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Abstract
1 Finding top-k elephant flows is a critical task in network
traffic measurement, with many applications in conges-
tion control, anomaly detection and traffic engineering.
As the line rates keep increasing in today’s networks, de-
signing accurate and fast algorithms for online identifi-
cation of elephant flows becomes more and more chal-
lenging. The prior algorithms are seriously limited in
achieving accuracy under the constraints of heavy traf-
fic and small on-chip memory in use. We observe that
the basic strategies adopted by these algorithms either
require significant space overhead to measure the sizes
of all flows or incur significant inaccuracy when decid-
ing which flows to keep track of. In this paper, we adopt
a new strategy, called count-with-exponential-decay, to
achieve space-accuracy balance by actively removing
small flows through decaying, while minimizing the im-
pact on large flows, so as to achieve high precision in
finding top-k elephant flows. Moreover, the proposed al-
gorithm called HeavyKeeper incurs small, constant pro-
cessing overhead per packet and thus supports high line
rates. Experimental results show that HeavyKeeper al-
gorithm achieves 99.99% precision with a small memory
size, and reduces the error by around 3 orders of magni-
tude on average compared to the state-of-the-art.

1 Introduction
1.1 Background and Motivation
Finding the largest k flows, also referred to as the top-
k elephant flows, is a fundamental network management
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function, where a flow’s ID is usually defined as a com-
bination of certain packet header fields, such as source IP
address, destination IP address, source port, destination
port, and protocol type, and the size of a flow is defined
as the number of packets of the flow. Elephant flows con-
tribute a large portion of network traffic. Many manage-
ment applications can benefit from a function that can
find them efficiently, such as congestion control by dy-
namically scheduling elephant flows [1], network capac-
ity planning [2], anomaly detection [3], and caching of
forwarding table entries [4]. Such a function also has ap-
plications beyond networking in areas such as data min-
ing [5–7], information retrieval [8], databases [9], and
security [10, 11].

In real network traffic, it is well known that the dis-
tribution of flow sizes (the number of packets in a flow),
is highly skewed [12–21], i.e., the majority are mouse
flows, while the minority are elephant flows. most flows
are small while a few flows are very large. The small
flows are usually called mouse flows, while the large ones
are called elephant flows.

Finding the top-k elephant flows (or top-k flows for
short) in high-speed networks is a challenging task. [22]
Extremely high line rates of modern networks make it
practically impossible to accurately track the informa-
tion of all flows. Consequently, approximate methods
have been proposed in the literature and gained wide ac-
ceptance [14, 23–27]. In order to keep up with the line
rates, these algorithms are expected to use on-chip mem-
ory such as SRAM whose latency is around 1ns [28,29],
in contrast to a latency of around 50ns when off-chip
DRAM is used [29]. However, on-chip memory is
small. Adding to the challenge, it is highly desirable to
keep per-packet processing overhead small and constant,
which helps pipelining.

Traditional solutions to finding the top-k flows fol-
low two basic strategies: count-all and admit-all-count-
some. The count-all strategy relies on a sketch (e.g., CM
sketch [14]) to measure the sizes of all flows, while us-



ing a min-heap to keep track of the top-k flows. For each
incoming packet, it records the packet in the sketch and
retrieves from the sketch an estimate n̂i for the size of the
flow fi that the packet belongs to. If n̂i is larger than
the smallest flow size in the min-heap, it replaces the
smallest flow in the heap by flow fi. As a large sketch is
needed to count all flows, these solutions are not memory
efficient.

The admit-all-count-some strategy is adopted by Fre-
quent [30], Lossy Counting [26], Space-Saving [24] and
CSS [23]. These algorithms are similar to each other. To
save memory, Space-Saving only maintains a data struc-
ture called Stream-Summary to counts only some flows
(m flows). Each new flow will be inserted into the sum-
mary, replacing the smallest existing flow. The initial
size of the new flow is set as n̂min + 1, where n̂min is the
size of the smallest flow in the summary. By keeping
m flows in the summary, the algorithm will report the
largest k flows among them, where m > k. It assumes
every new incoming flow is an elephant, and expels the
smallest one in the summary to make room for the new
one. But most flows are mouse flows. Such an assump-
tion causes significant error, especially under tight mem-
ory (for a limited value of m).

1.2 Our Proposed Solution
In this paper, we propose a new algorithm, Heavy-
Keeper, based on a different strategy, called count-with-
exponential-decay, which keeps all elephant flows while
drastically reducing space wasted on mouse flows. Un-
like count-all, our strategy only keeps track of a small
number of flows. Unlike admit-all-count-some, we do
not automatically admit new flows into our data structure
and the vast majority of mouse flows will be by-passed.
For a small number of mouse flows that do enter our data
structure, they will decay away to make room for true
elephants. The decay is not uniform for the flows in our
data structure. The design of exponential decay is biased
against small flows, and it has a smaller impact on larger
flows. This design works extremely well with real traffic
traces under small memory where the previous strategies
will fail.
Main experimental results: As shown in Table 1, when
compared with Space-Saving, Lossy counting, CSS, and
CM sketch, HeavyKeeper achieves 99.99% percent pre-
cision, and much smaller error than all of them.
Contributions: This paper makes the following contri-
butions.

1. We propose a new data structure, named Heavy-
Keeper, which achieves high precision for finding
top-k flows, and achieves constant and fast speed as
well as high memory efficiency.

2. We develop a mathematical analysis for Heavy-
Keeper, to theoretically prove its high precision.

Table 1: Main experimental results.
Precision is defined as the ratio between the number of
correctly reported elephant flows and the total number

of reported flows.

Algorithm Top-k
precision

Avg. relative error
of flow sizes

Space-Saving [24] 0.27 172.7222
Lossy counting [26] 0.39 54.8440

CSS [23] 0.49 18.9356
CM sketch [14] 0.93 0.2951
HeavyKeeper 0.9999 0.0011

3. We conduct extensive experiments on real network
streams and synthetic datasets, and results show that
HeavyKeeper reduces the error by around 3 orders
of magnitude on average compared to the state-of-
the-art.

