
ar
X

iv
:2

50
6.

02
57

2v
1 

 [
cs

.L
G

] 
 3

 J
un

 2
02

5

HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for
Scalable Large Model Inference

Ping Gong†,‡,§, Jiawei Yi†, ‡, Shengnan Wang§, Juncheng Zhang†, Zewen Jin†,
Ouxiang Zhou†, Ruibo Liu†, Guanbin Xu†, Youhui Bai§, Bowen Ye¶, Kun Yuan¶,

Tong Yang¶, Gong Zhang§, Renhai Chen§, Feng Wu†,‡, Cheng Li†,‡

†University of Science and Technology of China,
‡Institute of Artificial Intelligence, Hefei Comprehensive National Science Center,

§Huawei Technologies, ¶Peking University
gpzlx1@mail.ustc.edu.cn, chengli7@ustc.edu.cn

Abstract
Large Language Models (LLMs) have emerged
as a pivotal research area, yet the attention mod-
ule remains a critical bottleneck in LLM infer-
ence, even with techniques like KVCache to
mitigate redundant computations. While vari-
ous top-k attention mechanisms have been pro-
posed to accelerate LLM inference by exploit-
ing the inherent sparsity of attention, they of-
ten struggled to strike a balance between effi-
ciency and accuracy. In this paper, we intro-
duce HATA (Hash-Aware Top-k Attention),
a novel approach that systematically integrates
low-overhead learning-to-hash techniques into
the Top-k attention process. Different from
the existing top-k attention methods which are
devoted to seeking an absolute estimation of
qk score, typically with a great cost, HATA
maps queries and keys into binary hash codes,
and acquires the relative qk score order with
a quite low cost, which is sufficient for real-
izing top-k attention. Extensive experiments
demonstrate that HATA achieves up to 7.2×
speedup compared to vanilla full attention
while maintaining model accuracy. In addition,
HATA outperforms the state-of-the-art top-k
attention methods in both accuracy and effi-
ciency across multiple mainstream LLM mod-
els and diverse tasks. HATA is open source at
https://github.com/gpzlx1/HATA.

1 Introduction

Recently, KVCache has become a paradigm for the
inference of large language model (LLM) (Kwon
et al., 2023; Zheng et al., 2024), due to its benefit of
mitigating redundant computation in the decoding
stage. In this situation, massive KV states load-
ing becomes the bottleneck, especially for long
sequences and large batch sizes (Ribar et al., 2023;
Tang et al., 2024).

Top-k Attention (Gupta et al., 2021) has
emerged as a promising approach to accelerate

*Cheng Li is the corresponding author.
*Work done during Ping’s internship at Huawei.
*Ping and Jiawei equally contributed to this work.

0.2 0.4 0.6 0.8 1.0
Relative Token Generation Speed

72.5

75.0

77.5

80.0

82.5

M
od

el
 A

cc
ur

ac
y Dense (vLLM)

Loki (channels=32)

Quest (pagesize=16)

HATA (ours, rbit=128)

Figure 1: Comparison of accuracy and token generation
speed. For detailed analysis, refer to Sec 5.

LLM inference by leveraging the inherent spar-
sity in attention. By selectively retaining only the
top-k most relevant tokens in the KVCache, top-k
attention significantly reduces the KVCache load-
ing overhead. However, existing top-k attention
algorithms face notable challenges in achieving
an optimal trade-off between efficiency and accu-
racy. Low-rank methods, such as Loki (Singhania
et al., 2024) and InfiniGen (Lee et al., 2024), re-
duce overhead by computing dot-products over a
subset of projected dimensions, but they introduce
significant computational costs due to the exten-
sive requirements for channel extraction. On the
other hand, block-wise methods like Quest (Tang
et al., 2024) and InfLLM (Xiao et al., 2024) im-
prove efficiency by grouping contiguous key-value
pairs into blocks, but they often compromise ac-
curacy as critical keys may be excluded based on
their coarse-grained estimation of query-key (qk)
scores.

In this paper, we introduce Hash-Aware Top-k
Attention (HATA), a novel approach that system-
atically integrates low-overhead learning-to-hash
techniques into the top-k attention process. Unlike
existing methods that focus on precise numerical
estimation of qk scores, HATA maps queries and
keys into binary hash codes, acquiring the rela-
tive qk score order with minimal computational
cost. This approach eliminates costly high-fidelity
score approximations, enabling significant speedup
while preserving the quality of top-k selection. As

mailto:gpzlx1@mail.ustc.edu.cn
mailto:chengli7@ustc.edu.cn
https://github.com/gpzlx1/HATA
https://arxiv.org/abs/2506.02572v1


illustrated in Figure 1, HATA shows superiority in
balancing the accuracy and efficiency, compared to
state-of-the-art methods.

HATA leverages the success of learning-to-
hash (Wang et al., 2012; Weiss et al., 2008), which
has been widely used in similarity-based retrieval
tasks such as image search and machine learning.
By training hash functions based on the query-key
pairs of LLM attention, HATA is able to encode any
query and key vector into a binary code, which fur-
ther enable HATA to achieve low-overhead but pre-
cise token selection, making it a hardware-efficient
solution for accelerating LLM inference.

Extensive experiments demonstrate that HATA
achieves up to 7.2× speedup compared to vanilla
full attention while maintaining model accuracy.
Furthermore, HATA outperforms state-of-the-art
top-k attention methods in both accuracy and ef-
ficiency across multiple mainstream LLM models
and diverse tasks.

In summary, our contributions are as follows:
• We frame key retrieval in top-k attention as

a lightweight ordinal comparison task, elimi-
nating the need for costly high-fidelity score
approximation.

• We introduce HATA, which systematically in-
tegrates learning-to-hash techniques into top-
k attention mechanisms to solve this ordinal
comparison task.

• We provide hardware-aware optimizations for
HATA and validate its effectiveness on multi-
ple models and datasets.

2 Background and Motivation

2.1 LLM Inference
The LLM model consists of multiple transformer
layers, each processing continuous token embed-
dings to iteratively generate the next token embed-
ding. At the core of each transformer layer is the
attention module, which computes as follows:

Q,K, V = Proj (X) ,

AttnOut = Softmax
(
QKT

√
d

)
V.

(1)

LLM inference is autoregressive. When gen-
erating text, the model produces one token at a
time, and each new token depends on the ones
already generated. This process continues until
some stopping condition is met, like reaching an
end-of-sequence token or a maximum length. How-
ever, the autoregressive nature leads to significant

computational redundancy, making attention the
primary bottleneck in LLM inference (Dao et al.,
2022; Dao, 2023; You et al., 2024).

2.2 KVCache
To accelerate the attention module, the KVCache
approach has been proposed to cache and reuse in-
termediate results to eliminate computational over-
head.

In more detail, it decouples the inference process
into prefill and decode stages. During the prefill
stage, the input prompt is processed in parallel,
computing and caching the K and V vectors for
all tokens across the transformer-attention layers,
which initializes the KVCache. In the subsequent
decode stage, tokens are generated sequentially:
at each step, the model computes only the Q/K/V
vector of the current token, retrieves cached K/V
vectors, and computes attention scores to predict
the next token, while appending the new token’s
K/V vectors to the cache.

Despite the KVCache’s computational efficiency,
the attention mechanism remains a critical bottle-
neck for modern LLMs in complex scenarios in-
volving long-context sequences or large batch sizes.
Recent studies (Ribar et al., 2023; Tang et al., 2024)
reveal that even with KVCache, the attention mod-
ule dominates inference latency—for instance, con-
suming over 70% of total runtime when processing
32K-token sequences with Llama2-7B. This ineffi-
ciency is contributed not only by the computation
complexity but also by memory bandwidth con-
straints. At each decoding step, the model must
load the entire cached Key and Value vectors, in-
curring massive data movement costs that scale
with context length and batch size. Consequently,
with KVCache, optimizing attention’s memory ac-
cess patterns has emerged as a pivotal challenge for
enabling scalable LLM deployment.

