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Eiffel: Evolutionary Flow Map for Influence
Graph Visualization

Yucheng Huang, Lei Shi, Yue Su, Yifan Hu, Hanghang Tong, Chaoli Wang, Tong Yang, Deyun Wang and
Shuo Liang

Abstract—The visualization of evolutionary influence graphs is important for performing many real-life tasks such as citation analysis
and social influence analysis. The main challenges include how to summarize large-scale, complex, and time-evolving influence
graphs, and how to design effective visual metaphors and dynamic representation methods to illustrate influence patterns over time. In
this work, we present Eiffel, an integrated visual analytics system that applies triple summarizations on evolutionary influence graphs in
the nodal, relational, and temporal dimensions. In numerical experiments, Eiffel summarization results outperformed those of traditional
clustering algorithms with respect to the influence-flow-based objective. Moreover, a flow map representation is proposed and adapted
to the case of influence graph summarization, which supports two modes of evolutionary visualization (i.e., flip-book and movie) to
expedite the analysis of influence graph dynamics. We conducted two controlled user experiments to evaluate our technique on
influence graph summarization and visualization respectively. We also showcased the system in the evolutionary influence analysis of
two typical scenarios, the citation influence of scientific papers and the social influence of emerging online events. The evaluation
results demonstrate the value of Eiffel in the visual analysis of evolutionary influence graphs.

Index Terms—Influence Graph, Dynamic Visualization, Citation Analysis.
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1 INTRODUCTION

M Aking sense of the evolutionary influence of elements in
interconnected information space is a crucial task in many

domains. In citation analysis, understanding the development of
follow-up topics from a seminal paper helps junior researchers
identify cutting-edge opportunities. In social influence analysis,
analyzing the dissemination of fake news on Twitter via people’s
distributed retweeting behavior provides the clue to potentially
contain the rumor. Because the analysis questions in these tasks
are often unclear to domain users, visualization of the influence
hierarchy of key information elements, known as the influence
graph, becomes an important tool for users to support their tasks.
As an example, Figure 2(a) shows a visualization of citation
influence graph triggered by a scientific paper.

More often than not, influence graphs grow to very large sizes
over time. Some landmark research papers have accumulated more
than 10,000 citations. Celebrity gossip tweets on Twitter have been
forwarded millions of times. Such large sizes prohibit the use of
traditional layout algorithms for influence graph visualization due
to their poor scalability [1]. Although clustering and compression
methods can be integrated with multiscale visualizations to reveal
the community structure of large graphs [2] [3] [4], these methods
have been shown to be inappropriate for influence graphs in which
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flow-based influence propagation patterns are more salient than
community structure. Recently, an influence graph summarization
method has been proposed which aims to maximize the overall
flow rate in a clustered graph representation [5]. However, this
latest study is limited to a static influence graph summarization,
and does not consider the evolution of influence over time or the
potential edge clutter on dense graph summarizations. Also, influ-
ence graphs can be filtered to show only the landmark propagators
on the graph, e.g., the highly cited papers or the most-retweeted
messages. The filtering approach focuses on important details of
influence graphs but fails to reveal the overall influence graph
hierarchy.

In this study, we consider the problem of visualizing large-
scale evolutionary influence graphs. Three domain user’s require-
ments in their influence analysis tasks should be met. First, the
visualization should be a compact summary of influence graph
while revealing the key nodes, edges, and influence flows on
the graph. Second, the visualization should support an interactive
analysis of temporal dynamics of influence graphs, including the
evolution of graph structure and certain node/edge groups, and
their pace of evolution. Third, the visualization should allow to
drill down to the detail of individual elements in the influence
graph and link these details to the context of influence such as
human factors.

Solving the evolutionary influence graph visualization problem
is challenging. In static settings, a specialized matrix decomposi-
tion on the influence graph has been shown to approximate the
influence flow maximization objective and provide compact node
summarizations [5]. Regarding evolutionary influence graphs, it
remains an open question whether node summarization alone
can effectively reduce the visual complexity of influence graphs.
On visualization design, the use of node-link metaphor might
be appropriate for our analysis scenario as users can conduct
several influence path related tasks (e.g., ST3 in the user study
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presented in Section 6.2), in which the node-link representation
is reported to perform the best [6] [7]. However, the authors of
existing works have concluded that for most other graph analysis
tasks, node-link representation performs worse than the adjacency
matrix on graphs that are large and dense. Again, this calls for
the application of effective edge summarization algorithms before
influence graph visualization. In addition, the flow map visual
metaphor [8] adopted in our design was initially applied to graphs
with a single source node and with all the other nodes directly
linked to the source. In comparison, the influence graphs studied
here have many more hierarchies, which brings challenges to the
flow map layout algorithm. Last but not least, the display of time-
varying graphs remains an open problem for the visualization
community. However, in our case, the single source and mostly
single directional nature of the influence graph has narrowed the
design space for visualization.

We present Eiffel, an evolutionary flow map for influence
graph visualization. Our contributions are summarized as follows:

• We propose new edge summarization algorithms, based on
the node summarization method reported in [5], to reduce
the visual complexity of evolutionary influence graphs.
The temporal summarization method is also introduced
to improve analysis efficiency when the number of time
frames is large (Section 4). We quantitatively validate the
proposed triple summarization framework in both data-
driven experiments that compare with standard graph clus-
tering and edge pruning algorithms, and in a user study
about the soundness of summarization result (Section 6.1).

• We adapt the flow map metaphor to the visualization of
influence graph summarizations. A new flow map layout
method is proposed to reveal both hierarchical influence
structure and flow-based patterns. Two evolutionary visu-
alization modes (i.e., flip-book and movie) are introduced
to illustrate the dynamics of influence graphs over time
(Section 5). The flow map and evolutionary visualization
design are evaluated in separate, controlled user studies.
The result demonstrates the advantage of Eiffel over the
baseline design using node-link and single-mode evolu-
tionary visualization (Section 6.2).

