This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

FPGA-Based Updatable Packet Classification Using
TSS-Combined Bit-Selecting Tree

Yao Xin™, Wenjun Li

Abstract— OpenFlow switches are being deployed in SDN to
enable a wide spectrum of non-traditional applications. As a
promising alternative to brutal force TCAMs, FPGA-based
packet classification is being actively investigated. However, none
of the existing FPGA designs can achieve high performance on
both search and update for large-scale rule sets. To address this
issue, we propose TcbTree, an FPGA-based algorithmic scheme
for packet classification. Specifically, at the algorithmic side,
i) a two-stage framework consisting of heterogeneous algorithms
is proposed, where most rules can be mapped into several
balanced trees without rule replications, ii) for the remaining
few rules, a centralized TSS (Tuple Space Search) architecture
together with a real-time feedback scheme is designed to enhance
the efficiency of TSS search on FPGA, and iii) a tree dilution
method is designed to equalize rule distribution in trees, so that
the latency of tree search can be reduced. At the hardware side,
i) an efficient data structure set is designed to convert tree
traversal to addressing process, which breaks the constraints
of limited tree depth and imbalanced node distribution, and
ii) distinct from fully pipelined designs, multiple levels of par-
allelism are efficiently explored with multi-core, multi-search-
engine and coarse-grained pipelines herein. Experimental results
using ClassBench show that, with the implementation of TcbTree
on FPGA, the average classification throughputs for 1k, 10k, 32k
and 100k rule sets achieve 788.8 MPPS, 404.3 MPPS, 237 MPPS

Manuscript received June 29, 2021; revised January 13, 2022 and May 16,
2022; accepted June 1, 2022; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor P. Giaccone. This work was supported in part by the
Key-Area Research and Development Program of Guangdong Province under
Grant 2020B0101130003, in part by NSFC under Grant 62102203 and Grant
61872212, in part by the National Key Research and Development Program
of China under Grant 2020YFB1806400, in part by the Basic Research
Enhancement Program of China under Grant 2021-JCJQ-JJ-0483, in part by
the China Postdoctoral Science Foundation under Grant 2020TQO0158 and
Grant 2020M682825, in part by the International Postdoctoral Exchange
Fellowship Program of China under Grant PC2021037, in part by the
National Key Research and Development Program of China under Grant
2019YFB1802600, in part by the Major Key Project of Peng Cheng Lab-
oratory (PCL) under Grant PCL2021A02 and Grant PCL2021A08, and
in part by the Guangdong Basic and Applied Basic Research Founda-
tion under Grant 2019B1515120031. This paper was presented in part at
the ACM/IEEE ANCS, Cambridge, U.K., September 25, 2019 [1] [DOI:
10.1109/ANCS.2019.8901884]. (Corresponding author: Wenjun Li.)

Yao Xin and Guoming Tang are with the Peng Cheng Laboratory,
Shenzhen 518055, China (e-mail: xiny @pcl.ac.cn; tanggm@pcl.ac.cn).

Wenjun Li is with the School of Engineering and Applied Sciences, Har-
vard University, Allston, MA 02134 USA, and also with the Peng Cheng
Laboratory, Shenzhen 518055, China (e-mail: wenjunli@seas.harvard.edu).

Tong Yang is with School of Computer Science, Peking University,
Beijing 100871, China (e-mail: yang.tong@pku.edu.cn).

Xiaohe Hu is with Department of Automation, Tsinghua University,
Beijing 100084, China (e-mail: hxhe @mail.tsinghua.edu.cn).

Yi Wang is with the Institute of Future Networks, Southern University
of Science and Technology, Shenzhen 518055, China, also with the Peng
Cheng Laboratory, Shenzhen 518055, China, and also with the Heyuan Bay
Area Digital Economy Technology Innovation Center, Heyuan 517000, China
(e-mail: wangy @pcl.ac.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3181295, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3181295

, Guoming Tang™, Member, IEEE, Tong Yang, Xiaohe Hu, and Yi Wang

and 41.8 MPPS, respectively, and the update throughput for all
benchmark rule sets is above 1 MUPS.

Index Terms— OpenFlow, classification, FPGA,

algorithmic.

packet

I. INTRODUCTION

S ONE major building block of Software-Defined

Networking (SDN), OpenFlow has been widely deployed
for a wide spectrum of non-traditional applications, such as
flexible resource partitioning and real-time migration [2].
An OpenFlow switch applies multiple flow tables for
packet match-action lookups and forwarding policies, which
essentially falls into a multi-field packet -classification
problem [3]. Although having been investigated for
two decades, this problem encounters new challenging
requirements with OpenFlow switches nowadays, including
large-scale rule set support and dynamic rule update.
Furthermore, in support of the search function, OpenFlow
puts forward higher requirements than that in traditional
5-tuples, e.g., with more than 12 fields in OpenFlow 1.x
standard [4] or arbitrary number of fields in P4 [5].

For the implementation of packet classification in com-
mercial OpenFlow switches, Ternary Content Addressable
Memory (TCAM) is a widely adopted solution due to its
line-speed classification [6]. However, TCAM is expensive,
area inefficient, and power hungry, because of its dense and
parallel circuitry in hardware design [7]-[12]. Worse still,
in function design it does not support range match which
is required in many packet classification scenarios [13]-[15].
Also, modern TCAM suffers from a high complexity of rule
update [16]-[18].

Under such circumstances, efficient algorithmic solutions
using generic memories instead of TCAMs to facilitate effi-
cient packet classification are becoming revitalized, such
as decision tree and Tuple Space Search (TSS) [19]-[27].
Among the platforms of algorithm execution, Field Pro-
grammable Gate Arrays (FPGAs) have been actively inves-
tigated for line-speed packet classification over the past
decade, due to its ability to reconfigure and to offer massive
parallelism [28]-[37].

The existing FPGA-based packet classifications can
be roughly divided into two categories: decomposition
approaches and decision tree approaches. For the first category,
bit-vector (BV) decomposition can achieve decent perfor-
mances at both packet classification and rule updating [28],
[38]-[40]. Nevertheless, the scale of applied vectors in BV
decomposition is restricted by the FPGA logic resource, as it
consumes a large amount of distributed RAMs. Thus only
small-scale rule sets can be supported in these solutions. For
the second category of decision tree approaches, although
they do not have the restriction of rule set scale, two major
problems affect their scalability to OpenFlow applications:

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0001-9234-0763
https://orcid.org/0000-0001-9801-1055

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1) they could hardly support dynamic rule update (i.e., with-
out pre-computing the memory content or rebuilding the
tree/subtree) due to the serious rule replications; ii) most
decision tree approaches are with imbalanced and unbounded
depth, which not only results in inefficient optimizations on
FPGA but also causes the fully pipelined design a high degree
of dependence on specific rule sets. If setting equally allocated
memories along the pipeline stages to deal with the imbalanced
depth, it would result in a waste of storage resources.

In this paper we present TcbTree, an FPGA-based updat-
able packet classification solution using TSS-combined bit-
selecting Tree. TcbTree could achieve high performances
on both table lookups and rule updates with our particular
algorithmic and hardware designs. From the algorithmic
aspect, TcbTree adopts a two-stage framework for packet
classification. In the first stage, several balanced bit-selecting
trees are constructed from rule subsets grouped with respect
to their small fields. This grouping eliminates wildcard (*) at a
set of most significant bits in small fields, thereby getting rid of
the trouble of rule replications. The second stage handles the
terminated nodes from the trees constructed in the first stage,
where wildcards may lead to serious rule replications. Thanks
to the efficient rule grouping and balanced bit selection, the
number of rules in the last layer of tree leaves is significantly
reduced, where linear search can be well applied to these rules
to facilitate tree constructions. Besides decision tree, Priority
Sorting Tuple Space Search (PSTSS) [26] is adopted to deal
with the remaining few rules.

Nevertheless, when implementing TcbTree on FPGA from
the hardware aspect, we are faced with two challenges.
Firstly, the PSTSS scheme is hardware unfriendly and resource
consuming. Secondly, the big leaf problem (i.e., the number of
rules within a leaf is much larger than a predefined threshold
value) causes over-dispersion of rules along a tree for some
specific rule sets, leading to inefficient searches. To address
the above issues, we propose a centralized and uniform PSTSS
together with a tree dilution scheme, following the hardware
properties of FPGA. Then, a dynamically updatable hardware
architecture for the upgraded algorithm is designed and imple-
mented on a state-of-the-art FPGA. Instead of implementing a
fully pipelined design, the patterns of multi-core, multi-engine
and coarse-grained pipelines are efficiently explored.

Compared with the well-known decomposition-based design
proposed in [39], the TcbTree can support rule sets that
are more than an order of magnitude larger; compared with
existing decision tree based designs, the overall structure of
TcbTree is independent of rule sets and fully supports dynamic
update without pre-computing updated memory content. Par-
ticularly, the average throughputs of TcbTree for 1k, 10k, 32k
and 100k rule sets can achieve 788.8 MPPS, 404.3 MPPS,
237 MPPS and 41.8 MPPS, respectively, in terms of packet
classification, and the update throughput for all benchmark
rule sets is above 1 MUPS. Overall, the major contributions
of this work are as follows.

« A novel two-stage framework consisting of heterogeneous
algorithms: decision tree, linear search and TSS, which
can build trees in linear memory footprint and avoid rule
replications simultaneously.

e A centralized and uniform hash-table based PSTSS
approach is proposed, which is tailored to and imple-
mented on the FPGA hardware. A real-time result feed-
back scheme between trees and PSTSS is also presented
to accelerate the tuple space search.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE 1
AN EXAMPLE OF 2-FIELD CLASSIFIER
Rule id Priority Field X Field Y Action
Ry 6 111* * actionl
Ro 5 110* * action2
R3 4 * 010* action3
R4 3 * 011* action4
Rs 2 01** 10** action5
Rg 1 * * action6

e A search tree dilution method is devised for the
TSS-combined bit-selecting tree, to address the problem
of big leaf. The method could largely homogenize the
distribution of rules within a tree and reduce the latency
of search in leaf nodes.

+ An FPGA-based updatable packet classification architec-
ture in supporting large-scale rule sets is designed. Specif-
ically, efficient data structures for the TSS-combined tree
are constructed and stored in large pieces of RAMs
(instead of distributed small ones). Such a design breaks
the constraints of limited tree depth and imbalanced node
distribution, making the architecture independent of rule
sets.

o With our proposed data structure and the revised PSTSS
scheme, fast dynamic rule update is fully supported for
rule sets in various scales, including creating, deleting
and modifying tree nodes in real time aided by dynamic
storage allocation.

The rest of the paper is organized as follows. Section 2 sum-
marizes the background and related work. Section 3 elaborates
the TcbTree algorithmic design. Section 4 presents the FPGA
architecture. Section 5 provides experimental results. Finally,
Section 6 draws the conclusion.

II. BACKGROUD AND RELATED WORK

In this section, the background and classic packet classifica-
tion approaches, especially the algorithmic approaches of tuple
space and decision tree, are first reviewed. After that, related
FPGA-based designs are introduced. Finally, the summary of
prior art is given.