2.3 Top-k Attention
The top-k attention mechanism (Gupta et al., 2021)
reduces memory bandwidth overhead under the KV-
Cache framework by exploiting the sparsity of at-
tention distributions. As formalized in Equation (2),
it computes attention scores only for the top-k keys
with the highest query-key (qk) scores, bypass-
ing computation for low-scoring tokens. While
this sparsity preserves model accuracy and reduces
FLOPs, it does not fully eliminate the memory
bottleneck: as shown in (Ribar et al., 2023), the
mechanism still requires loading all keys from the



KVCache to evaluate qk scores, incurring at least
half of the original memory traffic.

To improve the efficiency of top-k attention,
recent work has focused on approximating qk
scores with low-cost estimators. Methods like
SparQ (Ribar et al., 2023), Loki (Singhania et al.,
2024), and InfiniGen (Lee et al., 2024) reduce com-
putational overhead by computing dot-products
over a subset of projected dimensions rather than
the full embedding space. While these approxima-
tions retain theoretical error bounds, they face a
dimensionality-accuracy trade-off: preserving esti-
mation fidelity requires retaining a critical mass of
dimensions, leading to limited performance gains.

qkScore = Softmax(qKT )

Index = TopK(qkScore, k)

AttnOut = Attn(q,K[Index], V [Index])

(2)

On the other side, block-based approximations,
such as Quest (Tang et al., 2024) and InfLLM (Xiao
et al., 2024), partition keys into contiguous blocks
and estimate upper bounds for aggregate qk scores
per block. Tokens within blocks exceeding a score
threshold are retained for attention computation.
While this reduces the search space, two issues
arise. Critical tokens are often dispersed across
blocks, and selecting entire blocks forces loading
irrelevant intra-block keys, wasting memory band-
width. Moreover, the coarse-grained estimation
may not well distinguish important and irrelevant
tokens, hindering the final accuracy.

2.4 Motivation

Prior top-k attention methods operate under the
strong assumption that precise numerical estima-
tion of qk scores is essential to replicate the effec-
tiveness of full attention. Thus, they incur signif-
icant computational or memory overhead to mini-
mize approximation errors in absolute qk scores.

However, in this paper, we challenge this
assumption by demonstrating that only rela-
tive qk score ordering—not absolute numerical
magnitude—is required to identify the most rel-
evant keys. By reformulating the problem as a
lightweight ordinal comparison task (e.g., deter-
mining whether sqki > sqkj ) rather than a numeri-
cal regression task, we eliminate the need for costly
high-fidelity score approximations. This relaxation
enables remarkable reduction in computation and
memory access while preserving top-k selection

quality, as precise score magnitudes are irrelevant
to the ranking outcome.

Learning-to-hash (Wang et al., 2012) offers a
principled framework to achieve our goal, as it
maps high-dimensional continuous vectors (e.g.
queries and keys) into compact binary hash codes
while preserving their relative similarity relation-
ships, i.e., similar vectors are assigned adjacent
binary hash codes with small Hamming distances.

Nevertheless, integrating learning-to-hash into
top-k attention introduces critical challenges:

• Modeling. Learning-to-hash was widely used
for retrieval tasks, such as image retrieval and
information search. To apply learning-to-hash
to top-k attention computing, designing an ef-
fective hashing model for learning hash codes
of query and keys is of great importance.

• Implementation. A high-performance imple-
mentation is also indispensable to achieve a
practical improvement of LLM inference.

3 HATA’s Design

To address the aforementioned three challenges, we
propose Hash-Aware Top-k Attention (HATA), a
trainable and hardware-efficient approach based on
learning-to-hash.

In Sec 3.1, we formally define the query-key-
based learning-to-hash problem and design a train-
ing loss function to learn hash codes while preserv-
ing similarity. We also incorporate bits balance
and uncorrelation constraints (Wang et al., 2012;
Weiss et al., 2008) to enhance hash bit quality. In
Sec 3.2, we introduce HATA’s workflow, leveraging
the learned hash function to significantly accelerate
LLM inference.

3.1 Learning-to-Hash for Top-k Attention

Building on learning-to-hash, we design a hash
function to map query/key vectors to binary codes
while preserving their relative similarity. The learn-
ing process is detailed below.

3.1.1 Hash Modeling

Inspired by the learning-to-hash model defined
in (Wang et al., 2012), given a query q and multiple
keys K := {ki}ni=1, we learn the hash codes of q



and K by solving the following problem:

min
∑
i

sim(q, ki)||h(q)− h(ki)||2 (3)

s.t. h(q), h(ki) ∈ {−1, 1}r (4)
n∑

i=1

h(ki) = 0 (5)

1

n

n∑
i=1

h(ki)h(ki)
T = Ir (6)

where h(·) is the hash function to be learned and
sim(q, ki) defines the similarity of original query q
and key ki. Note that the objective function Equa-
tion (3) tends to assign adjacent binary codes for
qk pairs exhibiting high similarity, which matches
the goal of similarity-preserving hashing. The con-
straint (4) ensures that the query and keys are en-
coded into r binary codes. The constraints (5) and
(6) are called bits balance and uncorrelation con-
straints, respectively.

The hash function h(·) is commonly defined as
h(x) = sign(xWH), where WH is the trainable
hash weights.

Due to the non-differentiability of the sign func-
tion, we relax h(x) as:

h(x) = 2 · Sigmoid(σ · xWH)− 1, (7)

where σ ∈ (0, 1) is a hyper-parameter to prevent
gradient vanishing.

For tractability, the balance constraint (5) is
further relaxed by minimizing ||

∑
i h(ki)||2, and

according to (Wang et al., 2012) the uncorrela-
tion constraint (6) can be relaxed by minimizing
||W T

HWH − Ir||. Then the query-key hashing prob-
lem is reformulated as:

min ϵ
∑
i

si||h(q)− h(ki)||2+

η||
∑
i

h(ki)||2 + λ||W T
HWH − Ir|| (8)

s.t. h(x) = 2 · Sigmoid(σ · xWH)− 1

where si is sim(q, ki) for short, and ϵ, λ, η control
the impact of each objective. Detailed training
settings are provided in the Appendix B.2.

For convenience, we first formulate the learing-
to-hash problem based on a single query and its cor-
responding keys, as shown in Equation (8). This
objective function consists of three components.
The first term, min

∑
i si||h(q)− h(ki)||2, serves

as the main objective, enforcing similarity preserva-
tion by ensuring that similar items maintain close
hash codes in the binary hash space. The terms
min ||

∑
i h(ki)||2 and min ||W T

HWH−Ir|| further
ensure the efficiency of the learned hash codes.
Next, we extend Equation (8) to a more realistic
case that includes multiple queries, as below:

min ϵ
∑
j

∑
i

sj,i||h(qj)− h(kj,i)||2+

η
∑
j

||
∑
i

h(kj,i)||2 + λ||W T
HWH − Ir||

(9)

s.t. h(x) = 2 · Sigmoid(σ · xWH)− 1

where sj,i = sim(qj , ki). Problem (9) is the final
hashing model for learning effective hash function
h(·), which plays a key role in designing efficient
top-k attention algorithm later.

Note that the attention module typically involves
multiple independent heads which usually have
different characteristics, so we also train a separate
hash weight WH for each attention head.