4. We integrate HeavyKeeper and other related algo-
rithms with Open vSwitch (OVS) platform. We also
conduct experiments on throughput on OVS plat-
form to show the impact of the algorithms. The
results show that HeavyKeeper has little impact on
the throughput, while other algorithms decrease the
throughput significantly. We release the source code
of HeavyKeeper and related algorithms at GitHub
[31].

2 Preliminaries
2.1 Problem Statement
Simply speaking, finding top-k flows refers to finding the
largest k flows. Let P = P1,P2, · · · ,PN be a network
stream with N packets. Each packet Pl (1 6 l 6 N) be-
longs to a flow fi, where fi ∈F = { f1, f2, · · · , fM} and
F is the set of flows. Let ni be the real flow size of
flow fi in P . We order all flows ( f1, f2, · · · , fM) so that
n1 > n2 > · · ·> nM .

Given an integer k and a network stream P , the output
of top-k is a list of k flows from F with the largest flow
sizes, i.e., f1, f2, · · · , fk.

2.2 Prior Art and Limitations
The count-all strategy: As mentioned above, the count-
all strategy uses sketches (such as the CM sketch [14]
or the Count sketch [25]) to record the sizes of all flows,
and uses a min-heap to keep track of the top-k flows, in-
cluding the flow IDs and their flow sizes. Take the CM
sketch as an example. It records packets in a CM sketch,
consisting of a pool of counters. For each arrival packet,
it hashes the packet’s flow ID f to d counters and in-
creases these d counters by one. The smallest value of
the d counters is used as the estimated size of the flow.



If this estimated flow size is larger than the smallest flow
size in the min-heap, we replace the smallest flow in the
heap by flow f .

The problem is that all flows are pseudo-randomly
mapped to the same pool of counters through hashing.
Each counter may be shared by multiple flows, and thus
record the sum of sizes of all these flows. Consequently,
the CM sketch has an over-estimation problem, which
will become severe in a tight memory space where the
number of counters is far smaller than the number of
flows, resulting in aggressive sharing. In such a case,
a small flow may be treated as an elephant flow if all its
d counters are shared with real elephant flows.
The admit-all-count-some strategy: As mentioned
above, quite a few algorithms use the admit-all-count-
some strategy, including Frequent [30], Lossy counting
[26], and Space-Saving [24], with Space-Saving being
the most widely used among them. Take Space-Saving as
an example. Recognizing that it is infeasible to count the
sizes of all flows, Space-Saving counts only the sizes of
some flows in a data structure called Stream-Summary,
which incurs O(1) overhead to search or update a flow,
or find the smallest flow. The selection of which flows
to store in the summary is rather simple: For each ar-
rival packet, if its flow ID is not in the summary, the
flow will be admitted into the summary, replacing the
smallest existing flow. The new flow’s initial size is set
to n̂min + 1, where n̂min is the smallest flow size in the
summary before replacement. Therefore, later incom-
ing mouse flows will be largely over-estimated, which is
drastically inaccurate. In the end, the largest k flows in
the summary will be reported. A recent work CSS [23]
is proposed based on Space-Saving. It inherits the above
strategy of Space-Saving, and redesigns the data struc-
ture of Stream-Summary by using TinyTable [32] to re-
duce memory usage.

The strategy of admit-all-count-some is to admit all
new flows while expelling the smallest existing ones
from the summary. To give new flows a chance to
stay in the summary, their initial flow sizes are set as
n̂min +1. Such a strategy drastically over-estimates sizes
of flows, and we show an example here. Assume n̂min =
10,000. Given an new incoming flow, its size will be
over-estimated as 10,001. Early arrived elephant flows
with flow sizes less than 10,008 will be expelled. There-
fore, massive mouse flows will cause significant over-
estimation errors.

3 The Design of HeavyKeeper

In this section, we present the data structure and algo-
rithm of our HeavyKeeper, and show how to find the top-
k flows accurately and efficiently.

3.1 Rationale
We aim to use a small hash table to store all elephant
flows. As there are a great number of flows, each bucket
of the hash table will be mapped by many flows, and we
aim to store only the largest flow with its size, which can-
not be achieved with no error when using small mem-
ory. To address this problem, we propose a probabilis-
tic method called exponential-weakening decay. Specif-
ically, when the incoming flow is different from the flow
in the hashed bucket, we decay the flow size with a decay
probability, which is exponentially smaller as the flow
size grows larger. If the flow size is decayed to 0, it re-
places the original flow with the new flow. In this way,
mouse flows can easily be decayed to 0, while elephant
flows can easily keep stable in the bucket. There are two
shortcomings: 1) With a small probability we elect the
wrong flow as the largest flow; 2) The stored flow size
is a little smaller than the true frequency because of the
decay operations. To address these problems, we use
multiple hash tables with different hash functions. An
elephant flow could be stored in multiple hash tables, we
choose the recorded largest size, minimizing the error of
flow sizes.

3.2 The HeavyKeeper Structure

… …

𝑃5

ℎ1(𝑓3)

ℎ2(𝑓3)

ℎ𝑑(𝑓3)

𝑃5 belongs to flow 𝑓3

𝑑 arrays

FP: fingerprint field C: counter field

𝑤 buckets

𝐹4 3 …𝐹1 21 𝐹2 14 𝐹5 1

𝐹1 22 …𝐹2 14 𝐹5 1 𝐹4 2

𝐹3 7 …𝐹4 3 𝐹1 22 𝐹5 1

Figure 1: The data structure of HeavyKeeper.

