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Abstract—The B+tree indexing scheme is widely employed in
file systems and database systems. Modern data centers often
adopt a disaggregated architecture, where compute servers and
storage servers are deployed on separate machines connected
via a network. Storage servers typically rely on B+tree-based
indexing. However, with the rapid growth in network bandwidth,
the bottleneck has shifted from the network to the indexing,
challenging the scalability of these systems. In this paper, we
present FOREIN, a novel architecture that offloads part of the
storage indexing process to programmable switches within the
network path. Specifically, we make three key contributions.
First, we develop the PREFIXCOVER algorithm, which converts
a B+tree query into a longest prefix match query. This trans-
formation allows partial deployment of B+tree operations in the
switches at line rate. Second, we propose a greedy algorithm that
dynamically adapts the PREFIXCOVER algorithm to the resource
constraints of programmable switches. Third, we design a data
plane leveraging programmable switch capabilities, ensuring
consistency between servers and switches with minimal overhead
and minimal device modifications. We implement FOREIN on a
testbed and conduct extensive experiments. Results demonstrate
that FOREIN improves the throughput of B+tree-based storage
servers by an average of 1.2 times. The source code is publicly
available on GitHub [1].

Index Terms—B+tree index, LPM, in-network computing,
programmable switches

I. INTRODUCTION

The B+tree [2], [3], [4], [5] is a widely-used efficient

index scheme, particularly in disaggregated data centers, where

compute and storage servers are connected via a network.

With cloud computing and faster networks, the performance

bottleneck has shifted from networking to indexing [6], [7],

[8]. As bandwidth scales, CPUs struggle to handle B+tree

operations at line rate. While technologies like Remote Direct

Memory Access (RDMA) help reduce CPU overhead [9], [10],

indexing remains a critical bottleneck since the overhead of

executing B+tree operations and managing memory access

makes achieving high performance difficult. In particular, even

when the entire index resides in memory, each lookup still

incurs multiple dependent memory accesses starting from

the root. Several studies have explored ways to mitigate the

CPU bottleneck and enhance system performance, including
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Memcached [11], SwitchKV [12], NetCache [13], etc. Al-

though these hardware-based solutions offer substantial speed

improvements, their high cost remains a barrier to large-scale

deployment.

The emergence of programmable switch ASICs has made it

possible to customize network functions and offload selected

workloads from servers into the network itself [13], [14],

[15], [16], [17], [18]. In particular, offloading the B+tree

index to programmable switches is a promising direction for

accelerating data center operations. Beyond programmable

switches, many commodity switches and routers can be con-

figured for simple user-defined packet processing, yet their

hardware resources—especially longest prefix match (LPM)

tables—are often underutilized. With the growing adoption of

rack-scale disaggregated storage architectures [19], top-of-rack

(ToR) switches are in a unique position to offload computation

from storage servers, as their routing logic is relatively simple

and stable. By leveraging both the programmability and idle

resources of these switches, it becomes feasible to push part

of the indexing workload directly into the network fabric.

Furthermore, the inherent hierarchical structure of the B+tree

naturally decomposes its operations into independent sub-

tasks, making it particularly amenable to partial offloading.

Importantly, partial offloading enables a design point between

two extremes: caching-based approaches that remain purely

endpoint-centric, and fully in-network designs that embed

data structures directly into switches. This middle ground

allows the network to provide lightweight traversal foresight

without replicating or relocating the B+tree itself. In summary,

motivations for offloading the B+tree index to the network are:

• Indexing Bottleneck. Index lookups are a major perfor-

mance bottleneck in large-scale storage systems, especially

for read-dominant and skewed workloads where a small

fraction of keys accounts for most accesses.

• Programmable Switches. Modern switches support flex-

ible, programmable packet processing, enabling new in-

network computing paradigms.

• Spare LPM Resources. Many ToR switches have signif-

icant unused LPM capacity, which can be repurposed for

indexing tasks.

• Layered B+tree Structure. The balanced, hierarchical or-

ganization of the B+tree allows its traversal to be decom-

posed and partially executed within the switch.

We present FOREIN (Foresight Index), a B+tree-based
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Fig. 1. Overview of FOREIN. FOREIN utilizes PREFIXCOVER to transform
B+tree operations into LPM lookups, leveraging INDEXLPM in the switch’s
data plane, which is managed by the control plane. The INDEXLPM maps
each query key to a pointer that indicates the location of a specific B+tree node
along the network path. For example, consider a client issuing a query with
key = 3. The switch appends its pointer p2 in the packet. Upon receiving the
packet, the storage server initiates the B+tree lookup directly from the node
N2 as indicated by p2, instead of the root node.

indexing scheme that leverages programmable switches to

offload selected B+tree traversal steps, rather than relocating

the index itself, thereby accelerating server-side performance.

Figure 1 provides an overview of FOREIN. To enable efficient

offloading, we first propose the PREFIXCOVER algorithm,

which transforms B+tree operations into LPM lookups. We

then introduce a data structure called INDEXLPM to maintain

the mapping from B+tree keys to their corresponding data

node pointers. Moreover, we propose a greedy algorithm

that adapts to the resource constraints, ensuring efficiency

across diverse hardware configurations. FOREIN implements a

packet-processing pipeline that utilizes INDEXLPM to handle

B+tree queries. The pipeline encapsulates each query with a

pointer to a node along the key’s search path in the original

B+tree, allowing the server to begin the search from a deeper

data node rather than the root, thus reducing computational

overhead. In summary, FOREIN accelerates B+tree indexing

by offloading the B+tree into the network path via PREFIX-

COVER and INDEXLPM, alleviating the CPU bottleneck in

B+tree-based storage systems. We implement FOREIN on a

testbed and evaluate its performance, demonstrating an average

throughput improvement of 1.2 times for the B+tree index.