3.1.2 Training Data Construction
The training samples are constructed based on real
datasets. Specifically, given a sequence, during
the prefill stage, we collect Q := [q1, q2, . . . , qn]
and K := [k1, . . . , kn] of each attention head. For
each head, we sample a qj from Q and compute
the qkScore between qj and [k1, . . . , kj ]. Based on
the qkScore, the top 10% of (qjki) pairs are des-
ignated as positive samples with linearly decayed
labels sj,i ∈ [1, 20], while the remaining 90% re-
ceive fixed negative labels sj,i = −1. The label
sj,i measures the similarity between qj and ki. The
training data are organized as triplets (qj , ki, sj,i)
for storage. Since the sequence can be very long,
it is easy to generate thousands or even millions of
qk pairs for training. To enhance data diversity, we
generate training data from dozens of sequences.
The details of this process are presented in Ap-
pendix B.1.

3.2 HATA Top-k Attention Algorithm

HATA integrates learning-to-hash to top-k atten-
tion via two algorithmic innovations: (1) HATA
Prefill: caching hash codes of K; (2) HATA De-
coding: efficient top-k key-value detection through
hash space.
HATA prefill stage.



Full KV

Step 1: Encode & Cache update Step 2: Hamming score Step 3: Top-K & Sparse attn

Token 
score

gather & attn

Softmax

rbit=128

bitwise-xor
1 1 0 0 1 1 0 … 0 1 1 0 0 0 0

1 0 1 0 0 1 0 … 1 1 0 0 0 1 0

0 1 1 0 1 0 0 … 1 0 1 0 0 1 0

bitcount

score=17

Query

Key

HashEncode

Code 
Cache

HashEncode

Figure 2: Workflow of HATA in the decode stage.

Algorithm 1 HATA Prefill Stage

1: Input: Q ∈ Rs×d, K ∈ Rs×d, V ∈ Rs×d, key
cache Kcache ∈ R0×d, value cache V cache∈
R0×d, key code cache Kcache

H ∈ R0×rbit/32

2: ▷ Call HashEncode to encode key
3: KH ← HashEncode(K)
4: ▷ Fill hashcode cache
5: Kcache

H ←KH

6: ▷ Fill KVCache
7: Kcache← K, V cache← V
8: ▷ Calculate attention output
9: O← Attention(Q, K, V)

Algorithm 2 HashEncode

1: Input: vector V ∈ Rs×d

2: Parameter: hash weight WH∈ Rd×rbit

3: Output: hash code VH ∈ Ns×rbit/32

4: ▷ Project input vector into hash code
5: VH ← Sign(MatMul(V, WH ))
6: ▷ Pack hash code bits into integer format
7: VH ← BitPack(VH )

As shown in Algorithm 1, HATA modifies the
original prefill workflow by additionlly computing
and caching the hash codes of the keys (lines 2–5),
which is critical for accelerating subsequent LLM
decoding stages. The hash codes are generated
by HashEncode, as shown in Algorithm 2, which
leverages Matmul, Sign, and BitPack operators to
produce rbit binary code. The hash weight WH in
the HashEncode is obtained through hash training
as described in Sec 3.1. Note that the time com-
plexity of HashEncode is O(s× d× rbit), where
s is the sequence length and d is the vector dimen-
sion, while Attention’s complexity is O(s2d+ s2).
Given rbit ≪ s, the extra prefill overhead from
HATA is negligible, accounting for less than 1% of
total computation in real tasks.

Algorithm 3 HATA Decode Stage

1: Input: Q ∈ R1×d, K ∈ R1×d, V ∈ R1×d, key
cache Kcache ∈ Rs×d, value cache V cache

∈ Rs×d, key code cache Kcache
H ∈ Rs×rbit/32,

top-k number N
2: ▷ Update KVCache
3: Kcache← [Kcache;K]
4: V cache← [V cache;V]
5: ▷ Call HashEncode to encode query and key
6: QH ← HashEncode(Q)
7: KH ← HashEncode(K)
8: ▷ Update code cache with KH

9: Kcache
H ← [Kcache

H ;KH ]
10: ▷ Calculate distance in Hamming space
11: S← bitcount(bitwise_xor(QH ,Kcache

H ))
12: ▷ Select top-k key-value pairs
13: Idx← TopK(S, N )
14: Ksparse← Gather(Kcache, Idx)
15: V sparse← Gather(V cache, Idx)
16: ▷ Calculate sparse attention output
17: O← Attention(Q, Ksparse, V sparse)

HATA decode stage. As illustrated in Algorithm 3
and Figure 2, HATA enhances the decode workflow
with the following three steps. First, in the Encode
& Cache update step (lines 3–9), HATA first ap-
plies HashEncode to the newly generated query Q
and key K, producing query code (QH ) and key
code (KH ), and then updates the key code cache
Kcache

H . Second, it computes the qk hash scores
S measured by the Hamming distances between
QH and all cached key codes in Kcache

H (including
the current KH ) using hardware-efficient opera-
tions: bitwise_xor and bitcount (lines 10–11).
In situations where multiple queries target the same
KVCache, such as GQA, we additionally aggregate
the scores S for shared KVCache. Third, based on
the hash scores, HATA selects and gathers the most
relevant keys and values (lines 13–15), which are



TopK

bitwise-xor GatherTopK

Score
Op

Timeline

Encode & Cache update

Attnbitcount

Hamming Score Sparse Attn

Simple

HATA Reduced Latency
Gather
&Attn

Figure 3: HATA’s optimizations, compared to the con-
ventional implementation (denoted as ‘Simple’).

then fed into sparse attention (line 17).

4 Hardware-Efficient Optimizations

HATA is implemented in PyTorch (Ansel et al.,
2024) and FlashInfer (Ye et al., 2025), comprising
1,470 lines of C++/CUDA code (for custom GPU
kernels) and 940 lines of Python code (for high-
level orchestration). To bridge the gap between the-
oretical efficiency and practical performance, we
introduce three hardware-efficient optimizations, as
illustrated in Figure 3, targeting compute and mem-
ory bottlenecks in attention with long contexts and
large batches. Notably, while HATA employs exten-
sive low-level optimizations, it remains pluggable
and integrates seamlessly with existing inference
frameworks. To leverage HATA, users need only
replace standard attention with HATA’s attention.
Kernel fusion for hash encoding. The Encode &
Cache update phase involves a chain of operations
such as linear projection, sign function, BitPack,
and cache updates. Although each operation takes
only a few microseconds on the GPU, the CPU
requires tens of microseconds to dispatch them,
starving GPU compute units. By fusing these into a
single CUDA kernel, we significantly reduce CPU-
GPU synchronization, consequently cutting end-to-
end inference latency.
High-performance hamming score operator.
The Hamming score is computed by matching bits
between query and key codes. However, PyTorch
lacks high-performance operator support for this
computation. To address this, we design an effi-
cient GPU operator with the following hardware-
optimized steps: First, both the query and key are
loaded as multiple integers, and XOR is applied to
produce intermediate integers, where ‘1’ indicates a
mismatch and ‘0’ a match. Next, the popc/popcll
instructions count the number of ‘1’s in each inte-
ger. Finally, a high-performance reduction oper-
ator aggregates these counts to compute the final
score. To further boost GPU efficiency, we opti-
mize memory bandwidth by employing coalesced
memory access when transferring data from HBM

to SRAM.
Fuse gather with FlashAttention. For Sparse
Attn, the separate gather operations for selected
keys and values result in redundant data transfers
between HBM and SRAM, diminishing the benefits
of hashing. To address this, we integrate the gather
operation with the widely-used FlashAttention ker-
nel (Dao et al., 2022; Dao, 2023), streamlining data
flow and reducing memory access overhead.

5 Empirical Evaluation

In this section, we evaluate HATA’s performance
in terms of both accuracy and efficiency.