As shown in Figure 1, HeavyKeeper is comprised of d
arrays, and each array is comprised of w buckets. Each
bucket consists of two fields: a fingerprint field and a
counter field.2 For convenience, we use A j[t] to rep-
resent the tth bucket in the jth array, and use A j[t].FP
and A j[t].C to represent its fingerprint field and counter
field, respectively. Arrays A1...Ad are associated with
hash functions h1(.)...hd(.), respectively. These d hash
functions h1(.)...hd(.) need to be pairwise independent.
Insertion: Initially, all fingerprint fields are null, and all
counter fields are 0. For each incoming packet Pl belong-

2 The fingerprint of a flow is a hash value generated by a certain
function (for example, if we use h f (.) as the fingerprint hash function,
the fingerprint of flow f j is h f ( f j)). Although there can be hash colli-
sions among flows, the probability is quite small. For example, if we
set the fingerprint size to 16 bits, and there are 10000 buckets in the
array, the probability of fingerprint collisions is 1.52∗10−3.



ing to flow fi, HeavyKeeper computes the d hash func-
tions, and maps fi to d buckets A j[h j( fi)] (1 6 j 6 d)
(one bucket in each array), which we call d mapped
buckets for convenience. As shown in Figure 2, for each
mapped bucket, HeavyKeeper applies different strategies
for the following three cases:

C-1

𝑓3

ℎ𝑖(𝑓3)

Case 1:    if C=0

C=C+1=1

Case 2:    if C>0 && FP=F3

C=C+1

FP Case 3:    if C>0 && FP ≠ F3

C=C-1 with  prob.=b-C

C+1F3

1F3

CFP

jk

Figure 2: The main insertion cases of HeavyKeeper.
Note: 1) F3 is the fingerprint of flow f3. 2) b > 1 and
b ≈ 1 (e.g., b = 1.08). 3) In Case 3, when C is decayed
to 0, the fingerprint field will be replaced by F3, and then
counter C is set to 1.

Case 1: When A j[h j( fi)].C = 0. It means that no flow
has been mapped to this bucket, then HeavyKeeper sets
A j[h j( fi)].FP = Fi and A j[h j( fi)].C = 1, where Fi repre-
sents the fingerprint of fi.
Case 2: When A j[h j( fi)].C > 0 and A j[h j( fi)].FP = Fi.
It means A j[h j( fi)].C is probably the estimated size of fi.
In this case, HeavyKeeper increments A j[h j( fi)].C by 1.
Case 3: When A j[h j( fi)].C > 0 and A j[h j( fi)].FP 6= Fi.
It means that A j[h j( fi)].C is not the estimated size of fi.
In here, HeavyKeeper applies the exponential-weakening
decay strategy to this bucket: it decays A j[h j( fi)].C by 1
with a probability Pdecay. After decay, if A j[h j( fi)].C =
0, HeavyKeeper replaces A j[h j( fi)].FP with Fi, and sets
A j[h j( fi)].C to 1. Therefore, as long as flows are mapped
to a bucket, its counter field will never be 0.
Query: To query the size of a flow fi, HeavyKeeper first
computes the d hash functions to get d buckets A j[h j( fi)]
(1 6 j 6 d). Among the d mapped buckets, it chooses
those buckets whose fingerprint fields are equal to Fi. It
then reports the maximum counter field of those buckets,
i.e., max16 j6d{A j[h j( fi)].C} where A j[h j( fi)].FP = Fi.

For convenience, for those d mapped buckets of fi,
if A j[h j( fi)].FP = Fi, we say that fi is held at bucket
A j[h j( fi)]. Ignoring the limited impact of fingerprint col-
lisions, we prove that the reported size for each flow is
equal to or smaller than the real flow size in Section 4.1.
If a flow is held at no mapped bucket, it reports that it
is a mouse flow. If a flow is held at multiple buckets,
HeavyKeeper reports the maximum counter field.
Decay probability: The decay probability Pdecay in the
exponential-weakening decay strategy is an important
parameter. Here, we use the following exponential func-
tion to calculate the probability:

Pdecay = b−C (b > 1)

where C is the value in the current counter field, and
where b (b > 1 and b≈ 1, e.g., b = 1.08) is a pre-defined
exponential base number. Therefore, the larger size a
flow has, the harder its size is decayed. For elephant
flows, it is held at several buckets, and the corresponding
counter fields are incremented regularly, while decayed
with a very small probability. Therefore, the error rate
for estimated sizes of elephant flows is very small.
Note: Our data structure of d arrays may show some sim-
ilarity with that of CM [14]. But similarity stops there.
CM records the sizes of all flows; we record the sizes of
a small number of flows. CM does not store flow IDs;
we do. CM stores information of each flow in d coun-
ters; we keep each flow mostly in one bucket, while d-
hashing helps find an empty bucket. CM does not have
to worry about the issue of kicking out existing flows to
make room for new ones, which is what our exponential
delay does.
Example: As shown in Figure 1, given an incoming
packet P5 belonging to flow f3, we compute the d hash
functions to obtain one bucket in each array. In the
mapped bucket of the first array, the fingerprint field is
not equal to F3 and the counter field is 21, thus we de-
cay the counter field from 21 to 20 with a probability
of 1.08−21 (assume b = 1.08). In the second mapped
bucket, the fingerprint field is not F3 yet, and with a prob-
ability of 1.08−1, we decay the counter field from 1 to 0.
If the counter field is decayed to 0, we set the finger-
print field to F3, and set the counter field to 1. In the last
mapped bucket, the fingerprint field is F3, we increment
the counter field from 7 to 8.
Analysis: HeavyKeeper uses fingerprint to identify and
keep elephant flows. If a mouse flow with a small flow
size is held at a bucket, it will be replaced by other flows
mapped to this bucket soon, because each flow mapped
to this bucket with a different fingerprint will decay the
counter field with a high probability (b−C → 1 when C
is small). If an elephant flow is held at a bucket, the
corresponding counter field can easily be incremented
to a large value since elephant flows have many incom-
ing packets. Moreover, the decay probability becomes
very small (b−C → 0 when C is large) as the counter
field increases to a large value. Therefore, mouse flows
can hardly be held in HeavyKeeper for a long time, and
thus have a large probability to be passers-by of Heavy-
Keeper. However, elephant flows can keep stable in
HeavyKeeper, and the estimated sizes of elephant flows
are accurate.