In summary, we make the following contributions:

• We propose the PREFIXCOVER algorithm, which transforms

B+tree sub-operations into LPM operations and adapts to

varying LPM resources available in programmable switches.

• We present FOREIN, a B+tree-based index architecture

that leverages programmable switches to accelerate B+tree

operations on the network path.

• We implement FOREIN on a testbed and evaluate its perfor-

mance, demonstrating an average throughput improvement

of 1.2 times for the B+tree index scheme.

We introduce the background and motivation of this work in

Section II. Section III present the overview of PREFIXCOVER.

Section IV details the PREFIXCOVER algorithm and the pro-

posed greedy algorithm for adapting PREFIXCOVER to varying

LPM resources in network data planes. The system design of

FOREIN is described in Section V. Implementation details are

provided in Section VI, and performance evaluations of both

PREFIXCOVER and FOREIN are presented in Section VII.

II. BACKGROUND

A. Programmable Switches

The advent of programmable switches, such as Barefoot

Tofino [20], [21], [22], [23], [24], has fundamentally trans-

formed modern network infrastructure. Central to this trans-

formation is P4 [25], a protocol-independent language that

enables developers to define custom packet processing logic

in a hardware-agnostic manner. By targeting any network

device that supports the P4 runtime [26], P4 decouples soft-

ware from hardware constraints and accelerates innovation

across the networking stack. Programmable switches imple-

ment user-defined network functions directly in hardware,

while improving the adaptability of network systems. P4-

based switches typically adopt a pipeline of Match-Action

Units (MAUs), where each stage processes packets according

to rules set by the control plane and compiled from P4

programs. This architecture allows rapid, dynamic updates to

the data plane’s behavior without physical hardware changes.

Beyond basic routing and forwarding, programmable switches

drive advances in network monitoring [27], [28], [29], [30],

security [31], [32], and application-specific optimizations [33],

[34], [35], [36], making them a cornerstone of next-generation,

flexible network architectures.

B. B+tree

B+tree is a self-balancing tree data structure. As a widely

adopted index structure, it underpins storage systems such

as NTFS directories [37], [38], and database indexes in

InnoDB (MySQL), SQLite, and SQL Server. A B+tree orga-

nizes data into a root, internal nodes, and leaf nodes, with

all records stored at the leaves. Each node holds multiple

keys—internal nodes guide the search, while leaf nodes store

actual records—resulting in a high fan-out and shallow tree

depth. Lookup, insertion, and deletion always begin at the root

and follow a unique path to a leaf, with the tree rebalancing

as needed through node splits and merges. The high fan-out

and balanced nature of B+tree enable efficient index traversal

across a wide range of storage architectures. As illustrated

in Figure 2(a), a key feature of B+tree is its layered and

balanced design: all data resides at uniform-depth leaf nodes,

and any search follows a deterministic root-to-leaf path. This

layered and deterministic structure allows indexing to begin at

any intermediate node along the search path, enabling flexible

traversal strategies for performance optimization.

III. OVERVIEW OF FOREIN

This paper proposes using programmable switches and

their sparse LPM resources to accelerate B+tree-based storage



servers by offloading part of the index to the data plane.

Figure 1 shows the overview of FOREIN, where server-side

B+tree-based key-value stores are enhanced by offloading in-

dex operations to programmable switches, reducing CPU load

and alleviating indexing bottlenecks. FOREIN extends standard

L2/L3 routing with a custom module, INDEXLPM, which

supports B+tree index offloading while remaining compatible

with existing protocols. The switch maintains INDEXLPM, an

extended LPM table mapping keys to pointers, intentionally

limiting data-plane logic to LPM lookups for line-rate pro-

cessing. These entries are installed during initialization by a

control-plane algorithm, PREFIXCOVER, which computes and

loads the necessary mappings. The FOREIN protocol supports

Get, Put, and Delete operations. Upon receiving a packet,

the switch performs a INDEXLPM lookup and appends a

pointer to a relevant internal or leaf node, bypassing the

root and reducing memory access overhead. By leveraging

in-network processing, FOREIN effectively mitigates indexing

bottlenecks and improves the performance of B+tree-based

storage systems.

IV. ALGORITHM: PREFIXCOVER

This section introduces PREFIXCOVER, an algorithm for

converting B+tree indexes into LPM tries to enable efficient

offloading into programmable switch data planes. The key

idea is to aggregate the key intervals of B+tree nodes into a

minimal set of LPM prefixes, maximizing resource efficiency.

A central challenge is the limited and variable LPM capacity

of switch data planes. PREFIXCOVER addresses this with

two components: (1) a compact interval-to-prefix conversion,

and (2) a resource-aware, adaptive selection strategy detailed

in Section IV-B.