5.1 Experimental Setup

Experiment platform. We conduct experiments
on a machine equipped with a 48GB HBM GPU
delivering up to 149.7 TFLOPS (FP16) and 96
cores. The system runs Ubuntu 24.04, utilizing
CUDA 12.1, PyTorch 2.4 (Ansel et al., 2024),
FlashInfer (Ye et al., 2025).
Baselines and configurations. We compare
HATA with the state-of-the-art top-k attention base-
lines: Loki (Singhania et al., 2024) (low-rank) and
Quest (Tang et al., 2024) (block-level), both of
which are variants of top-k attention. In addition,
we further compare HATA with MagicPIG (Chen
et al., 2024), which accelerates top-k attention
through locality sensitive hashing (LSH) (Gionis
et al., 1999). LSH is another kind of hashing
method, which mainly utilizes random projections
to generate hash codes. Different from learning-to-
hash, LSH typically requires massive hash bits to
ensure accuracy. More details about LSH can be
seen in (Gionis et al., 1999). We also compare
HATA with some KVCache compression meth-
ods, including StreamingLLM (Xiao et al., 2023),
H2O (Zhang et al., 2024b) and SnapKV (Li et al.,
2024).

We adopt the recommended configurations (e.g.,
channels, block size) from the original papers for
all baselines. For HATA, we set rbit=128, a ver-
satile configuration that maintains quality across
most tasks. Following (Tang et al., 2024), we use
vanilla attention for the first two layers, which are
typically outlier layers in top-k attention methods.

We additionally add the vanilla transformer with
full attention mechanism (denoted by dense) as a
reference baseline to demonstrate the effectiveness
and efficiency of HATA.
Models and datasets. We mainly evaluate



Task Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct
Dense Loki Quest MP SL H2O S-KV HATA Dense Loki Quest MP SL H2O S-KV HATA

LCC 67.53 58.68 65.14 66.43 46.91 27.42 52.74 68.42 67.24 61.29 58.81 53.39 64.90 64.99 66.49 67.25
PRetr 11.89 11.97 15.53 10.01 4.84 2.41 9.44 10.61 99.67 99.67 99.67 98.83 94.33 94.00 99.67 99.67
HQA 15.30 14.91 13.64 14.69 8.22 4.19 11.78 15.65 60.21 59.48 60.03 56.28 48.52 57.89 59.93 60.19
TQA 85.03 85.30 85.18 86.17 60.67 20.07 66.9 85.83 91.64 91.45 90.79 77.90 79.24 92.06 91.98 91.94
Repo 55.03 44.41 52.57 55.81 35.43 16.33 45.13 54.92 52.36 48.47 46.72 42.35 45.58 46.70 48.6 51.72
Sam 39.32 38.95 39.24 38.94 19.50 6.74 37.56 39.61 42.55 41.99 39.75 34.28 40.10 41.23 40.58 42.35
Trec 69.00 69.00 67.57 69.00 28.00 24.33 37.00 69.34 71.66 72.33 71.33 63.67 51.67 65.00 60.33 71.66
MQA 22.44 22.11 19.33 21.70 15.51 3.06 17.44 22.39 54.82 54.47 51.50 49.10 34.13 45.12 52.82 55.17
2Wiki 13.13 13.09 12.51 13.29 7.54 2.19 12.65 13.44 44.08 44.33 43.90 37.84 37.81 40.91 43.63 43.82
Gov 32.01 30.51 24.83 31.29 19.39 9.61 13.54 31.90 35.03 34.74 33.64 32.58 22.73 29.4 26.29 35.02
PCnt 1.17 0.52 1.20 1.08 0.00 0.00 0.08 0.34 13.19 12.74 13.16 9.96 13.15 12.82 13.04 12.44
MltN 24.51 23.82 16.61 23.74 18.09 7.83 12.98 25.06 26.19 25.85 25.69 24.57 21.51 24.64 23.2 26.07
Qaspr 11.76 12.82 10.93 11.06 5.43 0.23 7.24 12.31 44.68 45.15 43.52 38.20 24.91 33.75 36.42 43.95

AVG. 34.47 32.78 32.64 34.09 20.73 9.57 24.96 34.60 54.10 53.23 52.19 47.61 44.51 49.89 51.00 53.94

Table 1: Accuracy results on LongBench-e (Bai et al., 2023) with 512 token budget. For MagicPIG (MP), the token
budget is approximately 2-3% of the sequence length. SL denotes StreamingLLM, while S-KV refers to SnapKV.

Task Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct
Dense Loki Quest MP SL H2O S-KV HATA Dense Loki Quest MP SL H2O S-KV HATA

NS1 93.75 25.00 100.0 97.92 1.04 0.00 25.00 100.0 100.0 98.96 100.0 94.79 1.04 36.46 98.96 98.96
NS2 100.0 2.08 95.83 93.75 5.21 0.00 1.04 98.96 98.96 97.92 93.75 69.79 4.17 2.08 88.54 98.96
NS3 91.67 0.00 52.08 54.17 1.04 0.00 0.00 83.33 100.0 96.88 47.92 51.04 3.12 3.12 8.33 100.0
NMK1 93.75 0.00 87.50 83.33 6.25 3.12 2.08 93.75 97.92 96.88 97.35 65.62 5.21 4.17 89.58 96.88
NMK2 81.25 0.00 54.17 71.88 1.04 0.00 0.00 78.12 77.08 59.38 53.12 20.83 3.12 2.08 3.12 69.79
NMV 66.67 0.00 52.34 59.38 6.25 0.78 0.26 65.62 94.27 91.67 78.91 44.79 4.69 1.82 13.28 89.06
NMQ 52.08 0.00 56.51 43.49 4.17 0.00 0.00 54.17 96.09 94.79 90.10 57.81 5.73 1.56 52.34 94.53
VT 21.04 1.04 26.87 16.04 0.21 0.00 3.96 20.00 51.04 50.00 61.25 41.67 0.62 23.33 52.29 50.21
FWE 48.61 19.44 36.36 51.39 54.86 20.49 20.49 43.40 75.35 57.99 63.19 57.99 67.7 48.61 38.89 71.18
QA1 30.21 14.58 23.96 30.21 22.92 15.62 22.92 28.12 78.12 76.04 73.96 67.71 51.04 48.96 78.12 76.04
QA2 36.46 16.67 34.38 35.42 27.08 16.67 26.04 37.50 40.62 35.29 38.54 38.54 34.38 33.33 39.58 40.62

AVG. 65.04 7.16 56.37 57.91 11.82 5.15 9.25 63.91 82.68 77.80 72.55 55.51 16.44 18.68 51.18 80.57

Table 2: Accuracy results on RULER (Bai et al., 2023). For Llama-2-7B-32K-Instruct, the context length is 32K
and the token budget is 1024 (3.13%). For Llama-3.1-8B-Instruct, the context length is 128K and the token budget
is 2048 (1.56%). For MagicPIG (MP), the token budget is approximately 2-3% of the sequence length. SL denotes
StreamingLLM, while S-KV refers to SnapKV.

HATA on two mainstream large language models:
Llama2 (Together, 2023) and Llama3.1 (MetaAI,
2024). The test datasets include two widely used
benchmarks: Longbench-e (Bai et al., 2023) and
RULER (Hsieh et al., 2024). LongBench-e is a mul-
titask benchmark involving QA, document summa-
rization, and code understanding. RULER focuses
on retrieval tasks over extremely long contexts.

Due to space constraints, we only report selected
results here. More results including more models
and tasks are provided in Appendix A.

