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FPGA-Based Updatable Packet Classification Using
TSS-Combined Bit-Selecting Tree
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Abstract— OpenFlow switches are being deployed in SDN to
enable a wide spectrum of non-traditional applications. As a
promising alternative to brutal force TCAMs, FPGA-based
packet classification is being actively investigated. However, none
of the existing FPGA designs can achieve high performance on
both search and update for large-scale rule sets. To address this
issue, we propose TcbTree, an FPGA-based algorithmic scheme
for packet classification. Specifically, at the algorithmic side,
i) a two-stage framework consisting of heterogeneous algorithms
is proposed, where most rules can be mapped into several
balanced trees without rule replications, ii) for the remaining
few rules, a centralized TSS (Tuple Space Search) architecture
together with a real-time feedback scheme is designed to enhance
the efficiency of TSS search on FPGA, and iii) a tree dilution
method is designed to equalize rule distribution in trees, so that
the latency of tree search can be reduced. At the hardware side,
i) an efficient data structure set is designed to convert tree
traversal to addressing process, which breaks the constraints
of limited tree depth and imbalanced node distribution, and
ii) distinct from fully pipelined designs, multiple levels of par-
allelism are efficiently explored with multi-core, multi-search-
engine and coarse-grained pipelines herein. Experimental results
using ClassBench show that, with the implementation of TcbTree
on FPGA, the average classification throughputs for 1k, 10k, 32k
and 100k rule sets achieve 788.8 MPPS, 404.3 MPPS, 237 MPPS
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and 41.8 MPPS, respectively, and the update throughput for all
benchmark rule sets is above 1 MUPS.

Index Terms— OpenFlow, packet classification, FPGA,
algorithmic.

I. INTRODUCTION

AS ONE major building block of Software-Defined
Networking (SDN), OpenFlow has been widely deployed

for a wide spectrum of non-traditional applications, such as
flexible resource partitioning and real-time migration [2].
An OpenFlow switch applies multiple flow tables for
packet match-action lookups and forwarding policies, which
essentially falls into a multi-field packet classification
problem [3]. Although having been investigated for
two decades, this problem encounters new challenging
requirements with OpenFlow switches nowadays, including
large-scale rule set support and dynamic rule update.
Furthermore, in support of the search function, OpenFlow
puts forward higher requirements than that in traditional
5-tuples, e.g., with more than 12 fields in OpenFlow 1.x
standard [4] or arbitrary number of fields in P4 [5].

For the implementation of packet classification in com-
mercial OpenFlow switches, Ternary Content Addressable
Memory (TCAM) is a widely adopted solution due to its
line-speed classification [6]. However, TCAM is expensive,
area inefficient, and power hungry, because of its dense and
parallel circuitry in hardware design [7]–[12]. Worse still,
in function design it does not support range match which
is required in many packet classification scenarios [13]–[15].
Also, modern TCAM suffers from a high complexity of rule
update [16]–[18].

Under such circumstances, efficient algorithmic solutions
using generic memories instead of TCAMs to facilitate effi-
cient packet classification are becoming revitalized, such
as decision tree and Tuple Space Search (TSS) [19]–[27].
Among the platforms of algorithm execution, Field Pro-
grammable Gate Arrays (FPGAs) have been actively inves-
tigated for line-speed packet classification over the past
decade, due to its ability to reconfigure and to offer massive
parallelism [28]–[37].

The existing FPGA-based packet classifications can
be roughly divided into two categories: decomposition
approaches and decision tree approaches. For the first category,
bit-vector (BV) decomposition can achieve decent perfor-
mances at both packet classification and rule updating [28],
[38]–[40]. Nevertheless, the scale of applied vectors in BV
decomposition is restricted by the FPGA logic resource, as it
consumes a large amount of distributed RAMs. Thus only
small-scale rule sets can be supported in these solutions. For
the second category of decision tree approaches, although
they do not have the restriction of rule set scale, two major
problems affect their scalability to OpenFlow applications:
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i) they could hardly support dynamic rule update (i.e., with-
out pre-computing the memory content or rebuilding the
tree/subtree) due to the serious rule replications; ii) most
decision tree approaches are with imbalanced and unbounded
depth, which not only results in inefficient optimizations on
FPGA but also causes the fully pipelined design a high degree
of dependence on specific rule sets. If setting equally allocated
memories along the pipeline stages to deal with the imbalanced
depth, it would result in a waste of storage resources.

In this paper we present TcbTree, an FPGA-based updat-
able packet classification solution using TSS-combined bit-
selecting Tree. TcbTree could achieve high performances
on both table lookups and rule updates with our particular
algorithmic and hardware designs. From the algorithmic
aspect, TcbTree adopts a two-stage framework for packet
classification. In the first stage, several balanced bit-selecting
trees are constructed from rule subsets grouped with respect
to their small fields. This grouping eliminates wildcard (*) at a
set of most significant bits in small fields, thereby getting rid of
the trouble of rule replications. The second stage handles the
terminated nodes from the trees constructed in the first stage,
where wildcards may lead to serious rule replications. Thanks
to the efficient rule grouping and balanced bit selection, the
number of rules in the last layer of tree leaves is significantly
reduced, where linear search can be well applied to these rules
to facilitate tree constructions. Besides decision tree, Priority
Sorting Tuple Space Search (PSTSS) [26] is adopted to deal
with the remaining few rules.

Nevertheless, when implementing TcbTree on FPGA from
the hardware aspect, we are faced with two challenges.
Firstly, the PSTSS scheme is hardware unfriendly and resource
consuming. Secondly, the big leaf problem (i.e., the number of
rules within a leaf is much larger than a predefined threshold
value) causes over-dispersion of rules along a tree for some
specific rule sets, leading to inefficient searches. To address
the above issues, we propose a centralized and uniform PSTSS
together with a tree dilution scheme, following the hardware
properties of FPGA. Then, a dynamically updatable hardware
architecture for the upgraded algorithm is designed and imple-
mented on a state-of-the-art FPGA. Instead of implementing a
fully pipelined design, the patterns of multi-core, multi-engine
and coarse-grained pipelines are efficiently explored.

Compared with the well-known decomposition-based design
proposed in [39], the TcbTree can support rule sets that
are more than an order of magnitude larger; compared with
existing decision tree based designs, the overall structure of
TcbTree is independent of rule sets and fully supports dynamic
update without pre-computing updated memory content. Par-
ticularly, the average throughputs of TcbTree for 1k, 10k, 32k
and 100k rule sets can achieve 788.8 MPPS, 404.3 MPPS,
237 MPPS and 41.8 MPPS, respectively, in terms of packet
classification, and the update throughput for all benchmark
rule sets is above 1 MUPS. Overall, the major contributions
of this work are as follows.

• A novel two-stage framework consisting of heterogeneous
algorithms: decision tree, linear search and TSS, which
can build trees in linear memory footprint and avoid rule
replications simultaneously.

• A centralized and uniform hash-table based PSTSS
approach is proposed, which is tailored to and imple-
mented on the FPGA hardware. A real-time result feed-
back scheme between trees and PSTSS is also presented
to accelerate the tuple space search.

