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Abstract Sketches are being extensively used in a large number of real world applications
to estimate frequencies of data items. Due to the unprecedented increase in the amount
of Internet data and a relatively slower increase in the size of on-chip memories, existing
sketches are becoming increasingly unable to keep the accuracy of the frequency estimates
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at an acceptable level. In this paper, we design a new sketch, called FID-sketch, that has a
significantly higher accuracy and a much smaller on-chip memory footprint compared to the
existing sketches. The key intuition behind the design of the FID-sketch is that before insert-
ing an item, unlike prior sketches, it first estimates the current value of the frequency of that
item stored in the sketch, and then increments as few counters as possible instead of incre-
menting a pre-determined fixed number of counters. We carried out extensive experiments
to evaluate and compare the performance of FID-sketch with existing sketches on multi-core
CPU and GPU platforms. Our experimental results show that our FID-sketch significantly
outperforms the state-of-the-art with 36.7 times lower relative error. We have released the
source code of our proposed sketch and other related sketches that we implemented at
Github [21].

Keywords Sketch · Data streams · Accuracy · Speed · Measurement

1 Introduction

1.1 Background and Motivation

A sketch is a probabilistic data structure that stores frequencies of items in a multiset and
returns an estimate of the frequency of any given item when requested. A multiset is a set in
which one item may appear more than once. A sketch is associated with three operations:
insertion, deletion, and query. Insertion of an item into the sketch updates the sketch such
that the stored value of the frequency of that item in the sketch is increased by 1. The stored
value of the frequency of an item that has never been inserted before is 0. Deletion of an
item from the sketch updates the sketch such that the stored value of the frequency of that
item in the sketch is decreased by 1. Querying the frequency of an item in the sketch refers
to the operation of processing the sketch and returning an estimate of the current frequency
of that item. The accuracy of the frequency estimate of an item returned by the sketch is
measured in terms of the absolute relative error.

The on-chip memory is fast memory which can be read and written very fast (such as L2
or L3 caches in CPU and GPU chips, and Block RAM in FPGA chips). The fast memory is
expensive and limited in size, and therefore it is often used to store compact data structures
with high speed requirements. On the contrary, the off-chip memory is slow memory whose
speed of reading and writing is about ten times slower than that of the on-chip memory (such
as Dynamic RAM, DRAM) [22]. Due to the advantages of large size and low cost, the off-
chip memory is often used to store large data structures without high speed requirements.

Sketches are being extensively used in a broad spectrum of applications in big data sce-
narios. These applications include sharing web caches [15], tracking flows in network traffic
[3, 7, 10], detecting attacks in routers [2], detecting network anomalies [4], finding fre-
quent items (such as heavy hitters) [13, 25, 26], aggregating statistics in sensor networks[16,
28], and processing distributed data sets [23, 24, 27]. Large networking corporations such
as AT&T [12] and Google [17] also use sketches for network monitoring and network
data management. With more and more devices connecting to the Internet and causing an
increase in the amount of Internet data at an unprecedented rate (total internet traffic will
surpass 1ZB in 2016 and increase to 2.3ZB by 2020 [8]), existing sketches can hardly keep
the accuracy of the frequency estimates at acceptable levels due to the lack of large enough
fast memory. The reason is that with the increase in the number of items and their frequen-
cies in a multiset, sketches need more memory to accurately store and estimate frequencies.
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As sketches are often used in settings where they are queried at a high rate, they need to be
implemented in the fast on-chip memory . Unfortunately, due to the the on-chip memory
is very limited. Therefore, with the increasing amounts of data, existing sketches are not
getting enough on-chip memory to store frequencies accurately. Motivated by this observa-
tion, in this paper, we design a new sketch that has a significantly smaller on-chip memory
footprint and a much higher accuracy compared to existing sketches.

1.2 Insight from prior art

Charikar et al. proposed Count-sketch, which marks the pioneering work in sketches [6].
Estimates from Count-sketch incur two types of errors: over-estimation error, where the
frequency estimate of an item is larger than the true frequency of that item, and under-
estimation error, where the frequency estimate of an item is smaller than the true frequency
of that item. To improve on the Count-sketch, Cormode and Muthukrishnan proposed
Count-Min (CM) sketch [11]. The key improvement of the CM-sketch over the Count-
sketch is that the estimates from CM-sketch suffer only from the over-estimation error and
not the under-estimation error. Until recently, CM-sketch has been a popular choice due to
its relatively small memory footprint and high accuracy.

A CM-sketch consists of d arrays and each array consists of w counters, as shown
in Figure 1. We represent the ith array of the CM-sketch with Ai and the j th counter
of this ith array with Ai[j ], where 0 � i � d − 1 and 0 � j � w − 1. Each
array Ai is associated with an independent hash function hi(.) that has a uniformly dis-
tributed output. Before the CM-sketch starts storing frequencies, all counters are first
initialized to 0. To insert or delete an item e from the CM-sketch, i.e., to increment or
decrement the stored frequency of an item e, the sketch first computes the d hash func-
tions h1(e), h2(e), . . . , hd(e) and then increments or decrements, respectively, all counters
A1[h1(e)%w], A2[h2(e)%w], . . . , Ad [hd(e)%w] by 1. To respond to a query requesting an
estimate of the current stored frequency of an item e in the CM-sketch, the sketch first com-
putes the d hash functions h1(e), h2(e), . . . , hd(e) and then returns the value of the smallest
counter(s) among A1[h1(e)%w], A2[h2(e)%w], . . . , Ad [hd(e)%w] as the frequency of the
item. By carefully selecting the values of d and w based on the distribution of items in the
data stream, the over-estimation error of CM-sketch can be bounded.