3.3 Basic Version for Finding the Top-k
Elephant Flows

To find top-k elephant flows, our basic version just uses
a HeavyKeeper and a min-heap. The min-heap is used to
store the IDs and sizes of top-k flows. For each incom-



ing packet Pl belonging to flow fi, we first insert it into
HeavyKeeper. Suppose that HeavyKeeper reports the
size of fi as n̂i. If fi is already in the min-heap, we update
its estimated flow size with max(n̂i,min heap[ fi]), where
min heap[ fi] is the recorded size of fi in min-heap. Oth-
erwise, if n̂i is larger than the smallest flow size which is
in the root node of the min-heap, we expel the root node
from the min-heap, and insert fi with n̂i into the min-
heap. To query top-k flows, we simply report the k flows
in the min-heap with their estimated flow sizes.

3.4 Optimizations
In this section, we propose further optimization methods
to avoid accidental errors and improve speed.
Optimization I: Fingerprint Collisions Detection.
Problems: Assume that there is a bucket in Heavy-
Keeper where flow fi is held, and a mouse flow f j
mapped to the same bucket has the same fingerprint as
fi, i.e., Fi = F j due to hash collisions. Then, the mouse
flow f j is also held at this bucket, and its estimated size
is drastically over-estimated. In the worst case, if flow f j
has a fingerprint collision in all d arrays, the mouse flow
f j will probably be inserted into the min-heap. It can
hardly be expelled due to its drastically over-estimated
size. To address this problem, we propose a solution
based on the following Theorem.

Theorem 1. When there is no fingerprint collision, after
a flow fi is inserted into HeavyKeeper, if its estimated
size n̂i is larger than nmin, then we must have

n̂i = nmin +1

The proof of this Theorem is not hard to derive and we
skip it due to space limitations.
Solution: Based on Theorem 1, if fi is not in the min-
heap but n̂i > nmin+1, then fi is a mouse flow whose size
is drastically over-estimated due to fingerprint collision.
Therefore, we should not insert fi into the min-heap in
this case.
Optimization II: Selective Increment.
Problem: If a flow fi is not in the min-heap, then the
estimated flow size should be no larger than nmin. How-
ever, due to fingerprint collisions, there could be some
mapped buckets of flow fi where the fingerprint field is
Fi and the counter field is larger than nmin. In this case,
flow fi is not the flow that is held at this bucket, and thus
increasing the corresponding counter field can only incur
extra error.
Solution: In this case, instead of incrementing or decay-
ing the corresponding counter field, we make no change.
Optimization III: Speed Acceleration.
Problem: Our basic version of using the min-heap is the
most memory efficient solution. However, the processing

speed is limited, because the time complexity for updat-
ing and searching a flow in the min-heap is O(log(k))
and O(k) respectively, which are time-consuming.
Solution: The min-heap is actually used to record the
flow IDs of elephant flows and their estimated flow sizes.
In this optimization version, instead of using the min-
heap, we use a single array to record the flow IDs.
Specifically, we define a flow size threshold η (e.g.,
η = 1000). For each incoming flow, if its estimated
size is equal to η , we record the flow ID in the ar-
ray. As we record the fingerprints of elephant flows, the
flow size will increases at most by 1 for each incoming
packet when assuming there is no fingerprint collision.
Therefore, any flow whose estimated size is larger than
or equal to η is recorded in this array once in most cases.
Further, this optimization of using an array is only suit-
able for sketches that record flow IDs or fingerprints.

Algorithm 1: Insertion process for finding top-k
flows.

Input: A packet Pl belonging to flow fi
1 f lag← f alse;
2 if fi ∈ min heap then
3 f lag← true;

4 maxv← 0;
5 for j← 1 to d do
6 C← A j[h j( fi)].C;
7 if A j[h j( fi)].FP = Fi then
8 if f lag = true or C < min heap.nmin then
9 A j[h j( fi)].C++;

10 maxv← max(maxv,A j[h j( fi)].C);
11 else
12 if rand(1)< b−C then
13 A j[h j( fi)].C−−;
14 if A j[h j( fi)].C = 0 then
15 A j[h j( fi)].FP← Fi;
16 A j[h j( fi)].C← 1;
17 maxv← max(maxv,1);

18 if f lag = true then
19 min heap[ fi]← max(maxv,min heap[ fi]);
20 else
21 if min heap has empty buckets or

maxv−nmin = 1 then
22 min heap.insert( fi);

3.5 Final Version
Based on the basic version, we propose the common fi-
nal version using the first two optimization methods, and
propose the accelerated final version using the third opti-
mization methods. The insertion and query processes of



the common final version of our algorithm are as follows
(see pseudo-code in Algorithm 1).
Insertion: All counters and fingerprints in Heavy-
Keeper and the min-heap are initialized to 0. For each
incoming packet Pl belonging to flow fi, these are the
following three steps for each insertion:
Step 1: Check whether flow fi is already monitored by
the min-heap. For convenience, we use a boolean vari-
able f lag to represent the result.
Step 2: Insert fi into HeavyKeeper. According to Op-
timization II, for each mapped bucket, if the fingerprint
field is equal to Fi, increment the counter field only when
f lag = true or C < nmin, where C is the original value in
the counter field.
Step 3: Get an estimated size n̂i of flow fi from Heavy-
Keeper. According to Optimization III, if f lag = true,
we update the estimated size of flow fi in the min-heap
with n̂i. If f lag = f alse, insert flow fi into the min-heap
with n̂i in only two cases: 1) the number of flows that are
in the min-heap is less than k; 2) n̂i = nmin +1.
Query top-k flows: It reports the k flows recorded in the
min-heap and their estimated flow sizes.
Analysis: Since HeavyKeeper achieves very small error
rate on the flow size estimation of elephant flows, it can
significantly reduce the error in finding top-k elephant
flows. Furthermore, the first two optimizations reduce
the impact of fingerprint collisions, and enhance the pre-
cision of finding top-k elephant flows and their flow size
estimation. The third optimization method has a con-
stant processing time for insertions: 1) For most incom-
ing packets, they are only inserted into HeavyKeeper,
which requires d (e.g., d = 2) memory accesses. 2) For
some packets belonging to elephant flows, they are in-
serted into both HeavyKeeper and the array. It requires
d +1 memory accesses in the worst case. Therefore, the
time complexity of insertion process is O(d). Therefore,
the processing speed of the accelerated final version is
fast on average and constant in the worst case.