A. The Basic Version

1) Basics of B+tree: A B+tree is a balanced search tree

widely used in storage systems. All data records are stored

in the leaf nodes, which are doubly linked for efficient range

queries, while internal nodes serve only as navigational keys.

Given a query key k, the goal is to rapidly identify the unique

leaf node whose interval [IB, IE] = [kmin, kmax] contains k.

To enable offloading to a switch that supports Longest Prefix

Match (LPM), we map each interval to a set of LPM prefixes.

2) Interval-to-Prefix Conversion: Let keys be represented

as W -bit unsigned integers. A prefix V/L denotes the set of

all keys x whose L most significant bits match those of V ,

i.e., (x & mask(L)) = (V & mask(L)), where mask(L) is a

W -bit mask with the highest L bits set to 1 and the remaining

W − L bits set to 0. For example, when W = 4, the prefix

5/4 (binary 0101/4) matches only the integer 5, whereas 5/3
(binary 0101/3) matches the set {4, 5}.

Given a leaf interval [IB, IE], our goal is to cover all integers

in this range with the minimal set of such prefixes. The con-

version algorithm works as follows: The algorithm computes

the minimal set of LPM prefixes that precisely cover a given

integer interval [IB , IE ]. It operates iteratively, maintaining a

queue of candidate prefixes. At each iteration, the algorithm
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Fig. 2. Transformation from B+tree intervals to minimal LPM prefix covers.

selects a prefix from the queue and determines whether its

value range is entirely contained within the target interval. If

so, this prefix is added to the cover set. If not, the prefix is split

into its left and right child prefixes by increasing the prefix

length, and any child whose range intersects the target interval

is enqueued for further examination. This process continues

until the queue is empty, at which point the algorithm returns

the set of selected prefixes as the smallest possible prefix

cover for the interval. The approach effectively decomposes

the interval into the largest possible binary-aligned subranges

at each step, ensuring both correctness and minimality of the

resulting cover.

Concrete Example: Consider node N3 with the interval

[5, 12]. Its binary representation is [01012, 11002]. The small-

est set of prefixes that cover this range is:

• 5/4 (01012, length 4): covers 5

• 6/3 (01102, length 3): covers from 6 to 7

• 8/2 (10002, length 2): covers from 8 to 11

• 12/4 (11002, length 4): covers 12

Thus, [5, 12] → {5/4, 6/3, 8/2, 12/4}. Each prefix can be

seen as a mask rule, just as in network routing.

3) Eliminating Hollow Prefixes: Not every generated prefix

corresponds to actual data keys; some are “hollow prefixes”

that cover gaps where no real key exists (e.g., in a sparse key

space). To avoid unnecessary LPM entries, we filter out all

hollow prefixes, retaining only those that map to actual data.

For the above example, if only keys 5 and 12 exist, 6/3 and

8/2 are hollow and discarded. Only 5/4 and 12/4 are kept

and installed as LPM entries in the switch, each acting as

a pointer to the corresponding leaf node. This optimization

greatly reduces resource usage and mitigates the risk of prefix

explosion under limited TCAM capacity.
4) Summary: By mapping each leaf interval in the B+tree

to a minimal set of LPM prefixes and discarding hollow

prefixes, we can efficiently offload index lookups to pro-

grammable switches using minimal hardware resources. Fig-

ure 2 visualizes this conversion.

B. Adapting to Available Resources

Although offloading all leaf nodes of the B+tree to the

switch would provide the fastest lookups, this is often in-

feasible due to the limited LPM table size on programmable

switches. Therefore, our goal is to select a subset of nodes to

offload, maximizing acceleration while respecting hardware

resource constraints.



1) Problem Formulation: Formally, we model the problem

as follows:

• Each B+tree node ni is associated with a weight wi

(reflecting its importance, e.g., access frequency) and a

cost ci (the number of LPM entries required to offload

this node).

• The switch provides a total LPM resource budget M (the

maximum number of LPM entries available).

• Let S denote the set of nodes selected for offloading.

If a query’s target key falls under a node in S, the switch

can redirect the query directly to this node, skipping higher

levels of the tree. Otherwise, the query must start from the

root. We seek to minimize the average memory accesses per

query (AMA), defined as:

AMA =
∑

L∈leaves

wLDL,

where wL is the weight of leaf node nL and DL is the number

of nodes traversed from nL up to its closest ancestor in S
(including both endpoints). If no ancestor of nL is in S, DL

equals the depth of nL. The constraint is:
∑

nj∈S

cj ≤M.

Thus, the optimization problem is:

min
S⊆{n1,n2,...,nN}

AMA s.t.
∑

nj∈S

cj ≤M.

2) Greedy Algorithm: As the above problem is combi-

natorial and intractable for large trees, we design a greedy

algorithm for practical deployment.

1) Initialization: Start with S = {root}. At this stage, every

query must traverse the full height of the tree.

2) Iterative Selection: At each step, among all nodes not in

S, select the node n∗ whose offloading yields the largest

reduction in AMA.

3) Update: Add n∗ to S, update the weights and path

lengths for affected nodes, and remove n∗’s nearest

ancestor (other than root) from S to prevent redundant

offloading on the same path.

4) Termination: Repeat until adding another node would

exceed the resource limit M .

The Algorithm 1 summarizes our approach. This greedy

method ensures that, at each step, we make the most effective

use of limited LPM resources and incrementally build an

offload set providing a substantial reduction in query latency.