5.2 Accuracy Evaluation

Evaluation on LongBench-e.
First, we test all the methods on the LongBench-

e tasks, which involve QA, document summariza-
tion, and code understanding. From Table 1, we
observe that for both Llama2 and Llama3.1, HATA

achieves results comparable to the vanilla full atten-
tion mechanism and outperforms all other baselines
in most cases.

Evaluation on RULER. Next, we test all the meth-
ods on the long-context tasks. RULER can be used
to construct retrieval, tracing, aggregation and QA
tasks with any length. Note that the input sequence
length should not surpass the maximum context
window size of model. Hence, we test Llama2 and
Llama3.1 on 32k-long and 128k-long sequences,
respectively. We set the token budget as 1024 for
Llama2 and 2048 for Llama3.1 (only 3.12% and
1.56% of total sequence length). The results shown
in Table 2 is in line with results test on Longbench-
e. For long-context inference, HATA can still main-
tain the accuracy of the vanilla full attention mech-
anism, while all the other competitors has obvious
accuracy degradation, which shows the superiority



Prefill=36K Decode=3.6K
LlaMa2-7B

Prefill=72K Decode=7.2K
LlaMa3.1-8B

0

100

200

300
Ti

m
e 

Co
st

 (
se

c)

N/A

Dense Prefill
Loki Prefill
Quest Prefill
HATA Prefill

Dense Decode
Loki Decode
Quest Decode
HATA Decode

Figure 4: End-to-end performance comparison of LLM
inference under 1.56% token selection.

of HATA.

5.3 Efficiency Evaluation

This subsection evaluates HATA’s efficiency
against baselines through three aspects: (1) end-to-
end inference performance, (2) decoding efficiency
analysis across different input scales, and (3) com-
parison with MagicPig using HATA’s KVCache
offloading extension. For Quest, we directly use
their open-source high-performance implementa-
tion (Jiaming Tang, 2025). For the full attention
baseline (dense), we adopt the recently widely-used
vLLM (Kwon et al., 2023) implementation. For
Loki, since it did not provide a high-performance
implementation, here we give an efficient real-
ization based on triton, which is detailed in Ap-
pendix C.
End-to-end inference efficiency. Both HATA and
the above-mentioned compared methods are de-
signed for speeding up the LLM decoding. In Fig-
ure 4, we compare the decoding time cost of all
the methods with the same sequence length. In
addition, we also show the prefill time cost to mea-
sure the end-to-end efficiency performance of these
methods comprehensively. Here we only report the
time efficiency of Quest on Llama2, since its open-
source high-performance implementation does not
support GQA so far.

From Figure 4, we see that HATA, Loki, and
Quest all have significant speedup in decoding com-
pared with the vanilla attention mechanism, and
among them, HATA achieves the highest decoding
efficiency. On the other hand, we can see that for
LoKi, Quest, and HATA, the prefill time is similar
to the vanilla attention mechanism, so all of them
can improve the end-to-end inference efficiency.
Though it is expected that Quest can achieve sim-
ilar time efficiency to HATA, HATA can achieve
better accuracy under the same budget.
Decoding efficiency across varying input scales.
We further evaluate HATA across varying batch

1 2 3 4 5 6 7 8
Batch Size

2

4

6

8

La
te

nc
y 

(m
s)

Llama2 MHA (SEQ=32K)

4k 8k 16k 32k 64k 128k 256k
Seq Length

2

4

6

La
te

nc
y 

(m
s)

Llama2 MHA (BSZ=1)

1 2 3 4 5 6 7 8
Batch Size

1.0

1.5

2.0

La
te

nc
y 

(m
s)

Llama3.1 GQA=4 (SEQ=32K)

4k 8k 16k 32k 64k 128k 256k
Seq Length

1.0

1.5

2.0

La
te

nc
y 

(m
s)

Llama3.1 GQA=4 (BSZ=1)

Dense Loki Quest HATA

Figure 5: Performance comparison of a single trans-
former layer under 1.56% token selection.

Time Cost
(second)

Llama2 Llama3.1
MagicPig HATA-off MagicPig HATA-off

Prefill 49.89 8.26 33.24 25.09
Decode 38.21 15.04 41.69 15.86
Total 88.10 23.30 74.93 40.95

Table 3: Offloading performance comparison between
HATA-off and MagicPIG. We set the prefill length as
36K and 72K for Llama2 and Llama3.1 respectively,
and the decode length is set as 500 for both model. For
MagicPIG, the token budget is approximately 2-3% of
the sequence length, and for HATA-off we set the token
budgets as 1.56%.

sizes and input sequence lengths. Due to GPU
memory constraints, we evaluate only a single
transformer layer of Llama2 and Llama3.1. Since
prefill costs are similar across baselines, we fo-
cus on decoding step latency. Furthermore, since
the high-performance implementation of the open-
source Quest is limited to a batch size of 1 and
MHA models, we evaluate it solely across vary-
ing sequence lengths on Llama2. As shown in
Figure 5, HATA outperforms all the baselines. No-
tably, with longer sequences and larger batches,
HATA achieves greater speedups. With batch size
= 8 and sequence length = 32K, HATA reaches up
to 7.20× speedup over Dense and 1.99× over Loki.
At batch size = 1 and sequence length = 256K,
HATA achieves up to 6.51× speedup over Dense,
2.21× over Loki and 1.19× over Quest. These re-
sults demonstrate HATA’s high inference efficiency
across tasks of varying scales.

Efficiency with KVCache offloading For fair com-
parison with MagicPIG, we introduce HATA-off,
an offloading variant of HATA inspired by Infini-
Gen (Lee et al., 2024). By combining KVCache of-
floading with prefetching, HATA-off reduces GPU



memory usage while maintains inference efficiency.
On Llama2 and Llama3.1 with PCIe 4.0 and 48
CPU threads, HATA-off achieves 6.04× (prefill)
and 2.54× (decode) speedups over MagicPIG on
Llama2, and 1.32× (prefill) and 2.63× (decode) on
Llama3.1, as shown in Table 3. The improvements
come from: (1) eliminating MagicPIG’s expen-
sive LSH hashing (i.e., 1,500-bit hash bits for a
128D vector), and (2) our GPU-optimized atten-
tion with lightweight hashing and KV prefetching,
surpassing MagicPIG’s CPU-based method. These
innovations enable scalable, memory-efficient long-
sequence inference.

6 Related Works

Our work HATA advances top-k attention for ac-
celerating KVCache-enabled LLM inference, but
significantly differs from existing top-k attention
methods. Prior top-k attention methods (Singhania
et al., 2024; Ribar et al., 2023; Lee et al., 2024;
Tang et al., 2024; Xiao et al., 2024) assume precise
qk score estimation is essential to replicate full at-
tention, incurring high computational or memory
overhead to minimize errors. Other hashing-based
methods for LLMs fail to achieve practical infer-
ence acceleration. MagicPIG (Chen et al., 2024)
employs locality-sensitive hashing but relies on
high-bit representations, limiting speed and sacri-
ficing accuracy. HashAttention (Desai et al., 2024),
a concurrent work, also uses learning-to-hash but
adopts a custom training approach, lacks extensive
testing across datasets and models, and overlooks
system challenges in applying hashing to top-k at-
tention. Some works (Sun et al., 2021) attempt
hashing in LLM training but fail to transfer it to
inference due to fundamental differences between
the two phases.

Other orthogonal approaches focus on compress-
ing KVCache content. Eviction methods (Zhang
et al., 2024b; Adnan et al., 2024) remove less im-
portant tokens but risk information loss and dy-
namic token importance shifts, potentially degrad-
ing output quality. Quantization methods (Liu
et al., 2024b; Hooper et al., 2024) compress the
KVCache, though their speedup gains are limited
by low compression ratios.

