
The VLDB Journal (2019) 28:735–763
https://doi.org/10.1007/s00778-019-00560-1

REGULAR PAPER

Fast and accurate stream processing by filtering the cold

Tong Yang1 · Jie Jiang1 · Yang Zhou1 · Long He1 · Jinyang Li1 · Bin Cui1 · Steve Uhlig2 · Xiaoming Li1

Received: 26 May 2018 / Revised: 22 June 2019 / Accepted: 29 July 2019 / Published online: 13 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Approximate stream processing algorithms, such as Count-Min sketch, Space-Saving, support numerous applications across
multiple areas such as databases, storage systems, and networking. However, the unbalanced distribution in real data streams
are challenging to existing algorithms. To enhance these algorithms, we propose a meta-framework, called Cold Filter, that
enables faster and more accurate stream processing. Different from existing filters that mainly focus on hot (frequent) items,
our filter captures cold (infrequent) items in the first stage, and hot items in the second stage. Existing filters also require two-
direction communication—with frequent exchanges between the two stages; our filter on the other hand is one-direction—each
item enters one stage at most once. Our filter can accurately estimate both cold and hot items, providing a level of genericity
that makes it applicable to many stream processing tasks. To illustrate the benefits of our filter, we deploy it on four typical
stream processing tasks. Experimental results show speed improvements of up to 4.7 times, and accuracy improvements of
up to 51 times.

Keywords Data streams · Sketch · Frequency estimation · Top-k hot items · Heavy changes · Persistent items

1 Introduction

In many big data scenarios, the data come as a high-speed
stream [1–5], such as online social networks, videos, sen-
sors data, network traffic, web clicks and crawls. Such data

B Bin Cui
bin.cui@pku.edu.cn

Tong Yang
yang.tong@pku.edu.cn

Jie Jiang
jie.jiang@pku.edu.cn

Yang Zhou
zhou.yang@pku.edu.cn

Long He
helong@pku.edu.cn

Jinyang Li
lijinyang@pku.edu.cn

Steve Uhlig
steve.uhlig@qmul.ac.uk

Xiaoming Li
lxm@pku.edu.cn

1 Department of Computer Science and Technology & Key
Laboratory of High Confidence Software, Technologies
(MOE), Peking University, Beijing, China

2 Queen Mary University of London, London, UK

streams are often processed in a single pass [4,6–8]. In many
applications, some statistical information in each time win-
dow of the data stream is needed, such as item frequencies
[9], top-k hot items [10,11], heavy changes [12], quantiles
[13], and algorithms regarding time series like SSH [14],
Ada-Sketch [15]. However, it is often impractical to com-
pute exact statistics (e.g., using hash tables), because the
space and time cost for storing the whole data stream are
too high. Therefore, probabilistic data structures [8,11,16–
26] have become popular for approximate processing.

The speed at which data streams arrive and their sizes,
together, make approximate stream processing challenging.
First, the memory usage for the processing should be small
enough to fit into the limited-size and expensive SRAM
(Static RAM, such as CPU cache), so as to match the
required processing speed. Second, having to process the
data in a single pass also constrains the speed at which
processing must take place. Finally, to guarantee the per-
formance of applications, accuracy should be as high as
possible.

1.1 Characteristics of real data streams

According to our tests on real datasets and the literature
[4,8], in practice, the items present in real data streams often

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00560-1&domain=pdf
http://orcid.org/0000-0003-1681-4677

736 T. Yang et al.

obey unbalanced distribution, such as Zipf [27] or Power law
[28]. This means that most of the items are unpopular (called
cold items), while a few items are very popular (called hot
items).We refer to such data streams as skewed data streams.
Such characteristics bring significant challenges to stream
processing tasks. There are two kinds of stream process-
ing tasks: frequency-based tasks and persistency-based tasks.
Frequency-based tasks focus on the frequencies of items in
a stream. For example, we may want to know the frequency
of an item, or the set of items whose frequencies are above
a threshold. Persistency-based tasks on the other hand have
to do with the persistency of items, which means that if we
divide thewhole stream intomany sub-streams, wemaywant
to know in howmany sub-streams an item occurs.We discuss
four examples of stream processing tasks and the challenges
that comewith them.Thefirst three tasks are frequency-based
tasks and the last one is persistency-based.

1.2 Estimating item frequency

Estimating the frequency of each item is one of the most
classic tasks in data streams [8,9]. Two typical solutions are
the Count-Min sketch [9] and the CM–CU sketch [29]. They
both use a number of counters of fixed size to store the fre-
quencies of items. If each counter is small, the frequencies of
hot items that are beyond the maximum value of the counters
cannot be recorded. This is not acceptable, as hot items are
often regarded as more important in practice. If each counter
is large enough to accommodate the largest frequency, the
high bits of most counters will be wasted, as hot items are
fewer than cold items in real data streams.

1.3 Finding top-k hot items

Finding the Top-k hot items is important in various fields,
including in data streams [8–11,30]. As not all incom-
ing items can be stored, and an item can only be pro-
cessed once, the state-of-the-art solution, Space-Saving [10],
approximately keeps top-k items in a data structure called
Stream-Summary. Given an incoming item that is not in
the Stream-Summary, Space-Saving assumes it is a little
larger than the minimum one in the Stream-Summary, and
exchanges them, so as to achieve fast processing speed. Most
items are cold, and every cold item will enter the Stream-
Summary, and could stay or be expelled. Frequent exchanges,
incurred by cold items, should be avoided, as they degrade
the accuracy of the results of top-k.

1.4 Detecting heavy changes

The frequencies of some items can significantly change in a
short amount of time. Detecting such changes is important
for search engines [31] and security [12,32] for instance.

The state-of-the-art solution is FlowRadar [32] that relies on
an Invertible Bloom Lookup Table (IBLT) [33]. It uses an
IBLT to approximately monitor all incoming items and their
frequencies in two adjacent timewindows. Then, it compares
their frequencies anddraws conclusions. FlowRadar achieves
high accuracy if there is enoughmemory to record every item,
which is not always the case.

1.5 Finding persistent items

Some items may not have large frequencies, but they may
occur frequently enough within sub-streams: If we split the
whole data stream into many sub-streams, an item may
appear inmost of these sub-streams, and finding such items is
important for stealthyDDoSdetection, stealthy port scanning
detection and click-fraud detection [34]. The state-of-the-art
solution for this task is PIE [35], which is based on Raptor
code [36]. For each item, PIE writes its Raptor code to sev-
eral buckets in an array by hashing. PIE builds such an array
for each sub-stream. A bucket will be invalid if it is mapped
by two or more distinct items due to hash collisions. A per-
sistent item may not be a heavy hitter, but it is definitely not
a cold item. Since most items are cold, they are definitely
not persistent items, but they may cause many buckets to
become invalid in PIE. As a result, PIE need a large memory
to guarantee it can record persistent items accurately.

In a nutshell, the characteristics of skewed data streams
make the state-of-the-art algorithms perform poorly or
require large amounts of resources in the above four tasks.
To address this, several algorithms have been proposed to
do filtering on data streams, such as the Augmented sketch
[4], skimmed sketch [37]. They use a CPU-cache-like mech-
anism: all items are first processed in the first stage, and then
cold items are swapped out to the second stage. The advan-
tage is that hot items then require fewer memory accesses.
However, it is difficult to catch hot items accurately, because
all hot items are initially cold and stored in the second stage
and then become hot. Therefore, existing algorithms need
to be implemented using two-way communication, with fre-
quent exchanges and communication between the two stages.
Existing filters using two-direction communication have the
following shortcomings: (1) they use a heap or a table in
the first stage, and thus often need many memory accesses
to process each item; (2) the first stage can capture only a
few hot items (e.g., 32 hot items in the Augmented sketch),
because more hot items means more memory accesses; (3)
they make it hard to process items in parallel. Our design
goal is to devise a filter that relies on one-direction commu-
nication, and targets accurate estimation of both hot and cold
items at a high processing speed.

Our solution, Cold Filter (CF), as shown in Fig. 1, uses a
two-layer sketch with small counters to accurately record the

123

Fast and accurate stream processing by filtering the cold 737

Data stream

Incoming Item e

Cold Filter

CM-CU, Space-Saving,
FlowRadar, etc.

Hot Items

(Cold Items) First stage

Second stage

Fig. 1 Cold Filter captures unpopular (cold) items in the first stage, and
forwards popular (hot) items to the second stage

frequencies of cold items.1 If all the hashed counters over-
flow, CF will report the incoming item as hot (one-direction
communication) and send it to some stream processing
algorithm (e.g., the CM–CU sketch, Space-Saving, and
FlowRadar). We can combine CF with different algorithms
in different ways for maximize the benefits. Hence, we call
CF ameta-framework. CFworks with existing algorithms by
requiring limited modifications, while significantly improv-
ing accuracy. The first stage only uses small counters to
store the frequencies of cold items, making it memory effi-
cient. By filtering out a large number of cold items, the
second stage concentrates on hot items, therefore achieving
high accuracy. To improve the processing speed, we leverage
a series of techniques: (1) aggregate-and-report (including
SIMD parallelism), (2) one-memory-access, and (3) multi-
core parallelism. As our Cold Filter can accurately record the
information of both cold items and hot items, it is applica-
ble to most stream processing tasks. All source code is made
publicly available on Github [38].

2 Related work

Sketches have been widely applied to estimating item fre-
quency in data streams. The most widely used sketch is the
Count-Min sketch [9]. It relies on d arrays, A1 . . . Ad , and
each array consists of w counters. There are d hash func-
tions, h1 . . . hd , in the Count-Min sketch. When inserting
an item e with frequency f , the Count-Min sketch incre-
ments all the d hashed counters, A1[h1(e)] . . . Ad [hd(e)],
by f . When querying an item e′, it reports its estimated
frequency as the minimum of the d hashed counters,
i.e., min1�i�d{Ai [hi (e′)]}. Another algorithm, the CM–CU
sketch [29], achieves higher accuracy. The only difference is
that CM–CU only increments the smallest one(s) among the
d hashed counters. Both CM and CM–CU have no under-
estimation error.

1 An optional part can exist in the first stage in Fig. 1, in case more
information is required about the cold items, i.e., not only their fre-
quencies.

Sketches have attracted the attention of many researchers,
due to their ability to summarize data streams efficiently.
We list some recent work in the following. Based on Space-
Saving [10,39] proposed Unbiased Space-Saving which can
give an unbiased result for a query of frequency estimation.
[40] proposed the idea of persistent (multi-version) sketches,
which can answer queries about the stream of specific time
points, and persistent Bloom filters[41] extended this idea
for Bloom filters. [42] proposed bias-aware sketches, which
can be proved that have strictly better error guarantees. [43]
studied how to create a sketch for a matrix on the sliding win-
dow model. Some approximate query processing systems
[44–46] use sketches as basic operators to summarize the
streaming data and transform queries of users to queries to
the sketches. SketchML [47] uses sketches to compress gra-
dient in machine learning systems to reduce the transmission
volume in the network.

The closest work to our Cold Filter is the Augmented
sketch [4]. It adds an additional filter (a queue with k items
and counters) to an existing sketch Φ, to maintain the most
frequent items within this filter. When inserting an item e,
it scans the items stored in the filter one by one. If e has
already been in the filter, it just increments its corresponding
counter. Otherwise, it stores e with an initial count of one if
there is available space in the filter. If there is no available
space, i.e., the filter is full, it inserts this item into the sketch
Φ. During insertions, if the frequency of this item reported
by Φ is larger than the minimum value (associated with item
e′) in the filter, the Augmented sketch needs to expel the item
e′ to Φ, and insert e into the filter.

There are some possible applications where Cold Filter
helps to enhance other algorithms. MISSION in [48] is a
framework for large-scale feature selection using a Count-
Sketch. MISSION uses information from the given dataset
to compute a stochastic gradient update term, consider the
gradient as a data stream where each non-zero entry is an
item, and insert these “items” into the sketch. Time Adaptive
Sketches (Ada-Sketches) [15] integrate pre-emphasis and de-
emphasis, making sketching algorithms such as Count-Min
Sketch temporally adaptive and thereby more time adap-
tive. For each item, Adaptive Count-Min Sketch (Ada-CMS)
hashes both the item itself and its arriving time simultane-
ously to locate counters in the sketch, and multiplies the
update weight with a monotonically increasing function of
time, thus inflating the weight of more recent items. MACH
in [49] which is used for training 100,000 classes on a single
Titan X can also be seen precisely as a Count-Min Sketch
for finding heavy hitters by setting the number and range
of universal hashes to be particular values. We believe our
Cold Filter can be used in such applications to improve their
performance.

123

738 T. Yang et al.

… …

e

…

e

h(.)

g(.)

15 15 13

15 15 15

(15)

Fig. 2 Data structure of two-layer CF

3 The cold filter meta-framework

We employ the standard streaming model, namely the cash
register model [50,51]. Given a data stream S with E items
and N distinct items, where N � E . S = (e1, e2, . . . , eE),
where each item ei ∈ U = {eβ1 , eβ2 , . . . , eβN }. Note that
items in U are distinct, while items in S may not. Let t
be the current time, et the current incoming item, and St

= (e1, e2, . . . , et) the current sub-stream. et occurs fet [1, t]
times in the current sub-stream St , and fet [1, E] times in the
whole stream S. For convenience, we use fet [t] and fet [E]
for short.

Problem statement Given a data streamS = (e1, e2, . . . , eE)

and a time t , the current sub-stream is St = (e1, e2, . . . , et).
Given the current item et , how do we accurately and quickly
estimate whether its current frequency fet [t] exceeds the
predefined threshold T ?

3.1 Naive solution

One naive solution is to use a sketch Φ (e.g., the Count-Min
sketch, the CM–CU sketch, etc) as a CF. Specifically, we
use Φ to record the frequency of each item starting from the
first time point 1. For each incoming item, we first query Φ,
and get its estimated frequency. Then we check whether this
estimated frequency exceeds the threshold T . However, this
solution suffers from the drawback of memory inefficiency
on real data streams. Suppose T = 1000. For Φ, we set its
counter size to 16, which can count the frequency of up to
65535. In real data streams however, most items have low
frequencies and cannot “fill up” the counters that they are
hashed to. As a result, many high-order bits in most coun-
ters of Φ are wasted, which means memory inefficiency and
sub-optimal filtering performance. If instead we could auto-
matically allocate small counters for cold items and large
counters for hot items, the allocated memory would be much
better utilized. This is what our proposed solution achieves.

3.2 Proposed solution

As shown in Fig. 2, our Cold Filter (CF)2 consists of two
layers: a low layer L1, and a high layer L2. These two layers

2 In the rest of this paper, “CF” refers to our two-layer Cold Filter.

are made of w1 and w2 counters, and associate with d1 and
d2 hash functions (h(.) and g(.)), respectively. The sizes of
each counter at layer L1 and layer L2 are δ1 and δ2 bits,
respectively. We split the threshold T into two parts: T =
T1+T2 (1 � T1 � 2δ1−1, 1 � T2 � 2δ2−1). The procedure
for CF to process incoming item et is shown in Algorithm 1.
There are two processes: update and report.

Algorithm 1: Stream processing algorithm for CF.
Input: Incoming item et .
Output: Update CF, and report whether fet [t] > T .

1 V1 ← Estimate(L1, et);
2 if V1 < T1 then
3 ConservativeUpdate(L1, et , V1 + 1);
4 return False;

5 else
6 /∗ concurrently overflow at layer L1 ∗/

7 V2 ← Estimate(L2, et);
8 if V2 < T2 then
9 ConservativeUpdate(L2, et , V2 + 1);

10 return False;

11 else
12 return True;

Update process of CF As shown in Algorithm 1, we use V1
and V2 to denote the minimum value of the d1 hashed coun-
ters at the low layer, and of the d2 hashed counters at the
high layer, respectively (see Estimate(L1, et) in line 1 and
Estimate(L2, et) in line 7). If V1 < T1, CF increments the
smallest hashed counter(s) at the low layer by one, which
is denoted by ConservativeUpdate(L1, et , V1) in line 3.
Note that if there aremultiple counterswith the same smallest
value, all of them should be incremented. During the update
process, the values of the d1 hashed counters could differ.
However, the increment operation of the smallest counters is
always narrowing the differences of values of the d1 hashed
counters. If the value of one or more of these d1 hashed coun-
ters reaches T1, then all the subsequent increments will be
added to the other counters as well. Therefore, the ultimate
state is that all d1 hashed counters will reach T1 concurrently.
We call this state the concurrent overflow state. When reach-
ing this state (i.e., V1 = T1), CF resorts to the high layer to
record the information of this item. For the d1 hashed coun-
ters in concurrent overflow state at the low layer, we propose
a new strategy: keep them unchanged. This strategy makes it
unnecessary to use additional flags to indicate the concurrent
overflow state that is critical for subsequent query operations
on CF. The update process at the high layer is similar to the
one at the low layer: If V2 < T2, CF increments the smallest
hashed counter(s) by one (see line 9).