TABLE I

AN EXAMPLE OF 2-FIELD CLASSIFIER

• A search tree dilution method is devised for the
TSS-combined bit-selecting tree, to address the problem
of big leaf. The method could largely homogenize the
distribution of rules within a tree and reduce the latency
of search in leaf nodes.

• An FPGA-based updatable packet classification architec-
ture in supporting large-scale rule sets is designed. Specif-
ically, efficient data structures for the TSS-combined tree
are constructed and stored in large pieces of RAMs
(instead of distributed small ones). Such a design breaks
the constraints of limited tree depth and imbalanced node
distribution, making the architecture independent of rule
sets.

• With our proposed data structure and the revised PSTSS
scheme, fast dynamic rule update is fully supported for
rule sets in various scales, including creating, deleting
and modifying tree nodes in real time aided by dynamic
storage allocation.

The rest of the paper is organized as follows. Section 2 sum-
marizes the background and related work. Section 3 elaborates
the TcbTree algorithmic design. Section 4 presents the FPGA
architecture. Section 5 provides experimental results. Finally,
Section 6 draws the conclusion.

II. BACKGROUD AND RELATED WORK

In this section, the background and classic packet classifica-
tion approaches, especially the algorithmic approaches of tuple
space and decision tree, are first reviewed. After that, related
FPGA-based designs are introduced. Finally, the summary of
prior art is given.

A. The Packet Classification Problem

The purpose of packet classification is to enable differ-
entiated packet treatment in fine granularity according to
multi-field packet header information and a pre-established
classifier which consists of a set of rules. Each rule r has d
components each represented by ri. ri is a regular expression
on the i field of the packet header, which could be a prefix,
a range or an exact value. A packet p = (p1, p2, . . . , pd) is said
to match rule r if ∀i, pi ∈ ri. Table I shows an example of
2-field rule set in [41], and the default priority is the order of
the rules. Priority indicates the degree of importance, meaning
that if a packet conforms to more than one rule, the low priority
rules would give way to the highest priority rule. Next, we will
give more details for packet classification from the aspects of
algorithmic designs and FPGA designs respectively.

B. Algorithmic Designs for Packet Classification

As an extensively studied problem [3], a lot of algorithmic
approaches have been proposed over the past two decades,
such as decision tree [42], [43], decomposition [44]–[47] and
TSS [48]. Since TSS and decision tree are related to our
proposed architecture, more detailed reviews about these two
approaches would be given, as well as their latest progress in
the last decade.
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TABLE II

TSS BUILDS 4 TUPLES FOR RULES IN TABLE I

Fig. 1. Review on classic decision trees (binth = 4).

1) Tuple Space Search (TSS): A tuple space (tuple for short)
is the combination of prefix lengths of different fields [48]. All
the rules belonging to a tuple are maintained in an independent
hash table. Upon receiving a packet, it simply looks up all
the hash tables by probing them with the keys formed by
concatenating the known set of bits in each field corresponding
to that tuple. Table II shows the four tuples built for rules given
in Table I.

In TSS-based solutions, rules can be inserted and deleted
from hash tables in amortized one memory access, resulting
in a high update performance. But in order to find the best
matching rule for each packet, all these partitioned hash tables
have to be searched exhaustively, resulting in a low lookup
performance. As an improvement, PSTSS [26] reduces average
table lookups by introducing a pre-computed priority for each
tuple (as shown in the fourth column of Table II), so that
each search can terminate as soon as a match is found.
However, its worst-case performance is still the same as TSS.
TupleMerge [27], a recently proposed TSS-based scheme,
improves upon the original TSS by relaxing the restrictions
on which rules may be placed in the same tuple. However,
with more tuples merged, its performance may be affected
due to hash collisions.

2) Decision Tree: Decision tree is a flowchart-like tree
structure, where the root node covers the whole searching
space containing all rules. From the geometric view, building
a tree is to recursively partition the space covered by a node
called parent into many smaller subspaces (equal-sized or
not) until the rules covered by each subspace is less than
the pre-defined bucket size (i.e., binth). These subspaces are
the children of the parent node in the decision tree, and the
terminal node is called leaf node. The geometric view of the
example rules given in Table I is illustrated in Fig. 1(a), and
Fig. 1(b)(c)(d) shows the decision trees generated by classic
HiCuts [49], HyperCuts [43] and HyperSplit [19]. In case a
rule spans multiple sub-spaces, the undesirable rule replication

happens (e.g., R3, R4 and R6 in Fig. 1(b)). When a packet
arrives, the decision tree is traversed based on the key values
in the packet header, to find a matching rule at a leaf node.

As reviewed in CutSplit [50], rule replication is the key
trouble-maker for decision trees. To reduce rule replications,
rule set partitioning has been recognized as a common practice
and many novel partition based decision trees have been
proposed in the past decade. The well-known cutting-based
scheme EffiCuts [20] observes that real-world rules exhibit
several inherent characteristics, and a good rule set partitioning
can significantly reduce rule duplication. So instead of cover-
ing all rules with a single decision tree, EffiCuts divides the
rules into subsets, each of which independently creates its own
decision tree using a variant of HyperCuts. At most 2d decision
trees can be generated for d-field classifiers, resulting in a large
number of memory accesses. By contrast, HybridCuts [21]
separates rules based on a single field, so it achieves a
significant reduction in the number of subsets (i.e., from 2d

to d + 1), which in turn reduces overall memory accesses.
However, the worst-case search performance of HybridCuts
is unbounded due to the adoption of HyperCuts. Worse still,
as the number of rule fields and classifier size increases,
the performance of HybridCuts drops dramatically due to the
rule replication. Other partitioning methods are also emerging,
such as ParaSplit [31], SmartSplit [22], PartitionSort [23],
CutSplit [50], TabTree [1], NeuroCuts [24], CutTSS [41] and
NeuvoMatch [25].

However, the real-time rule update is still facing challenges
in most of these decision trees. Besides, all of these decision
trees are not very friendly for FPGA implementations, because
they are either not balanced enough, or the tree depth is
uncontrollable, and these tend to cause FPGA resource waste
and bottlenecks in the convergence of parallel results.

C. FPGA Designs for Packet Classification

Although software algorithms have been widely studied,
there is a large bottleneck in the performance of software
algorithms, and TCAM will not be able to achieve a great
increase in capacity in the foreseeable future. Therefore,
because of its programmability, high parallelism and large
capacity, FPGA has become an ideal hardware platform for
accelerating algorithmic packet classification, and has received
extensive attention and research. Next, we will generally
introduce three mainstream categories of FPGA packet classi-
fication technologies: 1) decision tree based, 2) decomposition
based, and 3) RAM based TCAM on FPGA.

1) Decision Tree Based Designs on FPGA: The major-
ity of decision tree based architectures have adopted a full
pipeline design, which can benefit from the high frequency
and high throughput. And the major concerns of this kind
of methods are memory reduction and performance enhance-
ment, such as node merging and leaf-pushing to reduce
the number of pipeline stages and balance memory alloca-
tion [29], subsets partitioning with multiple trees to minimize
rule duplication [33], and hybrid scheme combing differ-
ent algorithms [51]. To further reduce memory consump-
tion, Chang et al. [52] proposed a greedy bucket compression
scheme to reduce the duplicated rules in the memory bucket
pipeline, based on the observation that rule buckets associated
with leaf nodes in decision trees consume a large portion of
on-chip memory, and Kennedy et al. [53] reduce the amount
of memory for large rule sets with the proposed pre-cutting
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process that results in a shallow decision tree, also reducing
the number of memory accesses.