A. The Packet Classification Problem

The purpose of packet classification is to enable differ-
entiated packet treatment in fine granularity according to
multi-field packet header information and a pre-established
classifier which consists of a set of rules. Each rule r has d
components each represented by r;. r; is a regular expression
on the ¢ field of the packet header, which could be a prefix,
a range or an exact value. A packet p = (p1,pa, ..., pq) is said
to match rule r if Vi,p; € r;. Table I shows an example of
2-field rule set in [41], and the default priority is the order of
the rules. Priority indicates the degree of importance, meaning
that if a packet conforms to more than one rule, the low priority
rules would give way to the highest priority rule. Next, we will
give more details for packet classification from the aspects of
algorithmic designs and FPGA designs respectively.

B. Algorithmic Designs for Packet Classification

As an extensively studied problem [3], a lot of algorithmic
approaches have been proposed over the past two decades,
such as decision tree [42], [43], decomposition [44]-[47] and
TSS [48]. Since TSS and decision tree are related to our
proposed architecture, more detailed reviews about these two
approaches would be given, as well as their latest progress in
the last decade.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE 3
TABLE II happens (e.g., R3, R4 and Rg in Fig. 1(b)). When a packet
TSS BUILDS 4 TUPLES FOR RULES IN TABLE I arrives, the decision tree is traversed based on the key values
Tuple | Rule id | Rule Priority | Tuple Priority | Field X _Field Y | Acfion in the packet header, to find a matching rule at a leaf node.
Ry 6 11T* * | actiony As reviewed in CutSplit [50], rule replication is the key
@0 Ro2 5 6 110* * actions s s . .
trouble-maker for decision trees. To reduce rule replications,
03 | s 3 4 . 0107 actions rule set partitioning has been recognized as a common practice
’ Ry 3 * 011* | actiony p g > g e p
20] R | 2 I 2 [0" 10™ [actions and many novel partition based decision trees have been
00 R | 1 I I [~ " [actiontg proposed in the past decade. The well-known cuttlng-ba.sefi
scheme EffiCuts [20] observes that real-world rules exhibit
e o = several inherent characteristics, and a good rule set partitioning
can significantly reduce rule duplication. So instead of cover-
ing all rules with a single decision tree, EffiCuts divides the
3 Leaf 1 Leaf 2 Leaf 3 rules into subsets, each of which independently creates its own
- R3R4R5 R3R4R5R5 R3R4R5 C“‘XZ L. . . p e
decision tree using a variant of HyperCuts. At most 2% decision
}Mf trees can be generated for d-field classifiers, resulting in a large
! Leaf 4 Leaf 5 .
oy o ‘Rz,Ra,R4,R6"RmRaRA,Rs‘ number of memory accesses. By contrast, HybridCuts [21]
o] separates rules based on a single field, so it achieves a
(a) Geometric view (b) HiCuts significant reduction in the number of subsets (i.e., from 2¢
Split-X . .
13 to d + 1), which in turn reduces overall memory accesses.
spTi:_ ;1 ;:“_Y However, the worst-case search performance of HybridCuts
Yi s YL Y<:‘5 s Ls is unbounded due to the adoption of HyperCuts. Worse still,
Loar?| [Loarz| [Leaf3) [Lears as the number of rule fields and classifier size increases,
Leaf4 | Leaf5 | Leaf6 | Leaf 7 | Leaf8 Leaf9 .R3, R4, Ra, R4, . .
Ro | Ri | RaRa | RsRa |RolRose) | RilRaso) R | | RoRs| | Re | | R the performance of HybridCuts drops dramatically due to the
(c) HyperCuits (d) HyperSplit rule replication. Other partitioning methods are also emerging,

Fig. 1. Review on classic decision trees (binth = 4).

1) Tuple Space Search (TSS): A tuple space (tuple for short)
is the combination of prefix lengths of different fields [48]. All
the rules belonging to a tuple are maintained in an independent
hash table. Upon receiving a packet, it simply looks up all
the hash tables by probing them with the keys formed by
concatenating the known set of bits in each field corresponding
to that tuple. Table II shows the four tuples built for rules given
in Table I.

In TSS-based solutions, rules can be inserted and deleted
from hash tables in amortized one memory access, resulting
in a high update performance. But in order to find the best
matching rule for each packet, all these partitioned hash tables
have to be searched exhaustively, resulting in a low lookup
performance. As an improvement, PSTSS [26] reduces average
table lookups by introducing a pre-computed priority for each
tuple (as shown in the fourth column of Table II), so that
each search can terminate as soon as a match is found.
However, its worst-case performance is still the same as TSS.
TupleMerge [27], a recently proposed TSS-based scheme,
improves upon the original TSS by relaxing the restrictions
on which rules may be placed in the same tuple. However,
with more tuples merged, its performance may be affected
due to hash collisions.

2) Decision Tree: Decision tree is a flowchart-like tree
structure, where the root node covers the whole searching
space containing all rules. From the geometric view, building
a tree is to recursively partition the space covered by a node
called parent into many smaller subspaces (equal-sized or
not) until the rules covered by each subspace is less than
the pre-defined bucket size (i.e., binth). These subspaces are
the children of the parent node in the decision tree, and the
terminal node is called leaf node. The geometric view of the
example rules given in Table I is illustrated in Fig. 1(a), and
Fig. 1(b)(c)(d) shows the decision trees generated by classic
HiCuts [49], HyperCuts [43] and HyperSplit [19]. In case a
rule spans multiple sub-spaces, the undesirable rule replication

such as ParaSplit [31], SmartSplit [22], PartitionSort [23],
CutSplit [50], TabTree [1], NeuroCuts [24], CutTSS [41] and
NeuvoMatch [25].

However, the real-time rule update is still facing challenges
in most of these decision trees. Besides, all of these decision
trees are not very friendly for FPGA implementations, because
they are either not balanced enough, or the tree depth is
uncontrollable, and these tend to cause FPGA resource waste
and bottlenecks in the convergence of parallel results.

C. FPGA Designs for Packet Classification

Although software algorithms have been widely studied,
there is a large bottleneck in the performance of software
algorithms, and TCAM will not be able to achieve a great
increase in capacity in the foreseeable future. Therefore,
because of its programmability, high parallelism and large
capacity, FPGA has become an ideal hardware platform for
accelerating algorithmic packet classification, and has received
extensive attention and research. Next, we will generally
introduce three mainstream categories of FPGA packet classi-
fication technologies: 1) decision tree based, 2) decomposition
based, and 3) RAM based TCAM on FPGA.

1) Decision Tree Based Designs on FPGA: The major-
ity of decision tree based architectures have adopted a full
pipeline design, which can benefit from the high frequency
and high throughput. And the major concerns of this kind
of methods are memory reduction and performance enhance-
ment, such as node merging and leaf-pushing to reduce
the number of pipeline stages and balance memory alloca-
tion [29], subsets partitioning with multiple trees to minimize
rule duplication [33], and hybrid scheme combing differ-
ent algorithms [51]. To further reduce memory consump-
tion, Chang et al. [52] proposed a greedy bucket compression
scheme to reduce the duplicated rules in the memory bucket
pipeline, based on the observation that rule buckets associated
with leaf nodes in decision trees consume a large portion of
on-chip memory, and Kennedy et al. [53] reduce the amount
of memory for large rule sets with the proposed pre-cutting

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

process that results in a shallow decision tree, also reducing
the number of memory accesses.

2) Decomposition-Based Designs on FPGA: The principle
of decomposition is to decompose a complex multi-domain
search problem into multiple simple single-domain concurrent
searches, which can make full use of the parallel charac-
teristics of FPGA. Since most of the current decomposition
implementations on FPGA are based on the classic BV algo-
rithm [44], BV decomposition is used to represent this type of
technology in this paper. In such a method, a two-dimensional
pipelined architecture is commonly explored to achieve high
performance in classification [39], [54]. In aspect of support-
ing range match, Chang et al. [36] proposed to either use
specially designed codes to store the pre-computed results
in memory, or perform subrange match operations sequen-
tially. However, it does not support dynamic rule update. For
efficient update in SDN switches, Li er al. [40] divides the
ruleset into subsets and uses BV-based pipelines to match
these sub-rulesets separately in parallel. To save stringent
memory resources which are wasted to store relatively useless
wildcards, Shi et al. [55] proposed a memory compression
scheme which adopts a memory-shared homogeneous pipeline,
together with a rearrange technology by utilizing a bit matrix
to determine the potential of memory consumption.

3) TCAM-Based Designs on FPGA: This method utilizes
RAMs to emulate the operation of TCAM, which can per-
form packet classification with few memory accesses and
has uniform hardware organization for all rule sets. Instead
of brute-force implementations to mimic the native TCAM
architecture, Jiang et al. [56] presented a modular architecture
consisting of arrays of small-size RAM-based TCAM units
on FPGA, which scales well in implementing large TCAMs.
While Yu et al. [57] takes a different approach which first
encodes the rule header fields and maps them to SRAM-based
match units using a bit-selection approach. Whereas, this
may cause rule conflicts in the same bucket. Moreover, only
10k-scale rule sets can be accommodated by this method on
Xilinx Virtex 7 and Ultrascale FPGA for above methods.

D. Summary of Prior Art

Although the FPGA designs based on decision trees could
provide high throughput and efficient memory usage, the rule
duplication problem still remains. The concerns for dynamic
rule update in hardware, i.e., how to deal with rule duplication,
how to update leaf node or ancestor node backward, and how
to create a new node on the fly in a fully pipelined architecture,
have not been addressed. Especially for some optimized and
balanced memory algorithms, the real-time update becomes
more complicated. In contrast, although BV-based designs
can sustain a high throughput in packet classification and
fully support dynamic rule update, the method is essentially
exhaustive to list all possible matching combinations for each
bit. Therefore, the consumption of hardware resources is
large especially for rules with more wildcards. The scale of
rule sets accommodated by FPGAs is always restrained by
this feature. Similar to BV-based methods, TCAM simulation
method exhaustively lists possible combinations by match
vectors, which is also resource-intensive and difficult to scale
to large-scale rules.

III. ALGORITHM OVERVIEW

The algorithmic framework of our proposed TcbTree con-
sists of three key components, as shown in Fig. 2. The first

IEEE/ACM TRANSACTIONS ON NETWORKING

v

[Partition-based small-field rule set]

Big-field
rule set

Bit-selecting tree 1

Bit-selecting tree 2

Bit-selecting tree N

[Priority Resolver }

‘ Rule Action on Packet ‘

Fig. 2. The algorithmic framework of TcbTree.

key component is rule set partitioning, which divides rules
into a few subsets, where rules in each subset share the similar
characteristics. The second key component is tree construction
for the partitioned rule subsets (except for the last subset),
where several balanced trees are generated with linear memory
consumption and without the trouble of rule replications. The
last key component is a hardware-optimized PSTSS scheme
(detailed in Section 3.6), which can efficiently handle the few
rules expelled by rule set partitioning. Next, we give more
details in terms of these three key components.

A. Rule Set Partitioning

Before describing the partitioning mechanism, we first give
the definitions of two concepts: small field and big field.

1) Small Field: Given an d-field rule R = (F4, ..., F;, ...Fy)
and a threshold value vector T = (T4, ..., T;, ...Ty), we give a
definition for field F; as follows: if the range span length of
field F; < threshold value T;, F; is defined a small field.

2) Big Field: Similarly, if the range span length of field
F; > threshold value T;, we say that F; is a big field.