For the current item et , if its hashed counters concur-
rently overflow at the low layer, we must have fet [t − 1] �

123

Fast and accurate stream processing by filtering the cold 739

V1;3 if its hashed counters concurrently overflow at the lower
layer but not at the higher layer, fet [t − 1] � V1 + V2. This
is because each past item et must increment the value of
V1 +V2 by one, when V1 < T1 or V1 = T1 ∧V2 < T2 before
updating. In fact, the potential gap between V1 or V1 + V2
and fet [t − 1] comes from the hash collisions between this
item and other items at layer L1 or L2.
Report process of CF:Simply put, if the hashed counters con-
currently overflow at both layers before updating, CF reports
fet [t] > T ; otherwise, CF reports fet [t] � T . Note that
fet [t] = fet [t − 1] + 1. We formally present the report pro-
cess as follows:

1. If V1 < T1 (line 2 in Algorithm 1), we have: fet [t −1] �
V1 < T1 < T . Thus, we report fet [t] � T .

2. If V1 = T1 but V2 < T2 (line 8), we have: fet [t − 1] �
V1+V2 < T1+T2 = T . Thus, we also report fet [t] � T .

3. If V1 = T1 and V2 = T2 (line 13), two cases are possible:

(a) fet [t − 1] � T , and fet [t] definitely exceeds T . We
should report fet [t] > T .

(b) fet [t−1] < T , but the hash collisions lead toV1 = T1
and V2 = T2. We should report fet [t] � T .

Unfortunately, it is not easy to differentiate these two
cases. For the sake of space and time efficiency, we
choose to report fet [t] > T only.

Example As shown in Fig. 2, we set d1 = d2 = 3, δ1 =
δ2 = 4, T1 = T2 = 15. For incoming item et : (1) If its three
hashed counters at layer L1 are 15, 15, 13. We get V1 =
min{15, 15, 13} = 13. Then, we increment the third hashed
counter at layer L1 by one, and report fet [t] � T . (2) If
its three hashed counters at layer L1 are 15, 15, 15 (in blue
color). We get V1 = min{15, 15, 15} = 15 = T1. Then, we
need to access layer L2. Assume its three hashed counters
at layer L2 are 15, 15, 15. We get V2 = min{15, 15, 15} =
15 = T2. Then, we need to report fet [t] > T .

This solution leads to no false negatives and only a small
amount of false positives. If fet [t] exceeds threshold T , CF
will definitely identify this excess (no false negative). For a
small portion of itemswhose frequencies fet [t] do not exceed
threshold T , CF may draw wrong conclusions (false posi-
tives).

Here we use a numerical example to further illustrate the
advantages of our proposed two-layer CF over the naive solu-
tion. Suppose T = 1000. For Φ in the naive solution, we set
its counter size to 16 bits. Recall that w denotes the number
of counters in Φ. For our proposed two-layer CF, we set δ1
= 4, δ2 = 16, T1 = 15, T2 = 985. We allocate 50% mem-
ory to layer L1, and 50%memory to layer L2. Obviously, the

3 fet [t − 1] is the frequency of item et before updating, and fet [t]= fet [t − 1] + 1.

w1 of two-layer CF is twice the w of Φ. Therefore, at layer
L1, the two-layer CF can achieve lower hash collisions, and
thus fewer cold items will be misreported. Since the average
probability that one item accesses layer L2 is very low (often
less than 1/20 in real data streams when δ1 = 4), layer L2

still has low-level hash collisions. Further experiments about
the selection of layer number are provided in Sect. 6.2.3.

3.3 Optimization 1: aggregate-and-report

In real data streams, some items will appear many times over
consecutive points in time [52,53]. This is called a stream
burst, which provides an opportunity to accelerate CF. For
this situation, we propose a strategy called aggregate-and-
report. The key idea of this strategy is to add another small
filter to aggregate the bursting items before CF, and then
report the aggregated items and their frequencies (oftenmuch
larger than one) to CF under certain conditions. This small
filter can be implemented in different ways. A typical one is
what the Augmented sketch does: it scans the whole queue
and expels the item with the minimum frequency. How-
ever, this method suffers from low speed when the queue
is large. Worse, it needs two-direction processing—frequent
exchanges between the filter and the sketch behind it, which
is costly. In contrast, we implement a one-direction filter by
using a modified lossy hash table [54]: each item is hashed
into a bucket, and each bucket consists of several items and
their corresponding frequencies. We use Single Instruction
Multiple Data (SIMD) [55] to scan a specific bucket. The
detailed procedure of bucket scan is shown in Section A in
our conference paper [56].

Figure 3 shows the data structure of our implementation
of aggregate-and-report. There are db buckets, each bucket
consists of wc cells, and each cell is used to store a Key-
Value pair. The part of the data structure handling the key
records the item ID, while one dealing with the value records
the aggregated frequency that has been accumulated during
a time window when the corresponding item resides in this
bucket. For each incoming item, we use a hash function to
locate a bucket. Within this hashed bucket, we perform the
bucket scan operation:

1. If the key part of one cell matches the ID of the incoming
item, we increment the corresponding value part;

ABucket

… …

AKey-value Cell

e

Bucket Scan
via SIMD

Fig. 3 SIMD-based bucket scan

123

740 T. Yang et al.

2. Otherwise, if there are available cells, we insert the cur-
rent item with frequency of 1 into the new cell;

3. Otherwise, we expel one cell of this bucket in a global
round-robin fashion (across the db buckets): replace the
key part of this cell with the ID of the incoming item, and
set the value part of this cell to 1. The expelled item with
its aggregated frequency from the bucket will be inserted
into CF.

Also, at the end of each time window, we need to flush
all items of all buckets into CF. Let fagg be the value of
reported aggregated frequency of an arbitrary item. Since
fagg is often larger than one, we need to make some mod-
ifications to Algorithm 1. Recall that V1 and V2 denote the
minimum value of the hashed counters at the two layers,
respectively. Algorithm 2 shows the procedure for CF to pro-
cess the reported itemwith its aggregated frequency from the
aggregate-and-report phase. The principle of the modified
algorithm is unchanged. The difference lies in how CF with
aggregate-and-report strategy reaches the concurrent over-
flow state. Recall that we need to estimate whether an item’s
frequency exceeds the threshold T . We split T to be T1+T2,
which denotes the thresholds of the two layers, respectively;
and V1, V2 denote the minimum value of the hashed coun-
ters in the two layers, respectively.We need to check whether
fagg > T1 − V1 or fagg − (T1 − V1) > T2 − V2 to deter-
mine whether the hashed counters concurrently overflow at
layer L1 or L2. Note that the item frequency reported to the
specific stream processing algorithm (the CM–CU sketch,
Space-Saving, FlowRadar, etc) by CF with aggregate-and-
report strategy is fagg − (T1 − V1) − (T2 − V2), instead of
the default of 1 in Algorithm 1.

Algorithm 2: Stream processing algorithm for CF with
aggregate-and-report strategy.
Input: The reported item et with its aggregated frequency fagg .
Output: Update CF, and return whether fet [t] > T .

1 V1 ← Estimate(L1, et);
2 if V1 + fagg � T1 then
3 ConservativeUpdate(L1, et , V1 + fagg);
4 return False;
5 else
6 /∗ concurrently overflow at layer L1 ∗/

7 ConservativeUpdate(L1, et , T1);
8 Δ1 ← T1 − V1;
9 fagg ← fagg − Δ1;

10 V2 ← Estimate(L2, et);
11 if V2 + fagg � T2 then
12 ConservativeUpdate(L2, et , V2 + fagg);
13 return False;
14 else
15 /∗ concurrently overflow at layer L2 ∗/

16 ConservativeUpdate(L2, et , T2);
17 return True;

3.4 Optimization 2: one-memory-access

Each incoming item needs to access layer L1, and a few
items need to access layer L2. Accessing layer L1 requires
d1 memory accesses and hash computations and is likely
to become the bottleneck of the system. To handle this, we
propose a one-memory-access strategy tailored for layer L1

only. Before discussing this strategy, we introduce one criti-
cal fact. In our implementation,we set the size of each counter
at the lower layer δ1 to 4 (with T1 of 15) and adjust δ2 at
the higher layer to accommodate the threshold T required
by the specific stream processing algorithm (e.g.CM–CU
sketch, Space-Saving, FlowRadar). Therefore, for the lower
layer, a machine word of 64 bits contains 16 counters. 16
is often three or more times d1. Based on this, our one-
memory-access strategy contains the following two parts: (1)
we confine the d1 hashed counters within a machine word of
W bits to reduce memory accesses; (2) we use only one hash
function to locate the d1 hashed counters and thus reduce
the hash computations. Specifically, we split the value pro-
duced by a hash function into multiple segments, and each
segment is used to locate a machine word or a counter. For
example, for layer L1 with w1 = 220, δ1 = 4 and d1 = 3
(memory usage is 1 MB), we split a 32-bit hash value into
four segments: one of 16 bits, and three of 4 bits (discarding
the remaining 4 bits). We use the 16-bit value to locate one
machine word at layer L1, and the three 4-bit values to locate
three counters within this machine word (containing 16 = 24

counters). In practice, a 64-bit hash value is always enough.
In this way, OMA method can achieve the desired speed

improvements.However,we still need tomake amore careful
discussion about collision. The probability of collision will
be higher when we implement OMA method. For example,
in OMA method, if we set d1 = 3, δ1 = 4, and the hash
function results for two items e1 and e2 is x11, x12, x13 and
x21, x22, x23, respectively. In this case, e.g., if x12 and x23 is
the same location, then all of the six hash results are limited
to 16 counters, the probability of more collisions is quite
high. If we use d1 = 3 independent hash functions, then
even if x12 = x23, the probability of more collisions will be
low. However, according to our experiment, OMA has little
influence on accuracy at our experiment settings. It is shown
in Figs. 4 and 5.

IP trace Web page
0.0

0.1

0.2

0.3

Pm
r

CF
CF+Agg

CF+Agg+Oma
CF+Oma

Fig. 4 Impact of different optimizations on Pmr

123

Fast and accurate stream processing by filtering the cold 741

CM FR CM-CU SS
0

5

10

15

20

A
cc
ur
ac
y
im

pr
ov
em

en
t

Agg
CF

CF+Agg
CF+Oma

CF+Oma+Agg

Varying optimization (IP
trace).

CM FR CM-CU SS
0

5

10

15

20

25

A
cc
ur
ac
y
im

pr
ov
em

en
t

Agg
CF

CF+Agg
CF+Oma

CF+Oma+Agg

Varying optimization
(web page).

CM FR CM-CU SS
0

2

4

6

8

Sp
ee
du
p

Agg
CF

CF+Agg
CF+Oma

CF+Oma+Agg

Varying optimization (IP
trace).

CM FR CM-CU SS
0

2

4

6

Sp
ee
du
p

Agg
CF

CF+Agg
CF+Oma

CF+Oma+Agg

Varying optimization
(web page).

(a) (b) (c) (d)

Fig. 5 Impact of different optimizations on the accuracy and speed of Count-Min, CM–CU, Space-Saving and FlowRadar

4 Cold filter implementation

In this section, we show how to implement the cold fil-
ter framework for two types of stream processing tasks.
Specifically, we show how to process frequency estimation,
finding heavyhitters andfinding heavy changes of frequency-
based tasks, and finding persistent items of persistency-based
tasks.

4.1 Frequency-based tasks

4.1.1 Estimating item frequency

Key idea For frequency estimation, we use a CF to record the
frequencies of cold items, and a sketch Φ (e.g., the Count-
Min sketch, the CM–CU sketch) to record the frequencies of
hot items.

Insertion When inserting an item, we first update the CF as
described earlier. If the hashed counters concurrently over-
flow at both layers before this insertion, we employ sketch
Φ to record the remaining frequency of this item.

QueryRecall that V1 and V2 denote theminimumvalue of the
hashed counters at the two layers, respectively. Let Vφ be the
query result of sketch Φ. When querying an item, we have
three cases: (1) if the hashed counters do not concurrently
overflowat layer L1 (V1 < T1),we reportV1; (2) if the hashed
counters concurrently overflow at layer L1 (V1 = T1), but not
at layer L2 (V2 < T2), we report V1 + V2; (3) otherwise, we
report V1 + V2 + Vφ .

Discussion Here, we discuss why the sketch with CF can
achieve higher accuracy than the standard sketch. Conven-
tional sketches used for estimating item frequency do not
differentiate cold from hot items. They use counters of a
fixed size determined by the largest expected frequency. As
hot items are much fewer than cold ones in real data streams,
the high bits of most counters will be wasted (memory inef-
ficiency). If we use CF to approximately differentiate cold
from hot items, then we can exploit the skew in popular-
ity in the counters. For hot items, we use another sketch with
large counters to record its frequency. For cold items, CFwith

small counters provides more accurate estimation, as it lever-
ages a similar updating strategy as the CM–CU sketch while
containing many more counters. By employing the counters
with different sizes to do the counting, we can guarantee the
memory efficiency, and thus improve the accuracy.

Other sketches for frequency estimation, such as Counter
Braids (CB) [57], also leverage the skewness to achieve high
space efficiency. CB uses several counters for each flow, and
it allocates fewer counters for “more significant bits”. To get
the frequency of an item, CB uses an expensive decoding
procedure to get all frequencies, and it needs all item IDs,
which is not realistic in some scenarios. Compared with CB,
our CF does not need all item IDs and supports queries for a
single item.

4.1.2 Finding top-k hot items

Prior art There are two kinds of approaches to find top-k
hot items: sketch-based and counter-based [7]. Sketch-based
methods use a sketch (e.g., the Count-Min sketch [9], the
CM–CU sketch [29], and others [11]) to count the frequency
of each item in data streams, and a min-heap of size k to
maintain the top-k hot items. The prominent counter-based
methods include Lossy Counting [58], the Frequent algo-
rithm [59,60], and Space-Saving [10]. In this paper, we
focus on Space-Saving, as it is the most popular. Space-
Saving maintains a data structure called Stream-Summary
that consists of H (H � k) item-counter pairs. For each
incoming item e, if e has already been monitored by the
Stream-Summary, it increments its corresponding counter.
Otherwise, it inserts e into the Stream-Summary if there
is available space. If there is no space available, it cre-
ates new space by expelling the item with the minimum
count (Cmin) from the Stream-Summary, and stores e with
count of Cmin + 1 at its place. During queries, Space-Saving
returns the top-k hot items from theStream-Summary accord-
ing to their recorded frequencies (i.e., the values in their
counters).

Key idea To enhance the performance of Space-Saving, we
use a CF to prevent the large number of cold items from
accessing the Stream-Summary.

123

742 T. Yang et al.

Insertion When inserting an item, we first update CF as
described before. If the hashed counters concurrently over-
flow at both layers before this insertion, we feed this item to
Space-Saving.

Report Below, we show how to report the top-k hot
items. After processing all the items, we get the IDs
and recorded frequencies of the top-k hot items from the
Stream-Summary. Their estimated frequencies will be the
corresponding recorded frequencies plus T . For the above
procedures, we need to guarantee that the frequency of the
kth hottest item is larger than the threshold T . In practice,
to get the kth largest frequency, we use the kth largest fre-
quencies from previous measurement periods to predict the
kth largest frequency of the current measurement period,
using EWMA [61], with some history weight. The larger T
is, the better we expect the results to be. Therefore, we set
T = F × α (α → 1), where F is the predicted frequency.

Discussion Now, we discuss why Space-Saving with CF
can achieve higher accuracy than standard Space-Saving.
Standard Space-Saving processes each item identically: each
incoming item needs to be fed to the Stream-Summary.
Unfortunately, the large number of cold items will lead to
many unnecessary exchanges in the Stream-Summary, over-
estimating the recorded frequencies, since each exchange
leads to one increment operation in the counter associ-
ated with the expelled item. Over-estimation of frequencies
further leads to many incorrect exchanges in the Stream-
Summary. As a results, the accuracy of standard Space-
Saving will degrade. If we use CF to filter out the large
number of cold items, fewer incorrect exchanges will occur
in the Stream-Summary, and the accuracy of both recorded
frequencies and Space-Saving can be improved.