• We apply Eiffel to the study of citation influence networks
and retweeting influence networks. Case studies on real-
world data sets were conducted. The study result shows
the usefulness of Eiffel in deriving new and detailed
insights from evolutionary influence graphs (Section 6.3).
An online Eiffel prototype is deployed, which enables the
retrieval and visualization of citation influence evolution
within the visualization community (Appendix C).

2 RELATED WORK

2.1 Influence Graph Visualization

We discuss the study of influence graph visualization in two
application domains: citation network analysis and social influence
graph analysis.

Citation networks, as a subset of bibliometric networks [9],
describe the citation relationship among scientific documents (e.g.,
papers, patents). Analyzing the citation networks has been a
regular topic in the visualization community [10]. The CiteS-
pace II system [11] [12] was built to delineate the concept of
research front and intellectual base using node-link style citation

network visualization. Each document in the research front is
represented by a tree-ring node metaphor, which shows its citation
information. The links between documents indicate a co-citation
relationship [13] [14] [15], i.e., both have been cited in at least one
other document. The historiograph in HistCite [16] also supports
the node-link visualization of citation networks. In particular,
the citation information flow among scientific documents can be
displayed. Maguire et al. extracted and visualized the egocentric
citation network of a document to reveal its publication impact
[17]. In non-node-link designs, VOSviewer [18] projected citation
networks onto 2D space using dimensionality reduction methods;
CircleView [19] was proposed to arrange the citation context of
a document in a circular layout. There are many other citation
network visualization tools, e.g., CitNetExplorer [20], Citeology
[21], and the general-purpose network visualization toolkits such
as Pajek [22], Gephi [23], Tulip [24], and NodeXL [25].

On citation analysis, Eiffel targets the network of highly influ-
ential papers during a long period of time. Each of these papers
can influence thousands of other papers directly or indirectly.
In such a circumstance, the existing visualization methods can
introduce huge visual clutter when the full citation network is
displayed [11] or are designed to interpret only a small subgraph
of the network [17] [19]. For example, CiteWiz [26] proposed the
Growing Polygons technique to visualize the citation influence
networks, with focus on a detailed study of the one-hop citation
relationship. In comparison, Eiffel computes a compact summary
of the evolutionary citation influence graphs to well support the
analysis of highly influential papers. In addition, Eiffel visualizes
the citation influence graph structure and is not optimized for the
display of semantic citation content. This is different from the
recent work of CiteRivers [27], which illustrates evolving topics
of scientific literature and the detailed content in their references.

Social influence graphs are generally constructed to charac-
terize the influence propagation of social media users and their
messages. Cao et al. developed Whisper [28], an elaborate visual
sunflower metaphor to illustrate the spatiotemporal information
diffusion of real-time topics on Twitter. Whisper focuses on the
influence propagation in the geospatial dimension. By contrast,
Eiffel is designed to visually display the influence graph structure
among users or messages. G+ Ripples [29] supports the native
visualization of the information propagation process of public
posts on Google+. It combines the node-link metaphor with a
circular treemap design to efficiently display the hierarchical shar-
ing structure of a selected hot post. G+ Ripples scales to render a
large number of sharing nodes by a space-filling design, which can
highlight key users in the sharing or re-sharing process of the post.
As a trade-off, it can only reveal the local information propagation
path, but not the global influence graph structure. In comparison,
Eiffel can provide an overview of the large-scale influence graph
structure by a principled summarization framework. Siming et al.
introduced D-Map [30], a novel map metaphor for visualizing
the egocentric information diffusion on microblogs. D-Map also
summarizes social influence graph structure to reduce visual
clutter. Nevertheless, their influence node grouping is based on the
social behavior of posting users, which is quite different from our
goal of revealing influence flows in a graph summarization. There
are many other visualizations designed to interpret retweeting
propagation networks [31] [32] [33] [34] [35]. However, few of
these designs support the summarization of large influence graphs
as Eiffel does.
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2.2 Flow Map Visualization
The flow map metaphor is a thematic map design originated in
the cartography practice [36]. The design focuses on the display
of object movements between areas, mostly on the surface of the
earth. For example, human migration and the transportation of
goods can be drawn as flow maps. In the GIS textbooks [37] [38],
lines and points are generally used in the flow map to represent the
direction and magnitude of an object’s movements, respectively.

Regarding network data, Guo proposed an integrated flow
mapping framework for visualizing large volumes of multivariate
flow data extracted from location-to-location networks [39]. In
this framework, graph partition and flow clustering methods are
introduced to group spatial regions and the flows among these
regions. Our work is a special case of the flow mapping method
over network data when there is a single source node on the
influence network being studied. The radial or distributive flow
map [40] is generally used in this case. Therefore, the work by
Phan et al. [8] on a distributive flow map layout comes closest to
our research. They cluster node positions to generate a hierarchical
tree structure, based on which a flow map can be drawn. Compared
with Phan et al.’s work, Eiffel takes a directed non-tree graph as
input and a backbone tree extraction method is used instead of the
hierarchical clustering from node positions.

3 PROBLEM

3.1 Analysis Scenario
In this preliminary work, we restrict the scope to the study
of single-source maximal influence graphs, which illustrate the
influence of one key element in the information space. Such a
maximal influence graph is composed of three types of entities:
an influencer node acting as the single source of influence, all the
propagator nodes that are directly or indirectly influenced by the
influencer, and the directed timestamped influence links from the
influencer to the propagators and between the propagators. For
example, in the citation analysis scenario, the maximal influence
graph of a scientific paper f is composed of a set of nodes
representing papers directly/indirectly citing f (including f ), and
the reversed citation links among these papers being the influence
links. Unlike previous work [5], we consider the temporal dynam-
ics of the influence graph. By the evolutionary setting adopted in
this work, each influence link is associated with a unique time
when the influence first happens from the source of the link to its
target. For example, on the citation influence graph, the time of
each link indicates the publication date of the target paper which
cites the source paper.