V. SYSTEM DESIGN OF FOREIN

This section describes the system design of FOREIN. To

integrate PREFIXCOVER with programmable switches, we

implement the FOREIN protocol at the application layer, above

UDP or TCP (Section V-A). The system workflow is outlined

in Section V-B. FOREIN supports three primary operations:

Get, Put, and Delete. We detail the Get operation in Sec-

tion V-C, and discuss dynamic B+tree updates in Section V-D.

Algorithm 1: Resource-Constrained Offloading

Input: B+tree T with node weights wi, costs ci,
resource limit M

Output: Selected offload set S
1 S ← {root};
2 C ← croot;

3 while C ≤M do

4 n∗ ← node (not in S) with largest AMA reduction;

5 if C + cn∗ > M then

6 break

7 Add n∗ to S;

8 Remove n∗’s nearest ancestor from S (if not root);

9 C ← C + cn∗ ;

10 Update affected weights and path lengths;

11 return S

TCP/UDP
reserved port

OP SEQ KEY / PREFIX VALUE / MASK

ForeIn Protocol

Fig. 3. Packet format of the FOREIN protocol.

A. Network Protocol

In our architecture, the B+tree-based key-value store oper-

ates as an application-layer service in a typical client-server

scenario. To enable switch-level acceleration, the FOREIN pro-

tocol is designed as an application-layer protocol compatible

with both UDP and TCP. This ensures seamless deployment

in diverse network environments, leveraging UDP’s speed or

TCP’s reliability as needed. For effective packet processing,

FOREIN uses a reserved port number so that programmable

switches can easily identify and handle its packets.

1) Packet Format: As shown in Figure 3, each FOREIN

packet consists of four fields: OP, SEQ, KEY, and VALUE.

• OP: Operation code, indicating Get, Put, Delete, Install,

or Reply.

• SEQ: Sequence number, used when transferring large val-

ues.

• KEY, VALUE: The query’s key and value. For Get and

Delete, VALUE is empty.

The reply packet format is identical to the query format, with

OP set to Reply. Additionally, for updates between the server

and controller, an Install operation allows dynamic modifica-

tion of the LPM table, with KEY and VALUE indicating the

prefix and its length.

2) FOREIN Switches: Integrating FOREIN with existing

network stacks requires only minimal switch changes. The

main enhancement is recognizing and processing FOREIN

protocol packets, while preserving standard L2/L3 forwarding

for all other traffic. Upon receiving a packet, the switch

checks whether it is a FOREIN query. If so, it performs an

LPM lookup on the KEY field, and appends a pointer to

the matched B+tree node. Otherwise, the packet is forwarded

using standard routing. This design enables the switch to

provide “foresight”—by offloading part of the index lookup,
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the server can directly jump to a deeper node in the B+tree,

reducing memory accesses and improving performance.

B. Workflow of FOREIN

The overall workflow is illustrated in Figure 4. Processing

proceeds as follows:

• If the packet is not a FOREIN packet, it is forwarded

normally by the switch using L2/L3 routing.

• If the packet is a FOREIN packet, the switch consults its

LPM table:

– Get: The switch appends a pointer to the relevant B+tree

node, and the server uses it to efficiently locate and return

the value. The reply (OP set to Reply) is forwarded as a

normal packet.

– Put/Delete: The switch appends the pointer, and the

server performs the update on the B+tree. The server

then computes if the LPM table needs updating and, if

so, notifies the controller, which installs the necessary

changes on the switch.

While Figure 4 depicts the server and controller as separate

entities, they can be integrated on a single machine for ease

of deployment.

C. Lookup of FOREIN

When a FOREIN switch receives a query, it appends a

pointer indicating the target node where the key is likely

to reside. The server then extracts this pointer, accesses the

specified node, and performs a key lookup starting from there.

If the key exists, INDEXLPM ensures direct access to the

correct node. However, due to omitted hollow prefixes, keys

that are not in the B+tree (“alien keys”) may be routed to nodes

where they do not belong. To guarantee correctness and min-

imize unnecessary lookups, we introduce two complementary

methods.

1) Range Check and Fallback: Upon receiving a query, the

server checks if the queried key falls within the range of the

target node. If so, the lookup proceeds normally. If not (i.e.,

the key falls into a hollow prefix or is not present), the server

performs a fallback: it restarts the search from the root of

Root

Node 0 Node 1
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Hot Keys

Layer 2

Installed

Root Layer

Layer 1

Key Space

Bottom line layer, full cover

To node 1To node 0

Key1 (normal) Ptr1 Key3 (hot) Ptr3

To node 1

Key2 (alien) Ptr2

Not exists!

Fig. 5. Lookup process for different types of keys in FOREIN. Dark blue:
covered prefixes; Light blue: hollow/uninstalled zones.

the B+tree. This mechanism ensures correctness by redirecting

alien keys to a standard full traversal, at the cost of a single

extra memory access.

2) Bottom-line Guarantee: To further reduce fallback over-

heads, we propose a “bottom-line guarantee”: all nodes from

an upper layer (e.g., the first internal layer) are installed in the

switch, ensuring complete coverage of the key space at that

layer. For any key, if a lower-layer prefix does not match, the

query is redirected to the appropriate node at this upper layer

instead of the root. Since upper layers have few nodes, this

incurs little memory overhead but eliminates unnecessary root

traversals for alien keys.
3) Hybrid Policy Example: Figure 5 shows how hybrid

policies improve lookup efficiency:

• Root Layer: No prefixes installed. Root serves only as a

final fallback for alien keys.

