Foresight Indexing: Accelerating B+tree Index with
Programmable Switches on the Network Path

Feiyu Wang*, Qiuheng Yin', Yixin Zhang', Tong Yang*
* School of Computer Science, Peking University, Beijing, China
t School of Software & Microelectronics, Peking University, Beijing, China
wangfeiyu@pku.edu.cn, yinqiuheng @stu.pku.edu.cn, yxzh@alumni.pku.edu.cn, yangtong @pku.edu.cn

Abstract—The B+tree indexing scheme is widely employed in
file systems and database systems. Modern data centers often
adopt a disaggregated architecture, where compute servers and
storage servers are deployed on separate machines connected
via a network. Storage servers typically rely on B+tree-based
indexing. However, with the rapid growth in network bandwidth,
the bottleneck has shifted from the network to the indexing,
challenging the scalability of these systems. In this paper, we
present FOREIN, a novel architecture that offloads part of the
storage indexing process to programmable switches within the
network path. Specifically, we make three key contributions.
First, we develop the PREFIXCOVER algorithm, which converts
a B+tree query into a longest prefix match query. This trans-
formation allows partial deployment of B+tree operations in the
switches at line rate. Second, we propose a greedy algorithm that
dynamically adapts the PREFIXCOVER algorithm to the resource
constraints of programmable switches. Third, we design a data
plane leveraging programmable switch capabilities, ensuring
consistency between servers and switches with minimal overhead
and minimal device modifications. We implement FOREIN on a
testbed and conduct extensive experiments. Results demonstrate
that FOREIN improves the throughput of B+tree-based storage
servers by an average of 1.2 times. The source code is publicly
available on GitHub [1].

Index Terms—B+tree index, LPM, in-network computing,
programmable switches

I. INTRODUCTION

The B+tree [2], [3], [4], [5] is a widely-used efficient
index scheme, particularly in disaggregated data centers, where
compute and storage servers are connected via a network.
With cloud computing and faster networks, the performance
bottleneck has shifted from networking to indexing [6], [7],
[8]. As bandwidth scales, CPUs struggle to handle B+tree
operations at line rate. While technologies like Remote Direct
Memory Access (RDMA) help reduce CPU overhead [9], [10],
indexing remains a critical bottleneck since the overhead of
executing B+tree operations and managing memory access
makes achieving high performance difficult. In particular, even
when the entire index resides in memory, each lookup still
incurs multiple dependent memory accesses starting from
the root. Several studies have explored ways to mitigate the
CPU bottleneck and enhance system performance, including

This work was supported in part by the National Key Research and
Development Program of China under Grant 2024YFB2906601, in part by the
National Natural Science Foundation of China (NSFC) under Grant 62372009.

Corresponding author: Tong Yang (yangtong @pku.edu.cn).

Memcached [11], SwitchKV [12], NetCache [13], etc. Al-

though these hardware-based solutions offer substantial speed

improvements, their high cost remains a barrier to large-scale
deployment.

The emergence of programmable switch ASICs has made it
possible to customize network functions and offload selected
workloads from servers into the network itself [13], [14],
[15], [16], [17], [18]. In particular, offloading the B+tree
index to programmable switches is a promising direction for
accelerating data center operations. Beyond programmable
switches, many commodity switches and routers can be con-
figured for simple user-defined packet processing, yet their
hardware resources—especially longest prefix match (LPM)
tables—are often underutilized. With the growing adoption of
rack-scale disaggregated storage architectures [19], top-of-rack
(ToR) switches are in a unique position to offload computation
from storage servers, as their routing logic is relatively simple
and stable. By leveraging both the programmability and idle
resources of these switches, it becomes feasible to push part
of the indexing workload directly into the network fabric.
Furthermore, the inherent hierarchical structure of the B+tree
naturally decomposes its operations into independent sub-
tasks, making it particularly amenable to partial offloading.
Importantly, partial offloading enables a design point between
two extremes: caching-based approaches that remain purely
endpoint-centric, and fully in-network designs that embed
data structures directly into switches. This middle ground
allows the network to provide lightweight traversal foresight
without replicating or relocating the B+tree itself. In summary,
motivations for offloading the B+tree index to the network are:
« Indexing Bottleneck. Index lookups are a major perfor-

mance bottleneck in large-scale storage systems, especially

for read-dominant and skewed workloads where a small
fraction of keys accounts for most accesses.

o Programmable Switches. Modern switches support flex-
ible, programmable packet processing, enabling new in-
network computing paradigms.

o Spare LPM Resources. Many ToR switches have signif-
icant unused LPM capacity, which can be repurposed for
indexing tasks.

o Layered B+tree Structure. The balanced, hierarchical or-
ganization of the B+tree allows its traversal to be decom-
posed and partially executed within the switch.

We present FOREIN (Foresight Index), a B+tree-based

Data Plane
of Switch

Control
Plane
Update A
IndexLPM

p3 p3
IndexLPM: Key — Pointer

1
1

1

1

1

!
B |
H I
1

1

1

Transform the

B+Tree into
[o]a] [2]3] [5]s2] [24]2s] LPM operations

Storage Server with a B+Tree Index

Fig. 1. Overview of FOREIN. FOREIN utilizes PREFIXCOVER to transform
B+tree operations into LPM lookups, leveraging INDEXLPM in the switch’s
data plane, which is managed by the control plane. The INDEXLPM maps
each query key to a pointer that indicates the location of a specific B+tree node
along the network path. For example, consider a client issuing a query with
key = 3. The switch appends its pointer p2 in the packet. Upon receiving the
packet, the storage server initiates the B+tree lookup directly from the node
N> as indicated by pa, instead of the root node.