2) Decomposition-Based Designs on FPGA: The principle
of decomposition is to decompose a complex multi-domain
search problem into multiple simple single-domain concurrent
searches, which can make full use of the parallel charac-
teristics of FPGA. Since most of the current decomposition
implementations on FPGA are based on the classic BV algo-
rithm [44], BV decomposition is used to represent this type of
technology in this paper. In such a method, a two-dimensional
pipelined architecture is commonly explored to achieve high
performance in classification [39], [54]. In aspect of support-
ing range match, Chang et al. [36] proposed to either use
specially designed codes to store the pre-computed results
in memory, or perform subrange match operations sequen-
tially. However, it does not support dynamic rule update. For
efficient update in SDN switches, Li et al. [40] divides the
ruleset into subsets and uses BV-based pipelines to match
these sub-rulesets separately in parallel. To save stringent
memory resources which are wasted to store relatively useless
wildcards, Shi et al. [55] proposed a memory compression
scheme which adopts a memory-shared homogeneous pipeline,
together with a rearrange technology by utilizing a bit matrix
to determine the potential of memory consumption.

3) TCAM-Based Designs on FPGA: This method utilizes
RAMs to emulate the operation of TCAM, which can per-
form packet classification with few memory accesses and
has uniform hardware organization for all rule sets. Instead
of brute-force implementations to mimic the native TCAM
architecture, Jiang et al. [56] presented a modular architecture
consisting of arrays of small-size RAM-based TCAM units
on FPGA, which scales well in implementing large TCAMs.
While Yu et al. [57] takes a different approach which first
encodes the rule header fields and maps them to SRAM-based
match units using a bit-selection approach. Whereas, this
may cause rule conflicts in the same bucket. Moreover, only
10k-scale rule sets can be accommodated by this method on
Xilinx Virtex 7 and Ultrascale FPGA for above methods.

D. Summary of Prior Art

Although the FPGA designs based on decision trees could
provide high throughput and efficient memory usage, the rule
duplication problem still remains. The concerns for dynamic
rule update in hardware, i.e., how to deal with rule duplication,
how to update leaf node or ancestor node backward, and how
to create a new node on the fly in a fully pipelined architecture,
have not been addressed. Especially for some optimized and
balanced memory algorithms, the real-time update becomes
more complicated. In contrast, although BV-based designs
can sustain a high throughput in packet classification and
fully support dynamic rule update, the method is essentially
exhaustive to list all possible matching combinations for each
bit. Therefore, the consumption of hardware resources is
large especially for rules with more wildcards. The scale of
rule sets accommodated by FPGAs is always restrained by
this feature. Similar to BV-based methods, TCAM simulation
method exhaustively lists possible combinations by match
vectors, which is also resource-intensive and difficult to scale
to large-scale rules.

III. ALGORITHM OVERVIEW

The algorithmic framework of our proposed TcbTree con-
sists of three key components, as shown in Fig. 2. The first

Fig. 2. The algorithmic framework of TcbTree.

key component is rule set partitioning, which divides rules
into a few subsets, where rules in each subset share the similar
characteristics. The second key component is tree construction
for the partitioned rule subsets (except for the last subset),
where several balanced trees are generated with linear memory
consumption and without the trouble of rule replications. The
last key component is a hardware-optimized PSTSS scheme
(detailed in Section 3.6), which can efficiently handle the few
rules expelled by rule set partitioning. Next, we give more
details in terms of these three key components.

A. Rule Set Partitioning

Before describing the partitioning mechanism, we first give
the definitions of two concepts: small field and big field.

1) Small Field: Given an d-field rule R = (F1, …, Fi, …Fd)
and a threshold value vector T = (T1, …, Ti, …Td), we give a
definition for field Fi as follows: if the range span length of
field Fi ≤ threshold value Ti, Fi is defined a small field.

2) Big Field: Similarly, if the range span length of field
Fi > threshold value Ti, we say that Fi is a big field.

Based on the observations revealed in CutSplit [50], even
under very demanding thresholds, most rules still have at least
one small field. Thus, we can partition the vast majority of the
rules into a very limited number of subsets without duplicates
among each other, where rules in each subset all share the
common characteristic of small field in the selected fields.
The heuristic of rule set partitioning is as follows:

• Distinct fields selecting. Pick up a few distinct small
fields, where the vast majority rules contain at least one
small field in selected fields. The remaining rules are
divided into big-field rules.

• Fields-wise partitioning. Assume m fields have been
selected for d-field rule sets. We categorize rules based
on field length (i.e., big or small) in all selected fields,
leading to at most 2m − 1 subsets.

• Selective subset merging. The subsets containing a very
few rules can be merged into other subsets with fewer
small fields.

Based on the above rule set partitioning method, rules are
firstly separated into a few number of rule subsets based on
their small fields in order to eliminate rule overlapping at large
scales. The subsets of small field for typical 5-tuple rule sets
are selected to be source address (SA), destination address
(DA), SA and DA combined (SA_DA) in this work. Since
only few big-field rules are left after partitioning, the tuple
space structure is then utilized to process these rules.
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TABLE III

EXAMPLE RULE SET WITH TWO IPV4 ADDRESS FIELDS

By examining rules grouped with respect to their small
fields, we identify a useful observation on rule fields, which
is the key basis of the following proposed bit-selecting trees:
For the small field of grouped rules with the type of prefix
or exact value, there are a set of most significant bits which
are indicated by either bit-0 or bit-1. More specifically, for a
W -bit wide field Fi with the threshold value of 2K , we can
draw the conclusion that, Fi is a small field if and only if
there is no wildcard (*) at its most significant W−K bits.
In this paper, we call these W−K bits as selectable bits. For the
small field of grouped rules with range type, we give a novel
encoding scheme called False Range Encoding, and show that
the observation is still valid for its encoded prefixes, which is
detailed in the Appendix.

B. Bit-Selecting Tree Construction

By grouping rules that are narrow in the same fields, we get
a set of selectable bits among grouped rules without wildcard
value. Thus, each selectable bit can map (i.e., partition)
rules into at most two subsets without any rule replications.
To exploit this favorable property, we build a multi-way tree
by selecting a few selectable bits in each tree node recursively.

In order to build shallow and balanced decision trees, the
heuristic greedy strategy bit-selecting algorithm is utilized to
select most distinguishing selectable bits in the process of tree
construction. To control the width of the tree, we assume that
at most b bits are allowed to be selected in each tree node.

Greedy Strategy: The greedy algorithm tries to find a local
optimal solution, where the “good” bits are selected one by
one recursively. We assign an imbalance value for each current
selectable and unused bit by using the formula (1), where
#ruleLChild/#ruleRChild is the number of rules mapped into
the left/right child node (i.e., #bit-0/1s in v-th bit). The greedy
algorithm is to choose at most b bits one by one, where each
selected single bit is with the smallest imbalance value among
current selectable and unused bits.

imbalance(bit v) = |#ruleLChild− #ruleRChild| (1)

In Fig. 2, each decision tree is corresponding to a specific
field or a combination of fields, the rules contained in which
conform to the small-field characteristics of the relative field.
The decision tree structure is composed of nodes which are
divided into internal nodes and leaves.