Our analytical goal is to understand the evolutionary influence
of the selected element (i.e., the influencer) in the information
space. Achieving this goal serves as the centerpiece of many
domain user’s decision-making tasks, for example, to select the
test-of-time paper award for a conference or to identify the key
people and time frame to accelerate the spread of useful memes
on social media. Because these decisions are often made by the hu-
man without rigid quantitative criteria, the effective visualization
of evolutionary influence graphs allows users to raise questions,
formulate hypotheses, validate and finalize their decisions.

3.2 User Requirement
We summarize three user requirements on the visualization of
evolutionary influence graphs.

First, though the influence graph in many scenarios is large and
complex, consisting of tens of thousands of elements organized
in a non-tree structure, the visualization should be compact with
appropriate visual complexity for the analysis of end users. More
importantly, it should reveal the key components of the underlying
influence graph, including the grouping of graph nodes and links,
the critical propagators, and the salient influence flows across
the entire graph. Meeting this requirement allows the user to
comprehend the overall picture of the influence graph.

Second, as the influence graph is evolutionary, design efforts
should be made to display the temporal dynamics of the graph in
addition to its static structure. Over the potentially long evolution
time span, the visualization should be able to locate the major
changes of the graph while permitting the access of the influence
links in a particular time frame.

Third, both the influence graph and its evolution forms under
certain information context. For example, in citation analysis, each
node in the influence graph represents a research paper written by a
list of authors on a relevant topic. The same authors can contribute
to several other influence nodes/links in the graph, on the same or
separate topics. Illustrating the correlation of this context with
the influence graph can be important for users to understand the
evolutionary pattern of the influence.

3.3 Task Characterization

To meet the user requirements, we design the evolutionary influ-
ence visualization for the following tasks in the typical scenario
of citation analysis.

T1. Static overview of influence graphs. To analyze the
influence of a scientific paper (the influencer), users start from
a visual summary of all the papers directly or indirectly citing the
influencer and the citation structure among them. The summary
provides an overview of the scale of the influence and the key
component in the citation influence graph, such as the grouping
of papers, highly influential papers, and the flow-based influence
patterns.

T2. Interactive analysis of influence evolutions. From the
static overview, users go further to explore the evolutionary dy-
namics of the citation influence graph. This includes both a high-
level viewing of the influence accumulation or fluctuation over
time and an interactive visual query to analyze the fine-grained
influence graph in the selected time frames. Visual comparisons
over time are also conducted to identify the structural change of
the influence graph.

T3. Context correlation and detail viewing. After the static
and dynamic analysis, users focus on the detailed contextual
information of the citation influence. S/he can query the part
of the influence graph contributed by a key author, filter the
influence graph by the topic relevancy to the original influencer,
or drill down to the topic keywords studied in a particular group
of papers. Accessing the context and details helps users validate
the hypothesis formed in the overview and dynamic analysis of
the influence graph.

4 EVOLUTIONARY INFLUENCE GRAPH SUMMA-
RIZATION

In this section, we describe the analytical process to summarize
evolutionary influence graphs for the proposed influence graph
visualization method.
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TABLE 1: Notations.
SYMBOLS DEFINITION
f , G = (V,E) influencer and its maximal influence graph
n, vi, ei j # of nodes, the ith node, and the directed link

from vi to v j in G
A, ai j G’s adjacency matrix and its (i, j)th entry
T , ti j , Γ G’s time matrix, (i, j)th entry, and time span
G[τ] = (V [τ],E[τ]) evolutionary influence graph G at time τ , G =

G[Γ]
M[τ],M static abstraction of G[τ], M = M[Γ]
k, πi, |πi|, C(vi) # of clusters in M, the ith cluster and its size, the

clustering function
l, ξi, S(ξi), D(ξi),
r f (ξi)

# of flows in M, the ith flow, its source and target
cluster index, the flow rate

τ1, · · · ,τL L-segmentation on (0,Γ] for IGS

4.1 Definitions and Objectives

Table 1 lists the notations used throughout this work. We consider
the maximal influence graph G( f ) = (V,E), or G for short, of
a source node f (influencer). Figure 1(A).i shows an example
of such an influence graph. Let G have n nodes, denoted by
V = {v1, · · · ,vn}, where v1 = f is the source node and all the
other nodes are those reachable from f following the influence
links in E. The structure of G is defined by its adjacency matrix
A = {ai j}n

i, j=1, where ai j = 1 indicates an nontrivial influence link
denoted by ei j ∈ E from vi to v j and ai j = 0 indicates an absence
of influence link.

In the time domain, we apply an evolutionary setting on the
influence graph that each link ei j of G is associated with a unique
timestamp ti j, which forms a time matrix T for the graph G.
Each timestamp ti j indicates when the influence first occurs from
the source of the link ei j to its target. Let ti j take an integer
value in (0,Γ] where Γ denotes the maximal time span of the
influence graph. Using the above setting, we define the evolu-
tionary influence graph at time τ by G[τ] = (V [τ],E[τ]) where
E[τ] = {ei j|ti j ≤ τ} indicates that the influence links occurred
before τ and V [τ] = {vi|∃v j,{ei j,e ji} ∩ E[τ] 6= /0} indicates the
corresponding nodes.

The final objective is to summarize the evolution of the
influence graph G by computing abstractions for a series of
evolutionary influence graphs {G[τ]}τ∈(0,Γ]. This is known as
the evolutionary influence graph summarization (IGS) problem.
At time τ , we denote the abstraction of G[τ] by M[τ]. M[τ] is
composed of k disjoint and exhaustive node clusters: π1, · · · ,πk
with size |π1|, · · · , |πk|, and l ≤ k2 flows: ξ1, · · · ,ξl , which are link
groups between k node clusters (see Section 7 for a discussion
on the choice of k). The source and target node cluster indices
of a flow ξi are denoted by S(ξi) and D(ξi). Examples of these
abstractions are shown in Figure 1(A).ii and 1(A).iii. Computing
each abstraction M[τ] over G[τ] is equivalent to defining a clus-
tering function C(vi) that maps the nodes in G[τ] onto the cluster
indices of [1,k].