Based on the observations revealed in CutSplit [50], even
under very demanding thresholds, most rules still have at least
one small field. Thus, we can partition the vast majority of the
rules into a very limited number of subsets without duplicates
among each other, where rules in each subset all share the
common characteristic of small field in the selected fields.
The heuristic of rule set partitioning is as follows:

o Distinct fields selecting. Pick up a few distinct small
fields, where the vast majority rules contain at least one
small field in selected fields. The remaining rules are
divided into big-field rules.

o Fields-wise partitioning. Assume m fields have been
selected for d-field rule sets. We categorize rules based
on field length (i.e., big or small) in all selected fields,
leading to at most 2™ — 1 subsets.

o Selective subset merging. The subsets containing a very
few rules can be merged into other subsets with fewer
small fields.

Based on the above rule set partitioning method, rules are
firstly separated into a few number of rule subsets based on
their small fields in order to eliminate rule overlapping at large
scales. The subsets of small field for typical 5-tuple rule sets
are selected to be source address (SA), destination address
(DA), SA and DA combined (SA_DA) in this work. Since
only few big-field rules are left after partitioning, the tuple
space structure is then utilized to process these rules.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE 5

TABLE III
EXAMPLE RULE SET WITH TwO IPv4 ADDRESS FIELDS

TABLE IV
PARTITIONED RULES WITH SMALL DST_ADDR FIELD

rule id | src_addr field dst_addr field | rule id | src_addr field dst_addr field

Ry | 228.128.0.0/9 0.0.0.0/0 Ri1 0.0.0.0/1 226.0.0.0/7
R 223.0.0.0/9 0.0.0.0/0 Ri2 128.0.0.0/1 120.0.0.0/7
Rs3 0.0.0.0/1 175.0.0.0/8 Ri3 128.0.0.0/2 120.0.0.0/7
Ry 0.0.0.0/1 225.0.0.0/8 R4 128.0.0.0/1 38.0.0.0/7
Rs 0.0.0.0/2 225.0.0.0/8 Ris 0.0.0.0/1 120.0.0.0/7
Rg 128.0.0.0/1 123.0.0.0/8 Ri6 128.0.0.0/2 160.0.0.0/5
R~ 128.0.0.0/1 37.0.0.0/8 Rz 16.0.0.0/4 36.0.0.0/6
Rs 0.0.0.0/0 123.0.0.0/8 Ris 200.0.0.0/5 168.0.0.0/5
Ry 178.0.0.0/7 0.0.0.0/1 Rio 196.0.0.0/2 96.0.0.0/5
Rio 0.0.0.0/1 172.0.0.0/7

By examining rules grouped with respect to their small
fields, we identify a useful observation on rule fields, which
is the key basis of the following proposed bit-selecting trees:
For the small field of grouped rules with the type of prefix
or exact value, there are a set of most significant bits which
are indicated by either bit-0 or bit-1. More specifically, for a
W-bit wide field F; with the threshold value of 2%, we can
draw the conclusion that, F; is a small field if and only if
there is no wildcard (*) at its most significant W—K bits.
In this paper, we call these W—K bits as selectable bits. For the
small field of grouped rules with range type, we give a novel
encoding scheme called False Range Encoding, and show that
the observation is still valid for its encoded prefixes, which is
detailed in the Appendix.

B. Bit-Selecting Tree Construction

By grouping rules that are narrow in the same fields, we get
a set of selectable bits among grouped rules without wildcard
value. Thus, each selectable bit can map (i.e., partition)
rules into at most two subsets without any rule replications.
To exploit this favorable property, we build a multi-way tree
by selecting a few selectable bits in each tree node recursively.

In order to build shallow and balanced decision trees, the
heuristic greedy strategy bit-selecting algorithm is utilized to
select most distinguishing selectable bits in the process of tree
construction. To control the width of the tree, we assume that
at most b bits are allowed to be selected in each tree node.

Greedy Strategy: The greedy algorithm tries to find a local
optimal solution, where the “good” bits are selected one by
one recursively. We assign an imbalance value for each current
selectable and unused bit by using the formula (1), where
#ruleLChild/#ruleRChild is the number of rules mapped into
the left/right child node (i.e., #bit-0/1s in v-th bit). The greedy
algorithm is to choose at most b bits one by one, where each
selected single bit is with the smallest imbalance value among
current selectable and unused bits.

imbalance(bit v) = |#ruleLChild — #ruleRChild| (1)

In Fig. 2, each decision tree is corresponding to a specific
field or a combination of fields, the rules contained in which
conform to the small-field characteristics of the relative field.
The decision tree structure is composed of nodes which are
divided into internal nodes and leaves.

In order to bound tree depth, avoid rule replication and
support fast rule updates, the approach stops its bit-selecting
progress in one of the following cases: 1) the tree depth
achieves the predefined maximum value; 2) the number of
rules in the mapped tree node is less than a predefined
threshold value (i.e., binth); 3) the remaining unselected rule

rule src_addr (Terc_addr= 275) dst_addr (Tast_adar= 275)
id 1-32th bits 33-39th 40-64th bits
R3 0 1010117 | reeeeessstttttttttttttts
R4 0 1110000 b R i e
R5 00 1110000 e
Rg 1 0111107 | rststttttttststststsbstsbsbobd
R7 1 0010010 b R i e
Rg 0111101 | Prerreeessstnnomttn
Rio 0 1010110 | *#sssesserserssssssssstns
R1 1 0 1110001 HXAAAAAAAERKAAAKAAAAAA
Rio 1 0111100 AN
Ri3 10 0111100 | *#sssesssssessssssssssssss
R14 1 0010011 HXAAAAAAAERFAAAKAAAAAS
Ris 0 0111100 SRR AN A
TABLE V

PARTITIONED RULES WITH Big Field

rule src_addr (Tsye_qddr= 275) dst_addr (Tgst_addr= 225)

id 1-32th bits 33-39th 40-64th bits
R16 10 10100** RN K AN AR
Rl 7 0001 001001* 303 33 3 3 3 S
Rls 1 1001 10101** 363 3 3
ng 11 01100** AR NN KA AN AR

bits share same values and cannot separate rules from each
other; 4) the further bit-selecting will lead to rule replications
due to the wildcards. Due to the above termination mechanism,
some terminal nodes might not be further split in which #rules
> binth. These nodes are called big leaf nodes in this work.

C. A Working Example

To illustrate the algorithm more clearly, we give a working
example for rules presented in Table III. Assume that each
internal tree node is allowed to select a maximum of two bits
for rule mapping and the binth of leaf is one, the threshold
value vector is T = (Tsre addar= 2%°, Tast_adar= 2%°). Only
source address (SA) and destination address (DA) are merely
selected for subset partitioning in this example.

The scheme first partitions the 19 rules into three rule
subsets: (arbitrarysa, smallpa) = {Rs, R4, Rs, Rg, Rr,
Rg, Rio, Ri1, Ri2, Ri3, Rua, Ris}, (smallsa, arbitrarypa)
= {Rl, Rg, Rg} and (big_field rules) = {Rlﬁ, R17, ng,
Ri9}. Thus, for the small field of grouped rules in the former
two subsets, there are 32—25=7 selectable bits. After rule set
partitioning, a decision tree is constructed for each small-field
rule subset. For example, Table IV shows the partitioned rules
in (arbitrarysa, smallp 4) with the representation of ternary
strings, while Table V shows the big-field rules. Clearly, the
middle 7 bits (i.e., 33-39th) in Table IV are selectable bits.
Fig. 3 illustrates the DA decision tree constructed together with
the PSTSS for the rules shown in Table IV and Table V, based
on the proposed bit-selecting and TSS-combined method.
Although this example only shows the decision tree of DA,
the construction mechanism of SA tree is the same as that of
DA tree, which will not be detailed here.

D. Challenges for Hardware Design

In TabTree [1] and CutTSS [41], both the linear search
(#rules < binth) and the PSTSS (#rules > binth) for rules
in the terminal nodes (i.e., leaf nodes) are employed to facil-
itate tree constructions. The big-field rules are processed by
PSTSS as well. Each TSS structure consists of multiple tuples
each associated with an independent hash table and search

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING
Normal Leaf Node: R1,R2,R3,R4,Rs5,R6,R7,R8,R9,R10,
Eleagseaich Ri1,R12,R13,R14,R15,R16,R17,R18,Rig
¢ "Big Leaf Node: |) g
| Tree Dillution _,, DA small-field rules Big-field rules
Selected Bits: ReReRsReR7Re, ™ ... Rie.R17.Ris.R1o
R10,R11,R12,R13,R14,R
37th & 39th 10,R11,R12,R13,R14,R15 &3
v
10 " Priority sorted tuple space
Ri0,R12, (src_addr prefix len,
R4 RsRy ‘ R13 R4 Tuple dest_addr prefix len) Rules
133th 33th o 133t 33th o 1 (2,5) R1s,R19
2 (4,6) Ri7
lR‘*_FiS' @ R“R”'ﬁ 'ReRs b 3 (5.5) Rue
Fig. 3. TSS-combined decision tree for rules in Table IV and Table V (binth = 1).

mechanism. If this structure is implemented in hardware, there
would be dozens of PSTSS instantiated together with hundreds
of thousands of tuples and hash tables, and thus hardware
resource consumption is unimaginable. Moreover, the number
of TSS and tuples is unpredictable which is dependent on
the specific rule set and configurations of tree construction.
To address this issue, TcbTree adopts linear search for all
leaf nodes while the TSS structure merely targeting big-field
rules is remained, which is called TSS-combined bit-selecting
tree algorithm. In spite of the above modifications, designing
scalable and efficient architecture for this algorithm still faces
two major difficulties and challenges:

1) Hardware-Unfriendly TSS Structure: Even for the only
one left TSS to process big-field rule subset, the multiple-tuple
multiple-hash-table structure is still hardware unfriendly due
to the aforementioned reasons.

2) Inefficient Search Caused by Big Leaf: Enforcing linear
search for all leaf nodes would aggravate and magnify the
problem of big leaf, especially for the inseparable rules
containing the same values in selected small fields. Search-
ing a large number of rules sequentially in leaf nodes is
time-consuming and inefficient.

Regarding the issues above, this work gives solutions by
proposing a hardware-optimized PSTSS and a tree dilu-
tion scheme to achieve a complete and hardware-friendly
framework. The details are elaborated in the following two
subsections.

E. Hardware-Optimized PSTSS

The framework of hardware-optimized PSTSS is illustrated
in lower part of Fig. 5. Two major modifications have been
made to original PSTSS approach according to the hardware
characteristics:

1) Incorporation of Port Fields: In prior work, each tuple is
composed of source IP mask and destination IP mask. In many
cases, however, big-field rules contain the same masked value
in these two fields making them indistinguishable, which
consequently leads to serious collisions in the hash table. The
linear bucket length would be consequently long. To address
this issue, source port LCP and destination port LCP are
precomputed and added to tuple space to make the tuple
combination more diversified and thereby reduce the conflict
possibility.

2) Centralized Hash Table: Each tuple in the software
algorithm is assigned a hash table, which is not friendly to
hardware that needs to fix resources in advance, and causes a
waste of resource. We use a centralized hash table to overcome
this problem, which combines the hash tables of all tuples into
one and is shared by all tuples. When traversing each tuple,

each packet header field value is first ANDed with the hash
key converted by the corresponding fields and prefix lengths
and then hashed. With the hashed value as index address, one
entry of the centralized hash table is accessed to perform a
linear lookup. Conflicting values within each entry are stored
in a bucket in the format of a linked list.