A key observation from our discussion of the CM-sketch is that for each insertion opera-
tion, the CM-sketch always increments d counters. In many cases, however, this is not only
unnecessary but also detrimental to the accuracy of the CM-sketch. We explain this with an
example. Suppose an item e has already been inserted x − 1 times and needs to be inserted
the xth time into a CM-sketch. Suppose that the values of all the d counters that the d hash
functions map the item e to are already greater than x (this happens due to the insertions of
other items in the sketch). A CM-sketch would increment all these counters by one, which

e  : an item
hi : a hash function
Ai : an array

1   2 w
A1

A2

Ad

e

Figure 1 Count-Min sketch
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will make the over-estimation error worse when querying this item e. If CM-sketch were not
to increment the counters whose values are larger than the current actual frequency of the
item being inserted, it would result in two advantages: 1) the accuracy of CM-sketch would
improve; 2) as the sketch would be incrementing fewer counters, it would require counters
with smaller size. An even better strategy is to increment only the smallest of all counters as
long as the smallest counter(s) are less than the current actual frequency of the item being
inserted. This will further reduce the over-estimation error and the memory footprint of the
sketch without introducing any under-estimation errors.

Estan and Varghese proposed a variant of CM-sketch, called Conservative Update (CU)
sketch, which is exactly the same as CM-sketch in architecture, i.e., has d arrays of w

counters each. CU-sketch, to some extent, incorporates our key insight of not increment-
ing counters greater than the current actual frequency of the item [14]. More specifically,
to insert an item e in CU-sketch, the sketch increments only the smallest counter(s) among
the d counters that the d hash functions map the item e to, but it does not take the cur-
rent frequency of the item into account. The fundamental limitation of the CU-sketch is
that it does not support deletions because to support deletions, one needs to keep track of
the counters that are incremented at each insertion, but the CU-sketch does not perform
such a tracking. If we apply the deletion process of CM-sketch on the CU-sketch, i.e.,
first compute the d hash functions h1(e), h2(e), . . . , hd(e) and then decrement the d coun-
ters A1[h1(e)%w], A2[h2(e)%w], . . . , Ad [hd(e)%w] by 1, subsequent query results from
the resulting CU-sketch will be prone to having both under-estimation and over-estimation
errors. As CU-sketch does not support deletions, it has not received as wide an acceptance
in practice as the CM-sketch.

1.3 Proposed approach

In this paper, we propose a new sketch, called FID-sketch, which achieves significantly
higher accuracy and smaller on-chip memory footprint compared to the existing sketches
while at the same time supports all operations that the popular CM-sketch does, i.e.,
insertions, deletions, and queries. FID-sketch does not suffer from under-estimation error.
However, it does suffer from over-estimation error just like the CM-sketch, but its over-
estimation error is much smaller compared to the CM-sketch. The key intuition behind the
design of the FID-sketch is that before inserting an item, it first estimates the current fre-
quency of that item, and then increments the smallest counter(s) only if the value of that
smallest counter(s) is less than the current frequency estimate of that item. This significantly
reduces the over-estimation error as well as the on-chip memory footprint.

Our proposed FID-sketch is comprised of 3 subsketches: one on-chip subsketch namely
Fast-Query (FQ) subsketch and two off-chip subsketches namely Insertion-Support (IS)
subsketch and Deletion-Support (DS) subsketch; hence, the name FID-sketch. The moti-
vation behind keeping the on-chip FQ-subsketch is to make the querying process of
FID-sketch extremely fast. FID-sketch stores all information required to return the currently
stored frequency of any given item in this FQ-subsketch. As the on-chip memory is limited,
the memory footprint of the FQ-subsketch must be small. To achieve this, FID-sketch main-
tains the off-chip IS-subsketch, which helps determine whether the smallest counter(s) in
the FQ-subsketch should be incremented or not when inserting a given item. As the number
of counters updated in the FQ-subsketch per insertion is small (sometimes even none), the
over-estimation error in the query result from the FQ-subsketch is also small. The motiva-
tion behind keeping the off-chip DS-subsketch is to enable deletions from the FQ-subsketch
without causing any under-estimation errors in the subsequent query results. We would like
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to clarify here that “FID-sketch” is the name we have given to our proposed scheme of using
the three subsketches to store frequencies. The arrays and counters that are operated upon
when inserting, deleting, and querying actually belong to the three subsketches.

The highlight of our proposed FID-sketch is that its querying operation is very fast and
accurate. Unfortunately, it comes at the cost of slightly slower insertions and deletions. Our
motivation behind trading-off the speeds of insertions and deletions for faster and more
accurate querying is the fact that for a large number of modern applications, such as network
monitoring, decision support systems, online data analysis, and e-commerce advertising
engines, accurate and near real-time querying is critical because query speed directly affects
the user experience and the performance of real-time applications [5, 19]. In these and
many other modern applications, the insertion and deletion speeds are not as critical as the
query speed because insertions and deletions are relatively few or can be processed in the
background. Our proposed FID-sketch primarily targets such applications where high query
speed and accuracy are the most critical factors.

