;. In this situation, we choose the smallest
counter among the mapped bucket, and then perform the decay
operation. If there is more than one smallest counter, we only
choose the first one to decay.

Note that for each insertion, we only update one mapped
bucket, and do nothing for other mapped buckets.

Examples: Figure 3 shows three incoming packets cor-
responding to the three situations, respectively. Given each
incoming packet, we compute the d hash functions to obtain
one bucket in each array. We only show the first, second and
last array for convenience. For packet IP; belonging to flow fs,
the first mapped bucket holds the same fingerprint as f3 (F3),
so this is the above Situation 1. Thus we increment the counter

field from 3 to 4. For packet P4 belonging to flow f,, none of
the d mapped buckets holds the fingerprint 4, but there are
two empty buckets, so this is Situation 2. We insert flow f4
into the mapped bucket in the first array. We set its fingerprint
field to IF4 and its counter field to 1. For packet P4 belonging to
flow fg, none of the d mapped buckets holds the fingerprint [Fg
and none of them is full, so this is Situation 3. The counter
field in the last mapped bucket is the smallest, so we decay
it by 1 with a probability of 1.0871°, and do nothing to the
other mapped buckets.

C. Hardware Minimum Version for Finding Top-k Flow

Based on the Hardware Parallel version, we propose the
Software Minimum version (Minimum version for short) using
the above minimum decay technique. The insertion and query
processes of our Minimum version of our algorithm are
presented as follows. Due to space limitation, we present the
pseudo-code in the Appendix of our technical report [45].

Insertion: All counters and fingerprints in HeavyKeeper
and the min-heap are initialized to 0. For each incoming packet
P, belonging to flow f;, there are the following five steps for
each insertion:

Step 1: We check whether flow f; is already monitored by
the min-heap, denoted by a bloolean variable flag.

Step 2: We check whether there is a mapped bucket holding
the same fingerprint as ;. If there is and the corresponding
bucket could be updated (flag = true or the value of counter
is less than n,,;,), we increment the corresponding counter
filed by 1, and then go to step 5; otherwise, we go to step 3.

Step 3: We check whether there is a mapped bucket that is
empty. If there is, we insert this packet into the first empty
bucket and then go to step 5; otherwise, we go to step 4.

Step 4: We choose the bucket with the smallest counter
field among the d mapped buckets and decay it with a certain
probability. If there is more than one such bucket, we only
decay the first one.

Step 5: Step 5 is similar to step 3 of Parallel version of
HeavyKeeper. We get an estimated size n; of flow f; from
HeavyKeeper. If flag is true, we update the estimated size
of flow f; in the min-heap with 7n;. If flag is false, we insert
flow f; into the min-heap with 72; in only two cases: 1) the
number of flows that are in the min-heap is less than k;

Query top-k flows: We report the k flows recorded in the
min-heap and their estimated flow sizes.

Analysis: The Parallel version of HeavyKeeper achieves
fast processing speed and small error rate in finding top-k
elephant flows. Based on the Parallel version, the Minimum
version further improves the accuracy. Specifically, when
inserting a packet, the Minimum version only needs to change
at most one bucket, thus it avoids unnecessary and unhelpful
decay. Our experimental results (see Figure 23, 26 and 29)
verify that the accuracy is significantly improved when using
the Minimum Decay technique.

V. MATHEMATICAL ANALYSIS

In this section, we first claim that there is no over-estimation
of HeavyKeeper, and then derive the formula of error bound
in the Minimum version of HeavyKeeper. Note that we also
derived the formula of error bound in the basic version
of HeavyKeeper. Due to space limitation, we provide the
derivation process of the basic version in the Appendix of
our technical report [45].

IEEE/ACM TRANSACTIONS ON NETWORKING

A. Claim of No Over-Estimation Error of HeavyKeeper

Theorem 2: In the Minimum version, let n;(t) be the real
size of flow f; at time t, and let A;[h;(fi)](t).C be the counter
field of the mapped bucket of flow f; in the j* array at time t.
If there is no fingerprint collision, then

Vit Aj[h(f:)](1).C < ny(t)
Proof: Tt is not hard to prove this theorem. Due to
space limitation, we provide the proof in the Appendix of our
technical report [45].]

B. Error Bound of the Minimum Version of HeavyKeeper

Theorem 3: Assume that there is no fingerprint collision
and once the fingerprint of an elephant flow is inserted into
its mapped bucket, it is held there all the time. For any € > 0,
assume an elephant flow f; with size n; is held in the bucket,
we have
T
ewn;(b—1)

where w is the width of each array, b the exponential base,
and ~y the proportion of mouse flows in all flows.

Proof: For convenience, we use N to denote the total
number of packets, M to denote the number of different
flows and d to denote the number of arrays. Let’s focus on
the j** array. Flow f; is correctly reported, so at the end,
the fingerprint of flow f; is held in the h;(f;)"" bucket of the
j' array. Let I; ;. be a binary random variable, defined as

. {0 (fi = F) v (1) # By (i)
> L (fi # fi) A (hy(fi) = hi(fir))

I; j o = 14f f different flows f; and f; are held at the same
bucket in the j*" array. We use the three situations the same
as Section IV-B. We define binary random variable Y;(1 <
i < M) as:

<7<
Yi_{o 31 <j<d,

Pr{n; —; > [eN]} < (1

2

s.t. V1 < k < M, Ii,j,k =0
1 3)
else

As mentioned in Subsection III-B, d hash functions
hi(.)...hq(.) are 2-way independent, and the following proof
is based on this condition.