Finally, the offloading methods (Lee et al., 2024;
Sheng et al., 2023; Sun et al., 2024) transfer KV-
Cache to CPU memory to reduce HBM memory
usage. HATA is orthogonal to these methods and
can be combined with them. We developed HATA-

off to demonstrate how HATA can be efficiently
combined with KVCache offloading without com-
promising performance.

7 Conclusion

We introduced Hash-Aware Top-k Attention
(HATA), a hardware-efficient method for faster
LLM inference. HATA offers a systematic explo-
ration and validation of the integration of learning-
to-hash techniques into top-k attention mecha-
nisms, achieving up to 7.2× speedup over dense
attention and outperforming SOTA methods in ac-
curacy and performance, establishing it as an effec-
tive solution for LLM inference acceleration.

8 Limitations

With learning-to-hash, HATA has achieved notable
success in top-k attention. However, it still has the
following limitations:
Larger-scale training. HATA ’s training data con-
sists of millions of query-key pairs sampled from a
limited number of sequences, which is sufficient to
train effective hash weights. However, expanding
the diversity and scale of the training data could
further enhance the quality of the hash weights. We
plan to explore this in the future to improve HATA
’s performance across a wider range of tasks.
Fields of application. HATA is designed to accel-
erate LLM inference with long contexts or large
batch sizes. For small batch sizes and short con-
text sequences, HATA does not provide significant
speedup, as the attention module is not the bottle-
neck in these cases.
MLA adaptor. Over the past month, Multi-Latent
Head Attention (MLA) in DeepSeek (Liu et al.,
2024a) has gained significant attention. While
we’ve evaluated HATA on MHA and GQA tasks,
it remains untested with MLA, which we leave as
future work.

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments. This work is supported by the
Strategic Priority Research Program of the Chinese
Academy of Sciences, Grant No. XDB0660101,
XDB0660000, XDB0660100, and Huawei Tech-
nologies.



References
Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,

Prashant Nair, Ilya Soloveychik, and Purushotham
Kamath. 2024. Keyformer: Kv cache reduction
through key tokens selection for efficient generative
inference. Proceedings of Machine Learning and
Systems, 6:114–127.

Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, and 30
others. 2024. PyTorch 2: Faster Machine Learning
Through Dynamic Python Bytecode Transformation
and Graph Compilation. In 29th ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2
(ASPLOS ’24). ACM.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, and 1 others. 2023.
Longbench: A bilingual, multitask benchmark
for long context understanding. arXiv preprint
arXiv:2308.14508.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xi-
aozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei
Hou, Yuxiao Dong, and 1 others. 2024. Longbench
v2: Towards deeper understanding and reasoning
on realistic long-context multitasks. arXiv preprint
arXiv:2412.15204.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang
Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian,
Matthijs Douze, Leon Bottou, Zhihao Jia, and 1 oth-
ers. 2024. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. Preprint,
arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Aditya Desai, Shuo Yang, Alejandro Cuadron, Ana
Klimovic, Matei Zaharia, Joseph E Gonzalez, and Ion
Stoica. 2024. Hashattention: Semantic sparsity for
faster inference. arXiv preprint arXiv:2412.14468.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity search in high dimensions via hash-
ing. In Proceedings of the 25th International Con-
ference on Very Large Data Bases, VLDB ’99, page
518–529, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut,
and Jonathan Berant. 2021. Memory-efficient

transformers via top-k attention. arXiv preprint
arXiv:2106.06899.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant:
Towards 10 million context length llm inference
with kv cache quantization. arXiv preprint
arXiv:2401.18079.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
arXiv preprint arXiv:2404.06654.

Chaofan Lin Jiaming Tang, Yilong Zhao. 2025. Quest:
Query-aware sparsity for efficient long-context llm
inference. https://github.com/mit-han-lab/
Quest. Accessed, May. 2025.

Greg Kamradt. 2023. Needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack. Accessed, Feb.
2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong
Sim. 2024. Infinigen: Efficient generative inference
of large language models with dynamic kv cache
management. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24), pages 155–172.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before gener-
ation. Advances in Neural Information Processing
Systems, 37:22947–22970.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024b. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

MetaAI. 2024. Introducing llama 3.1: Our most capa-
ble models to date. https://ai.meta.com/blog/
meta-llama-3-1/. Accessed, Feb. 2025.

QwenTeam. 2024. Qwen2.5: A party of founda-
tion models. https://qwenlm.github.io/blog/
qwen2.5/. Accessed, Feb. 2025.

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://github.com/mit-han-lab/Quest
https://github.com/mit-han-lab/Quest
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


QwenTeam. 2025. Qwen2.5-1m: Deploy your own
qwen with context length up to 1m tokens. https:
//qwenlm.github.io/blog/qwen2.5-1m/. Ac-
cessed, Feb. 2025.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.
Sparq attention: Bandwidth-efficient llm inference.
arXiv preprint arXiv:2312.04985.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil
Feizi, and Abhinav Bhatele. 2024. Loki: Low-rank
keys for efficient sparse attention. arXiv preprint
arXiv:2406.02542.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng,
Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. 2024. Shadowkv: Kv cache in shad-
ows for high-throughput long-context llm inference.
arXiv preprint arXiv:2410.21465.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. 2021.
Sparse attention with learning to hash. In Interna-
tional Conference on Learning Representations.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm inference.
arXiv preprint arXiv:2406.10774.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, pages 10–19.

Together. 2023. Llama-2-7b-32k-instruct.
https://huggingface.co/togethercomputer/
Llama-2-7B-32K-Instruct. Accessed, Feb. 2025.

Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012.
Semi-supervised hashing for large-scale search.
IEEE transactions on pattern analysis and machine
intelligence, 34(12):2393–2406.

Yair Weiss, Antonio Torralba, and Rob Fergus. 2008.
Spectral hashing. Advances in neural information
processing systems, 21.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
and Maosong Sun. 2024. Infllm: Training-free long-
context extrapolation for llms with an efficient con-
text memory. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and
Luis Ceze. 2025. Flashinfer: Efficient and customiz-
able attention engine for llm inference serving. arXiv
preprint arXiv:2501.01005.

Haoran You, Yichao Fu, Zheng Wang, Amir Yazdan-
bakhsh, and Yingyan (Celine) Lin. 2024. When
linear attention meets autoregressive decoding: to-
wards more effective and efficient linearized large
language models. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, ICML’24.
JMLR.org.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and 1 others. 2024a. In-
finitebench: Extending long context evaluation be-
yond 100k tokens. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15262–
15277.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2024b. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. Sglang: Efficient
execution of structured language model programs.
Preprint, arXiv:2312.07104.

https://qwenlm.github.io/blog/qwen2.5-1m/
https://qwenlm.github.io/blog/qwen2.5-1m/
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104


Model Abbr. Configs Values

Llama-2-7B-32K-Instruct (Together, 2023) Llama2

#Layer 32
#Attention Heads 32
#KV Heads 32
Hidden Size 4096
Max Context Length 32768

Llama-3.1-8B-Instruct (MetaAI, 2024) Llama3.1

#Layer 32
#Attention Heads 32
#KV Heads 8
Hidden Size 4096
Max Context Length 131072

Qwen2.5-14B-Instruct-1M (QwenTeam, 2025) Qwen2.5-14B

#Layer 48
#Attention Heads 40
#KV Heads 8
Hidden Size 5120
Max Context Length 1010000

Qwen2.5-32B-Instruct (QwenTeam, 2024) Qwen2.5-32B

#Layer 64
#Attention Heads 40
#KV Heads 8
Hidden Size 5120
Max Context Length 131072

Table 4: Configurations of the models we used for evaluation.