4.1.1 Offline versus Online Summarization
There are two strategies in setting the clustering function of
an evolutionary IGS. Online summarization computes a separate
clustering for each G[τ] of any τ ∈ (0,Γ]. Offline summarization
normally applies the same clustering function for all τ ∈ (0,Γ],
by computing an abstraction M[Γ] (or M for short) for G[Γ]
(G[Γ] = G, the maximal influence graph). In this work, we apply
the offline strategy exclusively for three reasons. First, on evolu-
tionary influence graphs, we only count the emergent dynamics of
links (nodes) and therefore the clustering nature of each node is

unlikely to change after its first appearance. Second, computing
the node clustering only at the end of the time span yields better
clustering accuracy given that the influence graph information is
complete. This is similar to the online versus offline dynamic
graph layout trade-off [41]. Third, the computational cost is much
lower for a single-batch offline summarization than a Γ-time
online summarization. The online approach also has an additional
overhead to preserve clustering stability among summarizations.

Specifically, the offline IGS problem can be decomposed into
two sub-problems. First, we must compute a static abstraction M
(M[Γ]) of the maximal influence graph G (G[Γ]). Second, we must
compute an L-segmentation 0 < τ1 < · · · < τL = Γ for the time
span of (0,Γ] to generate a series of evolutionary summarizations
{M[τ1], · · · ,M[τL]} for the influence graph. The latter sub-problem
is known as the temporal summarization that reduces the number
of time frames in the dynamic visualization. In the following, we
study the objective for each sub-problem, which paves the way for
the Eiffel summarization framework proposed in Section 4.2.

4.1.2 Static IGS Objective
The static IGS objective, which is built on the flow-based heuristic
in VEGAS [5], governs the abstraction of M on G. The key is to
define the flow rate r f (ξ ) for any flow ξ on M as follows:

r f (ξ ) =
∑ei j∈ξ ai j√
|πS(ξ )||πD(ξ )|

(1)

This flow rate is exactly the sum of all links on the flow, after
normalization by source and target cluster sizes. Given the flow
rate, the static IGS objective is formulated as follows:

max
l

∑
i=1

r f (ξi) (2)

From the visualization perspective, the static IGS objective max-
imizes the rate of all influence flows perceivable by users in the
summarization. This is essentially the same objective form applied
by the classical ratio-association graph clustering algorithm [42],
except that ratio-association graph clustering employs a different
flow rate definition, i.e.:

rc(ξ ) =

{
r f (ξ ) if S(ξ ) = D(ξ ),
0 if S(ξ ) 6= D(ξ ).

(3)

Here the intra-cluster flow has the same rate as that of the static
IGS objective, whereas the inter-cluster flows are set to zero. By
maximizing only intra-cluster flows, the graph clustering method
detects communities having dense internal connections, as shown
in the summarization result of Figure 1(A).ii. However, this is
undesirable for the summarization of influence graphs. If we take
the citation influence graph of Figure 1(A).i as an example, the
sum of the flow rates by the IGS objective (red labels in Figure
1(A).ii) is much lower than that by the static IGS objective (red
labels in Figure 1(A).iii, 3.62 versus 4.73), whereas the sum of the
intra-cluster flow rate is higher.

4.1.3 Temporal Segmentation Objective
The second objective is to regulate the temporal summarizations
M[τ1], · · · ,M[τL] by choosing L nontrivial segmentation points
denoted by 0 < τ1 < · · · < τL = Γ (L < Γ). The heuristic is to
divide the timeline into L dense time frames in which intense
influence links emerge. The resulting dynamic visualization can



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

i. Maximal Influence Graph

Input Graph G
(n=12)

f

Node 
Summarization

rf=0.29

Summarization M
(k=4)

0.33

{1,2,3,4} {5,6,7}

{8,9}

{10,11,12}

0.41

0.75 0.67

0.5

0.67

Summarization M
(k=4)

ii. Graph Clustering

iii. Static IGS

rf=1.13

1 
1.73

0.87

{1}

{5} {6,8,10}

{2,3,4,7,
9,11,12}

1

2

3

4

7

95

6

8

10

11

12

π3

π4

π2π1

π4

π3

π1

π2

(A) Node 
Summarization

i. Baseline Graph

Flow Map 
Visualization

ii. Flow Map

(B) Edge 
Summarization

1 T=25
(time)

L=1

L=2

L=3

rseg=7.2

2.31 5.06

2.312.832.31

τ1

|πi|=|πj|=1
Flow πi→πj

(C) Temporal 
Summarization

Temporal Summarization

.........

.........

.........

T=5T=12

τ2τ1

t12=1

3

3

2

1

1

4

4

5

6

4

Fig. 1: The evolutionary influence graph summarization framework in Eiffel. (A) The node summarization over i maximal influence
graph by ii graph clustering and iii static IGS objective. The link timestamp, clustering result and flow rate are labeled on the influence
graphs. (B) The edge summarization from i baseline graph to ii flow map structure. (C) The temporal summarization. Without loss of
generality, we illustrate a case summarizing the flow with the minimal rate (|πi|= |π j|= 1). Shaded boxes indicate timestamps where
the influence links occur.

reveal the stages of the influence evolution from the influencer. We
denote these L time frames by W1, · · · ,WL, where Wi = (τi−1,τi],
τ0 = 0, τL = Γ. Each time frame is reduced by removing empty
timestamps from the starting and ending boundaries of the frame.