4.1.3 Detecting heavy changes

Prior art Heavy changes refer to the items that experi-
ence abrupt changes of frequencies between two consecutive
time windows. We also call these items the culprit items.
We assume the data stream during the first time window
has frequency vector f1 =< f1e1, f1e2 , . . . , f1eL > where
f1ei denotes the frequency of item ei (picked from the uni-
verse U = {e1, e2, . . . , eL}). Similarly, we have f2 =<

f2e1 , f2e2 , . . . , f2eL > during the second time window. For
item ei , if | f1ei − f2ei | � φ · D, where φ is a predeter-
mined threshold and D = ∑L

j=1 | f1e j − f2e j |, it is called a
heavy change. Note that computing D, the L1 difference of f1
and f2, is a well-studied problem [62]. The k-ary sketch [63]
can efficiently capture the difference between f1 and f2, but
requires a second pass to obtain the IDs of culprit items. The
reversible sketch [64], based on the k-ary sketch, can infer the
IDs of culprit itemswith time complexity of O(L0.75), which
depends on the ID space of items, and could be large in prac-

tice. Therefore, we will not focus on it in this paper. Recent
work—FlowRadar [32], encodes each distinct item and its
frequency in an extended IBLT (Invertible Bloom Lookup
Table) [33] with the aid of a Bloom filter [16] and decodes
them in time complexity of O(n) where n is the number of
distinct items. When the number of hash functions used in
the extended IBLT is set to 3, FlowRadar can decode all the
items with a very high probability, if mc > 1.24n where mc

is the number of cells in IBLT. Obviously, FlowRadar can
be used for detecting heavy changes, by comparing the two
decoded item sets.

Key ideaTo enhance the performance of FlowRadar, we use a
CF to prevent the large number of cold items from accessing
FlowRadar.

Insertion During the first time window, when inserting an
item, we first update CF as described before. If the hashed
counters concurrently overflow at both layers before this
insertion, this item needs to be inserted into FlowRadar. At
the end of this time window, we employ new instances of
CF and FlowRadar. The insertion process during the second
time window is the same as during the first time window.

Report Below, we show how to report heavy changes. At the
end of the second time window, we decode the two IBLTs
associated with each time window in FlowRadar. Let S1 and
fI1 be the item set and frequency vector decoded from the first
IBLT, respectively. For each item, e ∈ S1, f I1e is its recorded
frequency in IBLT. Similarly, we get S2 and fI2 from the sec-
ond IBLT. Recall that V1 and V2 denote the minimum value
of the hashed counters at the two layers in CF, respectively.
For an arbitrary item e ∈ S1 ∪ S2, we define the function
Q1(.) for the first CF as follows: (1) if the hashed coun-
ters do not concurrently overflow at layer L1 (V1 < T1),
Q1(e) = V1; (2) otherwise, Q1(e) = V1 + V2. Similarly, we
define Q2(.) for the second CF. The procedure for detecting
heavy changes is shown in Algorithm 3. Note that we need to
guarantee T � φ × D. Given this constraint, (1) items that
do not access FlowRadar in either time window have their
frequencies in both time windows definitely lower than or
equal to T , and thus their frequency changes will not exceed
T � φ ×D; (2) the IDs and frequencies of the other items in
the two time windows can be answered by IBLTs and CFs.
Discussion Now, we discuss why FlowRadar with CF
requires less memory than the standard FlowRadar. Accord-
ing to the literature [32], the memory usage of the IBLT
in FlowRadar should be proportional to the number of dis-
tinct items it records. Therefore, the large number of distinct
cold items will incur a significant memory consumption for
the standard FlowRadar. If we use CF to filter out the cold
items, the number of distinct items that FlowRadar needs to
record will be largely reduced, and much memory can be
saved.

123

Fast and accurate stream processing by filtering the cold 743

Algorithm 3: Detecting heavy changes.

Input: S1, fI1, Q1(.) and S2, fI2, Q2(.).
Output: The culprit item set C .

1 C ← ∅;
2 foreach e ∈ S1 ∪ S2 do
3 /∗ f1e: e’s frequency in the first time window ∗/

4 if e ∈ S1 then f1e ← f I1e + T else f1e ← Q1(e) /∗ f2e:
e’s frequency in the second time window ∗/

5 if e ∈ S2 then f2e ← f I2e + T else f2e ← Q2(e) if
| f1e − f2e| � φ · D then C ← C ∪ {e}

6 return C ;

Three arrays of PIE

Data stream of several measurement periods
···e1··· ···e2··· ···e3··· ···e4···

Array of w1

w1 w2 w3 w4

Array of w2

Array of w3

e3

e2

e1

Fig. 6 PIE algorithm

4.2 Persistency-based tasks

4.2.1 Finding persistent items

Prior art In this paperwe use the definition of persistent items
from [35]. Given a data stream S consisting of T ′ continuous
equally sized measurement periods (periods for short), if an
item e occurs in x periods, then x is the occurrence of e.
If an item appears many times but only in one period, its
occurrence is 1. An item e is persistent if and only if its
occurrence over time is no less than a predefined threshold
T , and when these conditions are met, we call e a persistent
item. Finding persistent items is to report all items whose
occurrence is no less than T .

The state-of-the-art algorithm for finding persistent items
is called PIE [35]. Below we present how PIE works (Fig. 6).
Given a data stream S consisting of T ′ periods, PIE builds
one array for each period; then there will be T ′ equally sized
arrays in total. Each array consists of w cells, and each cell
consists of three fields: flag, Raptor code [36] and a finger-
print. During the recording the stream, for an incoming item
e, like Bloom filters [16], PIE computes k hash functions of
e, and gets k cells in the array of the current period, and we
call them the k mapped cells for convenience. If a mapped

cell is empty, PIE computes its fingerprint v using a hash
function and computes a Raptor code α. Then, PIE sets the
cell to < v, α, true >. If a mapped cell is not empty, PIE
will compare e’s fingerprint v with the fingerprint stored in
the cell. If the two fingerprints are the same, PIE does noth-
ing; otherwise, PIE sets the flag to false. A cell with a flag of
false means that this cell has collisions and is useless. In the
decoding phase, PIE searches all cells in the T ′ arrays. Given
an item e, it will be decoded successfully if and only if there
are enough number of fingerprints that are the same as e’s
fingerprint. Otherwise, e cannot be decoded successfully. For
a non-persistent item, it can hardly be successfully decoded,
because there are a very few Raptor codes recorded in the
arrays. For example, if an item e appears many times but in
only one period, all the T ′ arrays at most record only 1 Rap-
tor code. In this case, e cannot be decoded. In contrast, for a
persistent item, it could have Raptor codes stored in cells in
many arrays and thus could be decoded successfully with a
much higher probability. In real data streams, as mentioned
above, the frequency distribution of items is very skewed.
In other words, most items occur only a few times (e.g., less
than 4). Such cold itemswill be hashed tomany cells, leading
to many invalid cells. As a consequence, the number of suc-
cessful decoding will be sharply reduced if using the original
PIE algorithm.
Key idea Our observation is that those cold items, which are
very cold (e.g., with frequency less than 3 or 5), are defi-
nitely not persistent items. Non-persistent items should not
be inserted into PIE, because inserting non-persistent items
into PIE not only degrades the accuracy, but also degrades
the encoding and decoding speed. Therefore, our approach
uses cold filter to filter very cold items in advance, discarding
these items directly.

Next, we show the data structure, insertion, report details
of our implementation of CF to the PIE algorithm. As the
operation details of PIE have been presented in the begin-
ning of this subsection, we omit the insertion and decoding
operations of PIE below.

Data structure (Fig. 7) Our data structure consists of two
parts: a cold filter and a PIE structure. In this implementation,
we only need an one-layer cold filter, as only very cold items
have to be filtered. The counter in the cold filter is small,
e.g., 2 or 4 bits. We do not employ the Aggregate-and-report
technique in this application, because it may aggregate items
across multiple time periods. In other words, the simplified
CF framework is an array associated with k hash functions.
For each insertion, the k mapped counters that are confined
into one machine word are incremented: only the smallest
counter(s) will be incremented by 1. If some counters reach
the maximum value, it will stay unchanged when mapped
again.

123

744 T. Yang et al.

Data stream

Incoming Item e

Cold Filter

PIE

Hot Items

(Cold Items)
e

one-layer Cold Filter

Fig. 7 Deployment Cold Filter on the PIE algorithm

Insertion Recall that the cold filter (CF) can report whether
the frequency of an incoming item exceeds the predefined
threshold T . Therefore, when inserting an item e, we first
update CF as described before. If CF reports that the fre-
quency of e exceeds T , we insert e into the PIE. Otherwise,
we discard e.

Report After processing all the items in the data stream, we
get a CF and a PIE containing many fingerprints and Raptor
codes.We want to decode persistent items, not non-persistent
ones. All the successfully decoded items will be reported as
persistent.

Discussion Next, we discuss why PIE with CF can achieve
higher accuracy than the standardPIE.The standard approach
inserts all incoming items in one scheme indiscriminately.
When a hash collision happens in a cell, the standard
approach simply discards this cell. As discussed before,
in practice, items in real data streams often obey skewed
distributions. Therefore, although some cold items may be
persistent, most cold items are definitely not persistent. As
the majority are cold items and PIE inserts all cold items, it
makes a significant number of cells invalid. Fortunately, our
CF filters very cold items, significantly reducing the num-
ber of invalid cells. As a result, after using CF, PIE becomes
much more accurate when using a given amount of memory.
Besides, the insertion speed also improves because a number
of items have been discarded by CF, whose inserting speed
is much higher than PIE.

5 Formal analysis

5.1 Performance of CF

Given a timewindow [1, E], the data streamS = (e1, e2, . . . ,
eE) contains E items with N unique items eβ1 , eβ2 , . . . , eβN .
Within this time window, we construct a CF with threshold
T (= T1 + T2). Recall that we need to estimate whether an
item’s frequency exceeds the threshold T or not. Before we
get into the formal analysis of the performance of CF, we
first need to specify the frequency distribution of the items
of this data stream.

Definition 1 For each time point j ∈ [E],4 let Ik[j] be the
subset of items whose current frequency is greater or equal to
k. Formally, Ik[j] = {eβi | feβi [j] � k, i ∈ [N], k ∈ Z+}.5
LetΔk[j] be Ik[j]− Ik+1[j]. We only assume that the values
of |Ik[E]|, ∀k ∈ N+ are known.

Consider the time window [1, E]. The hot items whose
frequencies fe[E] are larger than T will finally be identi-
fied as hot items. The only error CF makes is in letting some
cold itemswhose frequencies fe[E] are smaller or equal to T
“pass”.We say that these items aremisreported to the specific
stream processing algorithms. Let Imr be the subset of mis-
reported items. To characterize the filtering performance of
CF formally, we define the misreported rate Pmr as follows:

Pmr = |Imr|/(|I1[E]| − |IT +1[E]|). (1)

For the Pmr of CF (without optimizations), we first focus
on analyzing the CM–CU sketch and then use the analysis
to handle the two-layer CF. Below, we first use the known
properties of standard Bloom filters to derive the Pmr of
CM–CU.

The reason we use Pmr here is that the misreport rate is the
direct metric for the effectiveness of CF itself, and it is not
related to the specific task. If the misreport rate is high, then a
lot of cold items will be regarded as hot items, which means
Cold Filter does not successfully filter cold items. And the
accuracy for specific tasks is expected to be low.

5.2 Standard Bloom filter

A standard Bloom filter [16] can tell whether an item appears
in a set. It is made of a w-bit array associated with d hash
functions.When inserting an item, it uses thed hash functions
to locate d hashed bits, and sets all these bits to one. When
querying an item, if all d hashed bits are one, it reports true;
otherwise, it reports false. We use n to denote the number
of items in the given set. The standard Bloom filter only has
false positives, no false negatives. It may report true for some
items that are not in the set, but never reports false for an item
that is in the set. Given w, d and n, the false positive rate Pfp
of a standard Bloom filter is known to be:

Pfp(w, d, n) =
[

1 −
(

1 − 1

w

)nd
]d

≈
(
1 − e− nd

w

)d
(2)

We have the following lemma:

Lemma 1 P fp(w, d, x) = 1
x

∑x−1
i=0 Pfp(w, d, i), ∀x ∈ N+

is a monotonic increasing function of x.

4 [E] = {1, 2, . . . , E}.
5 Z+ is the set of non-negative integers.

123

Fast and accurate stream processing by filtering the cold 745

The detailed proof is provided in Section B.1 in our con-
ference paper [56].

5.3 Multi-layer Bloom filter

To bridge the Bloom filter with CM–CU, we introduce a new
data structure calledmulti-layerBloomfilter, used to estimate
item frequency. The multi-layer Bloom filter is an array of
standardBloomfilterswith the samew, d and hash functions.
Each Bloom filter has its level, equal to its index in the array
from 1 to λ. When inserting an item, we check whether the
level-1 Bloom filter reports true: (1) if it reports false, we just
set the d hashed bits in the level-1 Bloomfilter to one, and the
insertion ends; (2) if it reports true, we need to check whether
the level-2 Bloom filter reports true, and rely on the result to
determine whether we should end the insertion or continue to
check the level-3 Bloom filter. Such operations will continue
until the Bloom filer at level λ′ reports false, and we set the
d hashed bits at this level to one. When querying an item, we
find the last (from low to high level) Bloom filter that reports
true for this item. Then, we report the level of this Bloom
filter as the estimated frequency of this item.

5.4 Equivalence betweenmulti-layer Bloom filter
and CM–CU

The multi-layer Bloom filter is equivalent to CM–CU if they
have the same hash functions and w = w1, d = d1, λ

= 2δ1 −1. Therefore, if we want to analyze the misreporting
rate of CM–CU, we can rely on the one of the multi-layer
Bloom filter.

For each time point j ∈ [E], let (f̂eβ1 [j], f̂eβ2 [j], . . . ,
f̂eβN [j]) be the current estimated frequencies (of all distinct
items) reported by the multi-layer Bloom filter.

Definition 2 For each time point j ∈ [E], let Jk[j] be
the subset of items such that each item’s current estimated
frequency is larger than or equal to k. Formally, Jk[j]
= {eβi | f̂βi [j] � k, i ∈ [N], k ∈ Z+}.
Lemma 2 The item subsets Ik[j] and Jk[j], defined in Defi-
nition 1 and 2, have the following relation:

|Ik[j]| � |Jk[j]|
� |Ik[j]|

+
k−1∑

i=1

[

(|Ii [j]| − |Ii+1[j]|) ×
i∏

u=1

P fp(w, d, |Jlu [j]|)
]

(3)

where l1, . . . , lu, . . . , lk−1 is the permutation of 1, 2, . . . , k−
1 that makes sequence P fp(w, d, |Jlu [j]|) in descending
order. Note that the upper bound is an expectation, but not
deterministic.

The detailed proof is provided in Section B.2 in our con-
ference paper [56].

The detailed proof is provided as follow.

Proof The lower bound |Jk[j]| � |Ik[j]| can be easily
observed.Given an incoming item e, inmost cases, theBloom
filter reports 0 (false) and 1 (true) before and after inserting e,
which is equivalent to incrementing the estimated frequency
of e by one. Therefore, we have: |Jk[j]| � |Ik[j]|.

The upper bound of |Jk[j]| is related to the function P fp(),
which is called past false positive rate. This function solves
the following problem: given an initial standard Bloom filter
with w and d, and x distinct items, for each coming distinct
item, we check whether the Bloom filter reports true for this
item, and then insert it into the Bloom filter regardless. After
processing all the x distinct items, how many distinct items
are expected to be reported true by the Bloom filter? The
answer is P fp(w, d, x) × x . We consider the false positive
rate of every item. For the i th (1 � i � x) incoming item,
its false positive rate equals to Pfp(w, d, i − 1), since these
are total i −1 items inserted into the Bloom filter previously.
Therefore, the total number of distinct items that are expected
to be reported true is

∑x−1
i=0 Pfp(w, d, i) = P fp(w, d, x)×x .

We consider the specific process of inserting all E items
into the multi-layer Bloom filter. The contributions to Jk[j]
derive from the following k parts: (1) items in set Ik[j]; (2)
items in set Ik−1[j] − Ik[j] and experiencing one or more
false positives from level 1 to level k − 1; (3) items in set
Ik−2[j] − Ik−1[j] and experiencing two or more false posi-
tives from level 1 to level k−1;…; k) items in set I1[j]−I2[j]
and experiencing k−1 false positives from level 1 to level k−
1. For the first part, the set size is |Ik[j]|; for the second part,
the set size is |Ik−1[j]|−|Ik[j]|, and themaximum probabil-
ity of experiencing such false positives is P fp(w, d, |Jl1 [j]|);
For the third part, the set size is |Ik−2[j]|−|Ik−1[j]|, and the
maximum probability of experiencing such false positives is
P fp(w, d, |Jl1 [j]|)×P fp(w, d, |Jl2 [j]|); . . .; For the kth part,
the set size is |I1[j]| − |I2[j]|, and the probability of expe-
riencing such false positives is

∏k−1
u=1 P fp(w, d, |Jlu [j]|);

Considering all the above k parts, the lemma holds. �
Since P fp(w, d, x) is a monotonically increasing func-

tion of x , |Jk[j]| can be bounded recursively by this lemma.
Let |Jk[j]|L and |Jk[j]|U be the lower and upper bound of
|Jk[j]|, respectively.