indexing scheme that leverages programmable switches to
offload selected B+tree traversal steps, rather than relocating
the index itself, thereby accelerating server-side performance.
Figure 1 provides an overview of FOREIN. To enable efficient
offloading, we first propose the PREFIXCOVER algorithm,
which transforms B+tree operations into LPM lookups. We
then introduce a data structure called INDEXLPM to maintain
the mapping from B+tree keys to their corresponding data
node pointers. Moreover, we propose a greedy algorithm
that adapts to the resource constraints, ensuring efficiency
across diverse hardware configurations. FOREIN implements a
packet-processing pipeline that utilizes INDEXLPM to handle
B+tree queries. The pipeline encapsulates each query with a
pointer to a node along the key’s search path in the original
B+tree, allowing the server to begin the search from a deeper
data node rather than the root, thus reducing computational
overhead. In summary, FOREIN accelerates B+tree indexing
by offloading the B+tree into the network path via PREFIX-
CoOVER and INDEXLPM, alleviating the CPU bottleneck in
B-+tree-based storage systems. We implement FOREIN on a
testbed and evaluate its performance, demonstrating an average
throughput improvement of 1.2 times for the B+tree index.
In summary, we make the following contributions:

« We propose the PREFIXCOVER algorithm, which transforms
B+tree sub-operations into LPM operations and adapts to
varying LPM resources available in programmable switches.

e We present FOREIN, a B+tree-based index architecture
that leverages programmable switches to accelerate B+tree
operations on the network path.

« We implement FOREIN on a testbed and evaluate its perfor-
mance, demonstrating an average throughput improvement
of 1.2 times for the B+tree index scheme.

We introduce the background and motivation of this work in

Section II. Section III present the overview of PREFIXCOVER.
Section IV details the PREFIXCOVER algorithm and the pro-
posed greedy algorithm for adapting PREFIXCOVER to varying
LPM resources in network data planes. The system design of
FOREIN is described in Section V. Implementation details are
provided in Section VI, and performance evaluations of both
PREFIXCOVER and FOREIN are presented in Section VII.

II. BACKGROUND
A. Programmable Switches

The advent of programmable switches, such as Barefoot
Tofino [20], [21], [22], [23], [24], has fundamentally trans-
formed modern network infrastructure. Central to this trans-
formation is P4 [25], a protocol-independent language that
enables developers to define custom packet processing logic
in a hardware-agnostic manner. By targeting any network
device that supports the P4 runtime [26], P4 decouples soft-
ware from hardware constraints and accelerates innovation
across the networking stack. Programmable switches imple-
ment user-defined network functions directly in hardware,
while improving the adaptability of network systems. P4-
based switches typically adopt a pipeline of Match-Action
Units (MAUs), where each stage processes packets according
to rules set by the control plane and compiled from P4
programs. This architecture allows rapid, dynamic updates to
the data plane’s behavior without physical hardware changes.
Beyond basic routing and forwarding, programmable switches
drive advances in network monitoring [27], [28], [29], [30],
security [31], [32], and application-specific optimizations [33],
[34], [35], [36], making them a cornerstone of next-generation,
flexible network architectures.

B. B+tree

B+tree is a self-balancing tree data structure. As a widely
adopted index structure, it underpins storage systems such
as NTFS directories [37], [38], and database indexes in
InnoDB (MySQL), SQLite, and SQL Server. A B+tree orga-
nizes data into a root, internal nodes, and leaf nodes, with
all records stored at the leaves. Each node holds multiple
keys—internal nodes guide the search, while leaf nodes store
actual records—resulting in a high fan-out and shallow tree
depth. Lookup, insertion, and deletion always begin at the root
and follow a unique path to a leaf, with the tree rebalancing
as needed through node splits and merges. The high fan-out
and balanced nature of B+tree enable efficient index traversal
across a wide range of storage architectures. As illustrated
in Figure 2(a), a key feature of B+tree is its layered and
balanced design: all data resides at uniform-depth leaf nodes,
and any search follows a deterministic root-to-leaf path. This
layered and deterministic structure allows indexing to begin at
any intermediate node along the search path, enabling flexible
traversal strategies for performance optimization.

III. OVERVIEW OF FOREIN

This paper proposes using programmable switches and
their sparse LPM resources to accelerate B+tree-based storage

servers by offloading part of the index to the data plane.
Figure 1 shows the overview of FOREIN, where server-side
B+tree-based key-value stores are enhanced by offloading in-
dex operations to programmable switches, reducing CPU load
and alleviating indexing bottlenecks. FOREIN extends standard
L2/L3 routing with a custom module, INDEXLPM, which
supports B-+tree index offloading while remaining compatible
with existing protocols. The switch maintains INDEXLPM, an
extended LPM table mapping keys to pointers, intentionally
limiting data-plane logic to LPM lookups for line-rate pro-
cessing. These entries are installed during initialization by a
control-plane algorithm, PREFIXCOVER, which computes and
loads the necessary mappings. The FOREIN protocol supports
Get, Put, and Delete operations. Upon receiving a packet,
the switch performs a INDEXLPM lookup and appends a
pointer to a relevant internal or leaf node, bypassing the
root and reducing memory access overhead. By leveraging
in-network processing, FOREIN effectively mitigates indexing
bottlenecks and improves the performance of B+tree-based
storage systems.

IV. ALGORITHM: PREFIXCOVER

This section introduces PREFIXCOVER, an algorithm for
converting B+tree indexes into LPM tries to enable efficient
offloading into programmable switch data planes. The key
idea is to aggregate the key intervals of B+tree nodes into a
minimal set of LPM prefixes, maximizing resource efficiency.
A central challenge is the limited and variable LPM capacity
of switch data planes. PREFIXCOVER addresses this with
two components: (1) a compact interval-to-prefix conversion,
and (2) a resource-aware, adaptive selection strategy detailed
in Section I'V-B.

A. The Basic Version

1) Basics of B+tree: A B+tree is a balanced search tree
widely used in storage systems. All data records are stored
in the leaf nodes, which are doubly linked for efficient range
queries, while internal nodes serve only as navigational keys.
Given a query key k, the goal is to rapidly identify the unique
leaf node whose interval [Ig, Ig] = [kmin, kmax] contains k.
To enable offloading to a switch that supports Longest Prefix
Match (LPM), we map each interval to a set of LPM prefixes.