In order to bound tree depth, avoid rule replication and
support fast rule updates, the approach stops its bit-selecting
progress in one of the following cases: 1) the tree depth
achieves the predefined maximum value; 2) the number of
rules in the mapped tree node is less than a predefined
threshold value (i.e., binth); 3) the remaining unselected rule

TABLE IV

PARTITIONED RULES WITH SMALL DST_ADDR FIELD

TABLE V

PARTITIONED RULES WITH Big Field

bits share same values and cannot separate rules from each
other; 4) the further bit-selecting will lead to rule replications
due to the wildcards. Due to the above termination mechanism,
some terminal nodes might not be further split in which #rules
> binth. These nodes are called big leaf nodes in this work.

C. A Working Example

To illustrate the algorithm more clearly, we give a working
example for rules presented in Table III. Assume that each
internal tree node is allowed to select a maximum of two bits
for rule mapping and the binth of leaf is one, the threshold
value vector is T = (Tsrc_addr= 225, Tdst_addr= 225). Only
source address (SA) and destination address (DA) are merely
selected for subset partitioning in this example.

The scheme first partitions the 19 rules into three rule
subsets: (arbitrarySA, smallDA) = {R3, R4, R5, R6, R7,
R8, R10, R11, R12, R13, R14, R15}, (smallSA, arbitraryDA)
= {R1, R2, R9} and (big_field rules) = {R16, R17, R18,
R19}. Thus, for the small field of grouped rules in the former
two subsets, there are 32−25=7 selectable bits. After rule set
partitioning, a decision tree is constructed for each small-field
rule subset. For example, Table IV shows the partitioned rules
in (arbitrarySA, smallDA) with the representation of ternary
strings, while Table V shows the big-field rules. Clearly, the
middle 7 bits (i.e., 33-39th) in Table IV are selectable bits.
Fig. 3 illustrates the DA decision tree constructed together with
the PSTSS for the rules shown in Table IV and Table V, based
on the proposed bit-selecting and TSS-combined method.
Although this example only shows the decision tree of DA,
the construction mechanism of SA tree is the same as that of
DA tree, which will not be detailed here.

D. Challenges for Hardware Design

In TabTree [1] and CutTSS [41], both the linear search
(#rules ≤ binth) and the PSTSS (#rules > binth) for rules
in the terminal nodes (i.e., leaf nodes) are employed to facil-
itate tree constructions. The big-field rules are processed by
PSTSS as well. Each TSS structure consists of multiple tuples
each associated with an independent hash table and search
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Fig. 3. TSS-combined decision tree for rules in Table IV and Table V (binth = 1).

mechanism. If this structure is implemented in hardware, there
would be dozens of PSTSS instantiated together with hundreds
of thousands of tuples and hash tables, and thus hardware
resource consumption is unimaginable. Moreover, the number
of TSS and tuples is unpredictable which is dependent on
the specific rule set and configurations of tree construction.
To address this issue, TcbTree adopts linear search for all
leaf nodes while the TSS structure merely targeting big-field
rules is remained, which is called TSS-combined bit-selecting
tree algorithm. In spite of the above modifications, designing
scalable and efficient architecture for this algorithm still faces
two major difficulties and challenges:

1) Hardware-Unfriendly TSS Structure: Even for the only
one left TSS to process big-field rule subset, the multiple-tuple
multiple-hash-table structure is still hardware unfriendly due
to the aforementioned reasons.

2) Inefficient Search Caused by Big Leaf: Enforcing linear
search for all leaf nodes would aggravate and magnify the
problem of big leaf, especially for the inseparable rules
containing the same values in selected small fields. Search-
ing a large number of rules sequentially in leaf nodes is
time-consuming and inefficient.

Regarding the issues above, this work gives solutions by
proposing a hardware-optimized PSTSS and a tree dilu-
tion scheme to achieve a complete and hardware-friendly
framework. The details are elaborated in the following two
subsections.

E. Hardware-Optimized PSTSS

The framework of hardware-optimized PSTSS is illustrated
in lower part of Fig. 5. Two major modifications have been
made to original PSTSS approach according to the hardware
characteristics:

1) Incorporation of Port Fields: In prior work, each tuple is
composed of source IP mask and destination IP mask. In many
cases, however, big-field rules contain the same masked value
in these two fields making them indistinguishable, which
consequently leads to serious collisions in the hash table. The
linear bucket length would be consequently long. To address
this issue, source port LCP and destination port LCP are
precomputed and added to tuple space to make the tuple
combination more diversified and thereby reduce the conflict
possibility.

2) Centralized Hash Table: Each tuple in the software
algorithm is assigned a hash table, which is not friendly to
hardware that needs to fix resources in advance, and causes a
waste of resource. We use a centralized hash table to overcome
this problem, which combines the hash tables of all tuples into
one and is shared by all tuples. When traversing each tuple,

each packet header field value is first ANDed with the hash
key converted by the corresponding fields and prefix lengths
and then hashed. With the hashed value as index address, one
entry of the centralized hash table is accessed to perform a
linear lookup. Conflicting values within each entry are stored
in a bucket in the format of a linked list.

The hash table is a two-level query structure which consists
of a bucket table and a big rule (short for big-field rule) table.
The bucket table serves as the mapping between the hashed
value and its corresponding rule subset address in big rule
table. Its each address corresponds to a hashed value, and each
content is the address of the first rule in the rule subset. The
big rule table records all consecutive big-field rule subsets.

Here is a working example for classifying a 2-field incoming
packet P=<19.0.0.0, 38.0.0.0> with the constructed TSS
shown in Fig. 3. P is first searched in the tuple (2, 5) by
hash (19.0.0.0 & C0.0.0.0, 38.0.0.0 & F8.0.0.0) (prefix length
of 2 and 5 corresponds to C0.0.0.0 and F8.0.0.0) and after
checking bucket table with the hashed value as the address,
the rule table entry containing R16 and R19 (maybe more
rules in the entry since centralized table would have more
collisions than separated ones) is entered without no match.
Similarly, in the tuple (4, 6), the rule table entry containing
R17 is entered with hash(19.0.0.0 & F0.0.0.0, 38.0.0.0 &
FC.0.0.0), in which R17 is matched. There is no match in
the last tuple (5, 5). Thus R17 is the final best matching rule
for P .

It is worth noting that the rules in both leaf nodes and TSS
buckets are sorted by priority in advance. The advantage is that
when a rule is matched, there is no need to continue searching
in the subset. Tuples are also sorted according to the priority
of rules which rank highest in the respective tuples. In order
to maintain the priority structure, the rule fast update scheme
in our architecture is in accordance with the priority principle
as well.

F. Tree Dilution Mechanism

For some specific rule sets, the values of many rules
in the same small field are exactly the same. As a result,
it is impossible to divide the rules further with a very deep
bit-selection during tree construction, resulting in so called big
leaf problem.