Using these time frames, each flow ξ is divided into L
continuous flow segments, denoted by ξ (1), · · · ,ξ (L). The flow
segment rate of ξ (g) is defined as follows:

rseg(ξ
(g)) =

∑ei j∈ξ ,ti j∈Wg ai j√
|πS(ξ )||πD(ξ )|

·
∑ei j∈ξ ,ti j∈Wg ai j

|Wg|
· |Wg|q (4)

where |Wg| denotes the length of the reduced time frame Wg
and q ∈ (0,1) is the segmentation parameter. Note that the first
multiplicative term in Eq. (4) is the exact flow rate definition
used in Eq. (1) within the current time frame. This first term
will sum to a constant value for all segments in a flow given a
fixed static IGS abstraction. The second multiplicative term is a
weight that prioritizes high density flow segments. The third term
is a penalty for short segments (also an award for long segments)
so that it does not end up with all one-length flow segments. We
apply q = 0.5 by default as a trade-off between segment density
and frame size. Finally, the temporal segmentation objective is
formulated as follows:

max
l

∑
i=1

L

∑
g=1

rseg(ξ
(g)
i ) (5)

If we take the minimal flow πi → π j (|πi| = |π j| = 1) in Figure
1(C) as an example, the initial single-segment flow (L = 1)
with time span Γ = 25 has a flow segment rate of 7.2. After
choosing appropriate segmentation points at τ1 and τ2, the sum
of the segment rates increase to 7.37 (L = 2) and 7.45 (L = 3),
respectively.

4.2 Eiffel Summarization Framework

In Section 3, we built a three-stage framework to summarize large
evolutionary influence graphs. In the first stage (Figure 1(A)), the
nodes in the maximal influence graph G are clustered to maximize
the static IGS objective, which leads to a smaller graph of k nodes
(clusters) and a maximum number of k2 edges (flows). In the

second stage (Figure 1(B)), l flows are selected to adapt to the
flow map visualization design. Lastly, in the third stage (Figure
1(C)), L flow segments are extracted from the entire timeline to
optimize the user viewing experience in the evolutionary influence
graph visualization.

4.2.1 Node Summarization
The work in Ref. [5] showed that the static IGS objective can
be optimized by a symmetric version of nonnegative matrix
factorization (SymNMF) [43]. We follow this method and propose
a two-stage approach. First, we compute the topology similarity
matrix AG of the influence graph G as follows:

AG =
AAT +AT A

2
(6)

where A is the adjacency matrix of G. In the context of citation
influence graphs, each entry of AG indicates the similarity between
two papers by the number of commonly cited and commonly
citing papers (i.e., neighboring nodes in the graph). Second, matrix
decomposition is conducted to generate k node clusters from the
similarity matrix AG by SymNMF

min
H≥0
||AG−HHT ||2F (7)

where || · ||F denotes the Frobenius norm of the matrix. H = {hi j}
is an n× k matrix that indicates the cluster membership of all the
nodes in G. vi will be clustered into πc if hic is the largest entry
in the ith row of H. We apply the following iterative SymNMF
solver with a multiplicative updating rule [43] to compute H:

hi j← hi j

(
1−β +β

(AGH)i j

(HHT H)i j

)
(8)

Here, hi j denotes the entries of H and β is set to 0.5. The
iteration ends when ||AG−HHT ||F < ε||AG||F where ε = 10−7,
or a maximum number of iterations (500) is reached.

We evaluated the SymNMF-based node summarization
method by comparing its performance with those of classical
graph clustering methods in a series of numerical experiments.
The experimental results in Appendix A show that the overall flow
rate and the content consistency within clusters form a trade-off
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in IGS. SymNMF obtains the largest overall flow rate among all
the algorithms tested on graphs of any size. Therefore, we selected
SymNMF as the node summarization method in Eiffel. On large
graphs (e.g., more than 1000 nodes), all algorithms applied to
a moderate number of clusters (20 or 40) fail to detect consistent
node clusterings. This calls for the development of new approaches
to maintain the focus of user analyses on smaller influence graphs
(Section 7). More details on the evaluation of node summarization
methods are presented in Appendix A.

4.2.2 Edge Summarization

Influence graphs generated after node summarization can be much
denser than the original graphs, and they often have complex link
structures. To succinctly visualize the flow of information from
the influencer to propagators, we propose to further summarize
the edges of influence graphs by highlighting the most important
link groups, while minimizing information loss. This means that
we attempt to achieve two conflicting objectives. First, we want
to maximize the overall flow rate in the summarization. Second,
we want to reduce visual clutter and minimize edge crossings in
the final display (i.e., flow map visualization). Below we propose
three edge summarization algorithms.

Connected Top-n Flow Graph. The first edge summarization
algorithm we propose uses a greedy approach. All edges (flows)
are sorted by the flow rate. The first n−1 edges with the highest
flow rates are kept, and the other flows are removed. Here n
is the number of nodes in the graph. If the resulting graph is
disconnected, we incrementally add back the removed edges in
decreasing order of their flow rates until the graph becomes
connected. We call the final graph the Connected Top-n Flow
Graph.

Maximum Weighted Spanning Tree (MWST). The second
edge summarization algorithm computes an MWST that is rooted
at the source node, which maximizes the overall flow rate of the
tree edges. This algorithm guarantees that the resulting graph (a
tree) is planar and can be drawn free of edge crossings.

Maximal Padded MWST. Since a tree has just n− 1 edges,
some edges with high flow rates may be excluded when using
the MWST. To preserve more information in the summarization,
we propose to selectively add back non-tree edges. While it is
a straightforward task to add non-tree edges to the visualization,
doing so would introduce considerable visual clutter and distract
users from the flow map metaphor. To reduce clutter while
preserving the flow map design, we leverage the edge bundling
technique and only add back non-tree edges that can be bundled
onto the tree structure of MWST. Specifically, for a directed non-
tree edge e= vi→ v j, if there is a path from vi to v j in the spanning
tree, we bundle e with that path. If not, but there is a path from vi to
v j in the current summarization (including the tree edges and non-
tree edges added thus far), we bundle e with that path. Otherwise,
if no path can be found, this edge is not added. All non-tree edges
are tested for add-back in decreasing order of their flow rates. The
final visualization largely preserves the flow map design, while
maximally maintaining the influence graph information. We call
the MWST with bundled edges the Maximal Padded MWST.