3.6 Other uses of HeavyKeeper
Besides finding top-k flows in a network stream, Heavy-
Keeper can also perform other tasks in network traf-
fic measurement, such as heavy hitter detection and
change detection. Due to space limitations, here we
only briefly introduce how to perform these tasks using
HeavyKeeper.
Heavy hitter detection: Given a threshold θ , a heavy
hitter [13] is a flow whose size ni > θN, where N is the
number of packets in total. The heavy hitter detection
algorithm is very similar to that of finding top-k flows.
The only difference is that when querying heavy hitters,
it reports those flows whose estimated size is larger than
θN in min-heap.

Change detection: The network stream is divided into
fixed-size time bins. Given a flow, if the difference of
its flow sizes in two adjacent time bins is larger than
a predefined threshold, then the flow is called a heavy
change [13, 33]. We use the very flow ID as the finger-
print of each flow. For two adjacent time bins, we in-
sert their packets into two different HeavyKeepers. By
comparing buckets in the corresponding location in the
two HeavyKeepers, we obtain the estimated difference
of sizes of the flows, and report the heavy changes by
checking if the difference is larger than the threshold.

4 Mathematical Analysis

In this section, we first prove that there is no over-
estimation in HeavyKeeper, and then derive the formula
of its error bounds.

4.1 Proof of No Over-estimation Error of
HeavyKeeper

Theorem 2. Let ni(t) be the real size of flow fi at time t,
and let A j[h j( fi)](t).C be the counter field of the mapped
bucket of flow fi in the jth array at time t. If there is no
fingerprint collision, then

∀ j, t, A j[h j( fi)](t).C 6 ni(t) (1)

Proof. When t = 0, no packet maps into this bucket, so
ni(0) = 0 and A j[h j( fi)](t).C = 0. Therefore, the theo-
rem holds at time 0. Let’s now prove by induction that
the theorem holds at any time.

When t = 0, the theorem holds.
If the theorem holds when t = v, let’s prove that the

theorem also holds when t = v+1. There are three cases
when t = v+1:
Case 1: The new incoming packet is not mapped
to bucket A j[h j( fi)]. Then ni(v + 1) = ni(v) and
A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C. Therefore,
A j[h j( fi)](v+1).C 6 ni(v+1).
Case 2: The new incoming packet belongs to flow fi.
Then ni(v + 1) = ni(v) + 1 and A j[h j( fi)](v + 1).C =
A j[h j( fi)](v).C + 1. Therefore, A j[h j( fi)](v + 1).C 6
ni(v+1).
Case 3: The new incoming packet is mapped to
bucket A j[h j( fi)] but does not belong to flow fi. Then
A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C or A j[h j( fi)](v +
1).C = A j[h j( fi)](v).C−1, and ni(v+1) = ni(v). There-
fore, A j[h j( fi)](v+1).C 6 ni(v+1).

Therefore, for any time t,

A j[h j( fi)](t).C 6 ni(t)



4.2 Error Bound of HeavyKeeper
Definition 4.1. Given a small positive number ε ,
Pr{ni− n̂i > dεNe} (ni > n̂i) represents the probability
that the error of the estimated flow size ni− n̂i is larger
than εN. If Pr{ni− n̂i > dεNe} 6 δ , the algorithm is
said to achieve (ε ,δ )-counting.

(ε ,δ )-counting is a metric to evaluate the error rate of
the algorithm. Here HeavyKeeper is proved to achieve
(ε ,δ )-counting, showing that HeavyKeeper achieves a
low error rate in estimating the sizes of top-k flows.

Theorem 3. Let’s assume that there is no fingerprint col-
lision and the fingerprint of an elephant flow is held at its
mapped bucket all the time. Let’s focus on one single ar-
ray of HeavyKeeper. Given a small positive number ε ,
and an elephant flow fi whose size is ni is held at that
bucket,

Pr{ni− n̂i > dεNe}6 1
εwni(b−1)

(2)

where w is the width of each array, N the total number of
packets, and b the exponential base.

Proof. Let’s focus on the jth array. Flow fi is correctly
reported, so at the end, the fingerprint of flow fi is held in
the h j( fi)

th bucket of the jth array. Let Ii, j,i′ be a binary
random variable, defined as

Ii, j,i′ =

{
0 ( fi = fi′)∨ (h j( fi) 6= h j( fi′))

1 ( fi 6= fi′)∧ (h j( fi) = h j( fi′))
(3)

Ii, j,i′ = 1 i f f different flows fi and fi′ are held at the same
bucket in the jth array. We define random variable Xi, j as:

Xi, j =
M

∑
v=1

Ii, j,i′ni′ (4)

Xi, j represents the sum of the sizes of the flows held at
the same bucket as flow fi, except for the size of flow fi
itself. Assume that for each incoming packet, if it be-
longs to flow fi, the counter field is incremented by 1; if
not, the counter field is decayed with a certain probabil-
ity. We have

ni−Xi, j 6 A j[h j( fi)].C 6 ni (5)

Specifically, if all packets that do not belong to flow
fi decay the counter field, then A j[h j( fi)].C = ni−Xi, j.
If those packets do not decay the counter field, then
A j[h j( fi)].C = ni. Let’s define another random variable
Pi, j,l . Among the Xi, j packets defined above, Pi, j,l is de-
fined as the probability that the lth packet decays the
counter field. Therefore,