2) Interval-to-Prefix Conversion: Let keys be represented
as W-bit unsigned integers. A prefix V/L denotes the set of
all keys = whose L most significant bits match those of V,
ie., (z & mask(L)) = (V & mask(L)), where mask(L) is a
W -bit mask with the highest L bits set to 1 and the remaining
W — L bits set to 0. For example, when W = 4, the prefix
5/4 (binary 0101/4) matches only the integer 5, whereas 5/3
(binary 0101/3) matches the set {4,5}.

Given a leaf interval [I, Ig], our goal is to cover all integers
in this range with the minimal set of such prefixes. The con-
version algorithm works as follows: The algorithm computes
the minimal set of LPM prefixes that precisely cover a given
integer interval [Ip, Ig]. It operates iteratively, maintaining a
queue of candidate prefixes. At each iteration, the algorithm

\

14

(a) Original B+tree.

P1 | P2 P4

%\%\

o of

Ny p3 p3

(b) LPM trie.

Fig. 2. Transformation from B+tree intervals to minimal LPM prefix covers.

selects a prefix from the queue and determines whether its
value range is entirely contained within the target interval. If
80, this prefix is added to the cover set. If not, the prefix is split
into its left and right child prefixes by increasing the prefix
length, and any child whose range intersects the target interval
is enqueued for further examination. This process continues
until the queue is empty, at which point the algorithm returns
the set of selected prefixes as the smallest possible prefix
cover for the interval. The approach effectively decomposes
the interval into the largest possible binary-aligned subranges
at each step, ensuring both correctness and minimality of the
resulting cover.

Concrete Example: Consider node N3 with the interval
[5,12]. Its binary representation is [01012, 11002]. The small-
est set of prefixes that cover this range is:

e 5/4 (01012, length 4): covers 5

e 6/3 (01102, length 3): covers from 6 to 7

e 8/2 (10002, length 2): covers from 8 to 11

e 12/4 (11004, length 4): covers 12
Thus, [5,12] — {5/4,6/3,8/2,12/4}. Each prefix can be
seen as a mask rule, just as in network routing.

3) Eliminating Hollow Prefixes: Not every generated prefix
corresponds to actual data keys; some are “hollow prefixes”
that cover gaps where no real key exists (e.g., in a sparse key
space). To avoid unnecessary LPM entries, we filter out all
hollow prefixes, retaining only those that map to actual data.
For the above example, if only keys 5 and 12 exist, 6/3 and
8/2 are hollow and discarded. Only 5/4 and 12/4 are kept
and installed as LPM entries in the switch, each acting as
a pointer to the corresponding leaf node. This optimization
greatly reduces resource usage and mitigates the risk of prefix

explosion under limited TCAM capacity.
4) Summary: By mapping each leaf interval in the B+tree

to a minimal set of LPM prefixes and discarding hollow
prefixes, we can efficiently offload index lookups to pro-
grammable switches using minimal hardware resources. Fig-
ure 2 visualizes this conversion.

B. Adapting to Available Resources

Although offloading all leaf nodes of the B+tree to the
switch would provide the fastest lookups, this is often in-
feasible due to the limited LPM table size on programmable
switches. Therefore, our goal is to select a subset of nodes to
offload, maximizing acceleration while respecting hardware
resource constraints.

1) Problem Formulation: Formally, we model the problem
as follows:

o Each B+tree node n; is associated with a weight w;
(reflecting its importance, e.g., access frequency) and a
cost c; (the number of LPM entries required to offload
this node).

o The switch provides a total LPM resource budget M (the
maximum number of LPM entries available).

o Let S denote the set of nodes selected for offloading.

If a query’s target key falls under a node in S, the switch
can redirect the query directly to this node, skipping higher
levels of the tree. Otherwise, the query must start from the
root. We seek to minimize the average memory accesses per
query (AMA), defined as:

AMA = Z wLDL,

L€leaves

where wy, is the weight of leaf node ny, and Dy, is the number
of nodes traversed from ny up to its closest ancestor in .S
(including both endpoints). If no ancestor of ny, is in S, Dy,
equals the depth of ny. The constraint is:

ZC]‘SM.

n; €S
Thus, the optimization problem is:

AMA st

min
SC{ni,n2,....,nN}

chSM'

n;es

2) Greedy Algorithm: As the above problem is combi-
natorial and intractable for large trees, we design a greedy
algorithm for practical deployment.

1) Initialization: Start with S = {root}. At this stage, every
query must traverse the full height of the tree.

2) Iterative Selection: At each step, among all nodes not in
S, select the node n* whose offloading yields the largest
reduction in AMA.

3) Update: Add n* to S, update the weights and path
lengths for affected nodes, and remove n*’s nearest
ancestor (other than root) from S to prevent redundant
offloading on the same path.

4) Termination: Repeat until adding another node would
exceed the resource limit M.

The Algorithm 1 summarizes our approach. This greedy
method ensures that, at each step, we make the most effective
use of limited LPM resources and incrementally build an
offload set providing a substantial reduction in query latency.

V. SYSTEM DESIGN OF FOREIN

This section describes the system design of FOREIN. To
integrate PREFIXCOVER with programmable switches, we
implement the FOREIN protocol at the application layer, above
UDP or TCP (Section V-A). The system workflow is outlined
in Section V-B. FOREIN supports three primary operations:
Get, Put, and Delete. We detail the Get operation in Sec-
tion V-C, and discuss dynamic B+tree updates in Section V-D.

Algorithm 1: Resource-Constrained Offloading

Input: B+tree 7' with node weights w;, costs ¢;,
resource limit M
Output: Selected offload set .S
1 S « {root};
2 O+ Croot»
3 while C < M do
4 n* < node (not in S) with largest AMA reduction;
5 if C' + ¢, > M then

6 | break
7 Add n* to S;
8 Remove n*’s nearest ancestor from S (if not root);

9 C + C+ cp+;
10 Update affected weights and path lengths;

11 return S

TCP/UDP
reserved port
|‘— Foreln PI’OtOCOl—Ol

Fig. 3. Packet format of the FOREIN protocol.