• Layer 1 (Bottom-line): Prefix covers are created for all

nodes, and gaps are merged with adjacent nodes to ensure

full key-space coverage. Thus, most alien keys are redirected

here, not to the root, for an efficient secondary check (e.g.,

key 2).

• Layer 2 (Main Index): The main prefix cover is installed

here, omitting hollow prefixes to save space. Valid keys

(dark blue) are efficiently directed to their target node (e.g.,

key 1). Alien keys in hollow zones are redirected up to

Layer 1.

• Layer 3 (Hot Keys): Hot leaf nodes, identified by access

frequency, are directly offloaded. Queries for hot keys (e.g.,

key 3) are completed in a single memory access, optimizing

for common cases.

This layered approach, combining range checks, bottom-line

guarantees, and targeted hot key offloading, ensures both cor-

rectness and high efficiency in FOREIN lookups with minimal

resource overhead.

D. Update and Coherence

Put and Delete operations in FOREIN may trigger updates

to both the B+tree and the switch’s INDEXLPM table. To

ensure correctness, updates are handled in two coordinated

phases:



• Phase I: The server updates its local B+tree and generates

the new LPM entries required for the switch.

• Phase II: The server sends these table entries to the

controller, which applies them to the switch data plane.

Coherence between the B+tree and INDEXLPM must be

preserved during this process.

1) Phase I: Update Procedure: During Phase I, the server

first modifies the B+tree, then determines the necessary

changes to INDEXLPM. As summarized in Table I, different

scenarios arise based on the operation type and whether the

B+tree structure changes.

• Put:

– If the key exists, only the value is updated.

– For new keys: (i) If matching an installed prefix, do noth-

ing. (ii) If matching a hollow prefix, install the missing

prefix (Figure 6(a)). (iii) If the node’s key range changes,

install new prefixes and perform prefix aggregation if

possible (Figure 6(b)). (iv) If the insertion causes node

splitting, recalculate prefix covers for affected nodes.

• Delete:

– If the key does not exist, no action is taken.

– If no structural change, logic is similar to insertion

(possibly triggers prefix aggregation).

– If deletion leads to node re-balancing or merging, re-

calculate prefix covers for affected nodes to maintain

consistency.

𝒑𝟑 𝒑𝟑
𝒑𝟏 𝒑𝟐 𝒑𝟒𝒑𝟑Inserted key = 7

(a) Install a hollow prefix.

𝒑𝟑 𝒑𝟑
𝒑𝟏 𝒑𝟐 𝒑𝟒𝒑𝟑𝒑𝟑Inserted key = 13

(b) Prefix aggregation.

Fig. 6. Examples of updates.

2) Phase II: Coherence Management: Once updates are

sent to the controller, their installation in the switch may be

delayed. To ensure lookup correctness during this interval,

FOREIN employs the following strategies:

• Hollow prefix installation: Before installation completes,

keys in these ranges are temporarily routed to their parent

node, requiring one extra lookup. This guarantees correct-

ness at minimal performance cost.

• Prefix aggregation: New shorter prefixes are installed be-

fore old ones are removed. The server tracks “invalid” nodes

during the transition, ensuring all queries are either handled

directly or safely redirected.

• Prefix cover recalculation (for re-balance/merge/split):

New prefixes are always installed first.

– Re-balance: Keys may be briefly misdirected, but bidi-

rectional links allow correct redirection to sibling nodes.

– Merge: Invalid pointers are tracked, with queries redi-

rected until confirmation of update completion.

– Split: Original and new nodes are adjacent; sibling links

enable correct lookup if an outdated pointer is used.

Overall, FOREIN ensures strong coherence and correctness

during all update operations, with only minor and temporary

overhead.

VI. IMPLEMENTATION

We implement a prototype of FOREIN to validate its func-

tionality and performance. The prototype consists of four main

components: the programmable switch data plane, a control

plane agent, a B+tree-based server, and a benchmarking client.

The server and client run on separate machines connected to

different switch ports, with forwarding tables set up to enable

communication.

• Switch Data Plane: The data plane is programmed in

P416 targeting Barefoot Tofino hardware. An LPM table

is compiled into the switch; it matches on 8-byte keys in

FOREIN protocol packets. For matched keys, the switch

attaches an 8-byte pointer to the packet using a “hit” action;

unmatched keys receive a default “NoAction.” Pointers use

8 bytes to align with the server’s x86-64 architecture.

• Control Plane Agent: The agent is a Python-based gRPC

server serving as the switch control plane. It receives prefix

entries and pointers via an RPC interface, translating them

into the format required by the Tofino switch. The agent

ensures consistency between the switch LPM table and the

B+tree database, and supports asynchronous updates for

high throughput.

• Server: The server is a DPDK application written in C++.

It maintains a B+tree for key-value storage, with keys as

8-byte unsigned integers (uint64_t), but configurable for

other sortable types. The server parses incoming FOREIN

protocol packets, processes queries or updates using the

B+tree, and sends replies. For Put and Delete operations

that change the B+tree structure, the server determines

affected prefixes and triggers gRPC calls to the agent to

update the LPM table accordingly.