In addition, we derive an upper bound of |Jk[j]|− |Ik[j]|
in probabilistic version, in other words, a confidence interval
of it.

|Jk[j]| − |Ik[j]| increases only if there is a false posi-
tive error in the Bloom filter. Therefore, |Jk[j]| − |Ik[j]| is
bounded by the number of false positive error defined as Nfp.

Nfp is a random variable with values from 0 to n, where
n is the number of distinct items. Nfp is proved to obey the
binomial distributionB(n, Pfp(w, d, n)), where Pfp(w, d, n)

123

746 T. Yang et al.

is the false positive rate. Given the confidence α, the confi-
dence interval of |Jk[j]|−|Ik[j]| is included in the confidence
interval of Nfp. Thus, we can derive an α-confidence upper
bound of |Jk[j]| − |Ik[j]|, given w, d, n.

5.5 Bound of Pmr of multi-layer Bloom filter (� = T)

Generally, its Pmr is associated with the distribution of the
appearance order of each item in the whole data stream. We
can use Gaussian, Poisson or other distributions to model
it. We employ the random order model [65,66] defined as
follows:

Definition 3 (Random order model) Let P be an arbitrary
frequency distribution over distinct item set U = {eβ1 ,

eβ1 , . . . , eβN }. At each time point, the incoming item in the
stream is picked independently and uniformly at random
from U according to P .

Theorem 1 Under the randomordermodel, themisreporting
rate of the multi-layer Bloom filter is bounded by:

Pmr �
∑λ

k=1

{[
1 − ∏k

u=1

(
1 − ∏λ

i=u Pfp(|Jli [tu]|L)
)]

× |Δk [E]|
}

|I1[E]| − |Iλ+1[E]|

Pmr�
∑λ

k=1

{[
1 − ∏k

u=1

(
1 − ∏λ−u+1

i=1 Pfp(|Jli [tu]|U)
)]

× |Δk [E]|
}

|I1[E]| − |Iλ+1[E]|
(4)

where l1, . . . , li , . . . , lλ is the permutation of 1, 2, . . . , λ
that makes sequence Pfp(w, d, |Jli [tu]|) in descending order,
and |Jli [tu]|L and |Jli [tu]|U can be calculated using Eq. 3
and

|Ili [tu]| = (2u − 1)

2k
× |Ili [E]| (1 � i � λ, 1 � u � k � λ)

(5)

The detailed proof is provided in Section B.3 in our con-
ference paper [56].

5.6 Bound of Pmr of CF

For a two-layer CF, since it has two distinct layers with dif-
ferent parameter settings, we define a unified function for its
false positive rates at different layers.

Definition 4 For each time point j ∈ [E],

PU
pf (|Jx [j]|) =

{
Pfp(w1, d1, |Jx [j]|) (x ∈ [1, T1])
Pfp(w2, d2, |Jx [j]|) (x ∈ [T1 + 1, T])

P
U
pf (|Jx [j]|) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

|Jx [j]|
|Jx [j]|−1∑

i=0

Pfp(w1, d1, i) (x ∈ [1, T1])

1

|Jx [j]|
|Jx [j]|−1∑

i=0

Pfp(w2, d2, i) (x ∈ [T1 + 1, T])

(6)

where |Jk[j]| is bounded in the following lemma:

Lemma 3 The item subsets Ik[j] and Jk[j], defined in Defi-
nition 1 and 2, have the following relation:

|Ik[j]| � |Jk[j]|

� |Ik[j]| +
k−1∑

i=1

[

(|Ii [j]| − |Ii+1[j]|)

×
i∏

u=1

P
U
fp(|Jlu [j]|)

]
(7)

where l1, . . . , lu, . . . , lk−1 is the permutation of 1, 2, . . . , k−
1 that makes sequence P

U
fp(|Jlu [j]|) in descending order.

The detailed derivation process for this lemma is similar
to the one of Lemma 2; hence, we omit it. Similarly, we can
get |Jk[j]|L and |Jk[j]|U from this lemma.

Theorem 2 Under the randomordermodel, themisreporting
rate of a two-layer CF is bounded by:

Pmr �

∑T
k=1

{[

1 − ∏k
u=1

(

1 −
λ∏

i=u
P
U
fp(|Jli [tu]|L)

)]

× |Δk [E]|
}

|I1[E]| − |Iλ+1[E]|

Pmr �

∑T
k=1

{[

1 −
k∏

u=1

(
1 − ∏λ−u+1

i=1 P
U
fp(|Jli [tu]|U)

)]

× |Δk [E]|
}

|I1[E]| − |Iλ+1[E]|
(8)

where l1, . . . , li , . . . , lλ is the permutation of 1, 2, . . . , λ that
makes the sequence Pfp(w, d, |Jli [tu]|) in descending order,
and |Jli [tu]|L and |Jli [tu]|U can be calculated by Eq. 7 and

|Ili [tu]| = (2u − 1)

2k
× |Ili [E]| (1 � i � λ, 1 � u � k � λ)

(9)

The detailed derivation process for this theorem is similar
to Theorem 1, and we omit it.

5.7 Analysis of CM–CUwith CF

Now,wegive a formal analysis of theCM–CUsketchwithCF
(with two optimizations) for estimating item frequency. We

123

Fast and accurate stream processing by filtering the cold 747

use the same notations and assumptions employed in Sect.
5.1. We use wφ and dφ to denote the number of counters per
array and the number of arrays in the CM–CU sketch (Φ),
respectively.

We first consider the error bound of the CM–CU sketch
with CF plus one-memory-access strategy and then illustrate
how this error bound can be generalized to the aggregate-
and-report strategy. We consider the two layers of CF and
the CM–CU sketch as three multi-layer Bloom filters with
different parameter settings. The literature [19] shows that
the Bloom filter with partitioning (e.g., dφ segments in Φ)
has the same asymptotic false positive rate as the standard one
without partitioning. Here, we consider them as equivalent.
Therefore,we define a unified function about its false positive
rates of different layers as follows:

Definition 5 For each time point j ∈ [E],

Pφ
p f

U
(|Jx [j]|) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Poma
fp

(

w1, d1, |Jx [j]|, W
δ1

)

(1 � x � T1)

Pfp(w2, d2, |Jx [j]|) (T1 + 1 � x � T)

Pfp(wφ, dφ, |Jx [j]|) (x � T + 1)

P
φ

p f

U
(|Jx [j]|) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|Jx [j]|
|Jx [j]|−1∑

i=0

Poma
fp

(

w1, d1, i,
W

δ1

)

(1 � x � T1)

1

|Jx [j]|
|Jx [j]|−1∑

i=0

Pfp(w2, d2, i)

(T1 + 1 � x � T)

1

|Jx [j]|
|Jx [j]|−1∑

i=0

Pfp(wφ, dφ, i)

(x � T + 1)

(10)

Using the same approach as before, we get |Jk[j]|U .
Theorem 3 For an arbitrary item eβi (i ∈ [N]), let
feβi and f̂eβi be its real and estimated frequency during

time window [1, E], respectively. Let V be
∑N

i=1 feβi . Let
l1, . . . , lu, . . . be the permutation of 1, 2, . . . that makes

sequence Pφ
fp
U

(|Jlu [E]|U) in descending order.
We have the following accuracy guarantee about the CM–

CU sketch with CF (with one-memory-access):

Pr [f̂eβi − feβi � �εV �] � 1 −
�εV �∏

u=1

Pφ
fp
U

(|Jlu [E]|U) (11)

The detailed proof is provided in Section D of [56].
Consider the aggregate-and-report strategy. Obviously,

the aggregate-and-report strategy only changes the appear-
ance order of some items. Since in Theorem 3 we pick the

appearance order that results in the worst case false posi-
tive rate to derive the error bound, this error bound is also
applicable to CF with the two optimizations.

5.8 Analysis of PIE with CF

Now we give the brief equations and proof of false negative
rate and false positive rate of PIE with CF. Based on the
equations and proof,we recommend the approximate optimal
values for some parameters. Following is the notations used
in the analysis later (Tables 1, 2, 3).

Table 1 Parameters of PIE

Parameters Descriptions

T Threshold for item persistence, i.e., an
item is persistent if and only if it occurs
in t different measurement periods,
where t ≥ T

k Number of hash functions for PIE

m Width of PIE

T ′ Number of arrays in PIE, also the number
of measurement periods

p Number of bits of each fingerprint in PIE

r Number of bits of each Raptor code in PIE

Table 2 Parameters of Cold Filter

Parameters Descriptions

N Total number of occurrences of all items
during T ′ measurement periods

TCF For a PIE with CF, set the threshold of CF
to be TCF, i .e., items whose frequency is
less than TCF are very cold items and are
supposed to be discarded by CF

Table 3 Notations In the Computation

Parameters Descriptions

Pnc Probability that a cell of PIE has no hash
collision

Pm Hash-mapping collision survival
probability

Pdf (r; l) Decoding failure probability when using r
bits to encode the ID using Raptor codes

Pp Hash-print collision survival probability

ωt Percentage of items occurring in
measurement period t

Psr Expected probability that an item is
successfully recovered

PFN False negative rate of PIE

PFP False positive rate of PIE

α Percentage of occurrences that pass CF

123

748 T. Yang et al.

5.8.1 False negative rate estimation

First we discuss the representation of α. Recall that an item
e whose frequency is equal or larger than threshold TCF will
definitely pass CF, while an item whose frequency is less
than TCF may pass CF with probability Pmr. So that α can be
represented as

α = Pmr
∑TCF−1

t=1 (ωt · t) + ∑T ′
t=TCF(ωt · t)

∑T ′
t=1(ωt · t)

In each measurement period, the expected number of occur-
rences is Nα/T ′. Thus,

Pnc =
(

1 − 1

m

)k(Nα/T ′−1)

≈
(

1 − 1

m

)kNα/T ′

(12)

We use the similar approach from [35] to find a simple
expression for describing the hash-print collision survival
probability Pp that is feasible for parameter optimization.
We state the optimization problem as:

Minimize PFN such that m(r + p + 1) = M .

The latter equation represents the memory constraint,
where M is the size of the entire STBF in bits. It is obvi-
ous that the difference between PIE and PIE with CF is the
change of total occurrences N , i.e., from N to Nα, while
the other parameters remain unaffected. Consequently, we
are able to use the similar derivation to reformulate the opti-
mization problem as:

Minimize (Nα · 1/2p · 1/m · Pnc)k such that
m(r + p + 1) = M .

According to the proofs from [35], we are able to recom-
mend the approximate optimal values for some parameters
as follows:

r =
⌈

κl

T ·
(

1 − 1

m

)− kNα
T ′

⌉

(13)

p =
⌊
M

m

⌋

−
⌈

κl

T ·
(

1 − 1

m

)− kNα
T ′

⌉

− 1 (14)

where κ is a preset constant such as κ = 1.01 or κ = 1.1.

5.8.2 False positive rate estimation

There are two situations in which false positives happen: (1)
The recovered ID is different from any of the items in PIE.
In other words, the recovered ID belongs to a very cold item
which is discarded by CF or does not belong to any item in

the data stream; (2) The recovered ID is the same as a non-
persistent item in PIE. We use PFP1 and PFP2 to denote the
false positive rate of these two scenarios.
Scenario 1Becausewe assume that any very cold item cannot
be a persistent item, although a very cold item passes CF
and enters PIE, its ID cannot be recovered the normal way.
Any recovered ID in this situation must come from several
different items’ Raptor codes. There must be two different
cells containing the same fingerprint, and the recovered ID
comes from these cells, to which different items are mapped.
The probability that fingerprints in such cells are the same is
(1/2p)T −1. To be reported as a persistent item, the Raptor
codes and hash-prints from this recovered ID in other k − 1
cells cannot be different. In other words, other k − 1 cells
are either invalid or filled with the same Raptor codes and
hash-prints as those of the recovered ID. Recall that Pnc is
the probability that no collision happens in a given cell, so
the probability of this scenario is

k−1∑

i=0

(i
k−1

)
Pi
nc

(
1

2r+p

)i

(1 − Pnc)
k−1−i (15)

The false negative rate for the first scenario is therefore:

PFP1 =
(

1

2p

)T −1 k−1∑

i=0

(i
k−1

)
Pi
nc

(
1

2r+p

)i

(1 − Pnc)
k−1−i

=
(

1

2p

)T −1 (
Pnc
2

+ 1 − Pnc

)k−1

(16)

Scenario 2 In scenario 2, the recovered ID belongs to an item
e in PIE which is not a very cold item, but is a non-persistent
item which passes CF and enters PIE. Suppose e occurs in t
different measurement periods (1 ≤ t < T), then the group
of items must be mixed due to other items mapped to some
other cells. The worst case is that the group is mixed due to
only one other item. Similarly, we can get the false positive
rate for this scenario as follows (s = T − 1 − t).

PFP2 =
(

1

2p

)s s∑

i=0

(i
s

)
Pi
nc

(
1

2r+p

)i

(1 − Pnc)
s−i

=
(

1

2p

)s (
Pnc
2r+p

+ 1 − Pnc

)s
(17)

And the false positive rate FPR for the worst case is shown
as follows.

PFP = max {PFP1, PFP2} (18)

With the equation above, we can derive the bound of some
parameters of PIE to achieve a desired false positive rate.
Given the upper bound of false positive rate PFP, we have

123

Fast and accurate stream processing by filtering the cold 749

p ≥ − log2 PFP − log2(1 + Pnc/2)k−1

T − 1
(19)

And under the constraint ofm(r+ p+1) = M , we can select
r once p is determined

r =
⌊
M

m

⌋

− p − 1 (20)

6 Performance evaluation

In this section, we provide experimental results using cold
filter with different algorithms. After introducing the exper-
imental setup in Sect. 6.1, we provide results of frequency-
based tasks (Sect. 6.2) and persistency-based tasks (Sect. 6.3)
separately since the data structure of cold filter is slightly dif-
ferent in these two types of tasks.

6.1 Experimental setup

6.1.1 Datasets

(1) IP trace datasetsWe use the anonymized IP trace streams
collected in 2016 from CAIDA [67]. Each flow is identified
by its source IP address (4 bytes). We use the first 256 M
packets (items) from this trace, and uniformly divide them
into 8 sub-datasets, each of which has around 0.4M distinct
items.

(2) Web page datasets We downloaded the raw dataset
from the website [68]. This dataset is built from a crawled
collection of web pages. Each item (4 bytes) records the
number of distinct terms in a web page. We use the first
256M items from the raw dataset and uniformly divide them
into 8 sub-datasets, each of which has around 0.9 M distinct
items.

These two types of datasets have the same number of
items, but different numbers of distinct items, due to their
different item frequency distributions. After each of them
is divided into 8 sub-datasets, the two types of sub-datasets
have different numbers of distinct items, 0.4 versus 0.9 M.
For all experiments using the above two types of datasets, we
will plot their 5th and 95th percentile error bars across the 8
sub-datasets.

(3) Synthetic datasetsWe generated 11 datasets following
the Zipf [27] distribution with various skewness (from 0.0
to 3.0 with a step of 0.3). Each dataset has 32M items and
different numbers of distinct items depending on the skew-
ness. The length of each item in each dataset is 4 bytes. The
generator’s code comes from an open source performance
testing tool named Web Polygraph [69].

6.1.2 Implementation

We have implemented CM (Count-Min for short), CM–CU,
min-heap, SS (Space-Saving), FR (FlowRadar), ASketch
(Augmented sketch), PIE and our CF (including two speed
optimizations) in C++. The hash functions are implemented
from the 32-bit Bob Hash (obtained from the open source
website [70]) with different initial seeds.

6.1.3 Computation platform

We conducted all the experiments on a machine with two
6-core processors (12 threads, Intel Xeon CPU E5-2620
@2 GHz) and 62 GB DRAM memory. Each processor has
three levels of cache: one 32 KB L1 data cache and one
32 KB L1 instruction cache for each core, one 256 KB L2
cache for each core, and one 15 MB L3 cache shared by all
cores. Although we have 12 cores, the experiments in this
section are done in only one core. More cores are used in the
next section.

6.1.4 Queries

We define the query set for each task in our experiments,
which is used in the metrics. In frequency estimation, the
query set is the distinct items in the dataset. In top-k, heavy
changes, and persistent items, the query set is the set of items
reported by the specific algorithm.