For each flow f;, if in the d mapped buckets, there is at
least one bucket with no hash collision, Y; = 0. Otherwise,
in each of these d mapped buckets, 3 a flow f;(f; # f;) that
is also mapped to this bucket, then Y; = 1. So if ¥; = 0,
for any incoming packet P belonging to f;, Situation 3 can
never happen. Now let’s calculate E(Y;), the probability that
in each of the d arrays, there are hash collisions in the bucket
to which flow f; is mapped. In a given bucket, the probability
that a flow is mapped here is %, so in a bucket to which f;
is mapped, the probability that no other flow is mapped here
is (1 — %)M ~!. And in a given array, the probability that
hash collision happens in the bucket to which f; is mapped is
(1—(1—=21)M=1) thus,

d
1
B(Y;) = [1 -(1- —)Ml] @)
w
We define random variable X ; as:
M
Xij=> TLijumaY; ()

=1

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS 7

Among the flows held in the same bucket as flow f;, except
for flow f; itself, some flows are unlikely to cause Situation 3,
thus unlikely to decay the counter field of this bucket, and
others are likely to. X; ; represents the sum of the sizes of
the latter kind of flows.

For each incoming packet, if it belongs to flow f;,
the counter field is incremented by 1; if not, the counter field
is not changed or decayed. Thus we have

n, — X, < Aj[h; (f:)].C < ny (6)

Note that A;[h;(f;)].C is the counter value at the query time.
Specifically, if for all packets that do not belong to flow f;,
Situation 3 happens, and when they are being processed, this
counter field is the smallest one in all d mapped buckets, and
they all decay the counter field, then A;[h;(f;)].C = n; —
X ;. If all such packets do not decay the counter field, then
A;[h;(fi)].C = n;. Then we define random variable P; ;; as
the probability that the [*" packet decays the counter field,
therefore,

Xi,j
Ajlh;(fi)].C =ni — Z P (7)
=1

For any € > 0, we have the following formula based on the
Markov inequality.
PT{A]‘ [h](fl)]C < n; — EN}
X%J
= 137“{TLz — Z Pi,j,l < n; — EN}
1=1

X, o

E NP
- Pr{zpi,j,l >eN}t < %
€

=1

®)

Now let’s focus on E(Zl)il’ P; j1). Recall that in real
network traffic, most flows are small, called mouse flows,
while a few flows are very large, called elephant flows. Assume
that all packets are uniformly distributed. Since we assume
that the fingerprint of an elephant flow is held at its mapped
bucket since inserted [46], [47], if the I*" packet belongs to
an elephant flow, Situation 3 cannot happen at this moment.
That is, if the [*" packet is to decay the given counter field,
it must be a mouse flow and this counter field is the smallest
in all d mapped buckets’ counter fields.

Recall that A;[h;(f;)].C is the counter value at the query
time. We assume that before the query time, when a flow
arrives, the counter value is uniformly distributed within the
range [1, A;[h;(f;)].C], so the probability that the counter size
is equal to any integer within this range is 1/A;[h;(f)].C.
In addition, the decay happens on condition that 1) the new
flow is a mouse flow, whose probability is ~; 2) Situation 3
happens and 3) this counter is the first smallest counter. The
probability of 2) and 3) is no larger than 1. For any C' which
satisfies 1 < C' < n; —E(Zl)i‘"f P, 1), we have the following
formula:

ol
Ajlh;(fi)]-C
v
= — ©)
n — E(C 5 Pija)

1
Pr{P, ;i = b_C}

IN

Let 8 be n; — E(El)if P; j1). As a result,
Xij E(X,;)
EQ P = > E(Pj)
=1 =1
<E(X)Z’y 1 ’}/E(Xi’j) zﬁ: 1
SEXig) 2 5= 7S
G A &b
_1EXay) 31— ()]
B =1
nl(b - 1)
Furthermore, for E(Xj ;), based on Equation 4 and 53,
M
E(Xaj) =F (Z Ii7j7¢/ni11/i>
i'=1
M
<Y niB(I ;) E(Y;)
i'=1
M-17¢
N 1
:—l1—(1——)] (11)
w w

Therefore, based on Equation 10,

N [1-(5)™]
wn;(b—1)

X, 1\ M1 d
E(Y_ Piju) < [1 - <1 - E) 1
=1

YN 1\ M1 d
S ()] e

Then, based on Equation 8,
Pr{A;[h;(fi)].C < ni—eN}

XLJ
eN

m—17¢
« N (it
eNwn;(b—1) w

e -(-0) "]

For an elephant flow f;, n; is very large, so we have

Pr{in, —n; > [eN]} < Pr{n, <n;, —eN}

<

13)

< i (1 ﬂ)d
= ewng(b—1) ¢

Sinc?,_% and d are much smaller than M, we have 1 — § <
(1 —e =)4 < 1, where § is a very small positive number.
Therefore, we have
. Y
P i —n; = [eN|} < ——————

rini =i > [N} ewn;(b—1)

Theorem holds. 0

Theorem 3 is based on an assumption that for an elephant
flow, since it is inserted into a bucket, it would be held there
all the time. However, if an elephant flow with extremely large
size, say 102°, arrives so late that all of its mapped buckets

have been filled with other elephant flows with size 1000,
it seems impossible to record this flow accurately. This case
happens mainly because the current memory size is too small
to record elephant flows. Specifically, for an elephant flow f;,
there are the following three situations. 1) This elephant flow
fi arrives early and there are still some empty buckets among
its mapped buckets. In this case, f; is inserted into the empty
buckets. f; can hardly be replaced by other flows due to its
high frequency, so in Theorem 3 we assume that such kind
of flows are held in the buckets since they are inserted, and
we derive mathematical proofs for them in Theorem 3. 2) The
elephant flow f; arrives late but among its d mapped buckets,
the smallest counter field is quite small. This means that the
flow held in the bucket with the smallest counter field is a
mouse flow, which is easy to be replaced by f; very soon. After
fi is inserted into this bucket, f; can hardly be replaced due to
its high frequency. Similar to the first case, Theorem 3 can also
be applied to this case. 3) The elephant flow f; arrives late, and
all of its d mapped buckets have large counter fields, which
means f; can hardly be inserted into any one of the buckets.
Actually, this case typically means the current memory size
is too small. Therefore, Theorem 3 only focuses on the first
and second cases. For the third case, more memory is needed
and we cannot derive any mathematical proofs.