A. Network Protocol

In our architecture, the B+tree-based key-value store oper-
ates as an application-layer service in a typical client-server
scenario. To enable switch-level acceleration, the FOREIN pro-
tocol is designed as an application-layer protocol compatible
with both UDP and TCP. This ensures seamless deployment
in diverse network environments, leveraging UDP’s speed or
TCP’s reliability as needed. For effective packet processing,
FOREIN uses a reserved port number so that programmable
switches can easily identify and handle its packets.

1) Packet Format: As shown in Figure 3, each FOREIN
packet consists of four fields: OP, SEQ, KEY, and VALUE.
o OP: Operation code, indicating Get, Put, Delete, Install,

or Reply.

o SEQ: Sequence number, used when transferring large val-
ues.
o KEY, VALUE: The query’s key and value. For Get and

Delete, VALUE is empty.

The reply packet format is identical to the query format, with
OP set to Reply. Additionally, for updates between the server
and controller, an Install operation allows dynamic modifica-
tion of the LPM table, with KEY and VALUE indicating the
prefix and its length.

2) FOREIN Switches: Integrating FOREIN with existing
network stacks requires only minimal switch changes. The
main enhancement is recognizing and processing FOREIN
protocol packets, while preserving standard L.2/L.3 forwarding
for all other traffic. Upon receiving a packet, the switch
checks whether it is a FOREIN query. If so, it performs an
LPM lookup on the KEY field, and appends a pointer to
the matched B-+tree node. Otherwise, the packet is forwarded
using standard routing. This design enables the switch to
provide “foresight”—by offloading part of the index lookup,

ﬁ Normal Packet

Value Value @

O Packet Packet @
Delete

. Update A
~< Message
S

Update

. Message

Entries Entries

Q Key I: Key+Ptr @
O Client

RN

O Key Key+Ptr @
8 Server

: Switch

Fig. 4. FOREIN workflow.

Controller

the server can directly jump to a deeper node in the B+tree,
reducing memory accesses and improving performance.

B. Workflow of FOREIN
The overall workflow is illustrated in Figure 4. Processing

proceeds as follows:

o If the packet is not a FOREIN packet, it is forwarded
normally by the switch using L2/L3 routing.

o If the packet is a FOREIN packet, the switch consults its
LPM table:

— Get: The switch appends a pointer to the relevant B+tree
node, and the server uses it to efficiently locate and return
the value. The reply (OP set to Reply) is forwarded as a
normal packet.

— Put/Delete: The switch appends the pointer, and the
server performs the update on the B+tree. The server
then computes if the LPM table needs updating and, if
so, notifies the controller, which installs the necessary
changes on the switch.

While Figure 4 depicts the server and controller as separate
entities, they can be integrated on a single machine for ease
of deployment.

C. Lookup of FOREIN

When a FOREIN switch receives a query, it appends a
pointer indicating the target node where the key is likely
to reside. The server then extracts this pointer, accesses the
specified node, and performs a key lookup starting from there.
If the key exists, INDEXLPM ensures direct access to the
correct node. However, due to omitted hollow prefixes, keys
that are not in the B+tree (“alien keys”) may be routed to nodes
where they do not belong. To guarantee correctness and min-
imize unnecessary lookups, we introduce two complementary
methods.

1) Range Check and Fallback: Upon receiving a query, the
server checks if the queried key falls within the range of the
target node. If so, the lookup proceeds normally. If not (i.e.,
the key falls into a hollow prefix or is not present), the server
performs a fallback: it restarts the search from the root of

| Key1 (normal) | Ptrl | | Key2 (alien) |Ptr2 | |Key3 (hot) | Ptr3 I

Root Layer
Not exists!

To node 0

Layer 1

Layer 2
Installed

Layer 3
Hot Keys

) Key Space {

Fig. 5. Lookup process for different types of keys in FOREIN. Dark blue:
covered prefixes; Light blue: hollow/uninstalled zones.

the B+tree. This mechanism ensures correctness by redirecting
alien keys to a standard full traversal, at the cost of a single
extra memory access.

2) Bottom-line Guarantee: To further reduce fallback over-
heads, we propose a “bottom-line guarantee™: all nodes from
an upper layer (e.g., the first internal layer) are installed in the
switch, ensuring complete coverage of the key space at that
layer. For any key, if a lower-layer prefix does not match, the
query is redirected to the appropriate node at this upper layer
instead of the root. Since upper layers have few nodes, this
incurs little memory overhead but eliminates unnecessary root

traversals for alien keys.
3) Hybrid Policy Example: Figure 5 shows how hybrid

policies improve lookup efficiency:

« Root Layer: No prefixes installed. Root serves only as a
final fallback for alien keys.

o Layer 1 (Bottom-line): Prefix covers are created for all
nodes, and gaps are merged with adjacent nodes to ensure
full key-space coverage. Thus, most alien keys are redirected
here, not to the root, for an efficient secondary check (e.g.,
key 2).

« Layer 2 (Main Index): The main prefix cover is installed
here, omitting hollow prefixes to save space. Valid keys
(dark blue) are efficiently directed to their target node (e.g.,
key 1). Alien keys in hollow zones are redirected up to
Layer 1.

« Layer 3 (Hot Keys): Hot leaf nodes, identified by access
frequency, are directly offloaded. Queries for hot keys (e.g.,
key 3) are completed in a single memory access, optimizing
for common cases.

This layered approach, combining range checks, bottom-line

guarantees, and targeted hot key offloading, ensures both cor-

rectness and high efficiency in FOREIN lookups with minimal
resource overhead.

D. Update and Coherence

Put and Delete operations in FOREIN may trigger updates
to both the B+tree and the switch’s INDEXLPM table. To
ensure correctness, updates are handled in two coordinated
phases:

« Phase I: The server updates its local B+tree and generates
the new LPM entries required for the switch.

o Phase II: The server sends these table entries to the
controller, which applies them to the switch data plane.
Coherence between the B+tree and INDEXLPM must be
preserved during this process.