• Client: The client is a DPDK application implemented in

C. It generates and transmits FOREIN protocol requests

to the server and records replies. The client module also

tracks packet transmission and reception to measure real-

time throughput.

This modular design allows us to evaluate the end-to-end

performance of FOREIN in a realistic setup, including control

plane coordination and dynamic updates.

A. Deployment Considerations and Limitations

a) Coexistence with Routing Rules.: FOREIN leverages

LPM tables that are already widely used for routing and

forwarding. In practice, FOREIN operates in a logically sep-

arate namespace and does not interfere with existing L2/L3

forwarding rules. Only a fraction of the available LPM entries

is allocated to INDEXLPM, and the priority of routing rules



TABLE I
DIFFERENT CASES OF UPDATE.

OP
B+tree structure does not change. B+tree structure changes.

Hit an
installed prefix.

Hit a hollow prefix Range change Nodes re-balance Nodes merge Nodes split

Put Do nothing.
Install the

hollow prefix.
Prefix aggregation N/A N/A

Re-calculate
prefix covers.

Delete Do nothing. N/A Prefix aggregation
Re-calculate

prefix covers.
Re-calculate

prefix covers.
N/A
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Fig. 7. LPM resource usage of PREFIXCOVER

remains unaffected. This design allows FOREIN to be incre-

mentally deployed without modifying the switch forwarding

pipeline.

b) Multi-Tenancy and Isolation.: In multi-tenant envi-

ronments, INDEXLPM entries can be scoped per service or

per application by reserving disjoint prefix ranges or logical

tables. Since FOREIN does not modify packets across tenants

and only appends application-layer hints, it preserves isolation

guarantees provided by the underlying network.

c) Encrypted Traffic and Protocol Compatibility.: FOR-

EIN operates at the application layer and does not require

access to encrypted payloads. The switch only parses a small,

explicitly defined header field that is exposed to the network,

making FOREIN compatible with encrypted transport protocols

and existing security mechanisms.

d) Dynamic Workloads and Applicability.: As shown in

Section VII, frequent updates introduce additional control-

plane overhead for maintaining prefix consistency. Therefore,

FOREIN is most effective for read-dominant workloads with

moderate update rates, which are common in key-value serving

and database indexing scenarios. For highly write-intensive

workloads, the benefits of offloading may be reduced due to

update and coherence costs.

VII. EVALUATION

A. Methodology

1) Testbed: We evaluate FOREIN on a local testbed with a

programmable 100GbE Barefoot Tofino-based network switch

and two server machines (one as a FOREIN server and the

other as a client). Each server machine has a 12-core (24-

thread) CPU (Intel Xeon Silver 4116 CPU @ 2.10GHz), 32
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Fig. 8. AMA Improvement with the proposed greedy algorithm.

GB 2400 MHz DDR4 memory, and a 16 MB L3 cache. Each

server machine has a 100 Gbps Mellanox NIC connected to

the switch. The version of DPDK installed on the server and

client is 20.11.8 LTS.

2) Workloads: We generate workloads where keys satisfy

the Zipf distribution. The values are not important, so random

numbers are used. The number of times each key appears in the

workload is its frequency. The proposed greedy algorithm uses

these key frequencies to determine whether a node in B+tree

should be offloaded, as Zipfian access patterns are commonly

observed in production key-value stores and database indices.

Zipfian access patterns are widely observed in production key-

value stores and database indices, where a small fraction of

keys accounts for the majority of requests. We therefore focus

on varying the Zipf parameter to evaluate FOREIN under

representative skewed workloads. Longer keys or composite

keys can be supported by hashing or encoding them into

fixed-length prefixes before applying PREFIXCOVER, without

changing the algorithm.

3) Metrics: We use queries per second (QPS) as a metric

of throughput1. The ratio of query throughput with prefixes

offloaded in the switch to the throughput of the same system

with in-network offloading disabled is called speedup ratio.

We used the same workload in both cases when calculating

the speedup ratio. The speedup ratio directly shows the accel-

eration effect of FOREIN.

B. Performance of PREFIXCOVER

1) The LPM resource: We evaluate the average LPM re-

source usage per node in different layers of the B+tree, as

1kQPS stands for 1000 of queries per second



100 400 1600

3900

4200

4500

4800

5100

T
h

ro
u

g
h

p
u

t 
(k

Q
P

S
)

Number of Installed Nodes

 0.90   0.95   0.99

(a) Throughput vs. skewness.

100 400 1600

1.0

1.1

1.2

1.3

S
p

e
e
d

u
p

 R
a
ti

o

Number of Installed Nodes

 0.90   0.95   0.99

(b) Speedup Ratio vs. skewness.

Fig. 9. Performance of FOREIN under static workloads.

indicated by the size of the prefix cover. Figure 7(a) shows

the average size of prefix covers for nodes in various layers

of the B+tree. The layers are numbered from bottom to top,

with the deepest layer labeled as L0 and the root node assigned

the highest number, determined by the number of keys. As the

dataset size increases, the average prefix cover size decreases

across all layers, except for the L6 layer. L6 is the root layer,

which consists of only one node and is therefore sensitive to

key distribution. Note that L0* refers to the case where the av-

erage size of the prefix cover is calculated without discarding

hollow prefixes. The results indicate that discarding hollow

prefixes can significantly reduce the resource consumption

in L0, compared to L0*. This reduction is also observed in

other layers, though for simplicity, we omit the data for these

layers in the figure. Figure 7(b) illustrates the distribution of

prefix cover sizes. The labels indicate the dataset size and

the corresponding B+tree layer. The prefix cover sizes of

nodes within the same layer approximately follow a normal

distribution. Based on this observation, we use the average

LPM entries to estimate the cost of offloading a node, as

discussed in Section IV-B.