In order to deal with this limitation that elephant flows
arriving late are at a disadvantage, we can use the method
mentioned in Section III-F. We can use an extra global counter
to record how many times a flow’s d mapped counters are all
large counters. If this extra counter value exceeds the prede-
fined threshold, we add a new array into the HeavyKeeper to
make room for the new flow.

In addition, we can observe that in the process of derivation,
only P; ;; is related to the probability decay function. When
we choose another decay function, we can derive the formula
of P; ;; in a similar way.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Platform: Our experiments are run on a server with dual
6-core CPUs (24 threads, Intel Xeon CPU E5-2620 @2 GHz)
and 62 GB total system memory. Each core has two L1 caches
with 32KB memory (one instruction cache and one data cache)
and one 256KB L2 cache. All cores share one 15MB L3 cache.

2) Dataset:

a) Campus Dataset: This dataset is comprised of IP
packets captured from the network of our campus. We rely on
the usual definition of a flow, through its 5-tuple, i.e., source IP
address, destination IP address, source port, destination port,
and protocol type. There are 10M packets in total, belonging
to 1M flows.

b) CAIDA Dataset: The second dataset is a CAIDA
Anonymized Internet Trace from 2016 [48], made of
anonymized IP packets. Each flow in this dataset is identi-
fied by the source and destination IP address. We use the
first 10M.? packets, belonging to about 4.2M flows.

c) Synthetic Datasets: We generate 10 different synthetic
datasets according to a Zipf [49] distribution with different

2In network-wide measurement, sketches in different switches are often
periodically sent to a collector for timely network traffic analysis. Each period
is often small, for example, 10M packets, so we use 10-32M long packet
traces.

IEEE/ACM TRANSACTIONS ON NETWORKING

skewness (from 0.6 to 3.0)® Each dataset is comprised of 32M
packets, belonging to 1 ~ 10M flows depending on the
skewness. Each packet is 4 bytes long. The code of the dataset
generator is the one from Web Polygraph [50].

3) Implementation: The implementation of two versions
of HeavyKeeper is done in C+4. We also implemented in
C++ the other related algorithms including Space-Saving
(SS), Lossy counting (LC), and the CM sketch* The source
code of CSS was provided by its author [30], and is written
in Java. It is much slower than Space-Saving written in C++-.
Therefore, we do not include CSS in our speed experiments.
For Space-Saving, Lossy counting, and CSS, the number of
buckets m is determined by the memory size, which is usually
much larger than k. When querying top-k flows, they report
the largest k flows of them. For CM sketch, the size of the
heap is k, the number of arrays is 3, and the width of each
array is determined by the memory size. In our algorithm,
the number of buckets m in Stream-Summary is equal to &,
and HeavyKeeper occupies the rest memory size. Here we set
d = 2, and w depends on the memory size. Both the fingerprint
field and the counter field are 16-bit long.

For experiments on throughput, we ignore operations on the
min-heap for the CM sketch, because we can only record flows
whose estimated size is larger than a pre-defined threshold.

B. Metrics

1) Precision: Precision is defined as % Only C flows belong
to the real top-k flows.

2) Average Relative Error (ARE): ARE is defined as
ﬁ Zfiell/ m;—”l, where W is estimated set of top-k flows,
n; is the estimated size of flow f;, and n; is the real size of
flow f;. ARE evaluates the error rate reported by the algorithm.

3) Average Absolute Error (AAE): AAE is defined as
ﬁ > fiew i — ngl, similarly to ARE.

4) Throughput: We perform insertions of all packets, record
the total time used, and calculate the throughput. The through-
put is defined as %, where NN is the total number of packets,
and T is the total measured time. We use Million of insertions
per second (Mps) to measure the throughput.

C. Experiments on Precision

To achieve a head-to-head comparison, we use the same
memory size for each algorithm, and use Hardware Parallel
Version as our default version of HeavyKeeper. We perform
the experiments for varying memory size and k on the campus
and CAIDA datasets, and varying skewness on the synthetic
datasets. For experiments of varying memory size, we set
k = 100, and vary the memory from 10 to 50KB. For
experiments of varying k, we set the memory size to 100KB,
and vary k from 200 to 1000. For experiments of varying
skewness, we set the memory size to 100KB, set & = 1000,
and vary skewness from 0.6 to 3.0.

1) Precision vs. Memory Size: For the campus dataset,
when memory size is 10KB (see Figure 4), the precision of
Space-Saving, Lossy counting, CSS, and CM sketch is
respectively 10%, 11%, 19%, and 41%, while the one of
HeavyKeeper is 82%. For the CAIDA dataset (see Figure 5),

3 Assume there is a stream which has M distinct flows and let N be the
total number of flows. Let f; be the frequency of the it flow. The skewness
~ of this stream refers to f; = %, where 6(v) = E;‘il]%

4There is an open source library [51] that implements Lossy Counting,
the CM Sketch, Space Saving, and others. Because the format of packets is
different from our datasets, we implemented these algorithms by ourselves.

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS

B Css
B CM Sketch

1 HeavyKeeper

Precision

10 20 30 40
Memory size (KB)

Fig. 4. Precision vs. memory size (Campus).

15 I SS I Css [HeavyKeeper
Il LC I CM Sketch
810
2
~05
0.0 10 20 30 40 50

Memory size (KB)

Fig. 5. Precision vs. memory size (CAIDA).
15 I SS s CSss [HeavyKeeper
e I CM Sketch

Precision
=]

I
i

0.0 200 400 600 800 1000

k
Fig. 6. Precision vs. k (Campus).

n

I ss
___Ive

B css
N CM Sketch

[HeavyKeeper

Precision
=)

o
O

ool
=)

200 400 600 800 1000
k

Fig. 7. Precision vs. k (CAIDA).

we find that the precision of HeavyKeeper reaches 99.99%
when memory size is larger than 20KB, while for Space-
Saving, Lossy counting, CSS, and CM sketch, precision is
respectively 18%, 33%, 34%, and 89% when memory size
is 5S0KB.