1) Phase I: Update Procedure: During Phase I, the server
first modifies the B+tree, then determines the necessary
changes to INDEXLPM. As summarized in Table I, different
scenarios arise based on the operation type and whether the
B+tree structure changes.

o Put:

— If the key exists, only the value is updated.

— For new keys: (i) If matching an installed prefix, do noth-
ing. (ii) If matching a hollow prefix, install the missing
prefix (Figure 6(a)). (iii) If the node’s key range changes,
install new prefixes and perform prefix aggregation if
possible (Figure 6(b)). (iv) If the insertion causes node
splitting, recalculate prefix covers for affected nodes.

o Delete:

— If the key does not exist, no action is taken.

— If no structural change, logic is similar to insertion
(possibly triggers prefix aggregation).

— If deletion leads to node re-balancing or merging, re-
calculate prefix covers for affected nodes to maintain
consistency.

P1 | P2 P3 Pa P1 Pa

N ~\
[p3il)
P3)\ P3)

p3 p3 P3

(a) Install a hollow prefix. (b) Prefix aggregation.

Fig. 6. Examples of updates.

2) Phase 1I: Coherence Management: Once updates are
sent to the controller, their installation in the switch may be
delayed. To ensure lookup correctness during this interval,
FOREIN employs the following strategies:

« Hollow prefix installation: Before installation completes,
keys in these ranges are temporarily routed to their parent
node, requiring one extra lookup. This guarantees correct-
ness at minimal performance cost.

« Prefix aggregation: New shorter prefixes are installed be-
fore old ones are removed. The server tracks “invalid” nodes
during the transition, ensuring all queries are either handled
directly or safely redirected.

o Prefix cover recalculation (for re-balance/merge/split):
New prefixes are always installed first.

— Re-balance: Keys may be briefly misdirected, but bidi-
rectional links allow correct redirection to sibling nodes.

— Merge: Invalid pointers are tracked, with queries redi-
rected until confirmation of update completion.
— Split: Original and new nodes are adjacent; sibling links
enable correct lookup if an outdated pointer is used.
Overall, FOREIN ensures strong coherence and correctness
during all update operations, with only minor and temporary
overhead.

VI. IMPLEMENTATION

We implement a prototype of FOREIN to validate its func-
tionality and performance. The prototype consists of four main
components: the programmable switch data plane, a control
plane agent, a B+tree-based server, and a benchmarking client.
The server and client run on separate machines connected to
different switch ports, with forwarding tables set up to enable
communication.

o Switch Data Plane: The data plane is programmed in
P4,¢ targeting Barefoot Tofino hardware. An LPM table
is compiled into the switch; it matches on 8-byte keys in
FOREIN protocol packets. For matched keys, the switch
attaches an 8-byte pointer to the packet using a “hit” action;
unmatched keys receive a default “NoAction.” Pointers use
8 bytes to align with the server’s x86-64 architecture.

o Control Plane Agent: The agent is a Python-based gRPC
server serving as the switch control plane. It receives prefix
entries and pointers via an RPC interface, translating them
into the format required by the Tofino switch. The agent
ensures consistency between the switch LPM table and the
B+tree database, and supports asynchronous updates for
high throughput.

o Server: The server is a DPDK application written in C++.
It maintains a B+tree for key-value storage, with keys as
8-byte unsigned integers (uint 64_t), but configurable for
other sortable types. The server parses incoming FOREIN
protocol packets, processes queries or updates using the
B+tree, and sends replies. For Put and Delete operations
that change the B+tree structure, the server determines
affected prefixes and triggers gRPC calls to the agent to
update the LPM table accordingly.

o Client: The client is a DPDK application implemented in
C. It generates and transmits FOREIN protocol requests
to the server and records replies. The client module also
tracks packet transmission and reception to measure real-
time throughput.

This modular design allows us to evaluate the end-to-end
performance of FOREIN in a realistic setup, including control
plane coordination and dynamic updates.

A. Deployment Considerations and Limitations

a) Coexistence with Routing Rules.: FOREIN leverages
LPM tables that are already widely used for routing and
forwarding. In practice, FOREIN operates in a logically sep-
arate namespace and does not interfere with existing L2/L.3
forwarding rules. Only a fraction of the available LPM entries
is allocated to INDEXLPM, and the priority of routing rules

TABLE I
DIFFERENT CASES OF UPDATE.

B+tree structure does not change. B+tree structure changes.
OoP Hit an . .
installed prefix. Hit a hollow prefix Range change Nodes re-balance Nodes merge Nodes split
. Install the . Re-calculate
Put Do nothing. hollow prefix. Prefix aggregation N/A N/A prefix covers.
Delete Do nothing. N/A Prefix aggregation Re-calculate Re-calculate N/A
prefix covers. prefix covers.

—a—L0——L1—-—L2—~—L3

—=—5MLO0 —e—10MLO

——L4 L5 —>— L6 —e—LO* —+—5ML1 —~—10ML1
050 10°

o g

a0 — i 010° ZN

x o 4

& 610

£30 z l ‘Q\

% '510°

320 — | §102] \ \\

o | = ‘)

$10 — o o o 2101 v

s = \'
o 10°

20

< iM 2M 5M 10M 0 4 8 12 16

Number of Keys Size of Prefix Cover

(a) Average prefix cover size of (b) The distribution of prefix cover
different layers. size.

Fig. 7. LPM resource usage of PREFIXCOVER

remains unaffected. This design allows FOREIN to be incre-
mentally deployed without modifying the switch forwarding
pipeline.

b) Multi-Tenancy and Isolation.: In multi-tenant envi-
ronments, INDEXLPM entries can be scoped per service or
per application by reserving disjoint prefix ranges or logical
tables. Since FOREIN does not modify packets across tenants
and only appends application-layer hints, it preserves isolation
guarantees provided by the underlying network.

c) Encrypted Traffic and Protocol Compatibility.: FOR-
EIN operates at the application layer and does not require
access to encrypted payloads. The switch only parses a small,
explicitly defined header field that is exposed to the network,
making FOREIN compatible with encrypted transport protocols
and existing security mechanisms.

d) Dynamic Workloads and Applicability.: As shown in
Section VII, frequent updates introduce additional control-
plane overhead for maintaining prefix consistency. Therefore,
FOREIN is most effective for read-dominant workloads with
moderate update rates, which are common in key-value serving
and database indexing scenarios. For highly write-intensive
workloads, the benefits of offloading may be reduced due to
update and coherence costs.