2) Evaluation of the proposed greedy algorithms: We

evaluate the greedy algorithm designed to adapt to different

available LPM resources in Algorithm 1. The experimental

results demonstrate that the proposed greedy algorithm effec-

tively handles the number of installed nodes and behaves as

expected. Figure 8(a) shows how the Average Memory Access

(AMA) varies with the dataset size, while the number of

installed nodes is fixed at 3200. As the dataset size increases,

the AMA also increases due to the growth in the number

of B+tree nodes. Under the same dataset size, more skewed

workloads result in lower AMA, as the installed nodes can

accommodate more hot keys, thereby reducing memory access.

Figure 8(b) illustrates how AMA in B+tree operations varies

with the number of nodes installed in the INDEXLPM, under

key distributions characterized by different Zipf parameters.

The first data points represent AMA without any offloading.

The Zipf parameter controls the skewness of the key distri-

bution, with higher values indicating more skewed workloads

where a small subset of keys is accessed more frequently.

For a moderately skewed distribution (Zipf = 0.9), AMA

decreases gradually as more nodes are installed, reflecting the
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Fig. 10. Performance of FOREIN under dynamic workloads.

fact that a larger proportion of frequently accessed keys are

accommodated, thus reducing tree traversal depth. For a highly

skewed distribution (Zipf = 0.99), AMA decreases sharply

because most queries target a small subset of keys, which are

resolved with minimal memory access due to their placement

in offloaded nodes. The experimental results highlight the

effectiveness of FOREIN in optimizing AMA, particularly for

highly skewed key distributions.

C. Performance of FOREIN

1) Static Workloads: We use static workloads in this exper-

iment, where the client only sends Get requests to the server,

without any modification requests such as Put or Delete.

The B+tree is pre-constructed, and prefix entries are offloaded

to the switch during the server’s initialization phase. Once

initialized, the offloaded prefix entries in the switch remain

unchanged throughout the experiment.

A highly skewed workload, where most queries target a

small subset of keys, benefits from offloading hot keys to

the switch. This reduces the number of memory accesses on

the server, significantly improving throughput. The dataset

size is set to 1M keys. Figure 9(a) shows the throughput

under workloads with different levels of skewness. Since the

baseline performance varies, the speedup ratio is also shown

in Figure 9(b). As the number of installed nodes increases,

the throughput also improves. However, the relative speedup

decreases under highly skewed workloads. This is likely due to

the local cache of storage servers. In highly skewed workloads,

the local cache may improve the baseline performance due

to spatial locality, which results in fewer memory accesses.

Consequently, the speedup ratio decreases. In summary, the

experimental results demonstrate that FOREIN performs better

under skewed workloads, with an average speedup ratio of

approximately 1.2x.

2) Handling Dynamics: In this experiment, dynamic work-

loads are used. In addition to Get, the client sends Put

and Delete requests. The B+tree and the offloaded prefixes

may change as the server processes FOREIN protocol packets.

To handle updates, the server reloads outdated prefixes and

offloads new ones by calling the agent. An update (Put

or Delete) is considered successful only after the prefix

is successfully offloaded to the switch. Figure 10(a) shows



the performance of FOREIN under workloads with different

skewness. When the number of installed nodes is small,

FOREIN does not outperform the baseline due to the high

overhead of updates and coherence. As the number of in-

stalled nodes increases, the benefits of offloading begin to

outweigh the overhead, resulting in an average speedup of

1.05x. Figure 10(b) shows the performance of FOREIN under

workloads with different dynamic ratios. A higher ratio of

dynamic operations leads to lower performance for FOREIN.

Although the observed throughput improvements are moder-

ate, they are achieved without relocating the index, modifying

the server-side B+tree structure, or introducing specialized

hardware. Even under dynamic conditions, FOREIN does not

degrade baseline performance, providing a safe optimiza-

tion envelope. As such, FOREIN represents a lightweight

and orthogonal optimization that incrementally reduces index

traversal cost and can be combined with existing acceleration

techniques.

D. Hardware Resource Consumption

TABLE II
RESOURCES USED BY FOREIN IN TOFINO.

Resource Usage Percentage

Exact Match Input xbar 2 0.13%
Ternary Match Input xbar 40 5.05%

VLIW Instructions 6 1.56%
SRAM 19 1.98%
TCAM 98 34.03%

Hash Bits 10 0.20%

The resource usage of FOREIN, when 3200 nodes are

installed, is summarized in Table II. FOREIN primarily utilizes

TCAM and Ternary Match Input xbar. With 3,200 nodes

installed, approximately 25,000 out of the 73,000 available

entries in the LPM table are consumed, accounting for about

34% of the total TCAM resources. Regarding other resources,

excluding Stateful ALUs, FOREIN’s usage remains below 6%.