6.1.5 Metrics

(1)Average absolute error (AAE) in frequency estimation and
top-k 1

|�|
∑

ei∈� | fi − f̂i |, where fi is the real frequency of

item ei , f̂i is its estimated frequency, and � is the query set.
Here, we query the whole dataset by querying each distinct
item once.

(2) Average absolute error (AAE) in persistent items
1

|�|
∑

ei∈� | fi − f̂i |, where fi is the real occurrence of item

ei which is reported as persistent when using PIE or PIE+CF,

f̂i is its estimated occurrence, and � is the set of items that
are reported when using PIE or PIE+CF.

(3) Average relative error (ARE) in persistent items
1

|�|
∑

ei∈�
| fi− f̂i |

fi
, where fi is the actual occurrence of item

ei reported as persistent when using PIE or PIE+CF, f̂i is
its estimated occurrence, and � is the set of items that are
reported when using PIE or PIE+CF.

(4) Precision rate (PR) in top-k and heavy changes ratio
of the number of correctly reported instances to the number
of reported instances.

123

750 T. Yang et al.

Table 4 Parameter setting for CF

T2 db wc M1 : M2

CM/CM–CU [9,29] 241 1000 16 13:7

Space-Saving [10] – 96 16 7:13

FlowRadar [32] 241 200 16 13:7

(5) Recall rate (CR) in heavy changes and persistent items
ratio of the number of correctly reported instances to the
number of correct instances.

(6)Memory threshold (Tm) in heavy changes the least total
memory usage of FlowRadar (with CF) when the F1 score

[71] (= 2×PR×CR
PR+CR) reaches 99%.

(7) Speed million operations (insertions or queries) per
second (Mops). All the experiments about speed are repeated
100 times to ensure statistical significance.

(8) Decoding time in persistent items time to decode all
the persistent items.

6.2 Evaluation of frequency-based tasks

6.2.1 Parameter setting

Let Mcf be the memory of CF, Mar the memory of the
aggregate-and-report component, and M1 (resp. M2) the
memory of layer L1 (resp. L2) in CF. We have Mcf

= Mar + M1 + M2. For each task, we set d1 = d2 = 3, δ1
= 4, δ2 = 16, T1 = 15 in CF. Table 4 lists the other parame-
ter settings for each task. The remaining setting is as follows:

(1) Estimating item frequency We compare four
approaches: CM, CM–CU, CM–CUwithASketch, and CM–
CU with CF. For each of the four CM/CM–CU sketches, we
allocate 2 MB of memory (Mt), use 3 hash functions,6 and
set the counter size to 32 bits. For CM–CU with ASketch,
we set its filter size to 32 items as the original paper [4]
recommends.

(2) Finding top-k hot itemsWe compare four approaches:
CM with heap, CM–CU with heap, SS, and SS with CF. We
do not compare the above approaches with ASketch, since it
can only capture a small number of the hottest items (around
32 items) while we will vary k between 32 and 1024. Recall
that H denotes the number of item-counter pairs in SS. For
SS with CF, we set H = 2.5 k, Mcf = 200 KB. We use
the actual frequency of the kth hottest item from one extra
dataset (e.g., the 9th IP trace or web page dataset) as the
prediction for the experimental datasets. Let F be the pre-

6 The literature [57,72] recommends using a small number of hash
functions.

dicted frequency. We set T = F × 0.90. SS uses a linked
list and a hash table to implement the Stream-Summary data
structure, and achieves O(1) time complexity on average.
Each item-counter pair needs around 100 bytes memory on
average (including pointers and unoccupied space for han-
dling hash collisions quickly). Therefore, for SS, we set H
= 2.5 k + Mcf/(100 bytes) = 2.5 k + 2048 for a fair com-
parison. CM/CM–CU with heap maintains k item-counter
pairs in its heap and uses a hash table for item lookup. Each
item-counter pair needs around 100 bytes ofmemory on aver-
age. Therefore, we allocate Mcf + 2.5 k ∗ 100 bytes − k ∗
100 bytes = Mcf + 150 k bytes memory to CM/CM–CU.

(3)Detecting heavy changesWecompare two approaches:
FR, and FR with CF. For both, we set the numbers of hash
functions in the Bloom filter and IBLT to 3 (recommended
by [33,73]). We set Mcf = 200 KB. Let Mbf and Mib be
the memory of the Bloom filter and IBLF, respectively. We
set Mbf :Mib = 1:9, as FR achieves the best performance
according to our tests in such setting.

6.2.2 Evaluation on three key tasks

(1) Estimating item frequency

Accuracy (Fig. 8a, b) Our results show that the AAE of CM–
CU with CF is about 9.8, 5.2 and 5.2 times, and 12.5, 7.3
and 7.3 times lower than CM, CM–CU and CM–CU with
ASketch when the percentage of CF memory, Mcf/Mt , is
set to 90% on two real-world datasets, respectively. ASketch
improves the accuracy of CM–CU a little on both datasets.
We further study how the skewness of synthetic dataset
affects the accuracy, see Fig. 8c. Here, Mcf/Mt is fixed to
90%.Wefind that CM–CUwith CF achieves higher accuracy
than the other three approaches, irrespective of the skewness.

In Fig. 8a, all methods obtain an error of at most 5, which
is not large and could be acceptable in many circumstances.
However, in some circumstances, cold items are important.
For a cold item with frequency of only 1 or 2, AAE of 6
could not be acceptable. Therefore, AAE should be as small
as possible. And most items are cold; therefore, reducing the
AAE will affect many cold items, and thus AAE should be
as small as possible.

Accuracy (10× long stream) (Fig. 9)We use the same param-
eters setting as above, but load 10× packets, namely 320 M
packets. In practical, We clear CF every 32 M packets in our
experiment. Our results show that the AAE of CM–CU with
CF is about 14.0, 7.9 and 7.9 times lower than CM, CM–
CU and CM–CU with ASketch when the percentage of CF
memory, Mcf/Mt , is set to 90%.

Insertion speed (Fig. 10a, b) Our results show that the inser-
tion speed of CM–CU with CF is about 2.5, 2.9 and 3.4
times, and 1.6, 1.7 and 3.4 times faster than CM, CM–CU

123

Fast and accurate stream processing by filtering the cold 751

40 50 60 70 80 90
Percentage of CF memory (%)

0

2

4

6
A
A
E

CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(IP trace).

40 50 60 70 80 90
Percentage of CF memory (%)

0

10

20 CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(web page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0

20

40

60
CM
CM-CU
CM-CU + A
CM-CU + CF

Varying dataset skewness.(a) (b) (c)

Fig. 8 AAE versus percentage of CF memory on two real-world datasets, and versus skewness of synthetic dataset

20 30 40 50 60 70 80 90
Percentage of CF memory

0

200

400

A
A
E

CM CM-CU CM-CU+A CM-CU+CF

Fig. 9 Accuracy experiment on 10× long streams

and CM–CU with ASketch when Mcf/Mt is set to 90% on
two real-world datasets, respectively. ASketch lowers the
insertion speed of CM–CU, due to dynamically capturing
hot items in its filter on both datasets. We further study
how the skewness of synthetic dataset affects the insertion
speed, see Fig. 10c. Here, again, Mcf/Mt is fixed to 90%.
When skewness > 1.35,7 CM–CU with CF achieves a
higher insertion speed than the other three approaches. The
reason why CM–CU with CF on synthetic datasets cannot
achieve such high speedup as on the IP trace datasets is that
the appearance order of items in synthetic datasets is fully
randomized (while stream burst often happens in real data
streams, see Sect. 3.3), which largely weakens the aggregat-
ing performance of the aggregate-and-report component and
degrades the speed. OurCFwithAgg can performbetter than
ASketch in terms of insertion speed mainly because of the
following 4 reasons. (1) Each cell in ASketch has three fields:
item ID, new_count and old_count, but our CF has only two
fields: item ID and frequency. Thus, ASketch needs more
time for memory access for one cell. (2) For each incoming
item, ASketch needs to travel the whole filter (containing 32
items). But our Cold Filter only needs to travel one bucket
(containing 16 items). (3) When the incoming item e isn’t
inserted into the filter of ASketch, ASketch needs to travel
the filter again to track the smallest value in the filter. Dif-
ferent from ASketch, our Agg technique does not need to
track the smallest value; thus, we will always only need to
travel the bucket once. (4) Furthermore, when an item in the
filter of ASketch needs to move into the underlying sketches,

7 The literature [2] reported skewness > 1.4 in real data streams.

the data are two-way exchanged. However, our Cold Filter
relies on one-direction communication, which helps to guar-
antee a high processing speed. In Fig. 10c, CM–CU+A has
lower throughput than other method, which is different from
the ASketch paper [4]. The authors of the ASketch paper
use 8 hash functions in the original paper. Differently, we
use 3 hash functions for all sketches according to the rec-
ommendation of the literature [57,72] in our experiments.
The experiment results of 8 hash functions are shown in
Figs. 11 and 12.

In Fig. 11, the insertion speed of ASketch with 8 hash
functions can be faster than CM (also with 8 hash func-
tions) when the dataset skewness is high, which is consistent
with theASketch paper.However, our experiment results (see
Figs. 8c, 10c, 11 and 12) show that using 3 hash functions
improves not only insertion speed, but also accuracy. Thus
we think using 3 hash functions is more reasonable.

Besides, we find that after changing the number of hash
functions to 8, the insertion speed of ASketch implemented
by us is still much slower than their result when skewness is
high (e.g., 3 versus 100 Mops when skewness = 3). To find
out reasons of the gap, we have tested the insertion speed of
the filter itself (i.e., if an item passes the filter, we will do
nothing instead of inserting it into a CM), and we find that
the insertion speed of the filter itself (consists of 32 items)
barely achieves 20Mops, which is far slower than 100Mops,
the experimental result of the complete ASketch when the
skewness is 3 in their paper. Therefore, we believe that the
insertion speed of ASketch cannot exceed 20 Mops in our
computation platform.

Finally, we make our implementation of ASketch open
source [38]. We also try to ask the authors of ASketch paper
for their codes and implementation details, but we have not
got a reply from them.

Query speed (Fig. 13a, b) Our results show that the query
speed of CM–CUwith CF is about 1.1, 1.1 and 1.3 times, and
1.3, 1.3 and 1.5 times faster than CM, CM–CU and CM–CU
with ASketch when Mcf/Mt is set to 90% on two real-world
datasets, respectively. On both datasets, the query speed of
CM–CU with CF is higher than the other three approaches.
The reason is that the one-memory-access strategy signif-

123

752 T. Yang et al.

40 50 60 70 80 90
Percentage of CF memory (%)

20

40

60

In
se
rt
io
n
sp
ee
d
(M

op
s)

CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(IP trace).

40 50 60 70 80 90
Percentage of CF memory (%)

20

40
CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(web page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

20

40
CM CM-CU CM-CU + A CM-CU + CF

Varying dataset skewness.(a) (b) (c)

Fig. 10 Insertion speed versus percentage of CF memory on two real-world datasets, and versus skewness of synthetic dataset

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

4

8

12

In
se

rti
on

sp
ee

d(
M
op

s)

Dataset skewness

CM CM-CU CM-CU+A CM-CU+CF

Fig. 11 Insertion speed versus skewness (8 hash functions)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

A
A
E

Dataset skewness

CM CM-CU CM-CU+A CM-CU+CF

Fig. 12 Accuracy versus skewness (8 hash functions)

icantly speeds up the query process for the large number
of cold items, improving the overall query speed. We fur-
ther study how the skewness of synthetic dataset affects the
query speed, see Fig. 13c. Here, Mcf/Mt is fixed to 90%.
When skewness > 0.45, CM–CU with CF achieves a higher
query speed than the other three approaches.

(2) Finding top-k hot items

The aforementioned four approaches have the same query
process, and thus we skip query speed below.

Accuracy (Fig. 14a, b) Our results show that SS with CF
achieves precision rate above 99.8% on two real-world
datasets. SS with CF achieves higher and more stable accu-
racy than the other three approaches on both datasets. We
further studyhow the skewness of synthetic dataset affects the
precision rate, see Fig. 14c. Here, k is set to 256.When skew-
ness is 0, all approaches have precision rates of 0. The reason
is that on uniform datasets (skewness = 0), the frequencies
of top-k hot items are very close to those of other items, lead-
ing to difficulties of differentiating them from others. When

40 50 60 70 80 90
Percentage of CF memory (%)

16

18

20

22

24

Q
ue
ry

sp
ee
d
(M

op
s)

CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(IP trace).

40 50 60 70 80 90
Percentage of CF memory (%)

20

25

30
CM CM-CU CM-CU + A CM-CU + CF

Varying percentage of CF memory
(web page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

20

30
CM CM-CU CM-CU + A CM-CU + CF

Varying dataset skewness.(a) (b) (c)

Fig. 13 Query speed versus percentage of CF memory on two real-world datasets, and versus skewness of synthetic dataset

32 64 128 256 512 1024
k

80

90

100

Pr
ec
is
io
n
ra
te
(%

)

CM + Heap
CM-CU + Heap
SS
SS + CF

Varying k (IP trace).

32 64 128 256 512 1024
k

90

95

100

CM + Heap
CM-CU + Heap
SS
SS + CF

Varying k (web page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0

50

100

CM + Heap
CM-CU + Heap
SS
SS + CF

Varying dataset skewness.(a) (b) (c)

Fig. 14 Precision rate versus k on two real-world datasets, and versus skewness of synthetic dataset

123

Fast and accurate stream processing by filtering the cold 753

IP trace Web page
Dataset

100

103

106
A
A
E

CM + Heap
CM-CU + Heap

SS
SS + CF

On real-world datasets.

0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0
100
101
102
103
104
105
106

CM + Heap
CM-CU + Heap

SS
SS + CF

On synthetic datasets.(a) (b)

Fig. 15 AAE on real-world and synthetic datasets

skewness � 0.3, SS with CF achieves precision rates above
99.9%. We finally test the AAE for frequencies of the cor-
rectly reported items on different datasets, see Fig. 15a, b. On
all datasets, SS with CF achieves a much lower AAE than
the other three approaches.

Insertion speed (Fig. 16a, b) Our results show that the inser-
tion speed of SS with CF is about 3.7, 3.9 and 1.9 times, and
1.6, 1.7 and 1.2 times faster thanCMwith heap,CM–CUwith
heap and SS when k is set to 256 on two real-world datasets,
respectively. We then study how the skewness of synthetic
dataset affects the insertion speed of SS, see Fig. 16c. Here,
k is set to 256. When skewness� 0.6, SS with CF achieves a
higher insertion speed than the other three approaches. There
are some differences in insertion speed between different
input types. The reason for the differences is that the dis-
tribution of different datasets may vary. Different practical
frequency distribution leads to different processing speed.

(3) Detecting Heavy Changes

Wedetect heavy changes using thresholdφ of 0.04%between
the first 16 M and the second 16 M items of the considered

datasets. Since the value of φ does not affect the performance
much in our experiments,weomit thefigureswhenvaryingφ.

Memory consumption (Fig. 17a, b) Our results show that the
memory threshold (Tm) of FR with CF is about 12.6 times
and 22.4 times lower than FR on two real-world datasets,
respectively. The major reason for such memory reduction is
that one hot item consumes the same memory in FR as one
cold item; CF makes only hot items (which are much fewer
than cold ones) and a small portion of cold items fed to FR
(Sect. 4.1.3), and thus the memory usage for FR to record
items is largely reduced.We can get the same accuracy, since
CF accurately records the frequencies of cold items.

Insertion speed (Fig. 17c, d) Our results show that the inser-
tion speed of FR with CF is about 4.7 times and 1.8 times
faster than FR on two real-world datasets, respectively.

Query speed Our results show that the query speed of FR
with CF is about 18.3 times and 39.2 times faster than FR
on two real-world datasets, respectively. The average query
time on the IP trace datasets for FR and FRwith CF is 547ms
and 30 ms, respectively. On Web page datasets, the average
query time is 1066 ms and 27 ms, respectively. Due to space
limitations, we do not plot them.

6.2.3 Sensitivity analysis

We use two metrics, namely accuracy improvement and
speedup (for insertion), to uniformly depict the perfor-
mance of all considered stream processing algorithms. For
ease of presentation, we define them specially to make
a larger value always mean higher performance. For CM
and CM–CU, their accuracy improvements are both defined

32 64 128 256 512 1024
k

10

20

30

40

In
se
rti
on

sp
ee
d
(M

op
s)

CM + Heap CM-CU + Heap SS SS + CF

Varying k (IP trace).

32 64 128 256 512 1024
k

10

15

20 CM + Heap CM-CU + Heap SS SS + CF

Varying k (web page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

20

40 CM + Heap CM-CU + Heap SS SS + CF

Varying dataset skewness.(a) (b) (c)

Fig. 16 Insertion speed versus k on two real-world datasets, and versus skewness of synthetic dataset

IP trace Web page
Dataset

0

4

8

12

16

T m
(M

B
)

FR
FR + CF

On real-world datasets.