This issue is addressed by the proposed tree dilution mech-
anism which can be illustrated by Fig. 4. Two binth values
are set, which are tree binth and big leaf binth respectively.
The main tree is firstly constructed with tree binth, while the
big leaf binth is a threshold of rule number associated with
a big leaf node, which thereby determines the number of
dilution trees. Part of rules that exceed big leaf binth in all
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Fig. 4. Dilute tree architecture.

Fig. 5. The data structure design for search tree and PSTSS.

leaf nodes are screened out to build the first-level dilution
tree in the manner of bit-selecting. A dilution tree consists
of three sub-trees which can correspond to any fields which
need to dilute. Next, the second-level dilution tree would be
constructed recursively if the rule number of a leaf in dilution
subtrees exceeds big leaf binth. This process could continue
until the number of rules in all leaf nodes is less than or equal
to big leaf binth. The results from the main tree and dilution
trees would be processed hierarchically level by level. Smaller
big leaf binth would bring more dilution trees and better
performance for each tree. The side effect is that the system
complexity becomes higher, the result resovler levels becomes
more, and the working frequency decreases as a result. Hence
choosing a balanced big leaf binth is more favoured.

IV. HARDWARE ARCHITECTURE DESIGN

A. Existing Problems

Although extensive research has been conducted on
decision-tree algorithm implementations, fully pipelined archi-
tectures on FPGA are still facing many challenges due to the
following facts. First, most actively investigated algorithmic
decision trees are imbalanced which causes the allocation
of memory along the pipeline difficult especially when the
pipeline is long. As a result, decision tree architectures would
highly depend on rule sets. Second, only a limited number
of tree levels is supported due to the explosive growth of
high-level nodes. Furthermore, the overly distributed storage

structure hinders real-time rule update, because the pipeline is
one-way flow, dynamic update requires reverse flow to renew
node information.

To address the above issues, an efficient set of data struc-
tures and hardware architecture on FPGA for TcbTree are
proposed, which are described in details in the following
subsections.

B. Data Structure

As shown in Fig. 5, three chain-table-like data structures are
constructed for search tree nodes, priority tuples, and rules,
respectively.

1) Node Table: Every node in a search tree, including
internal node and leaf node, is associated with a table of
134 bits (selectable bit number is 2) which is called node table.
The first bit is_leaf indicates current node is internal node or
leaf node. The second bit node_valid indicates if current node
is valid, which could be modified during update. This bit being
0 means there is no rule associated with this node. Following
bits depth and nrules represent node level depth and number
of related rules for current node. The sbit is the position of
selection bit in the field prefix, while the child_addr is the
RAM address for next-level node.

If the current node is an internal node, two selection bit
positions sbit[0] and sbit[1] are utilized to select the corre-
sponding bits in selectable bits of current prefix and join them,
so the next-level child node address would be determined by
the specific value of spliced 2 bits. If current node is a leaf
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node, then only the field of 1st_rule_addr is referred to locate
the rule table RAM address of the first rule within the leaf
subset.

2) Priority Tuple Table & Bucket Table: Similarly, every
tuple is corresponding to a priority tuple table. The first two
bits cur_valid and next_valid indicate if current and next tuple
are valid. In the tuple search process, these bits would be firstly
checked to make sure starting from valid tuples. Rule number
is recorded in nrule dynamically for each tuple. The minimum
rule ID (equivalent to highest priority) is also recorded in
tuple table. The tables are sorted in advance according to the
highest priority of respective rule subset in each tuple, and then
connected sequentially through the next_addr field. Following
words are the IP masks and port LCPs for 4 different fields.
The bucket table serves as the mapping between the hashed
value and its corresponding rule subset address. Its each
address corresponds to the hashed value, while each content
is the rule table address of the first rule in rule subset.m

3) Rule Table: Each rule in tree leaf nodes or TSS has a
273-bit rule table structure for the 5-tuple format. The mask
is transferred to ranges with two endpoints in advance and
recorded in this table. The rule tables in the rule subset
associated with each leaf node or tuple are stored consecu-
tively, and the bit next_valid indicates whether the next rule
is valid. A next_valid value of 0 indicates that this rule is
the last one in the current subset. The rule tables of all
rule subsets in each tree or TSS are also stored continu-
ously, and the starting address of each subset is indicated
by the 1st_rule_addr/Big_rule_subset_#_addr field in the
corresponding node table/bucket table.

4) Storage Mechanism: These multiple types of tables are
stored in bulks of on-chip memories: node table RAM, tuple
table RAM, bucket table RAM, tree rule table RAM and big
rule table RAM. More specifically, all node tables throughout
one tree are stored in one RAM, and the same is true for tuple
tables, bucket tables and rule tables. In other words, the RAM
management is centralized rather than distributed. Therefore,
the tree traversal to search a rule is converted to the addressing
process. Such design has three major advantages:

• The overall architecture does not depend on specific rule
sets, since there is no need to allocate specific memory
size for each level of nodes.

• The level of tree nodes could not be restricted, as the
searching down to next-level is essentially a recursive
addressing controlled by a finite state machine (FSM).
The tree reconstruction is equivalent to the overwriting of
RAM data which is facilitated by the centralized memory
scheme.

• It motivates the support for large-scale rules, as the
scalability for different sizes of rule sets is achieved
merely through configuring the depth of different RAMs
in the architecture.

• It facilitates real-time rule update. Information on adja-
cent levels is interrelated, thus rules could be traced back
to upper-level nodes with cached node information.

C. Top-Level Architecture

The top-level block diagram of proposed FPGA architecture
is shown in Fig. 6. Instead of a purely pipelined design
where performance scales linearly with operating frequency,
the scheme of multiple cores computing simultaneously is
adopted for outermost architecture to explore data-level and

Fig. 6. Top-level architecture design of the system.

task-level parallelism. This scheme has high memory capac-
ity requirements, therefore the high-density on-chip memory
UltraRAM in the most advanced FPGA is leveraged in this
architecture.

Taking typical 5-tuple rule set as an example, each comput-
ing core consists of PSTSS and three tree structures based on
the small field rule subsets according to the algorithm: source
IP address (SA), destination IP address (DA), SA and DA
combined (SA_DA). Every packet/rule would go through all
these four modules to make a match/update. The results of
packet classification from search trees and PSTSS would be
collected and compared by priority to select the final rule ID.

D. Search Tree Architecture

The architecture for each tree structure is composed of
Node Search module and Rule Processor module, which is
illustrated in Fig. 7. The former one is in charge of traversing
the tree node by node from the root, finding the leaf possibly
containing matched rules, and locating the start address of the
subset associated with this leaf. The address and the node
information of last two levels are transferred to the later
module. The Rule Processor module searches rules linearly
through looking up the rule table RAM and makes actions of
search, delete, or insert according to the operation code (OP
code).

The rules to be added or deleted are processed in the same
way as the packets in Node Search stage with the lower
endpoint of range as input, but they are processed by rule
delete and insert engines separately in Rule Processor. With
cached complete information from the Node Search module,
upper-level nodes can be traced back to support real-time
update of internal nodes, as well as deletion and addition of
leaf nodes.