The hash table is a two-level query structure which consists
of a bucket table and a big rule (short for big-field rule) table.
The bucket table serves as the mapping between the hashed
value and its corresponding rule subset address in big rule
table. Its each address corresponds to a hashed value, and each
content is the address of the first rule in the rule subset. The
big rule table records all consecutive big-field rule subsets.

Here is a working example for classifying a 2-field incoming
packet P=<19.0.0.0, 38.0.0.0> with the constructed TSS
shown in Fig. 3. P is first searched in the tuple (2,5) by
hash (19.0.0.0 & C0.0.0.0, 38.0.0.0 & F8.0.0.0) (prefix length
of 2 and 5 corresponds to ('0.0.0.0 and F'8.0.0.0) and after
checking bucket table with the hashed value as the address,
the rule table entry containing Rjg and Rj9 (maybe more
rules in the entry since centralized table would have more
collisions than separated ones) is entered without no match.
Similarly, in the tuple (4,6), the rule table entry containing
Ry7 is entered with hash(19.0.0.0 & F0.0.0.0, 38.0.0.0 &
FC.0.0.0), in which R;7 is matched. There is no match in
the last tuple (5,5). Thus R;7 is the final best matching rule
for P.

It is worth noting that the rules in both leaf nodes and TSS
buckets are sorted by priority in advance. The advantage is that
when a rule is matched, there is no need to continue searching
in the subset. Tuples are also sorted according to the priority
of rules which rank highest in the respective tuples. In order
to maintain the priority structure, the rule fast update scheme
in our architecture is in accordance with the priority principle
as well.

FE. Tree Dilution Mechanism

For some specific rule sets, the values of many rules
in the same small field are exactly the same. As a result,
it is impossible to divide the rules further with a very deep
bit-selection during tree construction, resulting in so called big
leaf problem.

This issue is addressed by the proposed tree dilution mech-
anism which can be illustrated by Fig. 4. Two binth values
are set, which are tree binth and big leaf binth respectively.
The main tree is firstly constructed with tree binth, while the
big leaf binth is a threshold of rule number associated with
a big leaf node, which thereby determines the number of
dilution trees. Part of rules that exceed big leaf binth in all

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE

[Small field rule set ﬂ 1% level big leaf rule set ‘ H 2™ level big leaf rule set ‘ ______ Big-field
Remaining Remaining rule set
i > lut o9 Dilution tree 2
Main tree leaf Dilution tree 1 leaf ilution tree
‘ DA ‘ sA | [sA DA ‘ rules ‘ D1 ‘ D2 D3 rules ‘ D1 D2 D3
tree tree tree tree tree tree tree
7 tree "ie 7 T ' e PSTSS
[Treeresultcollector | [Tree result collector | [Treeresult collector |
| — +—i
‘ Top result collector }:
\ Final result
Fig. 4. Dilute tree architecture.
Search tree section Tree node table RAM
root
L node [1% rule) [child[0] [child[1] | child[2] | child[3]
><|s leaf valid | addr depth Inrules‘ sbit[0]] sbit[1] addr addr addr addr
1bit 1bit 32bit 4bit 16bit 8bit 8bit 16bit 16bit 16bit 16bit
Rule table RAM
| _ 5/ Next| next range[4] | range[4] | range[3] | range[3] | range[2] | range[2] | range[1] | range[1] | range[0] | range[0]
valid| addr high low high low high low high low high low
1bit 32bit 32bit 8bit 8bit 16bit 16bit 16bit 16bit 32bit 32bit 32bit 32bit
) protocol dest port src port dest IP addr src IP addr
Priority tuple table RAM
_ cur next | next srcIP | destIP | src port | dest port nrules | min id
valid | valid | addr mask mask LCP LCP
PSTSS section bit bt 8bit 32bit 32bit 16bit 16bit 16bit 32bit
Hash table Big rule table
Priority tuple table Packet field & Bucket table [Subset1 [Rule 1|
Tuple 1 | (src IP mask, dest IP mask, src port LCP, dest port LCP) tuple mask Buckat Bucket 1 | Big rule subset 1 addr Subset
Tuple 2 | (src IP mask, dest IP mask, src port LCP, dest port LCP) d Hash fgction address Bucket 2 | Big rule subset 2 addr address Subset 1 | Rule k
Tuple 3 | (st IP mask, dest IP mask, src port LCP, destport LCP) | | Ryje range (Modified Bucket 3 | Big rule subset 3 addr | [
[LowDim] Murmurhash)
- Subset2 | Rulei
Bucket m | Big rule subset m addr
‘ Tuple n ‘ (src IP mask, dest IP mask, src port LCP, dest port LCP) ‘

Fig. 5. The data structure design for search tree and PSTSS.

leaf nodes are screened out to build the first-level dilution
tree in the manner of bit-selecting. A dilution tree consists
of three sub-trees which can correspond to any fields which
need to dilute. Next, the second-level dilution tree would be
constructed recursively if the rule number of a leaf in dilution
subtrees exceeds big leaf binth. This process could continue
until the number of rules in all leaf nodes is less than or equal
to big leaf binth. The results from the main tree and dilution
trees would be processed hierarchically level by level. Smaller
big leaf binth would bring more dilution trees and better
performance for each tree. The side effect is that the system
complexity becomes higher, the result resovler levels becomes
more, and the working frequency decreases as a result. Hence
choosing a balanced big leaf binth is more favoured.

IV. HARDWARE ARCHITECTURE DESIGN
A. Existing Problems

Although extensive research has been conducted on
decision-tree algorithm implementations, fully pipelined archi-
tectures on FPGA are still facing many challenges due to the
following facts. First, most actively investigated algorithmic
decision trees are imbalanced which causes the allocation
of memory along the pipeline difficult especially when the
pipeline is long. As a result, decision tree architectures would
highly depend on rule sets. Second, only a limited number
of tree levels is supported due to the explosive growth of
high-level nodes. Furthermore, the overly distributed storage

Authorized licensed use limited to: Peking University. Downloaded on Au

structure hinders real-time rule update, because the pipeline is
one-way flow, dynamic update requires reverse flow to renew
node information.

To address the above issues, an efficient set of data struc-
tures and hardware architecture on FPGA for TcbTree are
proposed, which are described in details in the following
subsections.

B. Data Structure

As shown in Fig. 5, three chain-table-like data structures are
constructed for search tree nodes, priority tuples, and rules,
respectively.

1) Node Table: Every node in a search tree, including
internal node and leaf node, is associated with a table of
134 bits (selectable bit number is 2) which is called node table.
The first bit is_leaf indicates current node is internal node or
leaf node. The second bit node_valid indicates if current node
is valid, which could be modified during update. This bit being
0 means there is no rule associated with this node. Following
bits depth and nrules represent node level depth and number
of related rules for current node. The sbit is the position of
selection bit in the field prefix, while the child_addr is the
RAM address for next-level node.

If the current node is an internal node, two selection bit
positions sbit[0] and sbit[1] are utilized to select the corre-
sponding bits in selectable bits of current prefix and join them,
so the next-level child node address would be determined by
the specific value of spliced 2 bits. If current node is a leaf

gust 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

node, then only the field of 1%¢_rule_addr is referred to locate
the rule table RAM address of the first rule within the leaf
subset.

2) Priority Tuple Table & Bucket Table: Similarly, every
tuple is corresponding to a priority tuple table. The first two
bits cur_valid and next_valid indicate if current and next tuple
are valid. In the tuple search process, these bits would be firstly
checked to make sure starting from valid tuples. Rule number
is recorded in nrule dynamically for each tuple. The minimum
rule ID (equivalent to highest priority) is also recorded in
tuple table. The tables are sorted in advance according to the
highest priority of respective rule subset in each tuple, and then
connected sequentially through the next_addr field. Following
words are the IP masks and port LCPs for 4 different fields.
The bucket table serves as the mapping between the hashed
value and its corresponding rule subset address. Its each
address corresponds to the hashed value, while each content
is the rule table address of the first rule in rule subset.m

3) Rule Table: Each rule in tree leaf nodes or TSS has a
273-bit rule table structure for the 5-tuple format. The mask
is transferred to ranges with two endpoints in advance and
recorded in this table. The rule tables in the rule subset
associated with each leaf node or tuple are stored consecu-
tively, and the bit next_valid indicates whether the next rule
is valid. A next_valid value of O indicates that this rule is
the last one in the current subset. The rule tables of all
rule subsets in each tree or TSS are also stored continu-
ously, and the starting address of each subset is indicated
by the 1%*_rule_addr/Big_rule_subset_#_addr field in the
corresponding node table/bucket table.

4) Storage Mechanism: These multiple types of tables are
stored in bulks of on-chip memories: node table RAM, tuple
table RAM, bucket table RAM, tree rule table RAM and big
rule table RAM. More specifically, all node tables throughout
one tree are stored in one RAM, and the same is true for tuple
tables, bucket tables and rule tables. In other words, the RAM
management is centralized rather than distributed. Therefore,
the tree traversal to search a rule is converted to the addressing
process. Such design has three major advantages:

o The overall architecture does not depend on specific rule
sets, since there is no need to allocate specific memory
size for each level of nodes.

o The level of tree nodes could not be restricted, as the
searching down to next-level is essentially a recursive
addressing controlled by a finite state machine (FSM).
The tree reconstruction is equivalent to the overwriting of
RAM data which is facilitated by the centralized memory
scheme.

o It motivates the support for large-scale rules, as the
scalability for different sizes of rule sets is achieved
merely through configuring the depth of different RAMs
in the architecture.

o It facilitates real-time rule update. Information on adja-
cent levels is interrelated, thus rules could be traced back
to upper-level nodes with cached node information.

C. Top-Level Architecture

The top-level block diagram of proposed FPGA architecture
is shown in Fig. 6. Instead of a purely pipelined design
where performance scales linearly with operating frequency,
the scheme of multiple cores computing simultaneously is
adopted for outermost architecture to explore data-level and

IEEE/ACM TRANSACTIONS ON NETWORKING

DA tree

Result collector |—pw|

SA_DA tree

Final result
>

>

Priority
compare

Packet in / Rule in

PSTSS

H Result collector ’—b

TSS-combined bit-selecting tree core

‘ Computing core ‘ ‘ Computing core ‘ ‘ Computing core ‘

‘ Computing core ‘ ‘ Computing core ‘ ‘ Computing core ‘

FPGA

Fig. 6. Top-level architecture design of the system.

task-level parallelism. This scheme has high memory capac-
ity requirements, therefore the high-density on-chip memory
UltraRAM in the most advanced FPGA is leveraged in this
architecture.

Taking typical 5-tuple rule set as an example, each comput-
ing core consists of PSTSS and three tree structures based on
the small field rule subsets according to the algorithm: source
IP address (SA), destination IP address (DA), SA and DA
combined (SA_DA). Every packet/rule would go through all
these four modules to make a match/update. The results of
packet classification from search trees and PSTSS would be
collected and compared by priority to select the final rule ID.

D. Search Tree Architecture

The architecture for each tree structure is composed of
Node Search module and Rule Processor module, which is
illustrated in Fig. 7. The former one is in charge of traversing
the tree node by node from the root, finding the leaf possibly
containing matched rules, and locating the start address of the
subset associated with this leaf. The address and the node
information of last two levels are transferred to the later
module. The Rule Processor module searches rules linearly
through looking up the rule table RAM and makes actions of
search, delete, or insert according to the operation code (OP
code).