1.4 Advantages over prior art and key contributions

FID-sketch is advantageous over CM-sketch because unlike CM-sketch, it increments fewer
than d counters per insertion in the on-chip memory, and thus achieves significantly lower
over-estimation error and significantly smaller on-chip memory footprint. FID-sketch is also
advantageous over CU-sketch because it supports deletions and achieves better accuracy. In
this paper, we make following three key contributions.

1. We propose a new sketch, namely the FID-sketch, which is based on the insights we
developed from prior art, specifically the CM-sketch. FID-sketch achieves a much
higher accuracy compared to the existing sketches and at the same time utilizes
significantly less on-chip memory.

2. We carried out extensive experiments to evaluate and compare the performance of FID-
sketch with existing schemes on multi-core CPU and GPU platforms. Our results show
that FID-sketch significantly outperforms the state-of-the-art with 36.7 times smaller
error.

3. We have anonymously released the source code of FID and related sketches that we
implemented at Github [21].

2 Related work

Charikar et al. did the pioneering work in sketches and proposed the Count-sketch [6] (C-
sketch). The structure of the Count-sketch is exactly the same as CM-sketch except that
each array Ai is associated with two hash functions hi(.) and gi(.). Each hash function hi(.)

is uniformly distributed over the set of positive integers, whereas the hash functions gi(.)

evaluates to -1 or +1 with equal probability. Any pair of hash functions hi(.) and hj (.),
where i �= j , are pairwise independent. Similarly, hash functions gi(.) and gj (.), where
i �= j , are also pairwise independent. The hash function hi(.) maps any given item to one
of the w counters in the array Ai whereas the hash function gi(.) maps the item to either
-1 or 1. To insert an item e, for all values of i ∈ [0, w − 1], Count-sketch calculates hash
functions hi(e) and gi(e) and adds gi(e) to the counters Ai[hi(e)%w]. When querying the
frequency of item e, Count-sketch reports the median of {A1[h1(e)] × g1(e), A2[h2(e)] ×
g2(e) . . . Ad [hd(e)] × gd(e)} as an estimate of the frequency of the item e.
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Unfortunately, Count-sketch suffers from both over-estimation and under-estimation
errors. Therefore, several improvements have been proposed that do not suffer from
the under-estimation errors but only suffer from the over-estimation errors, such as
the CM-sketch [11] and CU-sketch [14] described earlier in Section 1.2. Count-Min-
log (CML) sketch is a variant of the CU-sketch that uses logarithm-based approx-
imate counters instead of linear counters [18]. It achieves better accuracy but suf-
fers from both over-estimation error and under-estimation error, and cannot support
deletion.

Another class of data structures that can be used to store frequencies of items is Bloom
filters. Let hB

1 (.), hB
2 (.), · · · , hB

k (.) be k independent hash functions with uniformly dis-
tributed outputs. Given a multiset of items, a Bloom filter (BF) first constructs an array B of
m bits, where each bit is initialized to 0. To insert an item e of the multiset, the BF sets the
k bits B[h1(e)%m], · · · , B[hk(e)%m] to 1. To process a query whether e is in the multiset,
BF returns true if all corresponding k bits are 1 (i.e., returns ∧k

i=1B[hi(e)%m]). A Bloom
filter can identify whether an item is present in a multiset or not but cannot estimate its
frequency.

Several updates to the conventional Bloom filters have been proposed, such as Spectral
Bloom Filters (SBF) [9] and Dynamic Count Filters (DCF) [1], which can store frequencies
of items. SBF replaces each bit in the conventional Bloom filter with a counter [9]. To insert
an item e, SBF simply increments all the counters that the hash functions hB

1 (e), · · · , hB
k (e)

map it to. On querying for an item, SBF reports the value of the smallest counter(s) among
all the counter to which the hash functions map the item to as the estimate of the frequency
of that item in the multiset. DCF extends the concept of SBF while improving the memory
efficiency of SBF by using two separate filters [1]. The first filter is comprised of fixed size
counters while the size of counters in the second filter is dynamically adjusted. The use of
two filters, unfortunately, increases the complexity of DCF, which degrades its query and
update performance.

3 FID-sketch

In designing FID-sketch, we have three objectives: small on-chip memory footprint,
small over-estimation error, and support of deletions. FID-sketch achieves these objec-
tives by maintaining three subsketches: a small on-chip subsketch namely the FQ-
subsketch, and two relatively larger off-chip subsketches namely the IS-subsketch
and the DS-subsketch. The on-chip FQ-subsketch contains all information required to
answer any query. Neither of the two off-chip subsketches are consulted in answer-
ing the queries. They are consulted only when inserting and deleting items. Next,
we describe these three subsketches in detail along with the motivations behind their
designs.