Methods Abbr. Settings

Dense Dense Inference with the full KVCache (dense attention)
top-k topk Exact top-k attention
Loki (Singhania et al., 2024) Loki Top-k attention, Number of channels = 32
Quest (Tang et al., 2024) Quest Top-k attention, Block size = 32
MagicPIG (Chen et al., 2024) MP Top-k attention with KVCache Offloading, K=10, L=150
StreamingLLM (Xiao et al., 2023) SL KVCache compression, number of attention sinks=4
H2O (Zhang et al., 2024b) H2O KVCache compression, heavy hitter ratio=recent ratio
SnapKV (Li et al., 2024) S-KV KVCache compression, length of observation window=16
HATA HATA Top-k attention, trained hash weights (128 bits)
HATA-off HATA-off HATA with KVCache offloading, trained hash weights (128 bits)

Table 5: Configurations for the evaluated methods.

A Additional Evaluation Results

In this section, we present supplemental evaluation
results.

• In A.1, we provide detailed configurations of
the models and top-k attention algorithm base-
lines used for evaluation.

• In A.2, we additionally compare HATA with
dense model in three commonly used bench-
marks (InfiniBench, NIAH and LongBench-
v2).

• In A.3, we conduct ablation studies on HATA,
analyzing the effects of hash bits and token
budget on inference accuracy, as well as the ef-
ficiency gains achieved through the optimiza-
tions discussed in Sec 4.

• In A.4, we show that HATA can successfully
scale to larger models (Qwen2.5-14B and

Qwen2.5-32B) and handle longer contexts (up
to 256K tokens).

A.1 Models and Baselines

Table 4 summarizes key parameters of the eval-
uated models. Llama2 uses multi-head attention
(MHA), while the other three employ group-query
attention (GQA). Table 5 lists configurations of all
attention methods used for comparison.

A.2 Addtional Accuracy Results

We additionally test HATA across three com-
monly used benchmarks: InfiniBench (Zhang et al.,
2024a), LongBench-v2 (Bai et al., 2024) and Need-
in-a-Haystack (Kamradt, 2023). In all the three
benchmarks, HATA achieves near-lossless accu-
racy compared with dense model.
InfiniteBench. InfiniteBench covers tasks of
QA, coding, dialogue, summarization, and re-
trieval, with an average length of 214K. We eval-



Methods Sum Choice BookQA DialQA ZhQA NumStr Passkey Debug MathFind AVG.

Dense 20.36 57.64 38.33 18.50 27.57 97.80 100.00 22.59 23.71 45.17

HATA 19.27 57.64 37.52 18.50 27.27 96.44 100.00 22.59 23.71 44.77

Table 6: Accuracy results on InfiniteBench (Zhang et al., 2024a) for Llama3.1 model with sparse token bud-
get=2048. Samples exceeding the model’s maximum context window are truncated to fit within it.

Methods Easy.Short Easy.Medium Easy.Long Hard.Short Hard.Medium Hard.Long Total

Dense 44.07 28.41 31.11 32.23 25.98 25.40 30.42
top-k 40.68 25.00 33.33 29.75 25.20 23.81 28.63

HATA 38.98 27.27 35.56 29.75 26.77 25.40 29.62

Table 7: Accuracy results on LongBench-v2 (Bai et al., 2024) for Llama3.1 model with sparse token budget=1024.
Samples exceeding the model’s maximum context window are truncated to fit within it.

1K 5K 10K 14K 19K 23K 28K 32K
Context Length

0

22

44

67

89

D
ep

th
 P

er
ce

nt
 (

%
) Llama-2 (Dense)

1K 5K 10K 14K 19K 23K 28K 32K
Context Length

Llama-2 (HATA)

32K 46K 59K 73K 87K 101K 114K 128K
Context Length

0

22

44

67

89

D
ep

th
 P

er
ce

nt
 (

%
) Llama-3.1 (Dense)

32K 46K 59K 73K 87K 101K 114K 128K
Context Length

Llama-3.1 (HATA)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Needle-in-a-Haystack evaluation results. For
HATA, the sparse token budget is 512 for Llama2 and
2048 for Llama3.1.

uated HATA on this benchmark using Llama3.1
to demonstrate its effectiveness in complex long-
context scenarios. The results are shown in Table 6.

LongBench-v2. LongBench-v2 is an update of
the LongBench benchmark, which comprises 503
multiple-choice questions with context lengths
spanning from 8K to an extensive 2M words. We
employed the Llama3.1 model on LongBench-v2.
The accuracy results are categorized based on two
key dimensions: task difficulty (Easy, Hard) and
context length (Short, Medium, Long). As shown
in Tabel 7, HATA consistently maintains model
accuracy across most tasks, and even outperforms
the exact top-k attention in certain scenarios.

Needle-in-a-Haystack. Needle-in-a-Haystack is
a retrieval task. By varying the haystack length
and the depth of the needle, we can comprehen-
sively evaluate the effectiveness of HATA in re-
trieval tasks. For Llama2, we set the haystack
length ranging from 1K to 32K to fit within the
model’s context window. While for Llama3.1, we

128 256 512 1024 2048 4096
Token Budget

50

55

60

65
M

od
el

 A
cc

ur
ac

y

Llama2 on lcc

Loki
Quest
HATA
Dense

512 1024 2048 4096 8192
Token Budget

40

50

60

70

M
od

el
 A

cc
ur

ac
y

Llama3.1 on FWE

Figure 7: Token budget ablation.

extended the range from 32K to 128K. As shown in
Figure 6, HATA achieves accuracy results similar
to the dense attention.

A.3 Ablation Study

In this subsection, we conduct ablation studies on
HATA. For accuracy, we investigate the impact of
sparse token budget and the number of hash bits on
HATA’s performance. For inference efficiency, we
examine the performance improvements brought
by the optimization introduced in Sec 4.
Token budget ablation. First, we examine the
impact of token budgets on HATA’s performance.
As shown in Figure 7, HATA consistently outper-
forms Quest and Loki under the various budgets.
Notably, as budgets decrease, HATA’s accuracy
degrades minimally, maintaining acceptable perfor-
mance even under 0.4% token ratio, highlighting
the strong potential of learning-to-hash.
Hash bits ablation. Next, we explore the effect
of hash bit count (rbit) on inference accuracy. As
depicted in Figure 8, increasing rbit from 32 to 128
leads to improved accuracy across four datasets
and two models. At rbit=128, accuracy approaches
near-lossless levels, comparable to dense attention,
with further increases causing only minor fluctua-
tions. Therefore, we adopt rbit=128 as an optimal



Methods LCC PRetr HQA TQA Repo Sam Trec MQA 2Wiki Gov PCnt MltN Qaspr AVG.

Dense 44.32 100.00 65.96 88.41 36.25 45.52 76.34 53.73 60.68 31.93 22.83 22.14 41.41 53.04

HATA 44.86 99.67 65.87 88.49 37.41 45.41 76.67 53.45 60.70 31.25 20.50 22.02 41.46 52.90

Table 8: Accuracy results on LongBench-e (Bai et al., 2023) for Qwen2.5-14B-Instruct-1M (QwenTeam, 2025)
model with sparse token budget=512.

Methods LCC PRetr HQA TQA Repo Sam Trec MQA 2Wiki Gov PCnt MltN Qaspr AVG.

Dense 54.04 99.83 69.27 86.26 36.03 43.60 75.67 52.28 60.69 30.14 22.00 21.91 44.08 53.52

HATA 53.90 100.00 68.58 87.55 36.22 42.75 75.67 52.29 60.51 30.17 22.00 21.79 43.70 53.47

Table 9: Accuracy results on LongBench-e (Bai et al., 2023) for Qwen2.5-32B-Instruct (QwenTeam, 2024) model
with sparse token budget=512.