2) Precision vs. k: As shown in Figure 6, for the campus
dataset, as k becomes larger, the precision of HeavyKeeper
stays high, while it degrades for other algorithms. Specifically,
the precision of HeavyKeeper is always higher than 95.9%,
while that of Space-Saving, Lossy counting, CSS, and CM
sketch reaches 32.7%, 44.1%, 50.1%, and 77.9% respectively
when k£ = 1000. For the CAIDA dataset (Figure 7), we find
that the precision of HeavyKeeper is always above 94%, while
for Space-Saving, Lossy counting, CSS, and CM sketch, it is
26.6%, 37.1%, 44%, and 70% respectively when k& = 1000.

3) Precision vs. Skewness: As shown in Figure 8, the pre-
cision of HeavyKeeper reaches 99.99%. For all considered
values of skewness, the precision of HeavyKeeper does not
go below 94.9%, while the highest precision for Space-Saving,
Lossy counting, CSS, and CM sketch is 46.8%, 41.3%, 74.5%,
and 85.7%, respectively.

D. Experiments on AAE and ARE

In this section, we focus on the ARE and the AAE of the
estimated frequency of reported top-k flows. We also conduct
experiments with varying memory size, k, and skewness. The
parameter settings are the same as in Section VI-C.

. css
B CM Sketch

[HeavyKeeper

Precision

0.6 12 1.8 2.4
Skewness

Fig. 8. Precision vs. skewness (Synthetic).
25
g 00
<
E ~25 U
_50| WEE SS . css [HeavyKeeper
EEE C EEE CM Skeich
-73 10 20 30 %0 30
Memory size (KB)
Fig. 9. ARE vs. memory size (Campus).

Ss B css
LC BN CM Sketch

W HeavyKeeper

Precision

1 2 3 4 5
Memory size (MB)

Fig. 10. Precision vs. memory.

LT

5]
4
<
=1
)
L)
s [N B Css [HeavyKeeper
“77] mEE LC W CM Sketch
10 20 30 40 50

Memory size (KB)

Fig. 11. ARE vs. memory size (CAIDA).
25
4
00 R R
E U
- 50 I Sss I Css [HeavyKeeper
"| EEE LC EEE CM Sketch
200 400 600 800 1000
k
Fig. 12. ARE vs. k£ (Campus).

1) ARE vs. Memory Size: As shown in Figure 9, for the
campus dataset, we find that the ARE of HeavyKeeper is
smaller than 0.01 when memory size is larger than 20KB,
while for Space-Saving, Lossy counting, CSS, and CM sketch,
it is larger than 100. For the CAIDA dataset (see Figure 11),
we find that the ARE of HeavyKeeper is between 21119 and
1190365 times smaller than the one of Space-Saving, between
2955 and 456275 times smaller than the one of Lossy count-
ing, between 950 and 154047 times smaller than the one
of CSS, and between 238 and 656145 times smaller than the
one of CM sketch.

2) ARE vs. k: As shown in Figure 12, for the campus
dataset, we find that the ARE of HeavyKeeper is between
25579 and 56791 times smaller than the one of Space-Saving,
between 852 and 9312 times smaller than the one of Lossy
counting, between 142 and 3132 times smaller than the one

Zwﬂﬂ”%

_4| HEE SS
N LC

log10ARE

B css
I CM Sketch

[HeavyKeeper

200 400 600 800 1000
k

Fig. 13. ARE vs. k (CAIDA).

i '

&)

2 0
<
=)
0
£
I SS . css [HeavyKeeper
—4) I 1LC | CM Sketch
0.6 1.2 1.8 24 3.0

Skewness

Fig. 14. ARE vs. skewness (Synthetic).

of CSS, and between 293 and 20370 times smaller than the
of of CM sketch. For the CAIDA dataset (see Figure 13),
we find that the ARE of HeavyKeeper is between 4506 and
121912 times smaller than the one of Space-Saving, between
383 and 23666 times smaller than the one of Lossy counting,
between 137 and 8816 times smaller than the one of CSS,
and between 66 and 27290 times smaller than the one of CM
sketch.

3) ARE vs. Skewness: As shown in Figure 14, for all
considered values of skewness, we find that the ARE of
HeavyKeeper is between 15566 and 27829 times smaller than
that of Space-Saving, between 11915 and 41575 times smaller
than that of Lossy counting, between 2174 and 6099 times
smaller than that of CSS, and between 3819 and 10080 times
smaller than that of CM sketch.

4) AAE vs. Memory Size: As shown in Figure 15, for the
campus dataset, we find that the AAE of HeavyKeeper is
between 433 and 3013 times smaller than that of Space-
Saving, between 267 and 1221 times smaller than that of
Lossy counting, between 200 and 758 times smaller than that
of CSS, and between 155 and 428 times smaller than that of
CM sketch. For the CAIDA dataset (see Figure 16), we find
that the AAE of HeavyKeeper is between 697 and 1810 times
smaller than that of Space-Saving, between 421 and 928 times
smaller than that Lossy counting, between 289 and
647 times smaller than the one of CSS, and between 86 and
284 times smaller than that of CM sketch.

5) AAE vs. k: As shown in Figure 17, for the campus
dataset, we find that the AAE of HeavyKeeper is between
271 and 1382 times smaller than that of Space-Saving,
between 142 and 346 times smaller than that of Lossy count-
ing, between 93 and 196 times smaller than that of CSS, and
between 74 and 318 times smaller than that of CM sketch.
For CAIDA dataset (see Figure 18), we find that the AAE of
HeavyKeeper is between 206 and 694 times smaller than that
of Space-Saving, between 118 and 329 times smaller than
that of Lossy counting, between 73 and 199 times smaller
than that of CSS, and between 67 and 121 times smaller than
that of CM sketch.