In order to manage the available space in node table RAM
and rule table RAM for dynamic rule update in real time, two
empty address allocators are designed interacting with rule
delete and insert engines to recycle and reallocate empty RAM
addresses. The associated FIFOs record the addresses of the
emptied content after deletion and provide available addresses
for insertion.

These two modules operate independently and constitute
a two-stage coarse-grained pipeline, although they are not
pipelined internally. The memories in the tree and PSTSS
architecture are dual-port to facilitate independent lookup and
update, at the cost of a little extra logic consumption that
hardly affects the overall design. Furthermore, to achieve
parallel lookup, the rule table RAM is implemented as a true
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Fig. 7. The hardware architecture of search tree.

Fig. 8. The hardware architecture of PSTSS.

Fig. 9. Result collector module.

dual-port RAM. In Node Search and Rule Search in Rule
Processor, multiple engines are implemented to speed up the
search process. What is more, because the memory access has
a latency and each engine only takes a limited time to query the
storage, increasing the number of engines could significantly
improve memory utilization. However, excessive engines will
encounter the bottleneck of memory access, in other words,
when the number reaches a certain value, the search perfor-
mance will not be further improved by continuing to increase
engines. Thus we configure the number that can maximize
memory access efficiency in the actual implementation. The
arbitration between multiple engines is ensured by Round
Robin, as each engine has the same priority.

E. PSTSS Architecture

The PSTSS module has three submodules in accordance
with the phase of tuple search, hash and bucketd table query,
big rule processing, respectively. The detailed block diagram is
shown in Fig. 8. Similar to the hardware design idea of search

tree, PSTSS architecture adopts a coarse-grained pipeline
with three separate modules. And dual-port RAM, multiple
search engines in Tuple Processor and Big Rule Processor as
well as multiple hash engines in Bucket Search module are
implemented. The Tuple Processor leads the entire process
by: reading each tuple in sequential order, sending packet/rule
to the hash engine, receiving search/update feedback from Big
Rule Processor, and determining whether to continue to search
from the next tuple. The hash function in PSTSS architecture
is a modified MurmurHash.

In packet classification, if the priority of matched rule is
higher than the maximum priority of next tuple, the search
would be terminated. However, the TSS-based method still
needs to traverse multiple tuple tables averagely, resulting
in low efficiency. To take advantage of hardware parallel
property, we propose a real-time interaction scheme between
decision trees and PSTSS. When each set of search trees has
found a match, the rule would be promptly transferred to Tuple
Processor and compared with the current matched rule priority
in tuple (if any) and maximum priority of next tuple. The
feedback from trees would be the final result if it has a higher
priority and the tuple space search would also be terminated,
otherwise the search in tuple space would continue. Since the
vast majority of rules can be partitioned into small-field trees,
this mechanism can dynamically save redundant search in the
vast majority of tuple space.

F. Hierarchical Result Resolver

The proposed TcbTree faces a difficulty, that is, there are
multiple tree structures for different small field combinations,
and the speed of different trees producing results is not
consistent, thus the results need to be collected separated,
aligned and compared. Moreover, there are multiple search
engines in a tree structure, so multiple packets are processed
simultaneously at different speeds, resulting in non-sequential
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Algorithm 1 Insertion of Rule for Search Tree
Input: 1st_rule_addr, rule to insert: ins_rule

1 if no_rule_empty_addr then
2 return INSERT_FAIL

3 else if (no_leaf_node || invalid_rule_node) then
4 if (no_rule_empty_addr || no_node_empty_addr) then
5 return INSERT_FAIL

6 else
7 obtain new rule_table_empty_addr

8 write ins_rule to rule table RAM
9 if no_leaf_node then

10 obtain new node_table_empty_addr

11 write leaf node to node table RAM
12 update parent tree node table

13 else
14 read_addr = 1st_rule_addr

15 while 1 do
16 read rule table from RAM with read_addr

17 if (ins_rule priority > read rule priority) then
18 obtain new rule_table_empty_addr

19 write ins_rule to rule table RAM
20 if is the first rule then
21 update 1st_rule_addr in parent node

22 else
23 update next_addr in previous rule table

24 break

25 else if (next_addr == Null) then
26 obtain new rule_table_empty_addr

27 write ins_rule to rule table RAM
28 update next_addr in ins_rule to Null

29 return INSERT_SUCCESS

30 else
31 read_addr = next_addr of rule table

results. This issue is also encountered in other multiple-tree
based FPGA implementations, and the common solution is
utilizing pipeline bubbles which is inefficient and not suitable
for our scenario.

A hierarchical result resolver is proposed in this work which
is shown in Fig. 9. Each tree has an independent reorder
RAM to sequentialize out-of-order results. The write address
is the remainder of packet ID divided by the depth of reorder
RAM. Right after a certain number of results are written, the
results of different trees are read in order at the same time
and the priorities are compared. The rule with the highest
priority is selected and output to a FIFO controlled by the bus
interface to PSTSS. The results read from the FIFO are sent
to PSTSS module and another reorder RAM in two separate
channels. After the last priority comparison, the final result is
output.

The processes of result collection and readout in every level
are carried out simultaneously and do not interfere with each
other, which is enabled by dual-port RAMs. Furthermore, the
threshold of the amount of results for reorder RAMs in each
tree result collector is set to minimum for the purpose of
outputting results to PSTSS as soon as possible to finish the
tuple space search.

G. Dynamic Update Scheme for Hardware

The hardware dynamic update schemes for decision tree
and PSTSS are shown in Algorithm 1, 2 and 3 respectively.
The update types include deletion and insertion of one rule

Algorithm 2 Deletion of Rule for Search Tree
Input: 1st_rule_addr, rule to delete: del_rule

1 if (no_leaf_node || invalid_rule_node) then
2 return DELETE_FAIL

3 else
4 read_addr = 1st_rule_addr

5 while 1 do
6 read rule table from RAM with read_addr

7 if rulematch then
8 put read_addr to empty addr list
9 if (read_addr = 1st_rule_addr) then

10 // first rule in chain
11 if (next_addr == Null) then
12 update 1st_rule_addr = Null in parent node

13 else
14 update 1st_rule_addr = next_addr in parent node

15 else if (next_addr == Null) then
16 // last rule in chain
17 update next_addr = Null in previous rule table

18 else
19 update next_addr in previous rule table

20 return DELETE_SUCCESS

21 else if (next_addr == Null) then
22 return DELETE_FAIL

23 else
24 read_addr = next_addr of rule table

once a time. The modification is achieved by a combination
of consecutive operations of deletion and addition. Facilitated
by the Node/Rule update interface in the architecture and the
support of reverse data flow, the update scheme of search
tree effectively supports real-time leaf node creation or inval-
idation, as well as parent node table renewal. Similarly, the
PSTSS also supports creation or invalidation of tuples and
buckets. The priority order of rule subset within a leaf node or
a tuple is also maintained after update to facilitate subsequent
lookups.

In order to prevent rule duplication, a rule to be inserted or
deleted will first determine the corresponding tree or PSTSS
to be operated according to the prefix length of its small field.
In the case of tree dilution, the insertion operation is only
performed on the main tree or PSTSS, and the deletion is
performed on all trees or PSTSS.