3.1 FQ-subsketch

Similar to a CM-sketch, an FQ-subsketch consists of dFQ arrays and each array consists of
wFQ counters. We represent the ith array of the FQ-subsketch with Fi and the j th counter
of this ith array with Fi[j ], where 0 � i � dFQ −1 and 0 � j � wFQ −1. Each array Fi is
associated with an independent hash function hi(.) that has a uniformly distributed output.
Before the FQ-subsketch starts storing frequencies, all counters are initialized to 0. Next,
we explain the insertion, deletion, and query operations of the FQ-subsketch.
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Insertion To insert an item e in the FQ-subsketch, FID-sketch first computes the dFQ

hash functions hi(e) and identifies the smallest counter(s) among the dFQ counters
Fi[hi(e)%wFQ], where 0 � i � dFQ −1. It then inserts e into the IS-subsketch and obtains
a threshold Tins from the IS-subsketch. We will describe how Tins is calculated from the
IS-subsketch in detail in Section 3.2. For now, it suffices to state that this threshold is essen-
tially an estimate of the current frequency of the item e in the IS-subsketch. If the smallest
counter(s) among the dFQ counters of the FQ-subsketch has(ve) a value that is not less than
Tins , these dFQ counters should not be incremented because incrementing them will only
increase the over-estimation error in subsequent queries. Therefore, when inserting e, FID-
sketch increments the smallest counter(s) among the dFQ counters of the FQ-subsketch only
when their value is less than Tins . Note that incrementing only the smallest counter(s) among
these dFQ counters (unlike CM-sketch, which would increment all dFQ counters) leads to
a smaller over-estimation error compared to CM-sketch. We append ‘(s)’ with ‘counter’ in
the sentences above because it is possible for more than one counter to attain the smallest
value among the dFQ counters.

Deletion To delete an item e from the FQ-subsketch, FID-sketch first computes the dFQ

hash functions hi(e) and identifies the dFQ counters Fi[hi(e)%wFQ], where 0 � i �
dFQ − 1. After that, it consults the DS-subsketch to determine which of these dFQ counters
can be decremented without causing any under-estimation errors, and then decrements all
such counters. In Section 3.3, we will explain howDS-subsketch helps in determining which
of these dFQ counters to decrement.

Query The query operation on the FQ-subsketch is exactly the same as that of
the CM-sketch. To respond to a query requesting the current stored frequency of
an item e in the FQ-subsketch, FID-sketch first computes the d hash functions
h0(e), h1(e), . . . , hdFQ−1(e) and then returns the value of the smallest counter(s) among
F0[h0(e)%wFQ], F1[h1(e)%wFQ], . . . , FdFQ−1[hdFQ−1(e)%wFQ] as the frequency of the
item.

3.2 IS-subsketch

IS-subsketch helps in determining whether the smallest counter(s) of the FQ-subsketch
should be incremented when inserting an item or not by providing the estimate of the current
frequency of that item in the sketch. IS-subsketch is essentially just an ordinary CM-sketch
with dIS arrays and each array consists of wIS counters. We represent the ith array of the
IS-subsketch with Ii and the j th counter of this ith array with Ii[j ], where 0 � i � dIS − 1
and 0 � j � wIS − 1. Each array Ii is associated with an independent hash function hi(.)

that has a uniformly distributed output. As the IS-subsketch resides in the off-chip memory,
which is available in abundant quantity, it can have significantly more number of coun-
ters per array compared to the FQ-sketch, i.e., wIS >> wFQ. The consequence of having
such a large CM-sketch in the off-chip memory is that it can estimate the frequency of any
given item with very small over-estimation error due to its large memory footprint. Thus,
whenever a new item e needs to be inserted into the FQ-subsketch, we first insert it in the
IS-subsketch and then get an accurate estimate of the current frequency of that item e in
the IS-subsketch. We use this estimate as the value of the threshold Tins , which, in turn,
is used in determining whether the smallest counter(s) in the FQ-subsketch need(s) to be
incremented or not.
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Note that the IS-subsketch is never used in answering queries from external applications.
Those queries are answered entirely from the on-chip FQ-subsketch, and thus, the query
operation still stays very fast. The overall insertion operation, however, has more overhead
compared to the conventional CM-sketch because when inserting an item e, FID-sketch
now has to perform three steps: 1) inserting the item into the IS-subsketch, 2) calculating
the value of Tins , and 3) using Tins to determine whether or not to increment the smallest
counter(s) of the FQ-subsketch. Fortunately, this larger overhead is not a problem because,
as discussed at the end of Section 1.3, the insertion speed is not as critical as the query speed
in many modern applications. Next, we formally describe the insertion, deletion, and query
operations of the IS-subsketch.

Insertion To insert an item e in IS-subsketch, FID-sketch first compute the dIS hash
functions hi(e) and then increments all counters Ii[hi(e)%wIS] by 1, where 0 � i �
dIS − 1.

Deletion To delete an item e from IS-subsketch, FID-sketch first computes the dIS hash
functions hi(e) and then decrements all counters Ii[hi(e)%wIS] by 1, where 0 � i �
dIS − 1.

Query To execute the query requesting the current stored frequency of an
item e in the IS-sketch, FID-sketch first computes the dIS hash functions
h0(e), h1(e), . . . , hdIS−1(e) and then returns the value of the smallest counter(s) among
I0[h0(e)%wIS], I1[h1(e)%wIS], . . . , IdIS−1[hdIS−1(e)%wIS] as the frequency of the item
e. We emphasize here again that the IS-subsketch is queried only to calculate the value of
Tins when an item needs to be inserted into the FQ-subsketch, and this query is generated
by the FID-sketch itself, not by any external application. FID-sketch answers queries from
external applications entirely from the FQ-subsketch.