Overall, the resource consumption of FOREIN is considered

moderate, especially considering its performance improve-

ments with a relatively small number of installed nodes.

Moreover, with the availability of additional TCAM resources,

there is potential for further performance enhancements.

VIII. RELATED WORK

A. In-Network Computing

The rise of programmable switches has enabled extensive

research in in-network computing, which exploits in-switch

data processing to boost system performance. SwitchKV [12]

combines high-performance cache nodes with lightweight

backend nodes to balance load, tracking cached keys, and

routing requests at line rate. NetCache [13] stores key-value

pairs directly in switches, significantly improving throughput

and latency, though limited by switch resource constraints.

IncBricks [14] introduces a hardware-software co-designed

caching fabric with basic computing primitives to enhance

cache functionality. DistCache [17] offers a distributed cache
with provable load-balancing for large-scale systems. Pegasus

[15] adds an in-network coherence directory to better han-

dle skewed workloads through selective key replication. Fat-

B+tree [18] embeds part of the B+tree into the hierarchical

connected programmable switches in the data center network,

enabling in-network traversal of tree nodes. Recent work

further explores programmable switches for complex opera-

tions, such as transactional processing [39], and in-network

aggregation for ML workloads [40]. These studies demonstrate

the growing versatility of in-network computing. Our proposed

FOREIN system builds on this line of work, but differs in

how the switch is involved in the indexing process. Instead

of embedding or traversing B+tree nodes in the data plane,

FOREIN leverages prefix-based lookups to provide lightweight

traversal hints, allowing the server to resume the search

from an intermediate node while keeping the original B+tree

entirely on the server. This design prioritizes partial offloading

and resource awareness under practical switch constraints.

B. Disaggregated Data Centers

Disaggregated architectures are increasingly adopted in

modern, cloud-native data centers. Systems like Aurora [6],

Socrates [41], and PolarDB [7], [8] decouple compute and

storage nodes, enabling multi-tenant databases with elastic,

scalable resources built on shared storage pools. Disaggregated

memory architectures have also emerged to improve memory

utilization at data center scale, with rack-scale designs enhanc-

ing overall efficiency. Meanwhile, RDMA-based tree indexing

techniques [9], [10], [18] reduce remote access overhead in

distributed memory systems. These systems build multi-tenant

database services on top of a shared storage pool, achieving

improved elasticity and independent scalability for storage and

compute resources. Our proposed FOREIN system comple-

ments these approaches by accelerating B+tree indexing in

disaggregated environments and reducing RDMA operations,

particularly for read-dominant and skewed workloads, where

repeated index traversal remains a performance bottleneck.

IX. CONCLUSION

In this paper, we exploit programmable data planes and

sparse LPM resources to accelerate B+tree-based storage

servers. We propose an algorithm, PREFIXCOVER, to partially

convert the B+tree index into INDEXLPM and offload selected

B+tree traversal steps to programmable data planes. Based on

PREFIXCOVER, we design a system called FOREIN, which

integrates PREFIXCOVER and enhances the end-to-end perfor-

mance of B+tree-based storage systems. FOREIN incorporates

several optimizations to handle foreign keys and manage

B+tree dynamics efficiently. We implement FOREIN on a

testbed, and evaluation results demonstrate that FOREIN can

deliver up to 1.2 times end-to-end performance improvement

compared to the baseline solution. The authors have provided

public access to their code at [1].

ACKNOWLEDGMENT

The authors would like to express their gratitude to Dr.

Cheng Zhang for his invaluable advice and insightful discus-

sions on this work.



REFERENCES

[1] F. Wang, Q. Yin, Y. Zhang, and T. Yang, “Foresight indexing source
code,” https://github.com/foresight-indexing/foresight-indexing-code,
2025, available at GitHub.

[2] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR),
vol. 11, no. 2, pp. 121–137, 1979.

[3] G. Graefe et al., “Modern b-tree techniques,” Foundations and Trends®

in Databases, vol. 3, no. 4, pp. 203–402, 2011.
[4] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The bw-tree: A b-

tree for new hardware platforms,” in 2013 IEEE 29th International

Conference on Data Engineering (ICDE). IEEE, 2013, pp. 302–313.
[5] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”

ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1–32, 2013.
[6] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,

S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
aurora: Design considerations for high throughput cloud-native relational
databases,” in Proceedings of the 2017 ACM International Conference

on Management of Data, 2017, pp. 1041–1052.
[7] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,

Z. Liu, J. Fang et al., “Polardb serverless: A cloud native database for
disaggregated data centers,” in Proceedings of the 2021 International

Conference on Management of Data, 2021, pp. 2477–2489.
[8] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang, P. Wang,

Y. Wang, R. Kuan et al., “Polardb meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational database.”
in FAST, 2020, pp. 29–41.

[9] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed
b+ tree index on disaggregated memory,” in Proceedings of the 2022

International Conference on Management of Data, 2022, pp. 1033–1048.
[10] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and T. Kraska,

“Designing distributed tree-based index structures for fast rdma-capable
networks,” in Proceedings of the 2019 international conference on

management of data, 2019, pp. 741–758.
[11] “Memcached key-value store,” https://memcached.org/, 2017.
[12] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman, “Be

fast, cheap and in control with switchkv,” in 13th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 16), 2016, pp.
31–44.
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