6) AAE vs. Skewness: From Figure 19, we find that the
AAE of HeavyKeeper is between 137 and 209 times smaller
than that of Space-Saving, between 96 and 355 times
smaller than that of Lossy counting, between 28 and 55 times
smaller than that of CSS, and between 45 and 73 times smaller
than that of CM sketch.

IEEE/ACM TRANSACTIONS ON NETWORKING

B CSs
B CM Sketch

HeavyKeeper

log10AAE

20 30 40
Memory size (KB)

Fig. 15. AAE vs. memory size (Campus).
. ss I CSss [HeavyKeeper
0| mmm LC EEE CMSkech
=)
<
<
S
%
k=]
0
10 20 30 40 50
Memory size (KB)
Fig. 16. AAE vs. memory size (CAIDA).
[N I css [HeavyKeeper
BN [C EEE CM Sketch
w4
<
<
5
&2
0 200 400 600 800 1000
k
Fig. 17. AAE vs. k (Campus).
H SsS I Css [HeavyKeeper
Il LC I CM Sketch
m 4
<
<
ER)
0 200 400 600 800 1000
k
Fig. 18. AAE vs. k (CAIDA).

B Ss
e

B Ccss
B CM Sketch

[HeavyKeeper

log10ARE
~

S

0

0.6 1.2 1.8 24 3.0
Skewness

Fig. 19. AAE vs. skewness (Synthetic).

E. Compare With Recent Works

In this section, we compare our algorithm with recent
works. First we show the differences between HeavyKeeper
and HeavyGuardian. Then we compare our HeavyKeeper with
the Elastic sketch, Counter Tree and Cold Filter. For the
Elastic sketch and Cold Filter, the source codes are from their
authors [40], [42]. We use Cold Filter with Space Saving to
evaluate its performance, because the performance of Cold
Filter with Space Saving is the best in that paper. For Counter
Tree, we use the formulas derived from its author [43] to
estimate frequencies of flows. We only report results for the
campus dataset by varying the memory size. Here we set
k =100 and vary memory size from 10KB to 5S0KB.

As mentioned before in Section I-A, HeavyGuardian can
also find items with large frequencies, but we do not compare
our HeavyKeeper with HeavyGuardian, due to the following

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS 11

BN Counter Tree BN Elastic
I ColdFilter B HeavyKeeper

= 1.0

=}

=

17}

B

3

=

£os

0.0

10 20 30 40 50
Memory size (KB)

Fig. 20. Precision vs. memory size.

5.0 N Counter Tree
I ColdFilter

I Elastic
I HeavyKeeper

Ly,

10

loglgARE
=]

Memory size (KB)

Fig. 21. ARE vs. memory size.

three differences. 1) These two algorithms have different
focuses. HeavyGuardian focuses on generality. It can handle
five different tasks: frequency estimation, heavy hitter detec-
tion, heavy change detection, frequency distribution estima-
tion, and entropy estimation. But it was not applied to find
top-k elephant flows. Our HeavyKeeper is designed to only
find top-k elephant flows accurately. 2) HeavyGuardian is
the first algorithm that supports real-time entropy estimation,
but HeavyKeeper cannot handle real-time entropy estimation.
3) HeavyGuardian has the above advantages at the cost of
being applicable for software platforms only, i.e., it can-
not be implemented on hardware platforms. While in our
HeavyKeeper for Hardware Parallel version, the operation
in each array can be implemented in parallel on hardware
platforms. Therefore, we do not compare our algorithm with
HeavyGuardian. We compare HeavyKeper with the Elastic
sketch, Counter Tree and Cold Filter, which is detailed as
follows.

1) Measuring Precision: As shown in Figure 20, the pre-
cision of HeavyKeeper is much better than Counter Tree and
Cold Filter. Next we explain the reason of the performance dif-
ference between our algorithm and others. For Counter Tree,
it uses formulas to estimate frequencies of flows, which might
cause large error. For Cold Filter, its key data structure is Space
Saving [29], whose performance is worse than HeavyKeeper,
and the cold filter takes up a certain amount of memory. For
the Elastic sketch, it is a general data structures, while Heavy-
Keeper just focuses on finding top-k elephant flows. That is
why HeavyKeeper is slightly better than the Elastic sketch.

2) Measuring ARE: As shown in Figure 21, the ARE of
HeavyKeeper is the smallest compared with other recent
works. Specifically, when the memory size is 10KB, the ARE
of Counter Tree, Cold Filter and the Elastic sketch are 1032,
1036 and 10799, respectively, while that of HeavyKeeper
is smaller than 10~'®. This indicates HeavyKeeper could
handle the situation in tight memory much better than other
algorithms.

3) Measuring AAE: As shown in Figure 22, the AAE
of HeavyKeeper is the smallest compared with other recent
works. Specifically, when the memory size is 10KB, the AAE
of Counter Tree, Cold Filter and the Elastic sketch are 1034,
10* and 102!, respectively, while that of HeavyKeeper is
smaller than 109, As the memory size increases, the AAE of

6 N Counter Tree
I ColdFilter

B Elastic
I HeavyKeeper

10g1 ()AAE
o

%)

10 20 30 40 50
Memory size (KB)

Fig. 22. AAE vs. memory size.
B Hardware Parallel Software Minimum
=
S
Z
S
2 0.
=%}
0.0 6 7 8 9 10
Memory size (KB)
Fig. 23. Precision vs. memory size.

our algorithm is always the smallest compared with other
algorithms.

F. Performance on Very Big Dataset

We also conduct experiments on very big datasets. We set
k = 1000 and the memory size to 100KB. For every
10M packets, we report top-k elephant flows and evaluate
the precision by comparing with real top-k elephant flows.
As shown in Figure 32, as the total number of packets
increases, the precision slightly reduces. However, we can
obverse that the precision still reaches a high value when the
total number of packets is 10%.