3.3 DS-subsketch

DS-subsketch helps in determining which counters of the FQ-subsketch should be decre-
mented when deleting an item without causing any under-estimation errors. It is challenging
to delete items from the FQ-subsketch for two reasons. First, one needs to keep track of the
exact counters that are incremented on each insertion. Second, to delete a given item e, one
cannot simply decrement the counters that were incremented during the most recent inser-
tion of e because the values of the counters that are incremented during the latest insertion of
e determine which counters will be incremented during subsequent insertions of any other
items. If we decrement any of the counters that were incremented during the most recent
insertion of this item e, there is a risk of under-estimation error in subsequent queries. We
demonstrate the existence of these two problems with the help of a simple example.

3.3.1 The deletion problem

Consider an FQ-subsketch with dFQ = 2 and wFQ = 2, i.e., this FQ-subsketch consists
of 2 arrays F0 and F1 with hash functions h0(.) and h1(.), respectively, and each array
consists of two counters, which are all initialized to 0. We insert three items e1, e2, and e3
into this FQ-subsketch in this sequence. Suppose h0(e1) = 0 and h1(e1) = 0, h0(e2) = 0
and h1(e2) = 1, and h0(e3) = 1 and h1(e3) = 1. Figure 2 shows snapshots of this FQ-
subsketch before and after each insertion. To support the insertions of e1, e2, and e3 into
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F0

F1

0 0
0 0

0     1

insert e1 1 0
1 0

0    1

insert e2 F0

F1

1 0
1 1

0    1

insert e3 1 1
1 1

0     1

F0

F1

F0

F1

Figure 2 An example of the deletion problem

this FQ-subsketch, we also maintain an IS-subsketch. However, to keep the discussion of
this example concise, we do not explicitly describe the operations on the IS-subsketch when
inserting these three items; those operations will be self-evident from the text.

To insert e1, we first insert it into the IS-subsketch, and obtain the value of the threshold
Tins from it for this item. We then check the values of the two counters F0[h0(e1)%2] and
F1[h1(e1)%2], i.e., F0[0] and F1[0], which are both currently 0 and thus, certainly less than
Tins because Tins is always greater than 0 (Tins is calculated after inserting e in the IS-
subsketch). As both counters are smallest and also < Tins , we increment them both by 1.
To insert e2, we first insert it into the IS-subsketch, and obtain the value of the threshold
Tins from it for this item. We then check the values of the two counters F0[h0(e2)%2] and
F1[h1(e2)%2], i.e., F0[0] and F1[1] and pick the one with the smallest value, which in this
case is F1[1]. As the current value of F1[1] is 0, it is also certainly < Tins , and thus we
increment it by 1. To insert e3, we first insert it into the IS-subsketch, and obtain the value
of the threshold Tins from it for this item. We then check the values of the two counters
F0[h0(e3)%2] and F1[h1(e3)%2], i.e., F0[1] and F1[1] and pick the one with the smallest
value, which in this case is F0[1]. As the current value of F0[1] is 0, it is also certainly
< Tins , and thus we increment it by 1.

At this point, let us look at what would happen if we were to delete e2 from the FQ-
subsketch, i.e., reduce the value of its stored frequency in the FQ-subsketch by 1. The hash
functions h0(e2) and h1(e2) map e2 to the counters F0[0] and F1[1]. Recall that when
inserting e2, we only incremented F1[1] and not F0[0]. Therefore in deleting e2, we must
not decrement F0[0] because we never incremented it when inserting e2. This shows that
to delete any item, one needs to keep track of exactly which counters were incremented
when inserting an item. Furthermore, we cannot decrement F1[1] either because its value
after inserting e2 determined which counters in the FQ-subsketch would be incremented in
inserting e3. If we decrement F1[1] when deleting e2, a subsequent query for the frequency
of e3 would result in a returned value of 0 (i.e., min{F0[h0(e3)%2], F1[h1(e3)%2]} =
min{F0[1], F1[1]} = 0), whereas the actual frequency of e3 currently is 1. This means that
if we decrement F1[1] when deleting e2, the subsequent queries will have under-estimation
error, which we do not desire. This shows that even if we keep track of exactly which coun-
ters were incremented when inserting an item, we may not be able to decrement them when
deleting that item due to the risk of under-estimation error in subsequent queries. Therefore,
to delete e, one needs to delete all items in reverse order (from both FQ-subsketch and IS-
subsketch) that were inserted after the latest insertion of e, decrement the counters that were
incremented on the latest insertion of e, and then reinsert all subsequent items again (both
in FQ-subsketch and IS-subsketch), which is a very expensive and slow process.

Solution Direction To enable deletions from the FQ-subsketch, our solution is to main-
tain another sketch, which we call the DS-subsketch. The DS-subsketch enables us to
determine which of the dFQ counters, Fi[hi(e)%wFQ] (0 � i � dFQ − 1), of the
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FQ-subsketch can be decremented when deleting the item e without causing any under-
estimation errors. Furthermore, it enables this without requiring us to maintain any
information about the exact counters that were incremented when inserting the item e.
This, however, comes at a small cost: the DS-subsketch does not support perfect dele-
tions from the FQ-subsketch, i.e., after decrementing some counters when deleting the
xth insertion of an item e from the FQ-subsketch, the resultant FQ-subsketch may not
resemble an FQ-subsketch that would result if the item e was never inserted the xth

time. Nonetheless, the DS-subsketch assisted deletions still serve both primary objectives
behind deletions, i.e., reduce the over-estimation error and reduce the memory footprint
of the sketch. The DS-subsketch can be of two types: 1) a standard CM-sketch, or 2) a
Subtraction-sketch, which is obtained by subtracting the counters of FQ-subsketch from
the corresponding counters of the standard CM-sketch. Next, we first describe the DS-
subsketch of type CM-sketch and discuss the room for improvement in it. After that we
describe the final version, DS-subsketch of type Subtraction-sketch, which achieves those
improvements.