A j[h j( fi)].C = ni−
Xi, j

∑
l=1

Pi, j,l (6)

Given a small positive number ε , the following for-
mula based on the Markov inequality holds

Pr{A j[h j( fi)].C 6 ni− εN}

= Pr{ni−
Xi, j

∑
l=1

Pi, j,l 6 ni− εN}

= Pr{
Xi, j

∑
l=1

Pi, j,l > εN}6 E(∑
Xi, j
l=1 Pi, j,l)

εN

(7)

Now let’s focus on E(∑
Xi, j
l=1 Pi, j,l). Assume that all pack-

ets are uniformly distributed, we have the following for-
mula:

Pr{Pi, j,l =
1

bC }=
1

A j[h j( fi)].C
=

1

ni−E(∑
Xi, j
l=1 Pi, j,l)

(8)
where 1 6 C 6 ni − E(∑

Xi, j
l=1 Pi, j,l). Let β be ni −

E(∑
Xi, j
l=1 Pi, j,l) for convenience. As a result,

E(
Xi, j

∑
l=1

Pi, j,l) =
E(Xi, j)

∑
l=1

E(Pi, j,l)

= E(Xi, j)
β

∑
C=1

1
bC

1
β

=
E(Xi, j)

β
·

β

∑
C=1

1
bC

=
E(Xi, j)

β
·

1
b (1− ( 1

b )
β )

1− 1
b

6
E(Xi, j)

nib
· 1− ( 1

b )
ni

1− 1
b

=
E(Xi, j)(1− ( 1

b )
ni)

ni(b−1)
(9)

Furthermore, for E(Xi, j), based on Equation 4,

E(Xi, j) = E(
M

∑
v=1

Ii, j,i′ni′) 6
M

∑
i′=1

ni′E(Ii, j,v) =
N
w

(10)
Therefore, based on Equation 9,

E(
Xi, j

∑
l=1

Pi, j,l)6
N(1− ( 1

b )
ni)

wni(b−1)
6

N
wni(b−1)

(11)

then

Pr{A j[h j( fi)].C 6 ni− εN}6 E(∑
Xi, j
l=1 Pi, j,l)

εN

6
N

εNwni(b−1)
=

1
εwni(b−1)

Note that for an elephant flow fi, ni is very large, and
( 1

b )
ni ≈ 0. The estimated size of fi is the maximum value

of A j[h j( fi)].C, so we have

Pr{ni− n̂i > dεNe}6 Pr{n̂i 6 ni− εN}6 1
εwni(b−1)
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Figure 3: Theoretical
bound and empirical
probability of Heavy-
Keeper (ε = 2−16).
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Figure 4: Theoretical
bound and empirical
probability of Heavy-
Keeper (ε = 2−17).

To validate the correctness of this error bound, we
conduct experiments on the dataset mentioned in Sec-
tion 5.1. Here, we let N = 107, ε = 2−16 and 2−17,
and vary memory size from 20KB to 100KB. As shown
in Figure 3 and Figure 4, the empirical probability of
HeavyKeeper is always lower than the theoretical prob-
ability bound, confirming the correctness of Theorem 3.
Moreover, for the CSS algorithm, achieving such a (ε ,δ )-
counting requires at least O(ε−1) buckets (i.e., m =
O(ε−1)), which requires a memory size much larger than
100KB. Therefore, HeavyKeeper is much more memory
efficient than CSS.

5 Experimental Results
5.1 Experiment Setup
Platform: Our experiments are run on a server with
dual 6-core CPUs (24 threads, Intel Xeon CPU E5-2620
@2 GHz) and 62 GB total system memory. Each core
has two L1 caches with 32KB memory (one instruction
cache and one data cache) and one 256KB L2 cache. All
cores share one 15MB L3 cache.
Dataset:
1) Campus dataset: The first dataset is comprised of IP
packets captured from the network of our campus. We
rely on the usual definition of a flow, through its 5-tuple,
i.e., source IP address, destination IP address, source
port, destination port, and protocol type. There are 10M
packets in total, belonging to 1M flows. For convenience,
we use campus dataset to denote this dataset.
2) CAIDA dataset: The second dataset is a CAIDA
Anonymized Internet Trace from 2016 [34], made of
anonymized IP packets. Each flow in this dataset is iden-
tified by the source and destination IP address. We use
the first 10M packets, belonging to about 4.2M flows.
3) Synthetic datasets: We generate 10 different syn-
thetic datasets according to a Zipf [35] distribution with
different skewness (from 0.3 to 3.0). Each dataset is
comprised of 32M packets, belonging to 1 ∼ 10M flows
depending on the skewness. Each packet is 4 bytes long.

The code of the dataset generator is the one from Web
Polygraph [36].
Implementation: The implementation of Heavy-
Keeper is done in C++. We also implemented in C++ the
other related algorithms including Space-Saving (SS),
Lossy counting (LC), and CM sketch. The source code
of CSS was provided by its author [23], and is written
in Java. It is much slower than Space-Saving written in
C++. Therefore, we do not include CSS in our speed ex-
periments. For Space-Saving, Lossy counting, and CSS,
the number of buckets m is determined by the memory
size, which is usually much larger than k. When querying
top-k flows, they report the largest k flows of them. For
CM sketch, the size of the heap is k, the number of ar-
rays is 3, and the width of each array is determined by the
memory size. In our algorithm, the number of buckets m
in Stream-Summary is equal to k, and HeavyKeeper oc-
cupies the rest memory size. Here we set d = 2, and w
depends on the memory size. Both the fingerprint field
and the counter field are 16-bit long. For experiments
on throughput, we ignore operations on the min-heap for
the CM sketch, because we can only record flows whose
estimated size is larger than a pre-defined threshold.