1.0 1.5 2.0 2.5 3.0
Dataset skewness

0

5

10

T m
(M

B
)

FR
FR + CF

On synthetic datasets.

IP trace Web page
Dataset

0

10

20

30

40

In
se
rti
on

sp
ee
d
(M

op
s)

FR
FR + CF

On real-world datasets.

0 1 2 3
Dataset skewness

5

10

15

20

25

30

In
se
rti
on

sp
ee
d
(M

op
s)

FR
FR + CF

On synthetic datasets.(a) (b) (c) (d)

Fig. 17 Tm and insertion speed on real-world and synthetic datasets

123

754 T. Yang et al.

to be AAEpure/AAEwith CF. For SS, its accuracy improve-
ment is defined to be PRwith CF/PRpure. For FR, its accu-
racy improvement is defined to be Tmpure/Tmwith CF . For
all the four algorithms, their speedups are defined to be
speedwith CF/speedpure.

(1) Impact of different optimizations

In this subsection, we focus on the impact of different opti-
mizations on Pmr, and accuracy improvements and speedups
of CM, CM–CU, SS, and FR. Recall that themisreported rate
Pmr is defined asEq. 1.We also evaluate howAgg (aggregate-
and-report for short) solely influences the performance of
these four algorithms. We set M1 + M2 = 1MB, db = 1000
for each CF, and the rest of parameters are the same as in
Sect. 6.1. In this subsection, CF refers to the pure Cold Filter
without any optimization.

Impact on Pmr (Fig. 4) Here, we set T = 256. Recall that
T is a threshold that we need to estimate whether an item’s
frequency exceeds this threshold. We observe that method
combining Agg and Oma (one-memory-access) will elevate
the Pmr, but Oma degrades the Pmr. The reason is that inAgg,
the appearance order of items witnessed by CF is changed,
which could influence the Pmr; in Oma, word constraint
degrades the Pmr.

Impact on accuracy improvement (Fig. 5a, b) In average,
on both datasets, for CM and CM–CU, the percentages of
accuracy improvement contributed by CF, Agg, and Oma
are around 140%, 0%, and −40%, respectively; for SS and
FR, they are around 100%, 0%, and 0%. In other words,
CF helps each algorithm achieve the maximum accuracy
improvement, while Agg does not improve the accuracy of
each algorithm; Oma degrades the accuracy of CM and CM–
CU, and makes little impact on the accuracy of SS and FR.

Impact on speedup (Fig. 5c, d) In average, on both datasets,
for CM, the percentages of speedup contributed by CF, Agg,
and Oma are around −73%, 150%, and 23%, respectively;
for CM–CU, they are around −64%, 142%, and 22%; for
SS, they are around 11%, 68%, and 21%; for FR, they are
around 11%, 72%, and 17%. In other words, CF degrades the
speed of CM and CM–CU, while it improves the speed of SS
and FR; Agg improves the speed largely; Oma improves the
speed.

Impact on speedup (synthetic dataset) (Fig. 18) Our result
shows that Agg plays the most significant role in speedup,
and all the three optimizations containing Agg can achieve
higher speedup with the increasing of skewness. As to Oma,
it can help improve insertion speed, because when compar-
ing two optimizations that only have difference on Oma, the
one with Oma will always achieve a higher insertion speed
than the other. Finally, CF has negative effect on insertion

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

0.5

1.0

1.5

2.0

Sp
ee
du

p

Agg
CF
CF+Agg
CF+Oma
CF+Oma+Agg

Fig. 18 Impact of different optimizations on the speed of Count-Min

speed, because the overhead of CF is huge, comparing to the
throughput of CM Sketch.

In most cases, adding CF degrades the processing speed,
such as adding CF to CM/CM–CU, CM/CM–CU+Agg, SS,
or FR, because the overhead of processing every item in
CF is larger than the benefit of only processing hot items
in the existing algorithms. However, when adding CF to
SS+Agg or FR+Agg, the processing speed increases. The
reason behind is as follows. Whether CF+Agg is faster than
Agg depends on whether Agg and CF cooperate well, while
the latter depends on the two factors of existing algorithm:
(1) the value of T required by it (T is the frequency thresh-
old for items to pass CF), and (2) the processing speed of it.
Specifically, SS has a high T (see Sect. 4.1.2). Thismakes CF
cooperatewellwithAgg:CFfilters outmanymore cold items
while Aggworks better for hot items. FR ismuch slower than
CM/CM–CU (see Figs. 10a and 17c). Thismakes the cooper-
ation of CF and Agg gain larger benefits: existing algorithms
only process hot items with aggregated frequencies.

Summary (1) Pure CF plays the main role in improving the
accuracy, while Agg is the primary factor in improving the
speed; (2) CF+Agg+Oma achieves both high accuracy and
high speed; (3) For the stream processing algorithms that
require high T or are relatively slow, adding CF to Agg
improves the speed.

(2) Impact of Memory Budget of CF

Next, we focus on the impact of memory budget of CF (i.e.,
M1 + M2 and db) on Pmr, and accuracy improvements and
speedups of CM–CU, SS, and FR. We set M1 + M2 = 1MB
and db = 1000 by default, and the rest of parameters are the
same as in Sect. 6.1.

Impact on Pmr (Fig. 19a, b) Here, we set T = 256. When
M1 + M2 � 0.5MB, Pmr decreases to around 0.1% on both
datasets. Besides, db makes little impact on the Pmr on both
datasets.

Impact on accuracy improvement (Fig. 20a–d) For CM–CU,
on both datasets, larger M1 + M2 leads to higher accuracy,
while the opposite is the case for FR. The reason for such
opposite case is the following: larger M1 + M2 helps reduce
more memory in FR (due to lower Pmr), but leads to the

123

Fast and accurate stream processing by filtering the cold 755

0.5 1.0 1.5 2.0
M1+M2(MB)

0

1

2
P m
r(
%
)

IP trace
Web page

Varying M1 + M2.

500 1000 1500 2000 2500
db

0.08

0.10

0.12
IP trace
Web page

Varying db.(a) (b)

Fig. 19 Impact of memory budget of CF on Pmr

increasing of Tm (recall that Tm containsM1+M2), while the
latter is much larger than the former. The accuracy improve-
ment of SS remains unchanged on both datasets, since it has
reached 100%. Actually, larger M1 + M2 does influence SS
by lowering its AAE (not covered in figures due to space
limitation). Besides, db makes little impact on the accuracy
improvement of each algorithm on both datasets.

Impact on speedup (Fig. 21a–d)M1+M2 makes little impact
on the speedup of each algorithm on both datasets. Larger
db leads to a higher speedup of each algorithm on both
datasets, except that onwebpage datasets, the speedupbegins
to decrease a little when db > 2000. The reason for such
decreasing is twofold: (1) the cache performance declines
as the memory of Agg increases; (2) the aggregating perfor-
mance of Agg nearly reaches the maximum.

Summary (1) M1 + M2 mainly influences accuracy, while db
mainly influences speed; (2) For CM–CU, larger M1 + M2

leads to higher accuracy; for SS,M1+M2 makes little impact
on its precision rate; for FR, relatively small M1+M2 brings
lower Tm.

(3) Impact of parameter setting in CF

Below, we focus on the impact of parameter setting
(including layer number, M1/(M1 + M2), δ1:δ2, hash num-
ber, and T) in CF on Pmr, and accuracy improvements
and speedups of CM–CU, SS, and FR. Since the accuracy
improvement and speedup behave similarly on both datasets,
we only show their figures on the IP trace datasets. We set
M1 + M2 = 1 MB and db = 1000, and the rest of parame-
ters are the same as in Sect. 6.1 by default, unless otherwise
specified. During varying layer number, we equally divide
the memory across different layers; all the layers except for
the highest one have 4-bit counters with Oma; all the lay-
ers have the same number of hash functions. During varying
layer number and δ1 : δ2, the counter size in the highest layer
is set according to the value of T required by all the three
algorithms.

Impact on Pmr (Fig. 22a–e) Two layers and δ1 : δ2 = 4 :
16 lead to the minimum Pmr; Larger M1/M1 + M2 leads to
larger Pmr; Larger number of hash functions and larger T
lead to smaller Pmr.

Impact on accuracy improvement (Fig. 23a–e) For CM–CU,
two layers and δ1 : δ2 = 4:16 lead to the maximum accu-
racy improvement; when M1/(M1 + M2) is around 55%,
the accuracy improvement achieves the maximum (the cor-
responding ratio on web page datasets is around 70%); larger
number of hash functions leads to higher accuracy, but such
impact is not remarkable when hash number is larger than 4;
when T � 256, its accuracy improvement remains almost
unchanged. For SS and FR, layer number, M1/(M1 + M2),

0.5 1.0 1.5 2.0

M1+M2(MB)

0

10

20

30

A
cc
ur
ac
y
im

pr
ov
em

en
t

CM-CU
SS
FR

Varying M1 + M2 (IP
trace).

0.5 1.0 1.5 2.0

M1+M2(MB)

0

20

40
CM-CU SS FR

Varying M1 + M2 (web
page).

500 1000 1500 2000 2500
db

4

6

8

CM-CU
SS
FR

Varying db (IP trace).

500 1000 1500 2000 2500
db

5

10

15 CM-CU SS FR

Varying db (web page).(a) (b) (c) (d)

Fig. 20 Impact of memory budget of CF on the accuracy of CM–CU, Space-Saving and FlowRadar

0.5 1.0 1.5 2.0
M1+M2(MB)

4

6

8

Sp
ee
du
p CM-CU

SS
FR

Varying M1 + M2 (IP
trace).

0.5 1.0 1.5 2.0
M1+M2(MB)

0

2

4

6

8
CM-CU SS FR

Varying M1 + M2 (web
page).

500 1000 1500 2000 2500
db

2.5

5.0

7.5

10.0

CM-CU
SS
FR

Varying db (IP trace).

500 1000 1500 2000 2500
db

0.0

2.5

5.0

7.5

10.0
CM-CU SS FR

Varying db (web page).(a) (b) (c) (d)

Fig. 21 Impact of memory budget of CF on the speed of CM–CU, Space-Saving and FlowRadar

123

756 T. Yang et al.

1 2 3 4
layers

0.00

0.05

0.10
P m
r(
%
)

IP trace
Web page

Varying # layers.

20 40 60 80
M1/(M1+M2)(%)

0

1

2 IP trace
Web page

Varying
M1/(M1 + M2).

2:16 4:16 8:16 16:0
δ1 : δ2

0

1

2

3 IP trace
Web page

Varying δ1 : δ2.

2 3 4 5
hash functions

0.2

0.4
IP trace
Web page

Varying # hash
functions.

500 1000 1500
T

0.000

0.005

0.010

0.015
IP trace
Web page

Varying T .(a) (b) (c) (d) (e)

Fig. 22 Impact of parameter setting in CF on Pmr

1 2 3 4
layers

4

6

8

A
cc
ur
ac
y
im

pr
ov
em

en
t

CM-CU
SS
FR

Varying # layers
(IP trace).

20 40 60 80
M1/(M1+M2)(%)

0

5

10 CM-CU SS FR

Varying
M1/(M1 + M2)
(IP trace).

2:16 4:16 8:16 16:0
δ1 : δ2

2

4

6

8
CM-CU
SS
FR

Varying δ1 : δ2 (IP
trace).

2 3 4 5
hash functions

2.5

5.0

7.5

10.0
CM-CU
SS
FR

Varying # hash
functions (IP
trace).

250 500 750 1000
T

2

4

6

8

CM-CU SS FR

Varying T (IP
trace).

(a) (b) (c) (d) (e)

Fig. 23 Impact of parameter setting in CF on the accuracy of CM–CU, Space-Saving and FlowRadar

1 2 3 4
layers

4

6

8

Sp
ee
du

p

CM-CU
SS
FR

Varying # layers
(IP trace).

20 40 60 80
M1/(M1+M2)(%)

4

6

8

CM-CU
SS
FR

Varying
M1/(M1 + M2)
(IP trace).

2:16 4:16 8:16 16:0
δ1 : δ2

0

5

10
CM-CU SS FR

Varying δ1 : δ2 (IP
trace).

2 3 4 5
hash functions

2.5

5.0

7.5

10.0

CM-CU
SS
FR

Varying # hash
functions (IP
trace).

250 500 750 1000
T

4

6

8
CM-CU
SS
FR

Varying T (IP
trace).

(a) (b) (c) (d) (e)

Fig. 24 Impact of parameter setting in CF on the speed of CM–CU, Space-Saving and FlowRadar

δ1:δ2, and hash number make little impact on their accuracy
(actually, when M1/(M1 + M2) is around 35%, the AAE of
SS achieves the minimum); the accuracy improvement of SS
increases gradually as T increases, and when T reaches near
the frequency of the kth hottest item, the accuracy improve-
ment achieves the maximum (not covered in figures); when
T � 256, the accuracy improvement of FR remains almost
unchanged.

Impact on speedup (Fig. 24a–e) For each of three algorithms,
larger numbers of layers and hash functions lead to lower
speed; M1/(M1 + M2) and δ1:δ2 make little impact on the
speed; larger T leads to a higher speed, but such impact is
not remarkable.

Summary (1) Two layers, δ1:δ2 = 4:16 and 3 or 4 hash func-
tions are recommended to achieve both high accuracy and
high speed; (2) M1/(M1 + M2) for CM–CU should be in
the range of 55% − 70%; M1/(M1 + M2) for SS should
be around 35%; M1/(M1 + M2) makes little impact on the
performance of FR; (3) T makes little impact on the perfor-

mance of CM–CU and FR; T for SS should be set according
to the predicted frequency of the kth hottest item.

6.3 Evaluation of persistency-based tasks

In this section, we show the experimental results on finding
persistent items. We compare PIE with CF and the origin
PIE algorithm, in terms of accuracy, insertion speed, and
decoding speed. We also show how parameters affect the
performance in Sect. 6.3.2.

Parameter setting Let Mcf be the memory of CF, and Mpie be
thememory of PIE, and T1 be the threshold of CF.Mcf , Mpie,
and T1 can be changed or fixed in the experiment. We set
Mcf +Mpie = 4.8MB, T1 = 3 in our evaluation (Sect. 6.3.1).
When varying dataset skewness, as shown in Figs. 25c, 26c
and 27c, CF memory is set to 0.05 MB, T1 = 3. For each
dataset, we read 600,000 items and separate them into 300
windows, so we get 2000 items in each window. The length
for each item is 4 bytes. The threshold of persistent item T

123

Fast and accurate stream processing by filtering the cold 757

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.4

0.5

0.6
R
ec
al
lR

at
e

PIE
PIE+CF

Varying ratio of CF memory (IP
trace).

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.2

0.4

PIE
PIE+CF

Varying ratio of CF memory (web
page).

0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0.00

0.25

0.50

0.75

PIE
PIE+CF

Varying dataset skewness.(a) (b) (c)

Fig. 25 Recall rate versus ratio of CF memory on two real-world datasets, and versus skewness of synthetic dataset

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.40

0.45

0.50

In
se
rti
on

sp
ee
d(
M
op

s)

PIE
PIE+CF

Varying ratio of CF memory (IP
trace).

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.40

0.45

0.50 PIE
PIE+CF

Varying ratio of CF memory (web
page).

0.5 1.0 1.5 2.0 2.5
Dataset skewness

0.4

0.6

0.8 PIE
PIE+CF

Varying dataset skewness.(a) (b) (c)

Fig. 26 Insertion speed versus ratio of CF memory on two real-world datasets, and versus skewness of synthetic dataset

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.2

0.3

D
ec
od
in
g
tim

e(
s)

PIE
PIE+CF

Varying ratio of CF memory (IP
trace).

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.4

0.6

0.8

PIE
PIE+CF

Varying ratio of CF memory (web
page).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0.5

1.0

PIE
PIE+CF

Varying dataset skewness.(a) (b) (c)

Fig. 27 Decoding time versus ratio of CF memory on two real-world datasets, and versus skewness of synthetic dataset

is set to 110. In other words, if an item appears in more than
110 windows, the item is a persistent item.