Although the scheme can guarantee the priority order of big
rule tables after update in PSTSS, the order of tuples could not
be maintained after the deletion or insertion of rules with the
highest priority in any tuples. If the tuple tables change a lot,
it is more preferred to reconstruct the complete tuple table set.
Nevertheless, the rules that are ranked behind in tuple tables
usually have a relatively lower overall priority, and the actual
impact of real-time updates to the actual order is thus trivial.
A mechanism to guarantee no missing matches is designed:

1) Deletion: Even the highest priority rule in a tuple is
deleted, the highest priority for the tuple is kept unchanged.
This would prevent the match found by the previous tuple
from missing a comparison with the priority of next tuple of
the currently updated tuple, thus can make sure the rule being
searched with enough number of tuples at the cost of one extra
tuple search at most.

2) Insertion: If the priority of inserted rule ranked highest
in a tuple, the max priority of the tuple would be renewed, and
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Algorithm 3 Rule Update for PSTSS
Input: operation code: OP _code, rule to update: up_rule, rescode from

Big Rule Processor
1 if (OP _code == DELETE) then
2 read_addr = 1st_tuple_addr

3 while 1 do
4 read tuple table from RAM with read_addr

5 if tuple_match then
6 // rule belongs to current tuple
7 HASH(up_rule) and search in big rule table
8 if (rescode == DELETE_SUCESS) then
9 update rule_num in current tuple table

10 if (rule_num == 0) then
11 cur_addr_val = 0 in tuple table

12 return DELETE_SUCCESS else
13 return DELETE_FAIL

14 else if (next_addr == Null) then
15 return DELETE_FAIL

16 else
17 read_addr = next_addr of rule table

18 else if (OP _code == INSERT) then
19 read_addr = 1st_tuple_addr

20 while 1 do
21 read tuple table from RAM with read_addr

22 if tuple_match then
23 // rule belongs to current tuple
24 HASH(up_rule) and insert in big rule table
25 if (rescode == INSERT_SUCESS) then
26 update rule_num and max_priority in current tuple table
27 return INSERT_SUCCESS

28 else
29 return INSERT_FAIL

30 else if
(next_addr == Null || up_rule priority > max_priority)
then

31 if no_tuple_empty_addr then
32 return INSERT_FAIL

33 else
34 // create a new tuple
35 if (read_addr = 1st_rule_addr) then
36 // new tuple on top is not allowed
37 return INSERT_FAIL

38 else
39 hash up_rule

40 inset in big rule table and update bucket table
41 if (rescode == INSERT_SUCESS) then
42 obtain new tuple_table_empty_addr

43 write new tuple to tuple table RAM
44 update next_addr in current tuple table
45 return INSERT_SUCCESS

46 else
47 return INSERT_FAIL

48 else
49 read_addr = next_addr of rule table

this priority and tuple are recorded. When searching in pre-
ceding tuples, the recorded priorities will be complementarily
compared with the priority of already matched rule to prevent
omission. If such kind of update happens multiple times, it is
better to reconstruct the tuple tables.

V. EXPERIMENTAL RESULT

A. Experiment Setup

Three types of rule sets are generated by ClassBench [58]
with the first seed file to make the performance evalua-
tion: Access Control List (ACL), Firewall (FW) and Internet
Protocol Chain (IPC), each of which has four sizes from
small scale to large scale: 1k, 10k, 32k, 100k. Corresponding
synthetic packet traces are also generated along with the rule
sets by ClassBench. The key RTL codes corresponding to
Algorithm 1 and 2 can be downloaded from the website
(http://www.wenjunli.com/TabTree).

The evaluation platform is Xilinx Virtex UltraScale+ VU9P
FPGA, which is equipped with a large amount of UltraRAMs.
Through taking advantage of this property, multiple computing
cores can be instantiated to explore a high performance, since
each core contains a complete set of search trees and PSTSS
structure. The design and implementation tool is Vivado
2021.2, and the strategies for synthesis and implementation
are Defaults and Performance_ExtraTimingOpt, respectively.
The RTL language used is System Verilog HDL.

The small field threshold, i.e., the selectable prefix length
for IP addresses, and the selection bit number in decision trees
are configured to 14 and 2 respectively. The number of search
engines in Node Search and Rule Processor in search tree
architecture is set to 6 uniformly.

TcbTree is independent of rule sets and the configuration
can be unitized for the rule sets in a same size. Nevertheless,
in order to explore the characteristics of various rule sets
and achieve the optimal performance for a specific rule set,
hardware configurations without dilution for different sizes
and types of rule sets have been customized and finely
tuned, which are listed in Table VI. The parameters can be
customized include binth, RAM depth and RAM type for tree
node table, tree rule table and PSTSS big rule table. The binth
is determined through extensive experiments. The RAM depth
is determined by the specific numbers of nodes and rules for
each tree. Based on the principle of resource balance, Block
and Ultra RAMs are reasonably allocated for different node
and rule tables.

It is discovered through comprehensive experiments that
the trees constructed for the rule set of fw_100k have a
serious big leaf problem, so tree dilution approach is applied
herein to evaluate its effectiveness. Table VII lists the detailed
configurations for three dilution modes with different dilution
subtree numbers of 2, 3, and 6 respectively.

B. Resource Utilization

Table VIII summarizes the configurations, resource usage
and maximum frequency of hardware designs for various
rule sets after synthesized, placed and routed. The average,
minimum and maximum latency for classifying a packet is
also provided. The number of search engines in search trees
maintains the same, while the optimal numbers of search
engines and hash engines in PSTSS modules vary which are
determined through trial and error with extensive experiments.
Besides, according to resource constraints, different maximum
computing core numbers are set to pursue maximum possible
throughputs. It can be noted that the memory including Ultra-
RAM and BlockRAM is the most consumed FPGA resource.
Thus an FPGA equipped with UltraRAM is more suitable for
our architecture.
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TABLE VI

HARDWARE CONFIGURATIONS FOR DIFFERENT RULE SETS

TABLE VII

DILUTION CONFIGURATIONS FOR FW_100K RULESET

TABLE VIII

RESOURCE UTILIZATION AND LATENCY FOR DIFFERENT RULE SETS

The implementation results for the three dilution solutions
are summarized in Table IX. The architecture configuration
is the same for these solutions to make a peer-to-peer com-
parison. More dilution trees would cause a degraded working
frequency due to the fact that the structure within a computing
core is more complicated. More specifically, multi-level result
collections can lead to excessive multiplexers resulting in large
routing delays.

C. Data Structure Evaluation

The performance of our TcbTree data structure for various
rule sets is calculated and shown in Table X. The tree depth is

the maximum depth of the SA, DA, SA_DA trees, and the
maximum and minimum values are obtained. The number
of nodes refers to the sum of the three tree nodes. The
above values are consistent before and after implementation.
In aspect of memory usage, compared with the value before
implementation, the value of after implementation includes
the free space of the node table and the rule table for two
reasons: 1) some more space needs to be reserved to support
rule updates in case more rules are added than deleted;
2) the depth of on-chip memory can only be a power of 2.
Moreover, the minimum size of BlockRAM and UltraRAM is
18Kb and 288Kb respectively, Therefore, in the actual FPGA
implementation, many small data structures use BlockRAM
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TABLE IX

RESOURCE UTILIZATION FOR DILUTION SCHEMES

Fig. 10. The throughputs for packet classification and rule update.