5.2 Metrics
Precision: Precision is defined as C

k . Only C flows be-
long to the real top-k flows.
Average Relative Error (ARE): ARE is defined as

1
|Ψ | ∑ fi∈Ψ

|n̂i−ni|
ni

, where Ψ is estimated set of top-k flows,
n̂i is the estimated size of flow fi, and ni is the real size
of flow fi. ARE evaluates the error rate of the estimated
flow size reported by the algorithm.
Average Absolute Error (AAE): AAE is defined as

1
|Ψ | ∑ fi∈Ψ |n̂i−ni|, similarly to ARE.
Throughput: We perform insertions of all packets,
record the total time used, and calculate the throughput.
The throughput is defined as N

T , where N is the total num-
ber of packets, and T is the total measured time. We use
Million of insertions per second (Mps) to measure the
throughput.

5.3 Experiments on Precision
To achieve a head-to-head comparison, we use the same
memory size for each algorithm. We perform the experi-
ments for varying memory size and k on the campus and
CAIDA datasets, and varying skewness on the synthetic
datasets. For experiments of varying memory size, we set
k = 100. For experiments of varying k, we set the mem-
ory size to 100KB. For experiments of varying skewness,
we set the memory size to 100KB and set k = 1000.
Precision vs. memory size: As shown in Figure 5, for
the campus dataset, when memory size is 10KB, the pre-
cision of Space-Saving, Lossy counting, CSS, and CM
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Figure 5: Precision vs. memory size
(Campus).
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Figure 6: Precision vs. memory size
(CAIDA).
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Figure 7: Precision vs. k (Campus).
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Figure 8: Precision vs. k (CAIDA).
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Figure 9: Precision vs. skewness
(Synthetic).
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Figure 10: ARE vs. memory size
(Campus).
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Figure 11: ARE vs. memory size
(CAIDA).
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Figure 12: ARE vs. k (Campus).
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Figure 13: ARE vs. k (CAIDA).
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Figure 14: ARE vs. skewness (Syn-
thetic).
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Figure 15: AAE vs. memory size
(Campus).
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Figure 16: AAE vs. memory size
(CAIDA).
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Figure 17: AAE vs. k (Campus).
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Figure 18: AAE vs. k (CAIDA).
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sketch is respectively 10%, 11%, 19%, and 41%, while
the one of HeavyKeeper is 82%. Furthermore, we find
that the precision of HeavyKeeper reaches 100% for a
memory size of 30KB, while the corresponding preci-
sion of Space-Saving, Lossy counting, CSS, and CM
sketch is 27%, 39%, 49%, and 93%. This implies that
HeavyKeeper has indeed much better precision than the
other three algorithms. We find that Lossy counting is
more accurate than Space-Saving. However, as will be
mentioned later, Lossy counting is much slower than
the other algorithms. For the CAIDA dataset (see Fig-
ure 6), we find that the precision of HeavyKeeper reaches
99.99% when memory size is larger than 20KB, while
for Space-Saving, Lossy counting, CSS, and CM sketch,
precision is respectively 18%, 33%, 34%, and 89% when
memory size is 50KB.
Precision vs. k: As shown in Figure 7, for the cam-
pus dataset, as k becomes larger, the precision of Heavy-
Keeper stays high, while it degrades for other algorithms.
For the campus dataset, as k becomes larger, the preci-
sion of HeavyKeeper is always higher than 95.9%, while
that of Space-Saving, Lossy counting, CSS, and CM
sketch reaches 32.7%, 44.1%, 50.1%, and 77.9% respec-
tively when k = 1000. This happens for two main rea-
sons: 1) larger k requires larger memory usage to store
information about more flows; 2) as k increases, the dif-
ference of flow sizes among flows becomes smaller, so
it is easy to mistake other flows for top-k flows. For
the CAIDA dataset (Figure 8), we find that the preci-
sion of HeavyKeeper is always above 94%, while for
Space-Saving, Lossy counting, CSS, and CM sketch,
it is 26.6%, 37.1%, 44%, and 70% respectively when
k = 1000.
Precision vs. skewness: As shown in Figure 9, the
precision of HeavyKeeper reaches 99.99%. For all
considered values of skewness, the precision of Heavy-
Keeper does not go below 94.9%, while the highest pre-
cision for Space-Saving, Lossy counting, CSS, and CM
sketch is 46.8%, 41.3%, 74.5%, and 85.7%, respectively.

5.4 Experiments on AAE and ARE
In this section, we focus on the ARE and the AAE of
the estimated frequency of reported top-k flows. We also
conduct experiments with varying memory size, k, and
skewness. The parameter settings are the same as in Sec-
tion 5.3.
ARE vs. memory size: As shown in Figure 10, for the
campus dataset, we find that the ARE of HeavyKeeper is
smaller than 0.01 when memory size is larger than 20KB,
while for Space-Saving, Lossy counting, CSS, and CM
sketch, it is larger than 100. Furthermore, we find that
the ARE of HeavyKeeper is between 100158 and 648291
times smaller than the one of Space-Saving, between
8450 and 78209 times smaller than the one of Lossy