Methods NS1 NS2 NS3 NMK1 NMK2 NMV NMQ VT FWE QA1 QA2 AVG.

Dense 100.00 100.00 100.00 100.00 90.00 85.00 97.50 100.00 95.00 60.00 40.00 87.95
top-k 100.00 100.00 100.00 100.00 90.00 81.25 98.75 100.00 88.33 60.00 40.00 87.12

HATA 100.00 100.00 100.00 100.00 95.00 85.00 97.50 96.00 85.00 60.00 45.00 88.05

Table 10: Accuracy results on RULER(256K) (Bai et al., 2023) for Qwen2.5-14B-Instruct-1M (QwenTeam, 2025)
model with sparse token budget=4096 (1.56%)

32 64 96 128 160 192 256
rbit

45

50

55

60

65

70

M
od

el
 A

cc
ur

ac
y

lcc

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

36

40

44

48

52

56

M
od

el
 A

cc
ur

ac
y

repobench-p

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

66

68

70

72

74

76

78

M
od

el
 A

cc
ur

ac
y

trec

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

14

18

22

26

30

34

38

M
od

el
 A

cc
ur

ac
y

gov_report

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

Figure 8: Hash bits ablation.

setting, balancing accuracy and computational effi-
ciency.

Optimizations ablation. Lastly, we evaluate the
impact of HATA’s optimizations on inference ef-
ficiency: high-performance hamming score op-
erator (Score), fused gather with FlashAttention
(FusedAttn), and kernel fusion for hash encoding
(Encode). Using Llama2’s attention module with
128K input, we apply these optimizations incre-
mentally. Figure 9 shows that Score reduces the
total latency of attention module by 53.2%, Fuse-
dAttn by 23.8%, and Encode by 7.6%. The fully-
optimized HATA achieves a 6.53× speedup over a
simple PyTorch implementation.

0 250 500 750 1000 1250 1500 1750 2000
Latency (us)

+Encode+FusedAttn
+Score
Simple

264.74

396.31

808.70

1729.30

Figure 9: Performance ablation study of HATA opti-
mizations under 1.56% token budget.

A.4 Scalability to Larger-Scale Tasks
We further scale HATA to larger models (14B and
32B) and longer context inputs (256K).

We assessed HATA’s accuracy on Qwen2.5-14B
and Qwen2.5-32B using LongBench-e, as detailed
in Table 8 and Table 9, respectively. For both 14B
and 32B models, HATA maintains near-lossless
accuracy, underscoring its efficacy with large-scale
models.

We further evaluated HATA’s performance on
extreme-long contexts using RULER-256K on
Qwen2.5-14B-Instruct-1M. The results, as shown
in the table, demonstrate that HATA achieves com-
parable accuracy to exact top-k attention, highlight-
ing its capability to handle ultra-long context inputs
effectively.



B Configuration Details of HATA
Training

B.1 Data Sampling
We trained hash weights based on query and key
data sampled from real world datasets. Detailed
sampling steps for a given sequence are as follows:

1. For a given token sequence of length n, gener-
ate its query Q := [q1, q2 . . . qn] ∈ Rn×d and
key K := [k1, k2 . . . kn] ∈ Rn×d by prefill-
ing.

2. Randomly sample one query qm ∈
R1×d,m ∈ [⌊n2 ⌋, n), and then accord-
ingly sample all the keys that comply
with the causal constraint: Km =
[k1, k2 . . . km] ∈ Rm×d. Then we form
m qk pairs {(qm, k1), (qm, k2) . . . (qm, km)}.

3. Compute qk score Score = qmKT
m ∈ R1×m

and sort it in descending order.

4. Split the qk pairs into positive and negative
samples and assign similarity labels:

For the qk pairs whose score lies in top 10%
of sorted Score, we view them as positive
samples. They are assigned linearly decayed
labels in [1, 20];

For the qk pairs whose score lies in bottom
90% of sorted Score, we view them as neg-
ative samples, and assign fixed −1 as their
similarity labels.

5. Finally, we get m triplets:

{(qm, k1, s1), (qm, k2, s2), . . . , (qm, km, sm)}
where si is the similarity label we assigned
in the previous step. A triplet is a basic unit
for training. These triplets are independent
of each other during training. They can be
arbitrarily combined or shuffled along with
data sampled from other sequences, which
will help improve the generalization of train-
ing and avoid overfitting.

After introducing how to collect samples from
a single sequence, we clarify from where the se-
quences are sampled:

• 5 samples from Qasper of LongBench (Bai
et al., 2023) for short sequences;

• 2 samples each from LSHT and RepoBench-P
of LongBench for medium-length sequences;

• 2 samples from LongBench-v2 (Bai et al.,
2024) for ultra-long sequences.

The sampled sequences cover diverse domains
including Chinese and English QA, code under-
standing, ensuring the diversity of training data.

To fit within the model’s context window, we
truncated some long sequences. The final training
set for each model comprises 150K–300K qk pairs.

B.2 Training Setup

In this section, we report the detailed settings of
hash training. Firstly, in Table 11, we detail the
hyperparameter values during training, which are
shared by all the models.

During training, in order to facilitate data IO
and shuffling, we organize the sampled data into
chunks of 32K size. In each epoch, several chunks
(2 for Llama2 and 3 for Llama3.1, Qwen2.5-14B,
Qwen2.5-32B) will be loaded for training. Each
training epoch will perform multiple iterations on
these data. For all the models, 15 epochs and 20
iterations are required to train one layer’s hash
weights.

Class Hyper-
parameter Value

Custom
Hyperparamters

σ 0.1
ϵ 0.01
λ 1.0
η 2.0

SGD Optimizer
Hyperparamters

LR 0.1
Weight decay 10−6

Momentum 0.9

Table 11: Hyperparameter values during hash training.

C High-Performance Implementation for
Loki

As explained in Sec 5.3, Loki (Singhania et al.,
2024) lacks a high-performance implementation.
While Loki has provided a kernel fusion of gather
and matrix multiplication, their implementation
neither integrates with the widely-used FlashAt-
tention2 kernels (Dao, 2023) nor provides efficient
end-to-end inference, preventing fair performance
comparisons. To address these limitations, we
develop a high-performance Loki implementation
with these optimizations:



Fuse gather with FlashAttention. We em-
ploy the identical high-performance fused gather-
FlashAttention kernel for Loki as described in
Sec 4, ensuring fair comparison.
High-performance score operator. Similar to
HATA’s high-performance hamming score oper-
ator (see Sec 4), we implemented an optimized
scoring operator for Loki. This triton-based (Tillet
et al., 2019) kernel computes approximate scores
for token selection using the first R channels of
PCA-projected query and key vectors, eliminating
the redundant memory access overhead of low-rank
queries and keys.
Static KVCache. Static KVCache refers to a
pre-allocated GPU memory space for storing key-
value pairs. During a decoding step, this approach
only requires copying the newly generated key-
value pair into the allocated space, eliminating the
costly tensor concatenation operation, which in-
volves heavy data copy.


	Introduction
	Background and Motivation
	LLM Inference
	KVCache
	Top-k Attention
	Motivation

	HATA's Design
	Learning-to-Hash for Top-k Attention
	Hash Modeling
	Training Data Construction

	HATA Top-k Attention Algorithm

	Hardware-Efficient Optimizations
	Empirical Evaluation
	Experimental Setup
	Accuracy Evaluation
	Efficiency Evaluation

	Related Works
	Conclusion
	Limitations
	Additional Evaluation Results
	Models and Baselines
	Addtional Accuracy Results
	Ablation Study
	Scalability to Larger-Scale Tasks

	Configuration Details of HATA Training
	Data Sampling
	Training Setup

	High-Performance Implementation for Loki