3.3.2 DS-subsketch of type CM-sketch

This type of DS-subsketch is essentially just an ordinary CM-sketch with dFQ arrays and
wFQ counters per array, which equal those in the FQ-subsketch. We represent the ith array
of this DS-subsketch with DCM

i and the j th counter of this ith array with DCM
i [j ], where

0 � i � dFQ −1 and 0 � j � wFQ −1. Each array DCM
i is associated with an independent

hash function hi(.) that has a uniformly distributed output. The design of the DS-subsketch
of type CM-sketch is based on the observation that given a multiset, if we build an FQ-
subsketch and a DS-subsketch using equal number of arrays and counters per array, then
every counter of the FQ-subsketch will always be smaller than or equal to the corresponding
counter of the DS-subsketch, i.e., Fi[hi(e)%wFQ] � DCM

i [hi(e)%wFQ], where 0 � i �
dFQ − 1. The reason is that whenever an item is inserted in both FQ-subsketch and the DS-
subsketch, all countersDCM

i [hi(e)%wFQ], where 0 � i � dFQ−1, are always incremented
by 1, while not all of the corresponding counters Fi[hi(e)%wFQ] are always incremented.
Next, we first describe the insertion and deletion operations of the DS-subsketch of this
type, and then explain how it helps in identifying counters of FQ-subsketch that can be
decremented when deleting an item. We never need to perform a query operation on DS-
subsketch to estimate frequency of any item.

Insertion To insert an item e in the DS-subsketch, we first compute the dFQ hash functions
hi(e) and then increment all counters DCM

i [hi(e)%wFQ] by 1, where 0 � i � dFQ − 1.

Deletion To delete an item e from the DS-subsketch, we compute the dFQ hash functions
hi(e) and decrement all counters DCM

i [hi(e)%wFQ] by 1, where 0 � i � dFQ − 1.
Whenever an item e is inserted, the FID-sketch not only inserts it into the IS-subsketch

and FQ-subsketch but also into the DS-subsketch. Whenever an item e needs to be deleted,
the FID-sketch first deletes it from both the IS-subsketch and the DS-subsketch. After
that, it compares the dFQ counters Fi[hi(e)%wFQ] of the FQ-subsketch with the corre-
sponding dFQ counters DCM

i [hi(e)%wFQ] of the DS-subsketch, and decrements all those
counters of the FQ-subsketch for which Fi[hi(e)%wFQ] > DCM

i [hi(e)%wFQ]. This steps
ensures that every counter of the FQ-subsketch sketch is always smaller than or equal to the
corresponding counter of the DS-subsketch, as discussed earlier.
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Analysis When inserting an item, the FID-sketch increments dIS counters of the
IS-subsketch and dFQ counters of the DS-subsketch of type CM-sketch. In the FQ-
subsketch, in the worst case, it increments dFQ counters, and in the best case,
it increments no counters. When deleting an item, the FID-sketch decrements dIS

counters of the IS-subsketch and dFQ counters of the DS-subsketch of type CM-
sketch. In the FQ-subsketch, in the best case, it decrements dFQ counters, and
in the worst case, it decrements no counters. There is room for improvement to
reduce the number of counter updates per insertion and deletion, as we will describe
next.

3.3.3 DS-subsketch of type Subtraction-sketch

To reduce the number of counter updates per insertion and deletion, we introduce DS-
subsketch of type Subtraction-sketch, which also contains dFQ arrays and wFQ counters
per array, just like the FQ-subsketch. We represent the ith array of this type of DS-subsketch
with DS

i and the j th counter of this ith array with DS
i [j ], where 0 � i � dFQ − 1 and

0 � j � wFQ − 1. Each counter of the DS-subsketch of type Subtraction-sketch equals the
difference between the corresponding counters of the DS-subsketch of type CM-sketch and
the FQ-subsketch, i.e., each counter DS

i [j ] satisfies the equation DS
i [j ] = DCM

i [j ]−Fi[j ],
where 0 � i � dFQ − 1 and 0 � j � wFQ − 1. Note that in order to maintain the DS-
subsketch of type Subtraction-sketch, we do not need to first maintain a DS-subsketch of
type CM-sketch and then subtract the FQ-subsketch from it. Instead, we modify the inser-
tion and deletion operations of FID-sketch to directly maintain the DS-subsketch of type
Subtraction-sketch. Next, we first describe the insertion and deletion operations of this type
of DS-subsketch and then explain how it reduces the number of counter updates per insertion
and deletion.