counting, between 945 and 49561 times smaller than the
one of CSS, and between 279 and 226986 times smaller
than the one of CM sketch. For the CAIDA dataset (see
Figure 11), we find that the ARE of HeavyKeeper is be-
tween 21119 and 1190365 times smaller than the one of
Space-Saving, between 2955 and 456275 times smaller
than the one of Lossy counting, between 950 and 154047
times smaller than the one of CSS, and between 238 and
656145 times smaller than the one of CM sketch.
ARE vs. k: As shown in Figure 12, for the campus
dataset, we find that the ARE of HeavyKeeper is be-
tween 25579 and 56791 times smaller than the one of
Space-Saving, between 852 and 9312 times smaller than
the one of Lossy counting, between 142 and 3132 times
smaller than the one of CSS, and between 293 and 20370
times smaller than the of of CM sketch. For the CAIDA
dataset (see Figure 13), we find that the ARE of Heavy-
Keeper is between 4506 and 121912 times smaller than
the one of Space-Saving, between 383 and 23666 times
smaller than the one of Lossy counting, between 137 and
8816 times smaller than the one of CSS, and between 66
and 27290 times smaller than the one of CM sketch.
ARE vs. skewness: As shown in Figure 14, for all
considered values of skewness, we find that the ARE of
HeavyKeeper is between 15566 and 27829 times smaller
than that of Space-Saving, between 11915 and 41575
times smaller than that of Lossy counting, between 2174
and 6099 times smaller than that of CSS, and between
3819 and 10080 times smaller than that of CM sketch.
AAE vs. memory size: As shown in Figure 15, for the
campus dataset, we find that the AAE of HeavyKeeper is
between 433 and 3013 times smaller than that of Space-
Saving, between 267 and 1221 times smaller than that of
Lossy counting, between 200 and 758 times smaller than
that of CSS, and between 155 and 428 times smaller than
that of CM sketch. When memory size is 50KB, the AAE
of HeavyKeeper is only 2.73, confirming that the esti-
mated flow sizes of almost all reported flows are accu-
rate. For the CAIDA dataset (see Figure 16), we find that
the AAE of HeavyKeeper is between 697 and 1810 times
smaller than that of Space-Saving, between 421 and 928
times smaller than that Lossy counting, between 289 and
647 times smaller than the one of CSS, and between 86
and 284 times smaller than that of CM sketch.
AAE vs. k: As shown in Figure 17, for the campus
dataset, we find that the AAE of HeavyKeeper is between
271 and 1382 times smaller than that of Space-Saving,
between 142 and 346 times smaller than that of Lossy
counting, between 93 and 196 times smaller than that of
CSS, and between 74 and 318 times smaller than that of
CM sketch. For CAIDA dataset (see Figure 18), we find
that the AAE of HeavyKeeper is between 206 and 694
times smaller than that of Space-Saving, between 118
and 329 times smaller than that of Lossy counting, be-



tween 73 and 199 times smaller than that of CSS, and be-
tween 67 and 121 times smaller than that of CM sketch.
AAE vs. skewness: From Figure 19, we find that
the AAE of HeavyKeeper is between 137 and 209 times
smaller than that of Space-Saving, between 96 and 355
times smaller than that of Lossy counting, between 28
and 55 times smaller than that of CSS, and between 45
and 73 times smaller than that of CM sketch.
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Figure 20: Throughput vs. memory size.

5.5 Experiments on Throughput
We now turn to the throughput of the algorithms. We
only report results for the campus dataset due to space
limitations. We set k = 100, and vary memory size from
10KB to 50KB. Here we use CAIDA datasets.
Throughput vs. memory size: As shown in Fig-
ure 20, we find that the throughput of HeavyKeeper is
always higher than other algorithms. Indeed, the aver-
age throughput of HeavyKeeper is 15.52Mps, while it is
12.15Mps, 11.34Mps, and 12.72Mps for Space-Saving,
Lossy counting, and CM sketch. These results show that
HeavyKeeper not only is more accurate than previous
work, but also achieves higher throughput as well.

6 Open vSwitch Deployment
In this section, we implement our HeavyKeeper algo-
rithm on a software switch platform: Open vSwitch
(OVS). We first present details of our implementation,
and then present experimental results to show the perfor-
mance of our algorithm running on Open vSwitch.

6.1 OVS Implementation
The OVS implementation of our HeavyKeeper algorithm
consists of three components: 1) the modified OVS dat-
apath, 2) the shared memory buffering flow IDs, and 3)
the user-space program of HeavyKeeper processing flow
IDs. For each incoming packet, it will be first inserted
into the OVS datapath for forwarding. Besides, we mod-
ify the source codes of OVS datapath to parse the flow
ID of the incoming packet, and then insert its flow ID
into the shared memory (the shared memory is created
initially). Finally, the user-space program will read the
flow IDs from the shared memory, and process them as
incoming packets.

In order to improve the performance of OVS, we inte-
grate OVS with DPDK (Data Plane Development Kit).
DPDK implements the datapath entirely in the user-
space, and thus it eliminates the overhead of a con-
text switch and memory copies between user-space and
kernel-space.

6.2 OVS Evaluation
To evaluate the performance of HeavyKeeper imple-
mented in OVS, we conduct experiments to evaluate the
throughput of HeavyKeeper and other algorithms. Be-
sides, we also show the throughput of OVS without using
any algorithm to show the impact of algorithms. We set
the memory size to 50KB.
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Figure 21: Throughput on OVS platform.

As shown in Figure 21, the throughput of Heavy-
Keeper is near the original throughput of OVS. Specif-
ically, the throughput of the original OVS is 19.22Mps,
and that of HeavyKeeper is 18.03Mps. However, the
throughput of CM sketch, Space-Saving, and Lossy
Counting is 14.14Mps, 13.80Mps, and 12.64Mps, re-
spectively. The results show that our HeavyKeeper algo-
rithm has little impact to the performance of OVS, while
other algorithms decrease the throughput significantly.

7 Conclusion
Finding the top-k elephant flows is a critical task for net-
work traffic measurement. As the line rate increases, it
is more and more challenging to design an accurate al-
gorithm that achieves fast and constant speed. Existing
algorithms for finding top-k flows cannot achieve high
precision when traffic speed is high and memory us-
age is small, because they do not handle massive mouse
flows effectively. In this paper, we propose a novel data
structure, called HeavyKeeper, which achieves a much
higher precision on top-k queries and a much lower er-
ror rate on flow size estimation, compared to previous
algorithms. The key idea of HeavyKeeper is that it intel-
ligently omits mouse flows, and focuses on recording the
information of elephant flows by using the exponential-
weakening decay strategy. Our evaluation confirms that
HeavyKeeper achieves 99.99% precision for finding the
top-k elephant flows, while also achieving a reduction in
the error rate of the estimated flow size by about 3 or-
ders of magnitude compared to the state-of-the-art algo-
rithms.
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