G. Hardware Parallel Version vs. Software Minimum Version

In this section, we compare Hardware Parallel Version with
Software Minimum Version. We conduct experiments with
varying memory size, k, and skewness. Due to the high
accuracy of our algorithm, we set the smaller memory size
to show the difference of performance between two versions
clearly. Specifically, for experiments of varying memory size,
we set k = 100, and vary the memory size from 6KB to
10KB; for experiments of varying k, we set the memory size to
30KB, and vary & from 100 to 500; for experiments of varying
skewness, we set the memory size to 10KB and k£ = 100. Since
the results are similar on CAIDA and campus datasets, we just
show the performance of two versions on campus dataset.

1) Varying Memory Size: As shown in Figure 23, when
memory size is SKB or 6KB, the precision of Hardware
Parallel Version is only 2%, and the reason behind is that there
are only a few buckets, which cannot record all the largest k
flows. On the other hand, the precision of Software Minimum
Version achieves 38% and 70% when memory size is 5KB
and 6KB, respectively, and the reason behind is that each flow
has no duplicate when it is inserted into the hash table, and
therefore the Software Minimum Version saves memory more
efficiently. As shown in Figure 24 and 25, we find that the
ARE and AAE of Software Minimum Version are smaller than
those of Hardware Parallel Version.

2) Varying k: As shown in Figure 26, as k increases,
the precision of Hardware Parallel Version decreases from
100% to 13%, while the Software Minimum Version still
achieves 60% precision when k£ = 1000. As shown
in Figure 27 and 28, we find that the ARE and AAE of Soft-
ware Minimum Version are smaller than those of Hardware
Parallel Version.

log10ARE

B Hardware Parallel [Software Minimum

6 7 8 9 10
Memory size (KB)

Fig. 24. ARE vs. memory size.

B Hardware Parallel [Software Minimum

log10AAE
0)

=)

6 7 8
Memory size (KB)

Fig. 25. AAE vs. memory size.

B Hardware Parallel [Software Minimum

Precision

Fig. 26. Precision vs. k.

0

log10ARE
o

—4] EEE Hardware Parallel [Software Minimum

100 200 300 400 500
k
Fig. 27. ARE vs. k.
3 B Hardware Parallel [Software Minimum
53}
P
S
20
2
0
Fig. 28. AAE vs. k.

B Hardware Parallel [Software Minimum

Precision

0.6 12 1.8 24
Skewness

Fig. 29. Precision vs. skewness.

3) Varying Skewness: As shown in Figure 29-31, for all
considered values of skewness, the precision of Software
Minimum Version is always larger than that of Hardware
Parallel Version, and the ARE and AAE of Software Minimum
Version are always smaller than those of Hardware Parallel
Version.

H. Experiments on Throughput

We now turn to the throughput of the algorithms. We only
report results for the campus dataset due to space limitations.
We set k£ = 100, and vary memory size from 10KB to 50KB.

IEEE/ACM TRANSACTIONS ON NETWORKING

log10ARE

—4] EEE Hardware Parallel [Software Minimum

0.6 12 1.8 24 3.0
Skewness
Fig. 30. ARE vs. skewness.
4| MM Hardware Parallel [Software Minimum
m
<
<
°—02
2
0 0.6 12 1.8 24
Skewness
Fig. 31. AAE vs. skewness.
B HeavyKeeper
g 0.9011
Rz
S
51
& 0.85
4 5 6 7 8
of packets (*107)
Fig. 32. Precision vs. # of packets.
’%_ BN BN CM Sketch B Minimum
EZO EEE [C W Parallel
5
a
<=
210
2
=
=
0 10 20 30 40 50
Memory size (KB)

Fig. 33. Throughput vs. memory size.

Since our server of running experiments is much older than
most of the current ones, the throughput of experimental
results might be slightly lower than the results in other
papers.

1) Throughput vs. Memory Size: As shown in Figure 33,
we find that the throughput of HeavyKeeper is always higher
than other algorithms, and the throughput of HeavyKeeper
of Hardware Parallel Version is slightly higher than the
Software Minimum Version. Indeed, the average throughput
of HeavyKeeper of Hardware Parallel Version and Software
Minimum Version is 15.52Mps, 15.27Mps, respectively, while
it is 12.15Mps, 11.34Mps, and 12.72Mps for Space-Saving,
Lossy counting, and CM sketch. These results show that
HeavyKeeper not only is more accurate than previous work,
but also achieves higher throughput as well.

VII. OPEN VSWITCH DEPLOYMENT

In this section, we implement our HeavyKeeper algorithm
on a software switch platform: Open vSwitch (OVS). We will
present details of our implementation and experimental results
to show the performance running on Open vSwitch.

A. OVS Implementation

The OVS implementation of our HeavyKeeper algorithm
consists of three components: 1) the modified OVS data-
path, 2) the shared memory buffering flow IDs, and 3) the

YANG et al.: HEAVYKEEPER: AN ACCURATE ALGORITHM FOR FINDING TOP-k£ ELEPHANT FLOWS 13

20

B Throughput

Throughput (Mps)
S

0

NS o

Ww\\e\ N\"‘\.‘“\“ oSS 1C

S

Fig. 34. Throughput on OVS platform.

user-space program of HeavyKeeper processing flow IDs. For
each incoming packet, it will be first inserted into the OVS
datapath for forwarding. Besides, we modify the source codes
of OVS datapath to parse the flow ID of the incoming packet,
and then insert its flow ID into the shared memory (the shared
memory is created initially). Finally, the user-space program
will read the flow IDs from the shared memory, and process
them as incoming packets.

B. OVS Evaluation

We use synthetic trace to conduct experiments in OVS
with 4 threads and 40G link min-size packets to evaluate the
throughput of HeavyKeeper and other algorithms. In order
to improve the performance of OVS, we integrate OVS with
DPDK (Data Plane Development Kit). DPDK implements the
datapath entirely in the user-space, and thus it eliminates the
overhead of a context switch and memory copies between user-
space and kernel-space. Besides, we also show the throughput
of OVS without using any algorithm to show the impact of
algorithms. We set the memory size to SOKB.