Insertion Whenever an item e is to be inserted, the FID-sketch first inserts it into
the IS-subsketch and obtains the threshold Tins , as described in Section 3.1. After
that, the FID-sketch computes the dFQ hash functions hi(e) and increments the small-
est counter(s) among the dFQ counters Fi[hi(e)%wFQ] if the smallest counter(s) are
smaller than Tins , as described in Section 3.2. Finally, the FID-sketch increments all
corresponding counters in this DS-subsketch of type Subtraction-sketch that were not
incremented in the FQ-subsketch, i.e., if it did not increment Fi[hi(e)%wFQ], then it incre-
ments DS

i [hi(e)%wFQ]; otherwise, it leaves DS
i [hi(e)%wFQ] as it is, where 0 � i �

dFQ − 1. This last step ensures that each counter DS
i [j ] of the DS-subsketch of type

Subtraction-sketch satisfies the equation DS
i [j ] = DCM

i [j ] − Fi[j ] for all values of i

and j .

Deletion Whenever an item e is to be deleted, the FID-sketch first deletes it from the
IS-subsketch, as described in Section 3.1. After that, it computes the dFQ hash functions
hi(e) and decrements all non-zero counters among the dFQ counters DS

i [hi(e)%wFQ] of
the DS-subsketch of type Subtraction-sketch. Finally, the FID-sketch decrements all corre-
sponding counters in the FQ-subsketch that were not decremented in this DS-subsketch of
type Subtraction-sketch, i.e., if it did not decrement DS

i [hi(e)%wFQ], then it decrements
Fi[hi(e)%wFQ]; otherwise, it leaves Fi[hi(e)%wFQ] as it is, where 0 � i � dFQ − 1.
This last step again ensures that each counter DS

i [j ] satisfies the equation DS
i [j ] =

DCM
i [j ] − Fi[j ] for all values of i and j .
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Analysis When inserting an item, the FID-sketch increments dFQ counters in total among
both the FQ-subsketch and the DS-subsketch of type Subtraction-sketch and dIS coun-
ters of the IS-subsketch. Similarly, when deleting an item, the FID-sketch decrements dFQ

counters in total among both the FQ-subsketch and the DS-subsketch of type Subtraction-
sketch and dIS counters of the IS-subsketch. Thus, we have made the number of counter
updates when inserting or deleting an item using the DS-subsketch of type Subtraction-
sketch equal to the best case scenario when using the DS-subsketch of type CM-sketch.
Note that this is achieved by simply modifying the insertion and deletion operations
and without changing any other parameters of the subsketches such as the number of
arrays, the number of counters per array, or the number of hash functions. Note that
the DS-subsketch of type Subtraction-sketch can be used to enable deletions in other
sketches as well, which otherwise do not support deletions, such as the CU-sketch and
CML-sketch.

4 Experimental results

In this section, we evaluate our FID-sketch and present its side-by-side comparison with
four prior state-of-the-art sketches, namely Count-sketch [6], CM-sketch [11], CU-sketch
[14], and CML-sketch [18] on CPU and GPU platforms. As we will see shortly, among
existing sketches, CML-sketch has the highest accuracy for multisets with zipfian distribu-
tion. Unfortunately, CML-sketch is unsuitable for most applications due to three reasons.
First, it does not support deletions. Second, it suffers from both over-estimation and under-
estimation errors. Last, it has slow query speed due to its complex manipulation of random
numbers. Consequently, CM-sketch is still the most popular sketch. Thus, we primarily
compare the performance of FID-sketch with it.

4.1 Experimental setup

Compute Platforms We implemented the sketches on two different types of platforms:
CPUs and GPUs. We did our implementation for CPU platform on a Thinkstation D30
server with 2 Intel CPUs (Xeon E5-2620, 2.00 GHz, 6 physical cores). We did our imple-
mentation for GPU platform on an NVIDIA GPU (Quardro 4000, 950 MHz, 2047 MB
device memory, 256 CUDA cores).

Parameter Settings Following are the four parameters that affect sketch performance:
1) number of arrays, represented by dFQ for the FQ-subsketch and the DS-subsketch, by
dIS for the IS-subsketch, and by d for all other sketches; 2) number of counters per array,
represented similarly by wFQ, wIS , and w; 3) maximum number of insertions, represented
byU for all sketches; 4) number of inserted distinct items, represented by V for all sketches;
and Unless stated otherwise, we used these parameters: 1) dFQ = dIS = d = 4; 2) wFQ =
w = 30K,wIS = 300K; 3) U = 10M; 4) V = 100K.

Workloads We conducted our experiments on two types of workloads: uniform workloads,
in which the item frequencies follow a uniform distribution and zipfian workloads, in which
the item frequencies follow a zipfian [20] distribution.
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Figure 3 Uniform distributed insertions

4.2 Evaluation of absolute relative error

The accuracy of the frequency estimate of an item returned by a sketch is defined as the
average absolute relative error (ARE) in the frequency estimate compared to the actual
frequency of the item. Let the actual frequency of an item e be f (e) and the frequency
estimate returned by the sketch be f̂ (e). The ARE of this estimate is given by |f̂ (e) −
f (e)|/f (e). Next, we present results for the impact of insertions on the ARE of the sketches
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followed by the impact of deletions. After that we measure the impact of the size of the
on-chip sketch and the number of distinct items on the AREs of the sketches.