The proposed edge summarization methods were evaluated in
a numerical experiment (Appendix B). The experimental results
showed that while all the three methods could reduce the visual
clutter and minimize edge crossings, the maximal padded MWST
preserved a higher overall flow rate for graphs of any size after

edge summarization, compared with MWST and connected top-
n flow graph. Therefore, we selected maximal padded MWST
as the edge summarization method in Eiffel. More details on
the evaluation of edge summarization methods are presented in
Appendix B.

4.2.3 Temporal Summarization
After the node and edge summarizations, the temporal summa-
rization computes the best timeline segmentation to maximize
the objective in Eq. (5). We propose an iterative optimization
process for temporal summarization. If we take the segmentation
of a single flow as an example, as shown in Figure 1(C), the
process begins by treating the entire flow as a single segment.
In each iteration, the best segmentation point (τi) is identified
by maximizing the sum of the flow segment rates in Eq. (5).
Segmentation ends when all the candidate segmentation points
no longer increase the sum of the segment rate. The process of a
single flow can be extended to the entire evolutionary influence
graph by aggregating all the flow rates onto the same timeline.

We caution that temporal summarization may introduce some
side effects. When displayed as an animation, users may not
recognize the fluctuating speed of the passage of time. To avoid
this effect, the animation buttons in Eiffel are disabled when tem-
poral summarization is applied. We also note that a few enabling
conditions are set in Eiffel to apply temporal summarization. First,
the total number of time frames should be large (based on a
backend setting) so that the summarization in time can improve
usability with respect to the side effect. Second, the objective in
Eq. (5) should increase from that of the default setting without
summarization, which indicates that the influence graph evolution
is indeed staged and can be clearly perceived after the temporal
summarization.

5 FLOW MAP VISUALIZATION

In Eiffel, we apply the flow map design [8] by observing the
similarity between the influence and flow graphs (e.g., human
migration). First, both types of graphs have roots, which enables
the extraction of tree-based backbones. Second, in both cases,
the flows among nodes are at least as important as the nodes
themselves.

5.1 Static Flow Map

5.1.1 Visual Design
Figure 2 shows a screenshot of the Eiffel visualization interface.
In the main panel (Figure 2(a)), the citation influence graph sum-
marized by the maximal padded MWST (Section 4) is visualized
as a flow map, which serves as the overview of the graph (T1 of
Section 3.3). In the leftmost part of the flow map, the red star icon
indicates the source of the influence graph, i.e., the influencer. All
the other visual nodes in cyan circles indicate summarized groups
of original nodes in the influence graph. The size of each circle
encodes the number of nodes in the group following Stevens’
power law for area perception [44]. Normalization is also applied
to avoid an extreme difference in the actual size. The exact number
of nodes in each group is displayed in the center of each circle
and can be turned off to focus on the graph structure. The label
below each group provides a summary of node content, which
is produced by the keyword extraction algorithm described in
Section 5.1.2 below.
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Fig. 2: Eiffel user interface: (a) Flow map for IGS; (b) Animation controller for evolutionary visualization; (c) The selected node group,
which represents a list of nodes; (d) Detail panel on the selected node.

The links between nodes in the flow map are represented
as yellow, segmented Bézier curves, whose layout method we
describe later. By default, the thickness of each segment indicates
the flow rate from the source of the segment to its destination on
the maximal padded MWST, including the flows passing through.
This is consistent with the design rationale of the flow map. To
reduce visual clutter, the arrow of the link is not visible unless
the user hovers the mouse hovered, because the flow is by default
from left to right. In addition to the backbone MWST in solid,
curved lines, other non-tree links can be displayed on demand as
half-transparent, straight lines.

In addition to the flow map of the IGS, more information is
provided in the corner space of the main panel (Figure 2(a)). On
the top-left, a label indicates the time range of the influence graph;
on the bottom-left, a legend indicates the types of graph nodes
and links; on the bottom-right, two double-ranged sliders control
the maximal/minimal node size and link thickness respectively to
reduce the visual clutter arising from overlapping nodes/labels.

5.1.2 Interaction
The Eiffel interaction on the static flow map is designed to fulfill
the context and detail viewing tasks (T3 of Section 3.3). Some of
these interactions are accessed via the menu on top of the flow
map (Figure 2(a)), users can configure the mappings from data to
the node label, color, link thickness, and the number of clusters.
The node color transparency can be set to reflect the average
number of citations of each paper group. This can help in the
identification of important topic streams on an influence graph.
The system supports different color styles. For a static display,
light background and dark foreground colors are used by default.
When users switch to evolutionary analysis, a dark background
color is applied to provide a movie-like display.

With regard to network interactions, Eiffel offers baseline
interaction methods including node drag&drop, zoom&pan, and
click selection. When the mouse hovers over a node, the other
nodes that have directly influenced this node or have been in-
fluenced by this node are highlighted on the graph, as well as
the connecting influence flows. This helps to distinguish between
direct and indirect influences. Upon the selection of a node on the

graph (Figure 2(a)), the group information (size, content summary,
etc.) and the list of original nodes in the selected group (i.e., a list
of papers in the citation case) are displayed in the panel to the
right of the flow map, as shown in Figure 2(c). When users select
one node from the list, details regarding this node (i.e., paper title,
venue, etc.) are shown in the rightmost panel (Figure 2(d)). On
the citation influence graph, the authors of the selected paper are
displayed below the list of papers. When users select one author,
the influence of this author can be visually observed by the list of
his/her co-authored papers displayed on top of the full influence
graph in the main panel (Figure 8(c)).