6.3.1 Evaluation of accuracy and time

Recall rate (Fig. 25a–c) Our results show that the recall rate
PIE with CF is 1.295 and 1.371 times better than PIE when
CF memory ratio is set to 0.5% on two real-world datasets,
respectively. We further study how the skewness of synthetic
dataset affects the recall rate, see Fig. 25c. We find that PIE
with CF achieves better accuracy than PIE, irrespective of
the skewness. When skewness is 0, there is not any persistent
items in the dataset, so the recall rate is 0. The number of dif-
ferent items in the dataset decreases when we increasing the
skewness, and the decrease of the number of different items
makes collision in PIE less likely to happen. When there is
less collision in PIE, the recall rate will become higher. So
the recall rate increases when increasing dataset skewness.
In Fig. 28, we load 24,000,000 packets, and separate them
into 300 windows. Let Mcf be the memory of CF, and Mpie

be the memory of PIE, and T1 be the threshold of CF. We set

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

0.5

0.6

0.7

R
ec
al
lR

at
e

PIE PIE+CF

Fig. 28 Recall rate versus ratio of CF memory on larger dataset

Mcf + Mpie = 36 MB, T1 = 15. The result is similar with
the experiment on the smaller datasets.

AAE (Fig. 29a–c) Our results show that the AAE of PIE
with CF is 1.300 and 1.471 times lower than PIE when
CF memory ratio is set to 0.5% on two real-world datasets,
respectively. The AAE increases when CF memory becomes
larger, because thememory of PIE becomes less and it makes
collision more likely to happen. When varying dataset skew-
ness, see Fig. 29c, the improvement of accuracy is significant
at any skewness.

123

758 T. Yang et al.

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

4

6

8

A
A
E

PIE
PIE+CF

Varying ratio of CF memory (IP
trace).

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of CF memory

40

60
PIE
PIE+CF

Varying ratio of CF memory (web
page).

0.5 1.0 1.5 2.0 2.5 3.0
Dataset skewness

0

25

50

75 PIE
PIE+CF

Varying dataset skewness.(a) (b) (c)

Fig. 29 AAE versus ratio of CF memory on two real-world datasets, and versus skewness of synthetic dataset

0.0 0.1 0.2 0.3 0.4 0.5

Ratio of CF memory

0.02

0.03

0.04

0.05

A
R
E

PIE
PIE+CF

Varying ratio of CF memory (IP
trace).

0.0 0.1 0.2 0.3 0.4 0.5

Ratio of CF memory

0.15

0.20

0.25
PIE
PIE+CF

Varying ratio of CF memory (web
page).

0.5 1.0 1.5 2.0 2.5 3.0

Dataset skewness

0.1

0.2

0.3
PIE
PIE+CF

Varying dataset skewness.(a) (b) (c)

Fig. 30 ARE versus ratio of CF memory on two real-world datasets, and versus skewness of synthetic dataset

ARE (Fig. 30a–c) Our results show that the ARE of PIE
with CF is 1.197 and 1.413 times lower than PIE when
CF memory ratio is set to 0.5% on two real-world datasets,
respectively. The ARE increases when CF memory becomes
larger, because thememory of PIE becomes less and it makes
collision more likely to happen. When varying dataset skew-
ness, see Fig. 30c, the improvement of accuracy is significant
at any skewness.

Insertion speed (Fig. 26a–c) Our results show that the inser-
tion speed of PIE with CF is 1.080 and 1.139 times better
than PIE when CF memory ratio is set to 0.5% on two real-
world datasets, respectively.When varying dataset skewness,
see Fig. 26c, the improvement of insertion speed decreases
when increasing skewness. There are more items filtered by
CF in the lower skewness dataset than in the higher skew-
ness dataset, so there are more items needed to be inserted
in PIE for PIE+CF algorithm when increasing skewness,
which causes a lower insertion speed. Insertion speed in
the PIE experiment is much slower than other experiments,
because PIE needs to encode/decode, and the time complex-
ity is O(n), where n is the size of flow ID. However, the time
complexity of others is O(1).

Decoding time (Fig. 27a, b) Our results show that the decod-
ing speed of PIE with CF is 1.571 and 1.023 times better than
PIE when CF memory ratio is set to 0.5% on two real-world
datasets, respectively. The decoding time decreases when CF
memorybecome larger, because the number of reported items
becomes less. When varying dataset skewness, see Fig. 27c,
the improvement of decoding speed is significant at any
skewness.

6.3.2 Sensitivity analysis

In the experiment we observe the impact of PIE memory on
recall rate, insertion speed, decoding time, AAE and ARE
at different parameters’ setting of CF. The parameters of CF
include CF memory and threshold of CF. When CF memory
Mcf is set to 0KB or the threshold of CF T1 is set to 0, we do
not add CF to PIE.

Impact of PIE memory and CF memory on recall rate
(Fig. 31a, b) In this experiment we set CF threshold T1 to
3. We observe that the improvement of recall rate decreases
when increasing PIE memory. And we observe that the
improvement of recall rate increases when increasing CF
memory, but such impact is not remarkable when CF mem-
ory is larger than 12 KB. The 12 KB CF can filter nearly all
the cold items, which appears less than T1 = 3 times. The
improvement of recall rate decreases when increasing PIE
memory, because increasing PIE memory will decrease col-
lision, and the effect of adding CF to alleviate collision will
decrease.

Impact of PIE memory and CF threshold on recall rate
(Fig. 31c, d) In this experiment we set CF memory Mcf

to 96 KB. We observe that the improvement of recall rate
decreases when increasing PIE memory. And we observe
that the high CF threshold (T1 = 15) performs better than
the low CF threshold (T1 = 3) when PIE memory is less
than 5 MB. But when the PIE memory is more than 10 MB,
the recall rate becomes lower for T1 = 15 than T1 = 0.
This is because the high threshold CF filters too many
items.

123

Fast and accurate stream processing by filtering the cold 759

5 10 15 20
PIE memory(MB)

0.25

0.50

0.75

R
ec
al
lR

at
e

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory and
CF memory (IP trace).

5 10 15 20
PIE memory(MB)

0.00

0.25

0.50

0.75

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory and
CF memory (web page).

5 10 15 20
PIE memory(MB)

0.25

0.50

0.75

R
ec
al
lR
at
e

T1 =0
T1 =3
T1 =15

Varying PIE memory and
CF threshold (IP trace).

5 10 15 20
PIE memory(MB)

0.00

0.25

0.50

0.75

T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (web
page).

(a) (b) (c) (d)

Fig. 31 Impact of parameters on recall rate

5 10 15
PIE memory(MB)

0

10

20

A
A
E

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (IP
trace).

5 10 15
PIE memory(MB)

0

50

100 Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (web
page).

5 10 15
PIE memory(MB)

0

10

20

A
A
E

T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (IP
trace).

5 10 15
PIE memory(MB)

0

50

100 T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (web
page).

(a) (b) (c) (d)

Fig. 32 Impact of parameters on AAE

5 10 15
PIE memory(MB)

0.00

0.05

0.10

A
R
E

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (IP
trace).

5 10 15
PIE memory(MB)

0.0

0.2

0.4 Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (web
page).

5 10 15
PIE memory(MB)

0.00

0.05

0.10

A
R
E

T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (IP
trace).

5 10 15
PIE memory(MB)

0.0

0.2

0.4 T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (web
page).

(a) (b) (c) (d)

Fig. 33 Impact of parameters on ARE

Impact of PIE memory and CF memory on AAE (Fig. 32a, b)
In this experiment we set CF threshold T1 to 3. We observe
that when the PIE memory is more than 7.2 MB, the AAE
becomes higher for Mcf = 12 KB or Mcf = 48 KB than
Mcf = 0 KB for IP trace dataset. And we observe that the
impact of varying the CF memory is not remarkable when
CF memory is larger than 12 KB. The 12 KB CF can filter
nearly all the cold items, which appears less than T1 = 3
times.

Impact of PIE memory and CF threshold on AAE (Fig. 32c,
d) In this experiment we set CF memory Mcf to 96 KB.
We observe that the improvement of accuracy is better when
T1 = 3 than when T1 = 15 for IP trace dataset. When PIE
memory is more than 10MB, the AAE is lower when T1 = 0
than when T1 = 3 or T1 = 15 for two real-world datasets.

Impact of PIE memory and CF memory on ARE (Fig. 33a, b)
In this experiment we set CF threshold T1 to 3. We observe
that when the PIE memory is more than 7.2 MB, the ARE
becomes higher for Mcf = 12 KB or Mcf = 48 KB than

Mcf = 0 KB for IP trace dataset. And we observe that the
impact of varying the CF memory is not remarkable when
CF memory is larger than 12 KB. The 12 KB CF can filter
nearly all the cold items, which appears less than T1 = 3
times.

Impact of PIE memory and CF threshold on ARE (Fig. 33c,
d) In this experiment we set CF memory Mcf to 96 KB.
We observe that the improvement of accuracy is better when
T1 = 3 than when T1 = 15 for IP trace dataset. When PIE
memory is more than 10MB, the ARE is lower when T1 = 0
than when T1 = 3 or T1 = 15 for two real-world datasets.

Impact of PIE memory and CF memory on insertion speed
(Fig. 34a, b) In this experiment we set CF threshold T1 to
3. We observe that the improvement of insertion speed is
significant for any PIE memory and CF memory, comparing
with Mcf = 0, but such impact is not remarkable when CF
memory is larger than 12 KB. The 12 KBCF can filter nearly
all the cold items, which appears less than T1 = 3 times.

123

760 T. Yang et al.

5 10 15 20
PIE memory(MB)

0.40

0.45

0.50

0.55
In
se
rti
on

sp
ee
d(
M
op
s)

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (IP
trace).

5 10 15 20
PIE memory(MB)

0.4

0.5

0.6 Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (web
page).

5 10 15
PIE memory(MB)

0.4

0.5

0.6

0.7

In
se
rti
on

sp
ee
d(
M
op
s)

T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (IP
trace).

5 10 15
PIE memory(MB)

0.4

0.6

0.8 T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (web
page).

(a) (b) (c) (d)

Fig. 34 Impact of parameters on insertion speed

5 10 15 20
PIE memory(MB)

0.2

0.4

0.6

0.8

D
ec
od
in
g
tim

e(
s)

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (IP
trace).

5 10 15 20
PIE memory(MB)

1

2

Mcf =0KB
Mcf =12KB
Mcf =48KB

Varying PIE memory
and CF memory (web
page).

5 10 15
PIE memory(MB)

0.2

0.4

0.6

D
ec
od
in
g
tim

e(
s)

T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (IP
trace).

5 10 15
PIE memory(MB)

0

1

2

3
T1 =0
T1 =3
T1 =15

Varying PIE memory
and CF threshold (web
page).

(a) (b) (c) (d)

Fig. 35 Impact of parameters on decoding time

Impact of PIE memory and CF threshold on insertion speed
(Fig. 34c, d) In this experiment we set CF memory Mcf to
96KB.Weobserve that the improvement of insertion speed is
significant for any PIEmemory and CF threshold, comparing
with T1 = 0. And we observe that the higher CF threshold
can provide higher insertion speed. This is because the CF
with higher threshold can filter more items.

Impact of PIE memory and CF memory on decoding time
(Fig. 35a, b) In this experiment we set CF threshold T1 to 3.
We observe that the improvement of decoding speed is better
for IP trace dataset than forweb page dataset.Andweobserve
that the impact of varying the CF memory is not remarkable
when CF memory is larger than 12 KB. The 12 KB CF can
filter nearly all the cold items, which appears less than T1 =
3 times. The decoding time increases when increasing PIE
memory, this is because PIE with larger memory can decode
more persistent items, which increases decoding time.

Impact of PIE memory and CF threshold on decoding time
(Fig. 35c, d) In this experiment we set CF memory Mcf to
96KB. We observe that the improvement of decoding speed
is better for IP trace dataset than for web page dataset. The
decoding time increases when increasing PIEmemory, this is
because PIE with larger memory can decode more persistent
items, which increases decoding time.

Summary (1) Larger CF memory can usually lead to higher
accuracy, insertion speed and decoding speed. But the
improvement may be very little comparing with less CF
memory. The ratio of CF memory is recommended to about
1%;

(2) The CF threshold T1 should be set according to the
PIE memory. When total memory is very limited, which
means the pure PIE algorithm can only report less than half
persistent items, and a high CF threshold may much more
efficiently improve recall rate, AAE and ARE. But when the
total memory is adequate, which means recall rate can reach
more than 0.8, the high CF threshold may decrease recall
rate.

7 CF with parallel strategies

7.1 CF onmulti-core platform (Pipeline)

Owing to the one-direction communication, the processing of
items in CF can be seen as a form of pipeline, and this makes
our CF fit in multi-core platform naturally. We divide the CF
meta-framework into two parts: the CF (including aggregate-
and-report and one-memory-access), and the specific stream
processing algorithm (the CM–CU sketch, Space-Saving,
FlowRadar, etc). These two parts can be placed on two cores:
the CF onC0 and the specific algorithm onC1. Our CF natu-
rally supports pipeline parallelism on multi-core platform.
As shown in Fig. 36, We divide the CF meta-framework
into two parts: the CF (including aggregate-and-report and
one-memory-access) on core C0, and the specific stream
processing algorithm (the CM–CU sketch, Space-Saving,
FlowRadar, etc) on core C1. We employ the message pass-
ing interface to replace the shared memory accesses between
these two cores. Specifically,whenone itemand its frequency

123

Fast and accurate stream processing by filtering the cold 761

Space-savingCM-CU FlowRadar

CF

Fig. 36 CF in multi-task scenario

need to be reported to the specific stream processing algo-
rithm, core C0 will forward them to core C1.

Then, the remaining job is executed by C1, and C0 can
immediately start processing the next incoming item. Such
pipeline operations improve the processing speed. Recall that
only hot items (and a small portion of cold ones) need to be
reported to the specific stream processing algorithm or the
coreC1, and the frequencyof such report is low (e.g., less than
1 per 20 incoming items in real data streams when δ1 = 4).
Therefore, in most cases the communication costs will not
become the bottleneck, and we can also use a small batch
to remove this potential bottleneck. As soon as core C0 for-
wards themessage (key-value pair) to coreC1, the remaining
job can be performed by C1, and C0 can immediately start
processing the next incoming item.

The above parallel architecture can process different mea-
surement tasks of the same categories, but cannot process
different tasks of different categories, because tasks of dif-
ferent categories should use different CF structures. In this
section, we show how our parallel architecture works for the
frequency-based measurement tasks.

7.2 CF inmulti-task scenario

In practice, multiple tasks are often running simultane-
ously, and we call this the multi-task scenario. Fortunately,
our CF fits well with the multi-task scenario: all tasks
can share the same CF. We just need to set the threshold
of CF to the maximum desired threshold among different
tasks. We can also utilize the multi-core technique to further
improve the processing speed. Specifically, core C0 (mas-
ter core) performs CF (including aggregate-and-report and
one-memory-access), and the other cores C1,C2, . . . (slave
cores) perform specific stream processing algorithms. When
one item and its frequency need to be reported to the spe-
cific stream processing algorithm (the specific threshold is
reached in CF), master core will forward them to the corre-
sponding slave core through the message passing interface.
In our experiments, we find that each slave core stays idle in
most time because it has much fewer items to process com-
pared with the master core. To fully utilize the computational
resources of slave cores, we manage to deploy multiple dif-
ferent stream processing algorithms on one slave core.

Another paper [74] also applies parallelism to frequency-
based measurement tasks. The authors add a pre-filtering

CU-IP CU-web SS-IP SS-web FR-IP FR-web All-IP All-web
0

20

40

60

80

In
se
rti
on

sp
ee
d
(M

op
s)

Original version CF version on single core CF version on dual core

Fig. 37 Impact of multi-core on real-world datasets

stage in front of a conventional frequent item algorithm
(Space-Saving). And the parallelism means one CPU core
runs the pre-filtering stage, while another CPU core runs
the Space-Saving part. The parallel version of the algorithm
is called Parallel-Filter. There are three main differences
between “parallelism” approaches of Parallel-Filter and our
Cold Filter. First, Parallel-Filter is a two-direction commu-
nication algorithm, while Cold Filter is an one-direction
algorithm. In Parallel-Filter, the second stage needs to send
messages to the first stage, and some important parameters
in the first stage rely on such messages. However, as for Cold
Filer, there are only messages from the first stage to the sec-
ond, none in the opposite direction. Second, the kind of items
hold in the two stages are different. In Parallel-Filter, items
enter the pre-filtering stage first, which records heavy hit-
ters. Only items that are not monitored by this stage will be
forwarded to Space-Saving. In other words, the first stage
records hot items while the second records cold items. How-
ever, our Cold Filter is to record cold items, while the second
stage records hot items. Third, parallelism of Cold Filter also
means multiple tasks running simultaneously on different
cores on the second stage, while Parallel-Filter cannot deal
with multi-task scenario. The Cold Filter offers to filter cold
items, and the main task is done by the second stage, so dif-
ferent tasks running on different cores on the second stage
can share one CF. However, as for Parallel-Filter, the first
stage is used to directly pick out particularly frequent items
and route them through a “shortcut” code path, which is hard
to fit with multi-task scenario.