The rules to be added or deleted are processed in the same
way as the packets in Node Search stage with the lower
endpoint of range as input, but they are processed by rule
delete and insert engines separately in Rule Processor. With
cached complete information from the Node Search module,
upper-level nodes can be traced back to support real-time
update of internal nodes, as well as deletion and addition of
leaf nodes.

In order to manage the available space in node table RAM
and rule table RAM for dynamic rule update in real time, two
empty address allocators are designed interacting with rule
delete and insert engines to recycle and reallocate empty RAM
addresses. The associated FIFOs record the addresses of the
emptied content after deletion and provide available addresses
for insertion.

These two modules operate independently and constitute
a two-stage coarse-grained pipeline, although they are not
pipelined internally. The memories in the tree and PSTSS
architecture are dual-port to facilitate independent lookup and
update, at the cost of a little extra logic consumption that
hardly affects the overall design. Furthermore, to achieve
parallel lookup, the rule table RAM is implemented as a true

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE

Rule Processer
Node Search Rule search aeriFfer ‘ Node tabe empty HNodetableavailable
Found rule addr allocator addr FIFO |
RRarblter addr ‘ Rule tabe empty H Rule table available | |
L addr allocator addr FIFO
Packet in 1 1 | Found rule
i Rule o Rule ::D_
Ned '
Search engine tab|: Upp.er Search engine delete insert
RAM nodeinfo |~ 1 1 RR
v T E) arbiter
Sea’cheng'"e A ‘ Rule table RAM (True Dual Port) }47
Node table update interface
Fig. 7. The hardware architecture of search tree.
Current tuple found rule
Tuple Processor]
Packet search | | Tuple table empty | | Available Bucket Search | ElgJRuCloces=ol
Search ongi addr allocator addr FIFO n Big rule search Rule table empty Available
I Found addr allocator addr FIFO
: big rule -
i Tuple Hash engine - T T
Packet in Tuple Tuple) = addr Search engine
/Rule in delete [] | insert info_ | —> Bigrule | | Big rule
] " gele [inser ::D_
Result | Tt |_§\Z’e| 3 3 1 1
interface Tuple table RAM M info T T arbiter
gine
from tree - t ‘ Big rule table RAM (True Dual Port) }4—
S
Bucket update interface
Found rule
Fig. 8. The hardware architecture of PSTSS.
tree, PSTSS architecture adopts a coarse-grained pipeline
i i i l with three separate modules. And dual-port RAM, multiple
search engines in Tuple Processor and Big Rule Processor as
DAt SAt SA_ DA » PSTSS - . .
ree ree ERAEE well as multiple hash engines in Bucket Search module are
R E— e P 3 implemented. The Tuple Processor leads the entire process
interface ,icke. g e | pagetig IMerTace ﬁcketid packetid | packetid | by: reading each tuple in sequential order, sending packet/rule
din¥_¥ add din'¥ ¥ add din ¥ ¥ add din¥ ¥ addr __din'¥ ¥ addi i : i :
| AL ‘f | A " | Y e ‘f | do¥ T f‘ Reoder| | to the hash engine, receiving §earch/update feedbgck from Big
A RaM REM REM REM | Rule Processor, and determining whether to continue to search
l ! ! el from the next tuple. The hash function in PSTSS architecture
A compare | | v v i is a modified MurmurHash.
|jmo compare | | In packet classification, if the priority of matched rule is
Resultnterface | higher than the maximum priority of next tuple, the search
Tree result collector Top result collector | would be terminated. However, the TSS-based method still
””” - - : needs to traverse multiple tuple tables averagely, resulting
Fig. 9. Result collector module.

dual-port RAM. In Node Search and Rule Search in Rule
Processor, multiple engines are implemented to speed up the
search process. What is more, because the memory access has
a latency and each engine only takes a limited time to query the
storage, increasing the number of engines could significantly
improve memory utilization. However, excessive engines will
encounter the bottleneck of memory access, in other words,
when the number reaches a certain value, the search perfor-
mance will not be further improved by continuing to increase
engines. Thus we configure the number that can maximize
memory access efficiency in the actual implementation. The
arbitration between multiple engines is ensured by Round
Robin, as each engine has the same priority.

E. PSTSS Architecture

The PSTSS module has three submodules in accordance
with the phase of tuple search, hash and bucketd table query,
big rule processing, respectively. The detailed block diagram is
shown in Fig. 8. Similar to the hardware design idea of search

in low efficiency. To take advantage of hardware parallel
property, we propose a real-time interaction scheme between
decision trees and PSTSS. When each set of search trees has
found a match, the rule would be promptly transferred to Tuple
Processor and compared with the current matched rule priority
in tuple (if any) and maximum priority of next tuple. The
feedback from trees would be the final result if it has a higher
priority and the tuple space search would also be terminated,
otherwise the search in tuple space would continue. Since the
vast majority of rules can be partitioned into small-field trees,
this mechanism can dynamically save redundant search in the
vast majority of tuple space.

F. Hierarchical Result Resolver

The proposed TcbTree faces a difficulty, that is, there are
multiple tree structures for different small field combinations,
and the speed of different trees producing results is not
consistent, thus the results need to be collected separated,
aligned and compared. Moreover, there are multiple search
engines in a tree structure, so multiple packets are processed
simultaneously at different speeds, resulting in non-sequential

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 Insertion of Rule for Search Tree

Algorithm 2 Deletion of Rule for Search Tree

Input: 1°_rule_addr, rule to insert: ins_rule
1 if no_rule_empty_addr then
2 | return INSERT_FAIL

3 else if (no_leaf_node || invalid_rule_node) then

4 if (no_rule_empty_addr || no_node_empty_addr) then
5 | return INSERT_FAIL

6 else

7 obtain new rule_table_empty_addr

8 write ins_rule to rule table RAM

9 if no_leaf_node then

10 obtain new node_table_empty_addr

11 write leaf node to node table RAM

12 update parent tree node table

13 else

14 read_addr = 1°'_rule_addr

15 while 1 do

16 read rule table from RAM with read_addr

17 if (ins_rule priority > read rule priority) then
18 obtain new rule_table_empty_addr

19 write ins_rule to rule table RAM

20 if is the first rule then

21 |_ update 1°%_rule_addr in parent node
22 else

23 |_ update next_addr in previous rule table
24 break

25 else if (next_addr == Nwull) then

26 obtain new rule_table_empty_addr

27 write ins_rule to rule table RAM

28 update next_addr in ins_rule to Null

29 return INSERT_SUCCESS

30 else

31 |_ read_addr = next_addr of rule table

results. This issue is also encountered in other multiple-tree
based FPGA implementations, and the common solution is
utilizing pipeline bubbles which is inefficient and not suitable
for our scenario.

A hierarchical result resolver is proposed in this work which
is shown in Fig. 9. Each tree has an independent reorder
RAM to sequentialize out-of-order results. The write address
is the remainder of packet ID divided by the depth of reorder
RAM. Right after a certain number of results are written, the
results of different trees are read in order at the same time
and the priorities are compared. The rule with the highest
priority is selected and output to a FIFO controlled by the bus
interface to PSTSS. The results read from the FIFO are sent
to PSTSS module and another reorder RAM in two separate
channels. After the last priority comparison, the final result is
output.

The processes of result collection and readout in every level
are carried out simultaneously and do not interfere with each
other, which is enabled by dual-port RAMs. Furthermore, the
threshold of the amount of results for reorder RAMs in each
tree result collector is set to minimum for the purpose of
outputting results to PSTSS as soon as possible to finish the
tuple space search.

G. Dynamic Update Scheme for Hardware

The hardware dynamic update schemes for decision tree
and PSTSS are shown in Algorithm 1, 2 and 3 respectively.
The update types include deletion and insertion of one rule

Input: 1°_rule_addr, rule to delete: del_rule
1 if (no_leaf_node || invalid_rule_node) then
2 | return DELETE_FAIL

3 else

4 read_addr = 1°'_rule_addr

5 while 1 do

6 read rule table from RAM with read_addr

7 if rule,,atch then

8 put read_addr to empty addr list

9 if (read_addr = 1°*_rule_addr) then

10 // first rule in chain

1 if (next_addr == Null) then

12 |_ update 1°¢_rule_addr = Nwull in parent node
13 else

14 |_ update 1°*_rule_addr = next_addr in parent node
15 else if (next_addr == Nwull) then

16 // last rule in chain

17 update next_addr = Nwull in previous rule table
18 else

19 |_ update next_addr in previous rule table

20 return DELETE_SUCCESS

21 else if (next_addr == Nwull) then

2 | return DELETE_FAIL

23 else

24 |_ read_addr = next_addr of rule table

once a time. The modification is achieved by a combination
of consecutive operations of deletion and addition. Facilitated
by the Node/Rule update interface in the architecture and the
support of reverse data flow, the update scheme of search
tree effectively supports real-time leaf node creation or inval-
idation, as well as parent node table renewal. Similarly, the
PSTSS also supports creation or invalidation of tuples and
buckets. The priority order of rule subset within a leaf node or
a tuple is also maintained after update to facilitate subsequent
lookups.

In order to prevent rule duplication, a rule to be inserted or
deleted will first determine the corresponding tree or PSTSS
to be operated according to the prefix length of its small field.
In the case of tree dilution, the insertion operation is only
performed on the main tree or PSTSS, and the deletion is
performed on all trees or PSTSS.

Although the scheme can guarantee the priority order of big
rule tables after update in PSTSS, the order of tuples could not
be maintained after the deletion or insertion of rules with the
highest priority in any tuples. If the tuple tables change a lot,
it is more preferred to reconstruct the complete tuple table set.
Nevertheless, the rules that are ranked behind in tuple tables
usually have a relatively lower overall priority, and the actual
impact of real-time updates to the actual order is thus trivial.
A mechanism to guarantee no missing matches is designed:

1) Deletion: Even the highest priority rule in a tuple is
deleted, the highest priority for the tuple is kept unchanged.
This would prevent the match found by the previous tuple
from missing a comparison with the priority of next tuple of
the currently updated tuple, thus can make sure the rule being
searched with enough number of tuples at the cost of one extra
tuple search at most.

2) Insertion: If the priority of inserted rule ranked highest
in a tuple, the max priority of the tuple would be renewed, and

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE 11

Algorithm 3 Rule Update for PSTSS

Input: operation code: O P_code, rule to update: up_rule, rescode from
Big Rule Processor

1 if (OP_code == DELETE) then

2 read_addr = 1°_tuple_addr

3 while 1 do

4 read tuple table from RAM with read_addr

5 if tuple_match then

6 /I rule belongs to current tuple

7 HASH (up_rule) and search in big rule table

8 if (rescode == DELETE_SUCESS) then

9 update rule_num in current tuple table

10 if (rule_num == 0) then

11 |_ cur_addr_val = 0 in tuple table

12 return DELETE_SUCCESS else

13 | return DELETE_FAIL

14 else if (next_addr == Nwull) then

15 | return DELETE_FAIL

16 else

17 |_ read_addr = next_addr of rule table

18 else if (OP_code == INSERT) then

19 read_addr = 1°_tuple_addr

20 while 1 do

21 read tuple table from RAM with read_addr

22 if tuple_match then

23 /I rule belongs to current tuple

24 HASH (up_rule) and insert in big rule table

25 if (rescode == INSERT_SUCESS) then

26 update rule_num and max_priority in current tuple table

27 return INSERT_SUCCESS

28 else

2 | return INSERT_FAIL

30 else if
(next_addr == Null || up_rule priority > max_priority)
then

31 if no_tuple_empty_addr then

» | return INSERT_FAIL

33 else

34 /[create a new tuple

35 if (read_addr = 1°'_rule_addr) then

36 /I new tuple on top is not allowed

37 return INSERT_FAIL

38 else

39 hash up_rule

40 inset in big rule table and update bucket table

41 if (rescode == INSERT_SUCESS) then

42 obtain new tuple_table_empty_addr

43 write new tuple to tuple table RAM

44 update next_addr in current tuple table

45 return INSERT_SUCCESS

46 else

4 | return INSERT_FAIL

48 else

49 |_ read_addr = next_addr of rule table

this priority and tuple are recorded. When searching in pre-
ceding tuples, the recorded priorities will be complementarily
compared with the priority of already matched rule to prevent
omission. If such kind of update happens multiple times, it is
better to reconstruct the tuple tables.