TABLE X

IMPLEMENTATION RESULT OF DATA STRUCTURE

Fig. 11. Throughput in different dilution modes.

and UltraRAM which cannot be further split, so the actual
on-chip resource consumption in Table VIII is much larger
than the actual required capacity, especially for small-scale
rule sets.

D. Performance Evaluation

In this evaluation, performance metrics consist of packet
classification throughput and rule update throughput in units
of MPPS (Million Packets Per Second) and MUPS (Million
Updates Per Second) respectively. The classification through-
put is an average value by processing all synthetic packet

traces, while the update throughput is obtained by running ran-
domly generated operations including deletion, insertion and
modification for a long durance (i.e., 10ms) and calculating
the average value.

The packet classification and rule update throughput are
calculated by simulation. We first generate the data structure
files of a specific rule set. Then we write the testbench
which can load the benchmark trace file and rule file, and
simulate our architecture with these data structure files at
the maximum frequency obtained in Section V-B to perform
classification/update with the packets/rules in the trace/rule
file. In this way we get the average throughput for the rule
set.

The left part of Fig. 10 shows the classification throughput
with respect to various rule sets by employing corresponding
customized architectures without tree dilution which are listed
in Table VI. The performance varies depending on different
types of rule sets. FW-related schemes have the best perfor-
mance for 1k and 10k sizes with the value of 1182.9 MPPS and
508.5 MPPS respectively. ACL-related designs’ performance
is worst for these two sizes and the reason lies in the fact that
most of the rules are distributed in the SA_DA subtree, and a
large number of rules have the same SA and DA domain values
which could not be further partitioned. In the aspect of large-
scale rules, the throughputs for 32k rules are 240.6 MPPS,
279.7 MPPS and 190.9 MPPS separately, and those values for
100k rules are 59.1 MPPS, 45.6 MPPS and 20.6 MPPS with
respect to IPC, ACL and FW separately.

The right part of Fig. 10 illustrates the rule update through-
put for all kinds of benchmark rule sets. The dynamic update
order sent to computing cores is in a broadcast manner since
all cores should maintain the same copy of tree structures.
The throughput fluctuates but the gap is not as large as that
of packet classification. The values are all above 1 MUPS.

The performance varies among different rule sets, as our
architecture is not a pure pipeline implementation, therefore
the throughput is not proportional to frequency. It is affected
by many factors, including number of computing cores, max-
imum tree depth, number of rules in the leaf, number of TSS
tuples, number of conflicting rules for entries in the hash table,
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TABLE XI

COMPARISON WITH DECISION TREE AND TCAM BASED APPROACHES ON FPGA

TABLE XII

COMPARISON WITH DECOMPOSITION-BASED APPROACHES ON FPGA

etc. Each rule set has its own unique characteristics, and even
for different types of rule sets of similar size, their performance
can vary widely.

The effectiveness of tree dilution scheme is shown in
Fig. 11. The throughput grows linearly as the number of
dilution trees increases. However, this is not the case that more
dilution trees are better, because further increasing dilution
extent will cause the frequency drop sharply. In the case of two
dilution trees with 6 subtrees, the throughput is increased by
65% compared with the original method without tree dilution.

E. Comparison With Related Work

The proposed approach is compared with previous state-
of-the-art work based on decision trees and decomposition
separately in this section. Since our approach relies on FPGAs
equipped with URAMs, it cannot be accommodated by the
previously adopted platforms such as Virtex-5 and Virtex-6.
Furthermore, the majority of previous designs do not support
large-scale rules. Therefore, in this context, we only select the
implementation results for 1k and 10k rule sets on the VU9P
FPGA for the following comparison.

The comparison with decision tree based approaches is
summarized in Table XI. These implementations only adopt
10k ACL rule set as the benchmark, and we select three dif-
ferent types of 10k rule sets for comparison. Our architecture
achieves the highest throughput on FW rules. The throughput
for ACL rules is on average level. Most importantly, only
TcbTree has realized dynamic rule update in the implemen-
tation without the need of pre-computing for the updated
content of memories. Although [29] is claimed to be able
to support on-the-fly rule update, the details about leaf node
deletion/creation and internal node update is not discussed,
and the corresponding hardware implementation is not pro-
posed. Similarly, [52] only presents the rule deletion/insertion

approach for the proposed algorithm, while the implementation
of the update scheme on hardware could not be found in the
paper. The work in [33] proposes the method of inserting write
bubbles to pipeline memories to enable rule update. However,
the new content of the memory is computed offline rather than
changed dynamically according to on-the-fly update orders as
our proposed method.

The TcbTree is also compared with the TCAM-simulation
methods implemented on FPGA in Table XI. The method
in [56] supports TCAM word update and range matching, but
can only accommodate up to 16k 150bit words with 100%
utilization of on-chip memory and slices. The implementation
in [57] achieves high throughput in classification. Although it
is claimed to be able to support dynamic update, the update
mechanism and performance are not provided. Furthermore,
the rule set scale supported by the FPGA implementation is
also restricted to 10k.

The comparison with BV decomposition based FPGA
designs is shown in Table XII. Since most of these kinds
of approaches only support rules up to 1k, our evaluation
results for ipc_1k, acl_1k and fw_1k are picked up for this
comparison. It can be noted that the throughput for IPC and
FW rule sets outperforms other designs while the performance
for ACL is not comparable to other designs because of the
unevenly distributed search trees. Nevertheless, the average
throughput for 1k-scale rules of our architecture is 14.3%
and 9.8 times higher than that of [39] in the aspects of
classification and update, respectively. It is commendable that
only our design and [54] have range search capabilities and
support dynamic rule update. StrideBV [38] does not support
range match or update. Although the design in [39] can
update rule in real time, it only supports prefix match in
the SA and DA fields, and exact match in all the other
fields.
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VI. CONCLUSION

In this paper, an FPGA-based high-throughput packet
classification scheme supporting dynamic rule update called
TcbTree is proposed. It is based on a hardware optimized
TSS-combined bit-selection tree method. Various sizes of rule
sets up to 100k are supported by adopting the scalable parallel
method of multiple computing cores. Efficient data structures
and centralized storage scheme enable the architecture to get
rid of the dependence on specific rules. Moreover, a centralized
and uniform hash table approach for PSTSS is proposed to
replace the distributed ones which is extremely unfriendly
to hardware. The big leaf problem in the algorithm is well
addressed by the proposed tree dilution scheme. Experimental
results on FPGA show that our solution can achieve a high
performance in packet classification and real-time rule update.
The average throughputs for 1k, 10k, 32k and 100k rule sets
are 788.8 MPPS, 404.3 MPPS, 237 MPPS and 41.8 MPPS
respectively in aspect of packet classification. The update
throughput for all benchmark rule sets is above 1 MUPS.
The tree dilution realization has increased the throughput by
65% for packet classification with 100k-scale rules. Compared
with other decision tree based designs on FPGAs, only our
architecture supports fast rule update without pre-computation
of updated memory content. Compared with decomposition-
based architectures, the proposed one can fully support range
match and large-scale rule sets.
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