The influence graph can be further analyzed via the filtering
operations by the two double-ranged sliders at the bottom-right
of the main panel (Figure 2(a)). If we take the citation influence
graph as an example (Figure 8(a)(b)), using the top similarity filter,
users can specify a minimum similarity value for the source of
the influence graph, and display the distribution of nodes that
match this criterion on the influence graph visualization. Using
the citation filter below, the minimal #citations can be specified to
show only the important papers on the visualization. In both cases,
the full citation influence graph is drawn in the background and
the filtered graph is shown in the foreground overlaid on the full
graph.

5.1.3 Algorithm

To draw an aesthetic flow map, we designed three algorithms to
realize: 1) placement of nodes; 2) intelligent edge layout; 3) node
label generation.

Node Placement. The node layout of a flow map in Eiffel
is calculated in three steps. First, a backbone tree is extracted
by the maximal padded MWST algorithm described in Section
4.2.2. Second, the dot algorithm in the GraphViz package [45]
is applied to the backbone tree (including the links padded onto
the tree) to compute the layout of the root and leaf nodes on the
backbone tree. The dot algorithm is an implementation of the
Sugiyama-style hierarchical graph layout [46]. Third, the position
of the intermediate nodes on the backbone tree is computed
together with the edge layout process.
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(a) Initial node layout by dot [45] (b) New layout for an intermediate node v2 (c) The final flow map layout

Fig. 3: Eiffel flow map edge layout process.

Edge Layout. We introduce a new edge layout algorithm in
Eiffel, which is based on the work of Phan et al. [8]. The original
flow map layout algorithm only works on graphs with one root and
several 1-hop neighbors (i.e., star graphs). The main idea of our
algorithm is to keep the aesthetic flow map layout while allowing
flows to pass through intermediate nodes on the backbone tree.

We describe the algorithm with respect to a simple graph in
Figure 3. The nodes are denoted as v1,v2, · · · ,v11. In the first step,
the positions of the root and leaf nodes are pre-computed by dot
(nodes outlined in red, Figure 3(a)).

In the second step, the position of all intermediate nodes are
computed, in the order of a breadth-first tree search. If we take the
first node v2 as an example, as shown in Figure 3(b), we first define
the concept of a sub-cluster. A sub-cluster of one node includes
all the nodes in one of its child branches on the tree. For example,
{v3, v7, v8, v9} is a sub-cluster of node v2 and {v7, v9} is a sub-
cluster of v3. To compute the layout of v2, we first determine its
maximal weighted sub-cluster. In this case, the node weight can
be the number of papers in the group. Assume {v3, v7, v8, v9} is
the maximal weighted sub-cluster of v2. Then two bounding boxes
are considered: one to enclose all the leaf nodes in this sub-cluster
(i.e., {v8, v9}), denoted as bBox1 (centered at c1), and the other
to enclose the leaf nodes of all the other sub-clusters of v2 (i.e.,
{v5,v11,v12}), denoted as bBox2 (centered at c2). In cases where a
node has only one sub-cluster, bBox1 and bBox2 become the same.
Lastly, the position of v2 is computed as follows:

p2 =
min(d1,d2)

k ·d3
· p1 +

(
1− min(d1,d2)

k ·d3

)
pc1 (9)

In Figure 3(b), r1 and r2 are two intersection points with bBox1
and bBox2 when connecting the root (v1) to c1 and c2, respectively.
d1, d2, d3 are the distances from the root to r1, r2, c1, respectively.
p1, p2, pc1 are the positions of v1, v2, c1, respectively. k denotes
the number of hops from v2 to its maximal weighted leaf node
v9. By this algorithm, v2 is placed on the straight line connecting
the root to the center of its maximum weighted sub-cluster. After
positioning v2, all the other intermediate nodes are placed by the
same method in the order of a breadth-first tree search.

In the third step, to smoothly connect the root to each leaf
node, Bézier curves are constructed, which pass through all the
intermediate nodes on the backbone tree (Figure 3(c)). Note that,
in order to differentiate the flow rate of each link, each Bézier
curve is first virtually computed and all the control points are
kept. Next, each segment on the Bézier curve that connects two
neighboring nodes is drawn separately using these control points.

Label Generation. The textual label beneath each node is
generated by an improved TF-IDF algorithm. TF-IDF was used
previously in information retrieval to rank the words from one
document in the context of a text corpus. In the citation influence
scenario, we extract keywords from a selected group of papers,
which correspond to a single node in the influence graph summa-
rization. Our algorithm is composed of three steps.

First, we denote the selected group of papers as C. The title and
abstract of all the papers in C are merged into a single document
denoted as c. Separate weights of the title and abstract are used,
by default, each title is counted twice. The title and abstract of
highly cited papers is also assigned a higher weight.

Second, we extract and rank tokens from c. Both the unigram
and bigram schemes are applied. In the unigram, each word is
counted as a token; in the bigram, each pair of two consecutive
words in the document is counted as a token. The tokens in c are
ranked by the metric computed as follows:

d f ranking metric(t,c,C,D) = t f (t,c) · id f (t,D) ·d f (t,C) (10)

Here, we denote the token to be ranked as t, the paper collection
in the whole data set as D. The first two terms in the right side of
Eq. (10) preserve those in the original TF-IDF algorithm, which
indicate the token frequency of t in c and the inverse document
frequency of t in D. We introduce a third term of d f (t,C) that
is not used in TF-IDF. This new term represents the document
frequency of t in the selected paper group C and is used to
encourage the selection of tokens that appear in more papers. In
other words, d f (t,C) is a coverage metric. For example, when
comparing one token with ten occurrences in just one paper of the
group and another token with one occurrence in each of all the ten
papers in the group, we prefer to select the latter token.