V. EXPERIMENTAL RESULT

A. Experiment Setup

Three types of rule sets are generated by ClassBench [58]
with the first seed file to make the performance evalua-
tion: Access Control List (ACL), Firewall (FW) and Internet
Protocol Chain (IPC), each of which has four sizes from
small scale to large scale: 1k, 10k, 32k, 100k. Corresponding
synthetic packet traces are also generated along with the rule
sets by ClassBench. The key RTL codes corresponding to
Algorithm 1 and 2 can be downloaded from the website
(http://www.wenjunli.com/TabTree).

The evaluation platform is Xilinx Virtex UltraScale+ VU9P
FPGA, which is equipped with a large amount of UltraRAMs.
Through taking advantage of this property, multiple computing
cores can be instantiated to explore a high performance, since
each core contains a complete set of search trees and PSTSS
structure. The design and implementation tool is Vivado
2021.2, and the strategies for synthesis and implementation
are Defaults and Performance_ExtraTimingOpt, respectively.
The RTL language used is System Verilog HDL.

The small field threshold, i.e., the selectable prefix length
for IP addresses, and the selection bit number in decision trees
are configured to 14 and 2 respectively. The number of search
engines in Node Search and Rule Processor in search tree
architecture is set to 6 uniformly.

TcbTree is independent of rule sets and the configuration
can be unitized for the rule sets in a same size. Nevertheless,
in order to explore the characteristics of various rule sets
and achieve the optimal performance for a specific rule set,
hardware configurations without dilution for different sizes
and types of rule sets have been customized and finely
tuned, which are listed in Table VI. The parameters can be
customized include binth, RAM depth and RAM type for tree
node table, tree rule table and PSTSS big rule table. The binth
is determined through extensive experiments. The RAM depth
is determined by the specific numbers of nodes and rules for
each tree. Based on the principle of resource balance, Block
and Ultra RAMs are reasonably allocated for different node
and rule tables.

It is discovered through comprehensive experiments that
the trees constructed for the rule set of fw_100k have a
serious big leaf problem, so tree dilution approach is applied
herein to evaluate its effectiveness. Table VII lists the detailed
configurations for three dilution modes with different dilution
subtree numbers of 2, 3, and 6 respectively.

B. Resource Utilization

Table VIII summarizes the configurations, resource usage
and maximum frequency of hardware designs for various
rule sets after synthesized, placed and routed. The average,
minimum and maximum latency for classifying a packet is
also provided. The number of search engines in search trees
maintains the same, while the optimal numbers of search
engines and hash engines in PSTSS modules vary which are
determined through trial and error with extensive experiments.
Besides, according to resource constraints, different maximum
computing core numbers are set to pursue maximum possible
throughputs. It can be noted that the memory including Ultra-
RAM and BlockRAM is the most consumed FPGA resource.
Thus an FPGA equipped with UltraRAM is more suitable for
our architecture.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE VI
HARDWARE CONFIGURATIONS FOR DIFFERENT RULE SETS
Number of nodes/rules RAM depth (bit) RAM type
Ruleset [Binth| SA tree DA tree | SA_DA tree |PSTSS| SA tree DA tree |SA_DA tree |[PSTSS| SA tree DA tree | SA_DA tree | PSTSS
node][rule [node[rule | node | rule | rule |node[rule[node]rule|node[rule [rule [node] rule [node [rule [node] rule | rule
ipc_lk | 10 | 36 95 45 | 126 | 320 | 782 4 6 7 6 8 | 10 12 12 | Block | Block | Block | Ultra | Ultra | Ultra | Ultra
acl_1k 10 9 16 1 1 316 | 916 16 4 5 2 2 10 12 12 |Block | Ultra | Block | Block | Ultra | Ultra | Ultra
fw_1k 10 | 203 | 684 24 134 74 209 10 8 12 5 8 7 8 12 | Ultra | Ultra | Block | Block | Block | Ultra | Ultra
ipc_10k | 20 109 | 882 | 142 | 1276 | 1243 | 7327 77 8 10 8 11 11 13 6 Block | Block | Block | Ultra | Ultra | Ultra | Block
acl_10k | 20 21 113 0 0 1702 | 9022 | 28 5 8 0 0 11 14 9 | Block | Block | Block | Block | Block | Ultra | Block
fw_10k | 15 | 341 | 2304 | 1365|5828 | 225 | 998 | 354 | 12 | 12 | 12 | 13 | 10 12 9 |Block | Ultra | Ultra | Ultra | Block | Ultra | Block
ipc_32k | 20 341 | 2557 | 557 | 3966 | 4423 [25116| 64 9 12 10 12 13 15 12 |Block | Block | Block | Block | Ultra | Ultra | Ultra
acl_32k | 16 85 | 542 1 5 | 5194 |31196| 335 7 |10 3 4 | 13 15 12 |Block | Block | Block | Block | Block | Ultra | Ultra
fw_32k | 20 |[1281 | 7251 | 1845 (18720 435 | 3122 | 751 1 |13 | 11 [15| 10 12 12 |Block | Ultra | Block | Ultra | Block | Block | Ultra
ipc_100k| 8 2631 | 7912 | 4673 | 12888 |24587|78359| 155 12 13 13 14 | 15 17 12 |Block | Block | Block | Block | Ultra | Ultra | Ultra
acl_100k | 20 | 332 | 1813 | 1 15 1702797377 | 335 9 |11 3 5| 15 17 12 |Block | Block | Block | Block | Block | Ultra | Ultra
fw_100k | 20 |[1357 [21339|5461 |58251| 1564 | 9853 | 1540 | 11 | 15 | 13 | 16 | 11 10 12 |Block | Ultra | Ultra | Ultra | Block | Block | Ultra
TABLE VII
DILUTION CONFIGURATIONS FOR FW_100K RULESET
- Tree Big lea . Number RAM depth (bit RAM type
Dilution mode ‘ binth ‘ b;gnthf ‘ Tree type Subtree field | node [rule % node [p r(ule) % node yprule %
SA 1357 18453 11 15 Block Ultra
1 dilution tree main tree DA 5461 58251 13 16 Ultra Ultra
5 subirees 20 183 SA_DA 1564 9853 1T 10 Block | Block
1st dilution tree SA 78 2315 8 12 Block Block
SA 35 631 7 10 Block Block
SA 1357 16968 11 15 Block Ultra
main tree DA 5461 58251 13 16 Ultra Ultra
1 dilution tree 20 137 SA_DA 1564 9740 11 10 Block Block
3 subtrees SA 183 2789 8 12 Block Block
1st dilution tree SA 78 1236 7 11 Block Block
SA 35 406 6 9 Block Block
SA 1357 15335 11 14 Block Ultra
main tree DA 5461 58251 13 16 Ultra Ultra
SA_DA 1564 9740 11 10 Block Block
2 dilution trees o SA 186 3136 8 12 Block Block
6 subtrees 20 92 1st dilution tree SA 78 1314 8 12 Block Block
SA 78 993 7 10 Block Block
SA 35 449 7 10 Block Block
2nd dilution tree SA 16 172 6 8 Block Block
SA_DA 45 113 6 8 Block Block
TABLE VIII
RESOURCE UTILIZATION AND LATENCY FOR DIFFERENT RULE SETS
Search engine number Core | CLBLUTs | CLB Registers | BRAM | URAM Max Avg latency | Min Max
Ruleset | search tree PSTSS num | (1182240) (2364480) (2160) (960) frequency | per packet | latency | latency
node [rule | tuple [hash [big rule (MHz) (ns) (ns) (ns)
ipc_1k 6 6 8 4 4 55 525844 943611 1457.5 770 215.05 317.6 112 632
acl_1k 6 6 8 4 4 55 515932 923809 1457.5 770 225.53 565.8 155 1955
fw_1k 6 6 8 4 4 55 526254 938989 1457.5 770 225.07 298.6 107 546
ipc_10k 6 6 9 5 5 45 451450 828919 1192.5 810 184.945 646.1 189 1444
acl_10k 6 6 9 5 5 38 283673 558924 1520 608 214.7305 632.9 163 1243
fw_10k 6 6 9 4 5 42 426090 781384 1743 756 186.2197 554.2 188 8060
ipc_32k 6 6 9 4 5 20 201025 372394 1090 880 212.4495 485.8 179 1784
acl_32k 6 6 9 4 5 20 195917 365555 1310 720 201.2072 445.8 209 6844
fw_32k 6 6 9 4 5 20 200530 384555 1350 880 203.252 583.5 172 10421
ipc_100k 6 6 9 4 5 5 60181 99863 1342.5 740 198.4521 475.7 176 2449
acl_100k 6 6 9 4 5 6 66834 111719 990 792 190.15 668.9 200 12196
fw_100k 6 6 9 4 5 8 84839 154080 540 800 210.084 961.0 167 11424

The implementation results for the three dilution solutions
are summarized in Table IX. The architecture configuration
is the same for these solutions to make a peer-to-peer com-
parison. More dilution trees would cause a degraded working
frequency due to the fact that the structure within a computing
core is more complicated. More specifically, multi-level result
collections can lead to excessive multiplexers resulting in large
routing delays.

C. Data Structure Evaluation

The performance of our TcbTree data structure for various
rule sets is calculated and shown in Table X. The tree depth is

the maximum depth of the SA, DA, SA_DA trees, and the
maximum and minimum values are obtained. The number
of nodes refers to the sum of the three tree nodes. The
above values are consistent before and after implementation.
In aspect of memory usage, compared with the value before
implementation, the value of after implementation includes
the free space of the node table and the rule table for two
reasons: 1) some more space needs to be reserved to support
rule updates in case more rules are added than deleted;
2) the depth of on-chip memory can only be a power of 2.
Moreover, the minimum size of BlockRAM and UltraRAM is
18Kb and 288Kb respectively, Therefore, in the actual FPGA
implementation, many small data structures use BlockRAM

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE 13

TABLE IX
RESOURCE UTILIZATION FOR DILUTION SCHEMES

Dilution mode — triimh cngine “‘g‘%’; Core num | CLBLUTs | CLB Registers | BRAM | URAM | Max frequency

node | rule | taple T hash [bigrale (1182240) (2364480) (2160) | (960) (MHz)

1 dilution tree, 2 subtrees 6 6 9 4 5 116039 210384 764 832 198.85

1 dilution tree, 3 subtrees 6 6 9 4 5 8 128668 233864 928 832 195.2

2 dilution trees, 6 subtrees 6 6 9 4 5 8 169710 308256 1388 704 181.13
1300 4 134
1200 124
1100 4 114
1000 _10]
9 900 B 9
L 800 L 8]
< 700 < 7]
2 600 £ 64
2 500 ElE
£ 400 £ 4

=
= a00] 31
200 2]
1004 7
0+ 0
& & & - - - N N N - - -
OO T o - VS SO IO AR N R
R S \QQ’/\ & ; ‘c“'/\ Q"? 'bér/b &*‘;’b ~\Q0>Q 'b(}>Q @CQ N ® < R SR S S &S

Rule sets

Fig. 10. The throughputs for packet classification and rule update.