VII. EVALUATION
A. Methodology

1) Testbed: We evaluate FOREIN on a local testbed with a
programmable 100GbE Barefoot Tofino-based network switch
and two server machines (one as a FOREIN server and the
other as a client). Each server machine has a 12-core (24-
thread) CPU (Intel Xeon Silver 4116 CPU @ 2.10GHz), 32

—=#—0.9 ——0.95 ——0.99 —=—0.9 ——0.95 ——0.99

©
o

Py

\
N

10M 100 400 1600
Number of Installed Nodes

(b) AMA vs. # installed nodes.

~

w
=)
(=2}

o

=y

»
=)
w

Average Memory Access
N
(3]

Average Memory Access

N

=y
o

im 2M 5M
Number of Keys

(a) AMA vs. dataset size.

Fig. 8. AMA Improvement with the proposed greedy algorithm.

GB 2400 MHz DDR4 memory, and a 16 MB L3 cache. Each
server machine has a 100 Gbps Mellanox NIC connected to
the switch. The version of DPDK installed on the server and
client is 20.11.8 LTS.

2) Workloads: We generate workloads where keys satisfy
the Zipf distribution. The values are not important, so random
numbers are used. The number of times each key appears in the
workload is its frequency. The proposed greedy algorithm uses
these key frequencies to determine whether a node in B+tree
should be offloaded, as Zipfian access patterns are commonly
observed in production key-value stores and database indices.
Zipfian access patterns are widely observed in production key-
value stores and database indices, where a small fraction of
keys accounts for the majority of requests. We therefore focus
on varying the Zipf parameter to evaluate FOREIN under
representative skewed workloads. Longer keys or composite
keys can be supported by hashing or encoding them into
fixed-length prefixes before applying PREFIXCOVER, without
changing the algorithm.

3) Metrics: We use queries per second (QPS) as a metric
of throughput'. The ratio of query throughput with prefixes
offloaded in the switch to the throughput of the same system
with in-network offloading disabled is called speedup ratio.
We used the same workload in both cases when calculating
the speedup ratio. The speedup ratio directly shows the accel-
eration effect of FOREIN.

B. Performance of PREFIXCOVER

1) The LPM resource: We evaluate the average LPM re-
source usage per node in different layers of the B+tree, as

1kQPS stands for 1000 of queries per second

—=—0.90 ——0.95 ——0.99 —=—0.90 ——0.95 ——0.99

5100 13
@ -
o o =y
gaaoo B12 /
§_4soo §-
= 311
34200 & /
£
3900 1.0

100 400 1600 100 400 1600

Number of Installed Nodes Number of Installed Nodes

(a) Throughput vs. skewness. (b) Speedup Ratio vs. skewness.

Fig. 9. Performance of FOREIN under static workloads.

indicated by the size of the prefix cover. Figure 7(a) shows
the average size of prefix covers for nodes in various layers
of the B+tree. The layers are numbered from bottom to top,
with the deepest layer labeled as LO and the root node assigned
the highest number, determined by the number of keys. As the
dataset size increases, the average prefix cover size decreases
across all layers, except for the L6 layer. L6 is the root layer,
which consists of only one node and is therefore sensitive to
key distribution. Note that LO* refers to the case where the av-
erage size of the prefix cover is calculated without discarding
hollow prefixes. The results indicate that discarding hollow
prefixes can significantly reduce the resource consumption
in LO, compared to LO*. This reduction is also observed in
other layers, though for simplicity, we omit the data for these
layers in the figure. Figure 7(b) illustrates the distribution of
prefix cover sizes. The labels indicate the dataset size and
the corresponding B-+tree layer. The prefix cover sizes of
nodes within the same layer approximately follow a normal
distribution. Based on this observation, we use the average
LPM entries to estimate the cost of offloading a node, as
discussed in Section I'V-B.

2) Evaluation of the proposed greedy algorithms: We
evaluate the greedy algorithm designed to adapt to different
available LPM resources in Algorithm 1. The experimental
results demonstrate that the proposed greedy algorithm effec-
tively handles the number of installed nodes and behaves as
expected. Figure 8(a) shows how the Average Memory Access
(AMA) varies with the dataset size, while the number of
installed nodes is fixed at 3200. As the dataset size increases,
the AMA also increases due to the growth in the number
of B+tree nodes. Under the same dataset size, more skewed
workloads result in lower AMA, as the installed nodes can
accommodate more hot keys, thereby reducing memory access.
Figure 8(b) illustrates how AMA in B+tree operations varies
with the number of nodes installed in the INDEXLPM, under
key distributions characterized by different Zipf parameters.
The first data points represent AMA without any offloading.
The Zipf parameter controls the skewness of the key distri-
bution, with higher values indicating more skewed workloads
where a small subset of keys is accessed more frequently.
For a moderately skewed distribution (Zipf = 0.9), AMA
decreases gradually as more nodes are installed, reflecting the

—=—0.90 ——0.95 ——0.99

——1% ——5% ——25%

4000 4000
@ @ o
a. 3800 a. 3800
g 3600 9 3600
5 5 ~~
%3400 %3400
§3200 g 3200 /
£3000 £3000

2800 2800

100 400 1600 100 400 1600

Number of Installed Nodes Number of Installed Nodes

(a) Throughput vs. skewness. (b) Throughput vs. dataset size.

Fig. 10. Performance of FOREIN under dynamic workloads.

fact that a larger proportion of frequently accessed keys are
accommodated, thus reducing tree traversal depth. For a highly
skewed distribution (Zipf = 0.99), AMA decreases sharply
because most queries target a small subset of keys, which are
resolved with minimal memory access due to their placement
in offloaded nodes. The experimental results highlight the
effectiveness of FOREIN in optimizing AMA, particularly for
highly skewed key distributions.