4.2.1 Effect of insertions

Our experimental results show that with the same space consumed, after 10M insertions,
the FID-sketch achieves an ARE of only 0.043 and 0.57 with uniform and zipfian work-
loads, respectively, which is 36.7 times and 3.75 times less than the ARE of CM-sketch,

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Count Sketch

CM Sketch

CML Sketch

CU Sketch

FID Sketch

Relative error

E
m
p
ir
ic
al
C
D
F

Figure 6 CDF of ARE (zipfian dist)
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Figure 7 Uniform distributed deletions

respectively. Figures 3 and 4 show the AREs of the 5 sketches for uniform and zipfian
distributed insertions, respectively, when the number of insertions is varied from 0 to 10M.

Our experimental results also show that with uniform workloads, for 82.5% of items
stored in the FID-sketch, ARE is less than 0.1. This percentage is 6.1 times higher than the
percentage of items stored in the CM-sketch for which ARE is less than 0.1. With zipfian
workloads, for 61.9% of items, the ARE of FID-sketch is less than 0.1. This percentage is
3.6 times higher than the corresponding percentage for the CM-sketch. Figures 5 and 6 show
the CDF of the relative error for all sketches when all 100K distinct items were inserted
with the total insertions of 10M.
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4.2.2 Effect of deletions

Our experimental results show that during deletions, the ARE of FID-sketch is always
smaller than the AREs of CU-sketch and CM-sketch. Figures 7 and 8 show the AREs after
different number of deletions for the five sketches. Note that the original CU-sketch does
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Figure 10 ARE vs. counters per array
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NOT support deletions. We enable deletions in it using our DS-subsketch. We start deletions
after inserting all 100K items 10M times.

4.2.3 Effect of on-chip sketch size

Our experimental results show that the ARE is almost inversely proportional to the number
of arrays and the number of counters per array in the on-chip sketch. Increasing the number
of counters per array is a more efficient way to improve the accuracy compared to increasing
the number of arrays. We make these observations from Figures 9 and 10, which show the
results for uniform workloads. We have not included figures for zipfian workloads due to
the lack of space and because they show similar trends as Figures 9 and 10. To conduct these
experiments, we varied the number of arrays in the sketches and the number of counters per
array and measured the AREs using 100K distinct items and 10M total insertions.

4.2.4 Effect of the number of distinct items

Our experimental results show that the AREs of all sketches increase almost linearly with
increase in the number of distinct items in the sketch, however, the rate of increase is small-
est for the FID-sketch. This is shown in Figure 11 which plots the AREs of the five sketches.
With a fixed sketch size, the more distinct items inserted into a sketch, the more items map
to the same counters, resulting in higher error in frequency estimates.

4.3 Evaluation of speed

As the query processes of the CM-sketch, CU-sketch, and our FID-sketch are exactly the
same and we observed that the results for query speed are similar, we only present the results
for our FID-sketch using 3 different data sets.
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4.3.1 On multi-core CPU platform

Our results show that the query speed of FID-sketch increases almost linearly as the number
of threads increases. The query speed reaches almost 70 Mqps when using 24 threads. This
is shown by Figure 12, which plots the query speed of our FID-sketch by varying the number
of threads. We also observe that when the number of threads exceeds 24, the query speed
does not increase further. This is because our CPU has 2 × 6 cores with Hyper-Threading,
which can handle 2 × 6 × 2 = 24 simultaneous threads.
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4.3.2 On GPU platform

For GPU platform, we focus on two metrics, namely throughput and latency for query
requests.

GPU Throughput/Latency vs. Batch Size Our experimental results show that GPU
processing throughput and latency grow as the batch size increases; the effect of batch size
is more prominent on the throughput than on latency. The more query requests a batch
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sends, the more parallelization the GPU employs, and the higher processing throughput
it achieves. However, increasing the batch size increases the processing latency. Thus, a
tradeoff between throughput and latency needs to be made. Figures 13 and 14 plot the
processing throughput and processing latency, respectively, for different batch sizes.

GPU Throughput vs Sketch Size Our experimental results show that the GPU batch
processing throughput decreases with increasing number of arrays and number of counters
per array of a sketch. The effect of the number of arrays is more prominent on the throughput
compared to the number of counters per array. Smaller sketch sizes mean better spatial
locality; thus, smaller sketches make use of GPU’s cache more efficiently and achieve better
processing throughput. However, smaller sketches also mean poorer accuracy. Figures 15
and 16 plot the throughput for queries with varying number of arrays and number of counters
per array, respectively.

5 Conclusion

In this paper, we propose a new sketch called FID-sketch. The key advantage of our FID-
sketch is that it achieves a much higher accuracy compared to the state-of-the-art and
at the same time, achieves the smallest on-chip memory footprint while maintaining the
same query speed as prior sketches. Therefore, it is very well suited for the emerging data
intensive network applications. FID-sketch achieves this by maintaining three subsketches:
an on-chip FQ-subsketch that contains all information to process queries; an off-chip IS-
subsketch that enables fewest counter increments in FQ-subsketch for insertions and thus
reducing the error and memory footprint of the FQ-subsketch; and an off-chip DS-subsketch
that enables deletions from the FQ-subsketch. We carried out extensive experiments on
multi-core CPU and GPU to evaluate the accuracy of the FID-sketch and to compare it
with prior sketches. Our experimental results show that our proposed sketch significantly
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outperforms the state-of-the-art. Our proposed on-chip/off-chip hybrid sketch method is a
generic model and can also be applied to other sketches.
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