TABLE X
IMPLEMENTATION RESULT OF DATA STRUCTURE
Memory usage (KB) Tree depth Number
Ruleset before after .
. . . . min | max | of nodes
implementation | implementation
ipc_1k 45.74 62.11 8 15 401
acl_1k 41.69 48.99 8 15 326
fw_1k 44.24 62.96 8 15 301
ipc_10k 369.66 444.43 8 15 1494
acl_10k 362.62 623.82 2 15 1723
fw_10k 367.91 541.68 4 5 1931
ipc_32k 1238.27 1616.75 4 6 5321
acl_32k 1241.27 1354.51 1 8 5280
fw_32k 1107.96 1702.70 6 15 3561
ipc_100k 4234.75 6274.25 6 9 31891
acl_100k 3896.17 5285.88 1 15 17360
fw_100k 3342.63 3781.70 6 15 8382
3754
35.04
325
[}
2 30.0
s
= 27.5
=3
£250-
E3
2225
=
" 200
15.0
no dilution 2 dilution subtrees 3 dilution subtrees 6 dilution subtrees
Rulesets
Fig. 11. Throughput in different dilution modes.

and UltraRAM which cannot be further split, so the actual
on-chip resource consumption in Table VIII is much larger
than the actual required capacity, especially for small-scale
rule sets.

D. Performance Evaluation

In this evaluation, performance metrics consist of packet
classification throughput and rule update throughput in units
of MPPS (Million Packets Per Second) and MUPS (Million
Updates Per Second) respectively. The classification through-
put is an average value by processing all synthetic packet

Rule sets

traces, while the update throughput is obtained by running ran-
domly generated operations including deletion, insertion and
modification for a long durance (i.e., 10ms) and calculating
the average value.

The packet classification and rule update throughput are
calculated by simulation. We first generate the data structure
files of a specific rule set. Then we write the testbench
which can load the benchmark trace file and rule file, and
simulate our architecture with these data structure files at
the maximum frequency obtained in Section V-B to perform
classification/update with the packets/rules in the trace/rule
file. In this way we get the average throughput for the rule
set.

The left part of Fig. 10 shows the classification throughput
with respect to various rule sets by employing corresponding
customized architectures without tree dilution which are listed
in Table VI. The performance varies depending on different
types of rule sets. FW-related schemes have the best perfor-
mance for 1k and 10k sizes with the value of 1182.9 MPPS and
508.5 MPPS respectively. ACL-related designs’ performance
is worst for these two sizes and the reason lies in the fact that
most of the rules are distributed in the SA_DA subtree, and a
large number of rules have the same SA and DA domain values
which could not be further partitioned. In the aspect of large-
scale rules, the throughputs for 32k rules are 240.6 MPPS,
279.7 MPPS and 190.9 MPPS separately, and those values for
100k rules are 59.1 MPPS, 45.6 MPPS and 20.6 MPPS with
respect to IPC, ACL and FW separately.

The right part of Fig. 10 illustrates the rule update through-
put for all kinds of benchmark rule sets. The dynamic update
order sent to computing cores is in a broadcast manner since
all cores should maintain the same copy of tree structures.
The throughput fluctuates but the gap is not as large as that
of packet classification. The values are all above 1 MUPS.

The performance varies among different rule sets, as our
architecture is not a pure pipeline implementation, therefore
the throughput is not proportional to frequency. It is affected
by many factors, including number of computing cores, max-
imum tree depth, number of rules in the leaf, number of TSS
tuples, number of conflicting rules for entries in the hash table,

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE XI
COMPARISON WITH DECISION TREE AND TCAM BASED APPROACHES ON FPGA

. Dynamic update
Approaches Type of ruleset No.of rules Device implementation Throughput (MPPS)
IPC 9485 394.2
Proposed TcbTree ACL 9163 Ultrascale+ VU9P v 310.7
FW 9130 508.5
ACL 9603 Virtex-5 XC5VEX200T 3235
REC [52] ACL 9603 Virtex-6 XC6VLX760 * 388.2
Modified Hypercuts [53] ACL 10000 Stratix III EP3SE260H780C2 X 433
D?BS [34] ACL 9603 Virtex-5 XC5VSX240T X 263.7
Hypercuts on FPGA [33] ACL 9603 Virtex-5 XC5VFX200T v 250.7
CubeCuts [51] ACL 9603 Virtex-5 XC5VFX200T X 368.8
Hypersplit on FPGA [29] ACL 10000 Virtex-6 XC6VLX760 X 230.5
TCAM on FPGA [56] / 8192 Virtex-7 XC7V2000T v 154
Pseudo-TCAM [57] / 10000 UltraScale XCVU080 v 426
TABLE XII

COMPARISON WITH DECOMPOSITION-BASED APPROACHES ON FPGA

- Range Dynamic Classification Update
Approaches Type of ruleset No. of rules Device search update throughput throughput
(MPPS) (MUPS)
PC 1007 797.4 11.6
Proposed TcbTree ACL 949 Ultrascale+ VU9P v v 386 9.4
FW 1037 1182.9 114
Updatable Classifier]l [39] 5-tuple 1024 Virtex-6 XC6VLX760 X v 690 1
Many-field classifier [35] 15-tuple 1152 Virtex-7 XC7VX1140t v X 500 /
Range-enhanced [36] 12-tuple 3000 Virtex-6 XC6VLX760 v X 566 /
Updatable Classifier2 [54] 5-tuple 1024 Virtex-6 XC6VLX760 v v 690 1
StrideBV [38] 5-tuple 512 Virtex-6 XC6VLX760 X X 390 /

etc. Each rule set has its own unique characteristics, and even
for different types of rule sets of similar size, their performance
can vary widely.

The effectiveness of tree dilution scheme is shown in
Fig. 11. The throughput grows linearly as the number of
dilution trees increases. However, this is not the case that more
dilution trees are better, because further increasing dilution
extent will cause the frequency drop sharply. In the case of two
dilution trees with 6 subtrees, the throughput is increased by
65% compared with the original method without tree dilution.

E. Comparison With Related Work

The proposed approach is compared with previous state-
of-the-art work based on decision trees and decomposition
separately in this section. Since our approach relies on FPGAs
equipped with URAMSs, it cannot be accommodated by the
previously adopted platforms such as Virtex-5 and Virtex-6.
Furthermore, the majority of previous designs do not support
large-scale rules. Therefore, in this context, we only select the
implementation results for 1k and 10k rule sets on the VU9P
FPGA for the following comparison.

The comparison with decision tree based approaches is
summarized in Table XI. These implementations only adopt
10k ACL rule set as the benchmark, and we select three dif-
ferent types of 10k rule sets for comparison. Our architecture
achieves the highest throughput on FW rules. The throughput
for ACL rules is on average level. Most importantly, only
TcbTree has realized dynamic rule update in the implemen-
tation without the need of pre-computing for the updated
content of memories. Although [29] is claimed to be able
to support on-the-fly rule update, the details about leaf node
deletion/creation and internal node update is not discussed,
and the corresponding hardware implementation is not pro-
posed. Similarly, [52] only presents the rule deletion/insertion

approach for the proposed algorithm, while the implementation
of the update scheme on hardware could not be found in the
paper. The work in [33] proposes the method of inserting write
bubbles to pipeline memories to enable rule update. However,
the new content of the memory is computed offline rather than
changed dynamically according to on-the-fly update orders as
our proposed method.

The TcbTree is also compared with the TCAM-simulation
methods implemented on FPGA in Table XI. The method
in [56] supports TCAM word update and range matching, but
can only accommodate up to 16k 150bit words with 100%
utilization of on-chip memory and slices. The implementation
in [57] achieves high throughput in classification. Although it
is claimed to be able to support dynamic update, the update
mechanism and performance are not provided. Furthermore,
the rule set scale supported by the FPGA implementation is
also restricted to 10k.

The comparison with BV decomposition based FPGA
designs is shown in Table XII. Since most of these kinds
of approaches only support rules up to 1k, our evaluation
results for ipc_1lk, acl_lk and fw_1k are picked up for this
comparison. It can be noted that the throughput for IPC and
FW rule sets outperforms other designs while the performance
for ACL is not comparable to other designs because of the
unevenly distributed search trees. Nevertheless, the average
throughput for lk-scale rules of our architecture is 14.3%
and 9.8 times higher than that of [39] in the aspects of
classification and update, respectively. It is commendable that
only our design and [54] have range search capabilities and
support dynamic rule update. StrideBV [38] does not support
range match or update. Although the design in [39] can
update rule in real time, it only supports prefix match in
the SA and DA fields, and exact match in all the other
fields.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIN et al.: FPGA-BASED UPDATABLE PACKET CLASSIFICATION USING TSS-COMBINED BIT-SELECTING TREE 15

VI. CONCLUSION

In this paper, an FPGA-based high-throughput packet
classification scheme supporting dynamic rule update called
TcbTree is proposed. It is based on a hardware optimized
TSS-combined bit-selection tree method. Various sizes of rule
sets up to 100k are supported by adopting the scalable parallel
method of multiple computing cores. Efficient data structures
and centralized storage scheme enable the architecture to get
rid of the dependence on specific rules. Moreover, a centralized
and uniform hash table approach for PSTSS is proposed to
replace the distributed ones which is extremely unfriendly
to hardware. The big leaf problem in the algorithm is well
addressed by the proposed tree dilution scheme. Experimental
results on FPGA show that our solution can achieve a high
performance in packet classification and real-time rule update.
The average throughputs for 1k, 10k, 32k and 100k rule sets
are 788.8 MPPS, 404.3 MPPS, 237 MPPS and 41.8 MPPS
respectively in aspect of packet classification. The update
throughput for all benchmark rule sets is above 1 MUPS.
The tree dilution realization has increased the throughput by
65% for packet classification with 100k-scale rules. Compared
with other decision tree based designs on FPGAs, only our
architecture supports fast rule update without pre-computation
of updated memory content. Compared with decomposition-
based architectures, the proposed one can fully support range
match and large-scale rule sets.

REFERENCES

[11 W. Li, T. Yang, Y.-K. Chang, T. Li, and H. Li, “TabTree: A TSS-
assisted bit-selecting tree scheme for packet classification with balanced
rule mapping,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst.
(ANCS), Sep. 2019, pp. 1-8.

[2] N. McKeown and et al., “OpenFlow: Enabling innovation in campus
networks,” in ACM SIGCOMM, 2008, pp. 69-74.

[3] D.E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238-275, 2005.

[4] ONF Website. Accessed: 2022. [Online]. Available: https://
opennetworking.org/sdn-resources/customer-casestudies/openflow

[5] P. Bosshart and et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87-95, 2014.