7.3 Evaluation on CF withmulti-core CPU

The results are shown in Fig. 37, where “All” means running
these three algorithms simultaneously.Our results show that
the overall insertion speed of running three tasks with one
shared CF on dual core is 9.2 times and 5.5 times faster
than that without CF on a single core on the IP trace and
web page datasets, respectively. We observe that the multi-
core technique helps improves the insertion speed of each
task with CF compared to that on a single core. We find that
the insertion speeds of two CF versions of “All” are higher
than those of “FR”. The reason is that in “All”, all three
tasks share the sameCF that has a larger aggregate-and-report
component than “FR” (see settings in Table 4).

123

762 T. Yang et al.

8 Conclusion

In this paper, we propose a meta-framework named Cold
Filter to enhance existing approximate stream processing
algorithms. Our meta-framework is applicable to various
stream processing tasks, and improves the accuracy and
speed at the same time. We also present how to deploy it on
four key stream processing tasks including estimating item
frequency, finding top-k hot items, detecting heavy changes,
and finding persistent items. Experimental results show that
it significantly improves their processing speed and accu-
racy compared with the state-of-the-art solutions. Our Cold
Filter meta-framework can be applied to many more approx-
imate stream processing tasks, such as distribution of item
frequencies, heavy hitters, information entropy, and improve
their performance. All source code is released at Github [38].

Acknowledgements This work is supported by the National Key
Research and Development Program of China (2018YFB1004403,
2016YFB1000304), NSFC (61672061, 61832001, and 61572039).

References

1. Cormode,G., Johnson,T.,Korn, F.,Muthukrishnan, S., Spatscheck,
O., Srivastava, D.: Holistic UDAFs at streaming speeds. In: Pro-
ceedings of ACM SIGMOD, pp 35–46 (2004)

2. Manerikar, N., Palpanas, T.: Frequent items in streaming data: an
experimental evaluation of the state-of-the-art. Data Knowl. Eng.
68(4), 415–430 (2009)

3. Zhao, P., Aggarwal, C.C., Wang, M.: gSketch: on query estimation
in graph streams. Proc. VLDB 5, 193–204 (2011)

4. Roy, P., Khan, A., Alonso, G.: Augmented sketch: faster and more
accurate stream processing. In: Proceedings of ACM SIGMOD,
pp. 1449–1463 (2016)

5. Chen, B., Shrivastava, A.: Densifiedwinner take all (WTA) hashing
for sparse datasets. In: Proceedings of the Thirty-Fourth Confer-
ence onUncertainty inArtificial Intelligence, UAI 2018,Monterey,
California, USA, August 6–10, 2018, pp. 906–916 (2018)

6. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing
complex aggregate queries over data streams. In: Proceedings of
ACM SIGMOD, pp. 61–72. ACM (2002)

7. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data
streams. Proc. VLDB 1(2), 1530–1541 (2008)

8. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses
for massive data: samples, histograms, wavelets, sketches. Found.
Trends Databases 4(1–3), 1–294 (2012)

9. Cormode, G., Muthukrishnan, S.: An improved data stream sum-
mary: the count-min sketch and its applications. J. Alg. 55(1),
58–75 (2005)

10. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation
of frequent and top-k elements in data streams. In: International
Conference on Database Theory, pp. 398–412. Springer (2005)

11. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items
in data streams. In: Widmayer, P., Eidenbenz, S., Triguero, F.,
Morales, R., Conejo, R., Hennessy,M. (eds.) Automata, Languages
and Programming. Springer, Berlin (2002)

12. Schweller, R., Gupta, A., Parsons, E., Chen,Y.: Reversible sketches
for efficient and accurate change detection over network data
streams. In: Proceedings of ACM IMC, pp. 207–212. ACM (2004)

13. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: How
to summarize the universe: dynamic maintenance of quantiles. In:
Proceedings of VLDB, pp. 454–465. VLDB Endowment (2002)

14. Luo,C., Shrivastava,A.: SSH (sketch, shingle,&hash) for indexing
massive-scale time series. In: NIPS 2016 Time Series Workshop,
pp. 38–58 (2017)

15. Shrivastava, A., Konig, A.C., Bilenko, M.: Time adaptive sketches
(ada-sketches) for summarizing data streams. In: Proceedings of
the 2016 International Conference on Management of Data, pp.
1417–1432. ACM (2016)

16. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7), 422–426 (1970)

17. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guar-
antees. In: Proceedings of ACM SIGMOD, pp. 476–487. ACM
(2002)

18. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In:
Proceedings of STOC, pp. 471–475. ACM (2001)

19. Kirsch, A., Mitzenmacher, M., Varghese, G.: Hash-based tech-
niques for high-speed packet processing. In: Cormode, G., Thottan,
M. (eds.) Algorithms for Next Generation Networks, pp. 181–218.
Springer, London (2010)

20. Pandey, P., Bender,M.A., Johnson,R., Patro, R.:A general-purpose
counting filter: Making every bit count. In: Proceedings of ACM
SIGMOD, pp. 775–787

21. Thomas, D., Bordawekar, R., et al.: On efficient query processing
of stream counts on the cell processor. In: Proceedings of IEEE
ICDE (2009)

22. Yang, T., Liu, A.X., Shahzad, M., Zhong, Y., Fu, Q., Li, Z., Xie,
G., Li, X.: A shifting bloom filter framework for set queries. Proc.
VLDB 9(5), 408–419 (2016)

23. Yang, T., Zhou, Y., Jin, H., Chen, S., Li, X.: Pyramid sketch: a
sketch framework for frequency estimation of data streams. Proc.
VLDB 10(11), 1442–1453 (2017)

24. Zhou, Y., Liu, P., Jin, H., Yang, T., Dang, S., Li, X.: One mem-
ory access sketh: a more accurate and faster sketch for per-flow
measurement. In: IEEE Globecom (2017)

25. Gong, J., Yang, T., Zhou, Y., Yang, D., Chen, S., Cui, B., Li, X.:
Abc: a practicable sketch framework for non-uniform multisets.
IEEE Bigdata (2017)

26. Wang, L., Cai, Z., Wang, H., Jiang, J., Yang, T., Cui, B., Li, X.:
Fine-grained probability counting: Refined loglog algorithm. IEEE
Bigcomp (2018)

27. Powers, D.M.: Applications and explanations of Zipf’s law. In
Proceedings on EMNLP-CoNLL. Association for Computational
Linguistics (1998)

28. Adamic, L.A., Huberman, B.A.: Power-law distribution of the
world wide web. Science 287(5461), 2115–2115 (2000)

29. Goyal, A., Iii, Daume H., Cormode, G.: Sketch algorithms for esti-
mating point queries in NLP. In: Proceedings of EMNLP (2012)

30. Mandal, A., Jiang, H., Shrivastava, A., Sarkar, V.: Topkapi: par-
allel and fast sketches for finding top-k frequent elements. In:
Advances in Neural Information Processing Systems, pp. 10898–
10908 (2018)

31. Henzinger, M.R.: Algorithmic challenges in web search engines.
Internet Math. 1(1), 115–123 (2004)

32. Li, Y., Miao, R., Kim, C., Yu, M.: Flowradar: a better netflow
for data centers. In: Proceedings of USENIX NSDI, pp. 311–324
(2016)

33. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup
tables. In: Proceedings of the 49th Annual Allerton Conference
on Communication, Control, and Computing, pp. 792–799. IEEE
(2011)

34. Xiao, Q., Qiao, Y., Zhen, M., Chen, S.: Estimating the persistent
spreads in high-speed networks. In: 2014 IEEE 22nd International
Conference on Network Protocols (ICNP), pp. 131–142. IEEE
(2014)

123

Fast and accurate stream processing by filtering the cold 763

35. Dai, H., Shahzad, M., Liu, A.X., Zhong, Y.: Finding persistent
items in data streams. Proc. VLDB Endow. 10(4), 289–300 (2016)

36. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52(6),
2551–2567 (2006)

37. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing data-stream
join aggregates using skimmed sketches. In: International Confer-
ence on Extending Database Technology, pp. 569–586. Springer
(2004)

38. Source code related to cold filter meta-framework. https://github.
com/zhouyangpkuer/ColdFilter. Accessed May 2018

39. Ting, D.: Data sketches for disaggregated subset sum and frequent
item estimation. In: Proceedings of the 2018 International Confer-
ence on Management of Data, pp. 1129–1140. ACM (2018)

40. Wei, Z., Luo, G., Yi, K., Du, X., Wen, J.-R.: Persistent data sketch-
ing. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 795–810. ACM (2015)

41. Peng, Y., Guo, J., Li, F., Qian, W., Zhou, A.: Persistent bloom
filter: membership testing for the entire history. In: Proceedings
of the 2018 International Conference on Management of Data, pp.
1037–1052. ACM (2018)

42. Chen, J., Zhang, Q.: Bias-aware sketches. Proc. VLDB Endow.
10(9), 961–972 (2017)

43. Wei, Z., Liu,X., Li, F., Shang, S., Du,X.,Wen, J.-R.:Matrix sketch-
ing over slidingwindows. In: Proceedings of the 2016 International
Conference onManagement of Data, pp. 1465–1480. ACM (2016)

44. Agrawal N., Vulimiri, A.: Low-latency analytics on colossal data
streams with summarystore. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pp. 647–664. ACM (2017)

45. Cui, H., Keeton, K., Roy, I., Viswanathan, K., Ganger, G.R.: Using
data transformations for low-latency time series analysis. In: Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing, pp.
395–407. ACM (2015)

46. Rabkin, A., Arye, M., Sen, S., Pai, V.S., Freedman, M.J.: Aggrega-
tion and degradation in jetstream: streaming analytics in the wide
area. NSDI 14, 275–288 (2014)

47. Jiang, J., Fu, F., Yang, T., Cui, B.: SketchML: Accelerating dis-
tributed machine learning with data sketches. In: Proceedings of
the 2018 International Conference on Management of Data, pp.
1269–1284. ACM (2018)

48. Aghazadeh,A., Spring,R., LeJeune,D.,Dasarathy,G., Shrivastava,
A., Baraniuk, R.G.: MISSION: ultra large-scale feature selection
using count-sketches. In: Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10–15, 2018, pp. 80–88 (2018)

49. Shrivastava, A.: Fast and accurate training of 100,000 classes on a
single titan x. (Preprint)

50. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models
and issues in data stream systems. In: Proceedings of ACM PODS,
pp. 1–16. ACM (2002)

51. Muthukrishnan, S. et al.:Data streams: algorithms and applications.
Found. Trends® Theor. Comput. Sci. 1(2), 117–236 (2005)

52. Guo, C., Yuan, L., Xiang, D., et al.: Pingmesh: a large-scale system
for data center network latency measurement and analysis. ACM
SIGMCOMM CCR 45(4), 139–152 (2015)

53. Zhu, Y., Kang, N., Cao, J. et al.: Packet-level telemetry in large
datacenter networks. In: ACM SIGMCOMM CCR, vol. 45, pp.
479–491. ACM (2015)

54. Pagh, R., Rodler, F.: Lossy dictionaries. Algorithms—ESA 2001,
pp. 300–311 (2001)

55. Intel SSE2Documentation. https://software.intel.com/en-us/node/
683883. Accessed May 2018

56. Zhou, Y., Yang, T., Jiang, J., Cui, B., Yu, M., Li, X., Uhlig, S.:
Cold filter: a meta-framework for faster and more accurate stream
processing. In: Proceedings of SIGMOD (2018)

57. Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., Kabbani,
A.: Counter braids: a novel counter architecture for per-flow mea-
surement. ACM Sigmetrics Perform. Eval. Rev. 36(1), 121–132
(2008)

58. Manku, G.S., Motwani, R.: Approximate frequency counts over
data streams. In: Proceedings of VLDB, pp. 346–357. VLDB
Endowment (2002)

59. Golab, L., DeHaan, D., Demaine, E.D., Lopez-Ortiz, A., Munro,
J.I.: Identifying frequent items in sliding windows over on-line
packet streams. In: Proceedings of ACM IMC, pp. 173–178. ACM
(2003)

60. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm
for finding frequent elements in streams and bags. ACM Trans.
Database Syst. (TODS) 28(1), 51–55 (2003)

61. Roberts, S.: Control chart tests based on geometric moving aver-
ages. Technometrics 1(3), 239–250 (1959)

62. Indyk, P.: Stable distributions, pseudorandom generators, embed-
dings and data stream computation. In: Proceedings of the 41st
Annual SymposiumonFoundations ofComputer Science, pp. 189–
197. IEEE (2000)

63. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based
change detection: methods, evaluation, and applications. In: Pro-
ceedings of ACM IMC, pp. 234–247. ACM (2003)

64. Schweller, R., Li, Z., Chen, Y., et al.: Reversible sketches: enabling
monitoring and analysis over high-speed data streams. IEEE/ACM
Trans. Netw. (ToN) 15(5), 1059–1072 (2007)

65. Guha, S., McGregor, A.: Stream order and order statistics: quan-
tile estimation in random-order streams. SIAM J. Comput. 38(5),
2044–2059 (2009)

66. Wei, Z., Luo, G., Yi, K., Du, X., Wen, J.-R.: Persistent data sketch-
ing. In: Proceedings of ACMSIGMOD, pp. 795–810. ACM (2015)

67. The caida anonymized 2016 internet traces. http://www.caida.org/
data/overview/. Accessed May 2018

68. Real-life transactional dataset. http://fimi.ua.ac.be/data/. Accessed
May 2018

69. Rousskov, A., Wessels, D.: High-performance benchmarking with
web polygraph. Softw.: Pract. Exp. 34(2), 187–211 (2004)

70. Hash website. http://burtleburtle.net/bob/hash/evahash.html.
Accessed May 2018

71. Ji,M.,Yan, J., Gu, S.,Han, J., He,X., Zhang,W.V., Chen, Z.: Learn-
ing search tasks in queries and web pages via graph regularization.
In: Proceedings of ACM SIGIR, pp. 55–64. ACM (2011)

72. Goyal, A., Daume Iii, H., Cormode, G.: Sketch algorithms for esti-
mating point queries in NLP. In: EMNLP-CoNLL, pp. 1093–1103
(2012)

73. Qiao, Y., Li, T., Chen, S.: One memory access bloom filters and
their generalization. In: INFOCOM, 2011 Proceedings IEEE, pp.
1745–1753. IEEE (2011)

74. Roy, P., Teubner, J., Alonso, G.: Efficient frequent item counting in
multi-core hardware. In: ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://github.com/zhouyangpkuer/ColdFilter
https://github.com/zhouyangpkuer/ColdFilter
https://software.intel.com/en-us/node/683883
https://software.intel.com/en-us/node/683883
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://fimi.ua.ac.be/data/
http://burtleburtle.net/bob/hash/evahash.html

	Fast and accurate stream processing by filtering the cold
	Abstract
	1 Introduction
	1.1 Characteristics of real data streams
	1.2 Estimating item frequency
	1.3 Finding top-k hot items
	1.4 Detecting heavy changes
	1.5 Finding persistent items

	2 Related work
	3 The cold filter meta-framework
	3.1 Naive solution
	3.2 Proposed solution
	3.3 Optimization 1: aggregate-and-report
	3.4 Optimization 2: one-memory-access

	4 Cold filter implementation
	4.1 Frequency-based tasks
	4.1.1 Estimating item frequency
	4.1.2 Finding top-k hot items
	4.1.3 Detecting heavy changes

	4.2 Persistency-based tasks
	4.2.1 Finding persistent items

	5 Formal analysis
	5.1 Performance of CF
	5.2 Standard Bloom filter
	5.3 Multi-layer Bloom filter
	5.4 Equivalence between multi-layer Bloom filter and CM–CU
	5.5 Bound of Pmr of multi-layer Bloom filter (λ= mathcalT)
	5.6 Bound of Pmr of CF
	5.7 Analysis of CM–CU with CF
	5.8 Analysis of PIE with CF
	5.8.1 False negative rate estimation
	5.8.2 False positive rate estimation

	6 Performance evaluation
	6.1 Experimental setup
	6.1.1 Datasets
	6.1.2 Implementation
	6.1.3 Computation platform
	6.1.4 Queries
	6.1.5 Metrics

	6.2 Evaluation of frequency-based tasks
	6.2.1 Parameter setting
	6.2.2 Evaluation on three key tasks
	6.2.3 Sensitivity analysis

	6.3 Evaluation of persistency-based tasks
	6.3.1 Evaluation of accuracy and time
	6.3.2 Sensitivity analysis

	7 CF with parallel strategies
	7.1 CF on multi-core platform (Pipeline)
	7.2 CF in multi-task scenario
	7.3 Evaluation on CF with multi-core CPU

	8 Conclusion
	Acknowledgements
	References