C. Performance of FOREIN

1) Static Workloads: We use static workloads in this exper-
iment, where the client only sends Get requests to the server,
without any modification requests such as Put or Delete.
The B+tree is pre-constructed, and prefix entries are offloaded
to the switch during the server’s initialization phase. Once
initialized, the offloaded prefix entries in the switch remain
unchanged throughout the experiment.

A highly skewed workload, where most queries target a
small subset of keys, benefits from offloading hot keys to
the switch. This reduces the number of memory accesses on
the server, significantly improving throughput. The dataset
size is set to 1M keys. Figure 9(a) shows the throughput
under workloads with different levels of skewness. Since the
baseline performance varies, the speedup ratio is also shown
in Figure 9(b). As the number of installed nodes increases,
the throughput also improves. However, the relative speedup
decreases under highly skewed workloads. This is likely due to
the local cache of storage servers. In highly skewed workloads,
the local cache may improve the baseline performance due
to spatial locality, which results in fewer memory accesses.
Consequently, the speedup ratio decreases. In summary, the
experimental results demonstrate that FOREIN performs better
under skewed workloads, with an average speedup ratio of
approximately 1.2x.

2) Handling Dynamics: In this experiment, dynamic work-
loads are used. In addition to Get, the client sends Put
and Delete requests. The B+tree and the offloaded prefixes
may change as the server processes FOREIN protocol packets.
To handle updates, the server reloads outdated prefixes and
offloads new ones by calling the agent. An update (Put
or Delete) is considered successful only after the prefix
is successfully offloaded to the switch. Figure 10(a) shows

the performance of FOREIN under workloads with different
skewness. When the number of installed nodes is small,
FOREIN does not outperform the baseline due to the high
overhead of updates and coherence. As the number of in-
stalled nodes increases, the benefits of offloading begin to
outweigh the overhead, resulting in an average speedup of
1.05x. Figure 10(b) shows the performance of FOREIN under
workloads with different dynamic ratios. A higher ratio of
dynamic operations leads to lower performance for FOREIN.

Although the observed throughput improvements are moder-
ate, they are achieved without relocating the index, modifying
the server-side B+tree structure, or introducing specialized
hardware. Even under dynamic conditions, FOREIN does not
degrade baseline performance, providing a safe optimiza-
tion envelope. As such, FOREIN represents a lightweight
and orthogonal optimization that incrementally reduces index
traversal cost and can be combined with existing acceleration
techniques.

D. Hardware Resource Consumption

TABLE II
RESOURCES USED BY FOREIN IN TOFINO.

Resource Usage | Percentage

Exact Match Input xbar 2 0.13%

Ternary Match Input xbar 40 5.05%

VLIW Instructions 6 1.56%

SRAM 19 1.98%

TCAM 98 34.03%

Hash Bits 10 0.20%

The resource usage of FOREIN, when 3200 nodes are
installed, is summarized in Table II. FOREIN primarily utilizes
TCAM and Ternary Match Input xbar. With 3,200 nodes
installed, approximately 25,000 out of the 73,000 available
entries in the LPM table are consumed, accounting for about
34% of the total TCAM resources. Regarding other resources,
excluding Stateful ALUs, FOREIN’s usage remains below 6%.
Overall, the resource consumption of FOREIN is considered
moderate, especially considering its performance improve-
ments with a relatively small number of installed nodes.
Moreover, with the availability of additional TCAM resources,
there is potential for further performance enhancements.

VIII. RELATED WORK
A. In-Network Computing

The rise of programmable switches has enabled extensive
research in in-network computing, which exploits in-switch
data processing to boost system performance. SwitchKV [12]
combines high-performance cache nodes with lightweight
backend nodes to balance load, tracking cached keys, and
routing requests at line rate. NetCache [13] stores key-value
pairs directly in switches, significantly improving throughput
and latency, though limited by switch resource constraints.
IncBricks [14] introduces a hardware-software co-designed
caching fabric with basic computing primitives to enhance

cache functionality. DistCache [17] offers a distributed cache
with provable load-balancing for large-scale systems. Pegasus

[15] adds an in-network coherence directory to better han-
dle skewed workloads through selective key replication. Fat-
B+tree [18] embeds part of the B+tree into the hierarchical
connected programmable switches in the data center network,
enabling in-network traversal of tree nodes. Recent work
further explores programmable switches for complex opera-
tions, such as transactional processing [39], and in-network
aggregation for ML workloads [40]. These studies demonstrate
the growing versatility of in-network computing. Our proposed
FOREIN system builds on this line of work, but differs in
how the switch is involved in the indexing process. Instead
of embedding or traversing B+tree nodes in the data plane,
FOREIN leverages prefix-based lookups to provide lightweight
traversal hints, allowing the server to resume the search
from an intermediate node while keeping the original B-+tree
entirely on the server. This design prioritizes partial offloading
and resource awareness under practical switch constraints.

B. Disaggregated Data Centers

Disaggregated architectures are increasingly adopted in
modern, cloud-native data centers. Systems like Aurora [6],
Socrates [41], and PolarDB [7], [8] decouple compute and
storage nodes, enabling multi-tenant databases with elastic,
scalable resources built on shared storage pools. Disaggregated
memory architectures have also emerged to improve memory
utilization at data center scale, with rack-scale designs enhanc-
ing overall efficiency. Meanwhile, RDMA-based tree indexing
techniques [9], [10], [18] reduce remote access overhead in
distributed memory systems. These systems build multi-tenant
database services on top of a shared storage pool, achieving
improved elasticity and independent scalability for storage and
compute resources. Our proposed FOREIN system comple-
ments these approaches by accelerating B+tree indexing in
disaggregated environments and reducing RDMA operations,
particularly for read-dominant and skewed workloads, where
repeated index traversal remains a performance bottleneck.