[6] H. J. Chao and B. Liu, High Performance Switches and Routers.
Hoboken, NJ, USA: Wiley, 2007.

[71 A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490-500, Apr. 2010.

[8] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to TCAM-based packet classification,” IEEE/ACM Trans.
Netw., vol. 19, no. 1, pp. 237-250, Feb. 2011.

[91 A. X. Liu, C. R. Meiners, and E. Torng, “Packet classification using
binary content addressable memory,” IEEE/ACM Trans. Netw., vol. 24,
no. 3, pp. 1295-1307, Jun. 2016.

[10] O. Rottenstreich and J. Tapolcai, “Optimal rule caching and lossy
compression for longest prefix matching,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 864-878, Apr. 2017.

[11] E. Norige, A. X. Liu, and E. Torng, “A ternary unification framework
for optimizing TCAM-based packet classification systems,” IEEE/ACM
Trans. Netw., vol. 26, no. 2, pp. 657-670, Apr. 2018.

[12] W. Li et al., “A power-saving pre-classifier for TCAM-based IP lookup,”
Comput. Netw., vol. 164, Dec. 2019, Art. no. 106898.

[13] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst
case TCAM rule expansion,” [EEE Trans. Netw., vol. 62, no. 6,
pp. 1127-1140, Jun. 2013.

[14] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat,
“Optimal in/out TCAM encodings of ranges,” IEEE/ACM Trans. Netw.,
vol. 24, no. 1, pp. 555-568, Feb. 2016.

[15] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“Exploiting order independence for scalable and expressive packet
classification,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1251-1264,
Apr. 2016.

[16] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast TCAM updates,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 217-230, Feb. 2018.

[17] Y. Wan, H. Song, Y. Xu, C. Zhang, Y. Wang, and B. Liu, “Adaptive
batch update in TCAM: How collective optimization beats individual
ones,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2021,
pp. 1-10.

[18] R. Yao et al, “MagicTCAM: A multiple-TCAM scheme for fast
TCAM update,” in Proc. IEEE 29th Int. Conf. Netw. Protocols (ICNP),
Nov. 2021, pp. 1-11.

[19] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in Proc. IEEE 28th Conf. Comput.
Commun. (INFOCOM), Apr. 2009, pp. 648-656.

[20] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “EffiCuts: Optimizing
packet classification for memory and throughput,” in Proc. ACM SIG-
COMM, 2010, pp. 207-218.

[21] W. Li and X. Li, “HybridCuts: A scheme combining decomposition
and cutting for packet classification,” in Proc. IEEE 21st Annu. Symp.
High-Perform. Interconnects, Aug. 2013, pp. 41-48.

[22] P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for
software-based packet classification,” in Proc. IEEE 22nd Int. Conf.
Netw. Protocols, Oct. 2014, pp. 308-319.

[23] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, “A sorted-
partitioning approach to fast and scalable dynamic packet classification,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1907-1920, Aug. 2018.

[24] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 256-269.

[25] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” in Proc. ACM SIGCOMM, 2020,
pp. 542-556.

[26] B. Pfaff and et al., “The design and implementation of open vSwitch,”
in Proc. USENIX NSDI, 2015, pp. 117-130.

[27] J. Daly et al., “TupleMerge: Fast software packet processing for
online packet classification,” IEEE/ACM Trans. Netw., vol. 27, no. 4,
pp. 1417-1431, Aug. 2019.

[28] W. Jiang and V. K. Prasanna, “Field-split parallel architecture for high
performance multi-match packet classification using FPGAs,” in Proc.
ACM SPAA, 2009, pp. 188-196.

[29]1 Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on FPGA: 100 Gbps and beyond,” in
Proc. Int. Conf. Field-Program. Technol., Dec. 2010, pp. 241-248.

[30] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on FPGAS,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), 2009, pp. 219-228.

[31] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “ParaSplit: A scalable
architecture on FPGA for terabit packet classification,” in Proc. IEEE
20th Annu. Symp. High-Performance Interconnects, Aug. 2012, pp. 1-8.

[32] W. Jiang and V. K. Prasanna, “A FPGA-based parallel architecture for
scalable high-speed packet classification,” in Proc. 20th IEEE Int. Conf.
Appl.-Specific Syst., Archit. Processors, Jul. 2009, pp. 24-31.

[33] W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9,
pp. 1668-1680, Sep. 2012.

[34] B. Yang, J. Fong, W. Jiang, Y. Xue, and J. Li, “Practical multituple
packet classification using dynamic discrete bit selection,” IEEE Trans.
Comput., vol. 63, no. 2, pp. 424-434, Feb. 2014.

[35] Y. R. Qu, H. H. Zhang, S. Zhou, and V. K. Prasanna, “Optimizing
many-field packet classification on FPGA, multi-core general purpose
processor, and GPU,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun.
Syst. (ANCS), May 2015, pp. 87-98.

[36] Y.-K. Chang and C.-S. Hsueh, “Range-enhanced packet classification
design on FPGA,” IEEE Trans. Emerg. Topics Comput., vol. 4, no. 2,
pp. 214-224, Apr. 2016.

[37] M. Varvello, R. Laufer, F. Zhang, and T. V. Lakshman, “Multilayer
packet classification with graphics processing units,” IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2728-2741, Oct. 2016.

[38] T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+
packet classification,” in Proc. IEEE 13th Int. Conf. High Perform.
Switching Routing, Jun. 2012, pp. 1-6.

[39]1 Y. R. Qu and V. K. Prasanna, “High-performance and dynamically
updatable packet classification engine on FPGA,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 1, pp. 197-209, Jan. 2016.

[40] C.Li, T. Li, J. Li, Z. Shi, and B. Wang, “Enabling packet classification
with low update latency for SDN switch on FPGA,” Sustainability,
vol. 12, no. 8, pp. 1-16, 2020.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

W. Li et al, “Tuple space assisted packet classification with high
performance on both search and update,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 7, pp. 1555-1569, Jul. 2020.

T. Y. Woo, “A modular approach to packet classification: Algorithms
and results,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 1213-1222.

S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classifica-
tion using multidimensional cutting,” in Proc. ACM SIGCOMM, 2003,
pp. 213-224.

T. Lakshman and D. Stiliadis, “High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching,” in Proc. ACM
SIGCOMM, 1998, pp. 203-214.

F. Geraci, M. Pellegrini, P. Pisati, and L. Rizzo, “Packet classification via
improved space decomposition techniques,” in Proc. IEEE INFOCOM,
Mar. 2005, pp. 304-312.

Y. Xu, Z. Liu, Z. Zhang, and H. J. Chao, “High-throughput and
memory-efficient multimatch packet classification based on distributed
and pipelined hash tables,” IEEE/ACM Trans. Netw., vol. 22, no. 3,
pp. 982-995, Jun. 2014.

W. Li, D. Li, Y. Bai, W. Le, and H. Li, “Memory-efficient recursive
scheme for multi-field packet classification,” IET Commun., vol. 13,
no. 9, pp. 1319-1325, 2019.

V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in Proc. ACM SIGCOMM, 1999, pp. 135-146.

P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. HOTI, 1999, pp. 34-41.

W. Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in Proc. IEEE
INFOCOM, Apr. 2018, pp. 2645-2653.

Y. Chang and Y. Wang, “CubeCuts: A novel cutting scheme for packet
classification,” in Proc. AINA Workshops, 2012, pp. 274-279.

Y.-K. Chang and H.-C. Chen, “Fast packet classification using recursive
endpoint-cutting and bucket compression on FPGA,” Comput. J., vol. 62,
no. 2, pp. 198-214, Feb. 2019.

A. Kennedy and X. Wang, “Ultra-high throughput low-power packet
classification,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 2, pp. 286-299, Feb. 2014.

Y. R. Qu, S. Zhou, and V. K. Prasanna, “High-performance architecture
for dynamically updatable packet classification on FPGA,” in Proc.
ACM/IEEE ANCS, Oct. 2013, pp. 125-136.

Z. Shi, H. Yang, J. Li, C. Li, T. Li, and B. Wang, “MsBV: A memory
compression scheme for bit-vector-based classification lookup tables,”
IEEE Access, vol. 8, pp. 38673-38681, 2020.

W. Jiang, “Scalable ternary content addressable memory implementation
using FPGAs,” in Proc. Archit. Netw. Commun. Syst., 2013, pp. 71-82.
W. Yu, S. Sivakumar, and D. Pao, “Pseudo-TCAM: SRAM-based
architecture for packet classification in one memory access,” IEEE Netw.
Lett., vol. 1, no. 2, pp. 89-92, Jun. 2019.

D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499-511,
Jun. 2007.

Yao Xin received the M.S. degree from the
Department of Electronic Science and Technology,
Beihang University, China, in 2011, and the Ph.D.
degree from the Department of Electronic Engineer-
ing, City University of Hong Kong, Hong Kong,
in 2015. He was a Visiting Research Scholar at
the University of Southern California, Los Ange-
les, CA, USA, in 2014. He is currently working
as an Assistant Researcher with the Peng Cheng
Laboratory, China. His research interests include
high-performance VLSI design for networking and
deep learning.

IEEE/ACM TRANSACTIONS ON NETWORKING

Wenjun Li received the B.Sc. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2011, and the
M.Sc. and Ph.D. degrees from Peking University,
Beijing, China, in 2014 and 2020, respectively.
From 2014 to 2015, he worked as a Research
Engineer with Huawei Technologies Company, Ltd.
He is currently a Post-Doctoral Research Fellow
at Harvard University. Before Harvard University,
he was a Post-Doctoral Research Fellow at the Peng
Cheng Laboratory. His research interests include

SDN, NFV, network measurements, and network algorithms.

Guoming Tang (Member, IEEE) received the bach-
elor’s and master’s degrees from the National Uni-
versity of Defense Technology, China, in 2010 and
2012, respectively, and the Ph.D. degree in computer
science from the University of Victoria, Canada,
in 2017. He was a Visiting Research Scholar at
the University of Waterloo, Canada, in 2016. He is
currently a Research Fellow at the Peng Cheng Lab-
oratory, China. His research interests include green
computing, cloud/edge computing, and networking
systems.

Tong Yang received the Ph.D. degree in com-
puter science from Tsinghua University in 2013.
He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences. He is cur-
rently an Associate Professor with the Department
of Computer Science and Technology, Peking Uni-
versity. He has published more than ten papers in
SIGCOMM, SIGKDD, SIGMOD, and NSDI. His
research interests include network measurements,
sketches, IP lookups, Bloom filters, and KV stores.

Xiaohe Hu received the B.Eng. and Ph.D. degrees
from the Department of Automation, Tsinghua Uni-
versity, China, in 2014 and 2020, respectively.
He visited the Berkeley NetSys Laboratory, Univer-
sity of California, Berkeley, during his Ph.D. study
time. He is currently a Post-Doctoral Researcher
with the Department of Computer Science and Tech-
nology, Tsinghua University, China. His research
interests include network architecture, high perfor-
mance network processing, and network security.

Yi Wang received the Ph.D. degree in computer
science and technology from Tsinghua University in
2013. He is currently a Research Professor with the
Institute of Future Networks, Southern University
of Science and Technology. His research interests
include future network architectures, information
centric networking, software-defined networks, and
the design and implementation of high-performance
network devices.

Authorized licensed use limited to: Peking University. Downloaded on August 04,2022 at 11:51:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