As shown in Figure 34, the throughput of HeavyKeeper is
near the original throughput of OVS. Specifically, the through-
put of the original OVS is 19.22Mps, and that of HeavyKeeper
of Hardware Parallel Version and Software Minimum Version
is 18.03Mps, 17.62Mps, respectively. However, the through-
put of CM sketch, Space-Saving, and Lossy Counting is
14.14Mps, 13.80Mps, and 12.64Mps, respectively. The results
show that our HeavyKeeper algorithm has little impact to
the performance of OVS, while other algorithms decrease the
throughput significantly.

VIII. CONCLUSION

Finding the top-k elephant flows is a critical task for
network traffic measurement. Existing algorithms for finding
top-k flows cannot achieve high precision when traffic speed
is high and memory usage is small. In this paper, we propose
a novel data structure, called HeavyKeeper, which achieves a
much higher precision on top-k queries and a much lower
error rate on flow size estimation, compared to previous
algorithms. The key idea of HeavyKeeper is that it intelligently
omits mouse flows, and focuses on recording the information
of elephant flows by using the exponential-weakening decay
strategy. Our evaluation confirms that HeavyKeeper achieves
99.99% precision for finding the top-k elephant flows, while
also achieving a reduction in the error rate of the estimated
flow size by about 3 orders of magnitude compared to the
state-of-the-art algorithms. We have released the source code
of HeavyKeeper and all related algorithms at GitHub [45].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful suggestions.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

J. Gong et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows,” in Proc. USENIX ATC, 2018, pp. 909-921.

A. Sivaraman et al., “Programmable packet scheduling at line rate,” in
Proc. ACM SIGCOMM, 2016, pp. 44-57.

A. Feldmann et al., “Deriving traffic demands for operational IP net-
works: Methodology and experience,” in Proc. ACM SIGCOMM, 2000,
pp. 257-270.

A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-
wide anomalies in traffic flows,” in Proc. ACM IMC, 2004,
pp. 201-206.

O. Rottenstreich and J. Tapolcai, “Optimal rule caching and lossy
compression for longest prefix matching,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 864-878, Apr. 2017.

Q. Huang, P. P. C. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens
in approximate measurement with automated statistical inference,” in
Proc. ACM SIGCOMM, 2018, pp. 576-590.

Q. Huang et al, “SketchVisor: Robust network measurement for
software packet processing,” in Proc. ACM SIGCOMM, 2017,
pp. 113-126.

L. Tang, Q. Huang, and P. P. C. Lee, “MV-Sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
Proc. [EEE INFOCOM, May 2019, pp. 2026-2034.

C. Hu et al., “DISCO: Memory efficient and accurate flow statistics for
network measurement,” in Proc. IEEE 30th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2010, pp. 665-674.

H. Zhao et al., “A data streaming algorithm for estimating entropies of
od flows,” in Proc. 7th ACM SIGCOMM Conf. Internet Meas., 2007,
pp- 279-290.

H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proc. VLDB Endowment, vol. 10, no. 4, pp. 289-300,
2016.

A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2327-2339, Dec. 2006.

O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092-1105, Aug. 2014.

S. Z. Kiss, E. Hosszu, J. Tapolcai, L. Roényai, and
O. Rottenstreich, “Bloom filter with a false positive free zone,”
in Proc. IEEE INFOCOM, Honolulu, HI, USA, Apr. 2018,
pp. 1412-1420.

K. Mirylenka, G. Cormode, T. Palpanas, and D. Srivastava, “Conditional
heavy hitters: Detecting interesting correlations in data streams,” Int. J.
Very Large Data Bases, vol. 24, no. 3, pp. 395414, 2015.

J. H. Chang and W. S. Lee, “Finding recent frequent itemsets adaptively
over online data streams,” in Proc. ACM SIGKDD, 2003, pp. 487-492.
Y.-L. Cheung and A. W.-C. Fu, “Mining frequent itemsets without
support threshold: With and without item constraints,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1052-1069, Sep. 2004.

G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, 1986.

M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query processing
in uncertain databases,” in Proc. IEEE ICDE, Apr. 2007, pp. 896-905.
Y. Zhang, B. Fang, and Y. Zhang, “Identifying heavy hitters in
high-speed network monitoring,” Sci. China Inf. Sci., vol. 53, no. 3,
pp. 659-676, 2010.

P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proc. SIGMOD, 2016, pp. 1449-1463.
G. Cormode, “Sketch techniques for approximate query processing,” in
Foundations and Trends in Databases. Boston, MA, USA: Now, 2011.
G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58-75, 2005.

C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 1,
pp. 75-80, 2002.

Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and Internet traffic matrices,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 267-278, 2009.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM 10th SIGCOMM Conf.
Internet Meas., 2010, pp. 267-280.

D. Maltz, “Unraveling the complexity of network management,”’
in Proc. 6th USENIX Symp. Netw. Syst. Design Implement., 2009,
pp. 335-348.

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[471

(48]

[49]

[50]

[51]

Z. Li, F. Xiao, S. Wang, T. Pei, and J. Li, “Achievable rate maximization
for cognitive hybrid satellite-terrestrial networks with AF-relays,” IEEE
J. Sel. Areas Commun., vol. 36, no. 2, pp. 304-313, Feb. 2018.

M. H. ur Rehman et al., “Big data reduction methods: A survey,” Data
Sci. Eng., vol. 1, no. 4, pp. 265-284, 2016.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in Proc. IEEE INFOCOM, Apr. 2016,
pp- 1-9.

A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. ICDT. Edinburgh,
U.K.: Springer, 2005.

M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Automata, Languages and Programming. Mdlaga,
Spain: Springer-Verlag, 2002, p. 784.

G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proc. VLDB, 2002, pp. 346-357.