IX. CONCLUSION

In this paper, we exploit programmable data planes and
sparse LPM resources to accelerate B+tree-based storage
servers. We propose an algorithm, PREFIXCOVER, to partially
convert the B+tree index into INDEXLPM and offload selected
B+tree traversal steps to programmable data planes. Based on
PREFIXCOVER, we design a system called FOREIN, which
integrates PREFIXCOVER and enhances the end-to-end perfor-
mance of B+tree-based storage systems. FOREIN incorporates
several optimizations to handle foreign keys and manage
B+tree dynamics efficiently. We implement FOREIN on a
testbed, and evaluation results demonstrate that FOREIN can
deliver up to 1.2 times end-to-end performance improvement
compared to the baseline solution. The authors have provided
public access to their code at [1].

ACKNOWLEDGMENT

The authors would like to express their gratitude to Dr.
Cheng Zhang for his invaluable advice and insightful discus-
sions on this work.

[1]

[3

=

[4]

[5

[t}

[6

=

[10]

(11]
(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

F. Wang, Q. Yin, Y. Zhang, and T. Yang, “Foresight indexing source
code,” https://github.com/foresight-indexing/foresight-indexing-code,
2025, available at GitHub.

D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR),
vol. 11, no. 2, pp. 121-137, 1979.

G. Graefe et al., “Modern b-tree techniques,” Foundations and Trends®
in Databases, vol. 3, no. 4, pp. 203-402, 2011.

J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The bw-tree: A b-
tree for new hardware platforms,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE). 1EEE, 2013, pp. 302-313.
0. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”
ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1-32, 2013.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
aurora: Design considerations for high throughput cloud-native relational
databases,” in Proceedings of the 2017 ACM International Conference
on Management of Data, 2017, pp. 1041-1052.

W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang et al., “Polardb serverless: A cloud native database for
disaggregated data centers,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2477-2489.

W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang, P. Wang,
Y. Wang, R. Kuan et al., “Polardb meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational database.”
in FAST, 2020, pp. 29-41.

Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed
b+ tree index on disaggregated memory,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 1033-1048.
T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and T. Kraska,
“Designing distributed tree-based index structures for fast rdma-capable
networks,” in Proceedings of the 2019 international conference on
management of data, 2019, pp. 741-758.

“Memcached key-value store,” https://memcached.org/, 2017.

X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman, “Be
fast, cheap and in control with switchkv,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), 2016, pp.
31-44.

X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 121-136.

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
in Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 795-809.

J. Li, J. Nelson, E. Michael, X. Jin, and D. R. Ports, “Pegasus:
Tolerating skewed workloads in distributed storage with in-network
coherence directories,” in Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation, 2020, pp. 387-406.
Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu, “Concordia:
Distributed shared memory with in-network cache coherence.” in FAST,
2021, pp. 277-292.

Z.Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“Distcache: Provable load balancing for large-scale storage systems with
distributed caching.” in FAST, vol. 19, 2019, pp. 143-157.

Y. Zhao, Y. Li, Z. Xu, T. Yang, K. Yang, L. Chen, X. Yao, and G. Zhang,
“Fat-b tree: Fast b tree indexing with in-network memory,” 2024.

S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black, A. Dou-
glas, N. Cheriere, D. Fryer, K. Mast, A. D. Brown et al., “Understanding
rack-scale disaggregated storage.” HotStorage, vol. 17, p. 2, 2017.

O. Michel, R. Bifulco, G. Retvari, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-36, 2021.

D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the
ai accelerator?” in Proceedings of the 2018 Morning Workshop on In-
Network Computing, 2018, pp. 20-25.

G. Siracusano and R. Bifulco, “In-network neural networks,” arXiv
preprint arXiv:1801.05731, 2018.

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

(36]

[37]

[38]
[39]

[40]

[41]

A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 15-28.

L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 15), 2015,
pp- 103-115.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.
“P4runtime specification.” https://p4.org/p4-spec/p4runtime/main/
P4Runtime-Spec.html, 2021.

L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “Flowstalker:
Comprehensive traffic flow monitoring on the data plane using p4,”
in ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE, 2019, pp. 1-6.

J. Geng, J. Yan, Y. Ren, and Y. Zhang, “Design and implementation
of network monitoring and scheduling architecture based on p4,” in
Proceedings of the 2nd International Conference on Computer Science
and Application Engineering, 2018, pp. 1-6.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 561-575.
Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang,
and J. Jiang, “Cocosketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 207-222.

Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, and C. Sun,
“P4tester: Efficient runtime rule fault detection for programmable data
planes,” in Proceedings of the International Symposium on Quality of
Service, 2019, pp. 1-10.

E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE access, vol. 9, pp. 87094-87 155,
2021.

H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang, W. Dou, and
G. Chen, “Flymon: enabling on-the-fly task reconfiguration for network
measurement,” in Proceedings of the ACM SIGCOMM 2022 Conference,
2022, pp. 486-502.

F. Hauser, M. Hiberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, vol. 212, p. 103561, 2023.

Y. Zhao, W. Liu, F. Dong, T. Yang, Y. Li, K. Yang, Z. Liu, Z. Jia, and
Y. Yang, “P4lru: towards an Iru cache entirely in programmable data
plane,” in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 967-980.

K. Yang, Y. Wu, R. Miao, T. Yang, Z. Liu, Z. Xu, R. Qiu, Y. Zhao,
H. Lv, Z. Ji et al., “Chamelemon: Shifting measurement attention as
network state changes,” in Proceedings of the ACM SIGCOMM 2023
Conference, 2023, pp. 881-903.

G.-S. Cho, “Ntfs directory index analysis for computer forensics,” in
2015 9th International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, 2015, pp. 441-446.

“New technology file system,” https://www.ntfs.com/.

M. Jasny, L. Thostrup, T. Ziegler, and C. Binnig, “P4db-the case for
in-network oltp,” in Proceedings of the 2022 International Conference
on Management of Data, 2022, pp. 1375-1389.

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtdrik, “Scaling distributed
machine learning with {In-Network} aggregation,” in /8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), 2021, pp. 785-808.

P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu,
H. Kodavalla, D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash et al.,
“Socrates: The new sql server in the cloud,” in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1743-1756.