N. B. Seghouani, F. Bugiotti, M. Hewasinghage, S. Isaj, and
G. Quercini, “A frequent named entities-based approach for interpreting
reputation in Twitter,” Data Sci. Eng., vol. 3, no. 2, pp. 86-100, 2018.
K. Li and G. Li, “Approximate query processing: What is new and where
to go?” Data Sci. Eng., vol. 3, no. 4, pp. 379-397, 2018.

Z. Li et al., “Dynamic compressive wide-band spectrum sensing based
on channel energy reconstruction in cognitive Internet of Things,” IEEE
Trans. Ind. Informat., vol. 14, no. 6, pp. 2598-2607, Jun. 2018.

Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better netflow for
data centers,” in Proc. NSDI, 2016, pp. 311-324.

F. Wang and M. Hamdi, “Matching the speed gap between SRAM and
DRAM,” in Proc. IEEE HSPR, May 2008, pp. 104-109.

E. Demaine, A. Lopez-Ortiz, and J. I. Munro, “Frequency estimation of
Internet packet streams with limited space,” in Algorithms—ESA. 2002,
pp. 11-20.

T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM SIGCOMM, 2018, pp. 561-575.

T. Yang et al., “HeavyGuardian: Separate and guard hot items in data
streams,” in Proc. ACM 24th SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2018, pp. 2584-2593.

Y. Zhou et al., “Cold filter: A meta-framework for faster and more
accurate stream processing,” in Proc. ACM Int. Conf. Manage. Data,
2018, pp. 741-756.

C. Min and S. Chen, “Counter tree: A scalable counter architecture for
per-flow traffic measurement,” IEEE/ACM Trans. Netw., vol. 25, no. 2,
pp. 1249-1262, Apr. 2017.

G. Einziger and R. Friedman, “Counting with tinytable: Every bit
counts!” in Proc. ICDCN, 2016, Art. no. 27.

The Source Codes of Heavykeeper —and Other Related
Algorithms. Accessed: Aug. 13, 2018. [Online]. Available:
https://github.com/papergitkeeper/heavykeeper-project

S. B. Balaji et al, “Erasure coding for distributed storage:
An overview,” Sci. China Inf. Sci., vol. 61, no. 10, 2018, Art. no. 100301.
X. Tang, S.-T. Xia, C. Tian, Q. Huang, and X.-G. Xia, “Special focus on
distributed storage coding,” Sci. China Inf. Sci., vol. 61, no. 10, 2018,
Art. no. 100300.

(2016). The Caida Anonymized Internet Traces. [Online]. Available:
http://www.caida.org/data/overview/

D. M. W. Powers, “Applications and explanations of zipf’s law,” in Proc.
Joint Conf. New Methods Lang. Process. Comput. Natural Lang. Learn.,
1998, pp. 151-160.

A. Rousskov and D. Wessels, “High-performance benchmarking with
‘Web polygraph,” Softw., Pract. Exper., vol. 34, no. 2, pp. 187-211, 2004.
The Open Source Library That Implements Lossy Counting, CM Sketch,
Space Saving, and Others. Accessed: Aug. 13, 2018. [Online]. Available:
http://hadjieleftheriou.com/frequent-items

Tong Yang received the Ph.D. degree in computer
science from Tsinghua University in 2013. He vis-
ited the Institute of Computing Technology, Chinese
Academy of Sciences (CAS). He is currently a
Research Assistant Professor with Computer Science
Department, Peking University. He published papers
in SIGCOMM, SIGKDD, SIGMOD, SIGCOMM
CCR, VLDB, ATC, ToN, ICDE, INFOCOM, and so
on. His research interests include network measure-
ments, sketches, IP lookups, bloom filters, sketches,
and KV stores.

IEEE/ACM TRANSACTIONS ON NETWORKING

Haowei Zhang is currently pursuing the degree
with Peking University, advised by T. Yang. His
research interests include network measurement and
data stream processing systems. He has some pub-
lications in the areas of networking and data stream
processing.

Jinyang Li is currently pursuing the degree with
Peking University, advised by T. Yang. Her research
interests include network measurements, sketches,
bloom filters, data stream processing, and hash
tables.

Junzhi Gong is currently pursuing the degree with
Peking University, advised by T. Yang. He has some
publications in the areas of networking and data
stream processing. His research interests include
network measurement and data stream processing
systems.

Steve Uhlig received the Ph.D. degree in applied
sciences from the University of Louvain, Belgium,
in 2004. From 2004 to 2006, he was a Post-
Doctoral Fellow with the Belgian National Fund
for Scientific Research (F.N.R.S.). From 2004 to
2006, he was a Visiting Scientist with Intel Research
Cambridge, U.K., and the Applied Mathematics
Department, The University of Adelaide, Australia.
From 2006 to 2008, he was with the Delft Uni-
] versity of Technology, The Netherlands. He was a
il ! Senior Research Scientist with Technische Univer-
sitdt Berlin/Deutsche Telekom Laboratories, Berlin, Germany. Since Janu-
ary 2012, he has been a Professor of networks and the Head of the Networks
Research Group, Queen Mary University of London. From 2012 to 2016,
he was a Guest Professor with the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China. His thesis won the annual
IBM Belgium/F.N.R.S. Computer Science Prize in 2005.

Shigang Chen received the Ph.D. degrees in com-
puter science from the University of Illinois in 1999.
He is currently a Professor with the Department
of Computer and Information Science and Engi-
neering, University of Florida. He has authored
over 160 peer-reviewed journal/conference papers.
His research interests include computer networks,
the Internet security, wireless communications, and
distributed computing. He is also an ACM Distin-
guished Member and a Distinguished Lecturer of
the IEEE Communication Society. He has served
in various chair positions or as committee members for numerous confer-
ences. He was an Associate Editor of the IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and
a number of other journals.

Xiaoming Li is currently a Professor of computer
science and technology and the Director of the
Institute of Network Computing and Information
Systems (NCIS), Peking University, China. He led
the effort of developing a Chinese Search Engine
(Tianwang) since 1999 and is the Founder of the
Chinese Web Archive (Web InfoMall). His current
research interests include search engine and web
mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