Third, after the top-ranked tokens are selected, we extract
keywords from these tokens. Due to the limited viewing space, we
pick just one keyword from each token. When the bigram scheme
is used, the two words in a bigram token is ranked further by the
metric of Eq. (10) computed in the unigram scheme.

Our keyword extraction algorithm takes the user’s input for
customization. Users can switch between unigram and bigram
schemes, and choose to show 1-3 keywords according to the space
provided. The node layout and the node/label size can also be
fine-tuned for better visualization.

5.2 Evolutionary Visualization

In addition to the static display, Eiffel supports visualization of the
evolution of influence over time (T2 of Section 3.3). Depending on
the summarization result, users can invoke one of two evolutionary
visualization modes. In the flip-book mode (Figure 7(a)), the
influence graph is visualized cumulatively: once a node or flow
has emerged on the timeline, it remains present forever. Users
can determine an end time point to display the accumulated
influence graph until this point. This is effective for analyzing
the propagation of influence over time. In the movie mode (Figure
7(b) and (c)), the evolutionary visualization shows only the nodes
and flows in a selected time window. This window can be adjusted
and scrolled along the timeline to display the temporal dynamics
(invariants, changes, etc.) of influence evolution. As shown in the
bottom of Figure 2(a), these modes are configured by switching
between the two scented tabs located under the flow map.
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To illustrate influence evolutions, we designed a smooth ani-
mation scheme for the transition between consecutive time frames
in both flip-book- and movie-mode visualizations. First, for nodes
that have emerged or are growing in a given time frame, silver
halos are drawn around these nodes to attract the viewer’s attention
to these changes (e.g., in Figure 7(a), a halo is associated with
node groups having high growths). The node size and numeric
label inside each node circle also change with the new group size.
Second, the new flows in each time frame do not appear instantly.
Instead, an animated transition is displayed so that the influence
link stretches gradually from the source to the destination. In
the movie mode, three stereo depths are introduced to emphasize
the evolution of influence over time. In the foreground, we draw
the newly emerged flows and nodes in silver and fill them with
halos, and we do the same with the flip-book mode. In the main
display layer, other visual objects in the currently selected time
window are drawn in the standard design. In the background, the
complete influence graph (accumulated up to the last time frame)
is displayed in high transparency, which serves as context for the
current influence graph.

Previous researches by Robertson et al. [47] showed that
animation-based trend visualization is the fastest technique for
presentation, but performs worse than static displays (such as
small multiples) regarding analysis tasks. Therefore, in our design,
we support both animated evolutionary visualization and their
static displays. As shown in Figure 2(b), an animation controller is
designed beneath the flow map view of the Eiffel interface, which
is composed of two parts. In the top row, “play” and “stop” buttons
provide the same functionality as those in a classical movie player
for animation. In the bottom row, a timeline slider allows flexible
navigation to show the static display of influence visualization in
a particular time window. In the flip-book mode, there is a single
point selector on the timeline with which users can scroll to any
interesting time point. In the movie mode, the selector becomes a
two-ended range selector, which enables users to adjust the length
of the selector and scroll it to any interesting time window. After
the selection on the timeline is fixed, users can again view the
influence evolution by clicking “play” and “stop” buttons. The
button on the right of the top row allows users to apply variable
window sizes determined by the temporal summarization. On top
of the timeline, there is a line chart, which shows the change of
graph size in the number of new nodes per time frame.

6 EVALUATION

The Eiffel system consists of two technical components: the
IGS and the subsequent flow map visualization. In this section,
we evaluate each of these components based on the results of
controlled user experiments and then demonstrate the utility of the
whole system by its application to case study scenarios in citation
and social influence analysis.

6.1 User Experiment on Eiffel Summarization
First, we investigate Eiffel’s performance in summarizing influ-
ence graphs. In Appendices A and B, we report the quantitative
results of the summarization algorithms. Eiffel is shown to achieve
a better performance trade-off when the influence graph is no
larger than medium in size (∼1000), as compared with alternative
summarization algorithms. Here, we report on user understanding
of the summarization results by comparing the Eiffel visualization
with that of a Google Scholar (GS) like interface implemented

in our system. The GS interface displays the raw data used in
the summarization. The online websites of GS and the Semantic
Scholar [48] are not used for comparison because they are based
on publication data sources that are not similar to ours (i.e.,
AMiner and CiteSeerX). The interface and the data used in this
experiment are provided in Appendix D.

Experiment design. We recruited 24 graduate students as sub-
jects, most of whom were PhD candidates majoring in computer
science who had a good understanding of the citation influence
graph used in the experiment. The experiment involved two ses-
sions. The first was a training session in which subjects completed
a study task on a small influence graph (∼100 nodes) to ensure
that all participants in the test session had a good understanding
of the visualization and user task. In the subsequent formal test
session, each subject performed the task on two visualizations in
turn. To eliminate the learning effect, we selected two influence
graphs so that each visualization was applied on a different graph:
a large influence graph with 29324 nodes (I) and a medium
influence graph one with 1080 nodes (II). The 24 subjects were
partitioned into four groups by the sequence of visualization-
graph pairs tested, i.e., EI-GII, EII-GI, GI-EII, GII-EI (E=Eiffel,
G=Google Scholar, I=Graph I, II=Graph II). Each subject’s answer
and completion time for each task was recorded in the formal test
session. Measurement of the task completion time began after the
subject had read the question.

Task. Each subject was asked to analyze the influence evo-
lution of one research paper from the IGS (Eiffel) or influenced
paper list (GS). After the analysis, s/he was told to write down the
top three topic streams stemming from each studied paper, using
two to three keywords in sequence for each topic stream. Note
that these keywords can be obtained from both labels beneath each
node and the extended list of tokens in the group information panel
(Figure 2(c)). This task (AT 1) is designed to evaluate whether
the subject correctly understands the summarization result (the
overview task in Section 3.3) or the retrieved citation list.

After the subject had completed the task for each visualization,
s/he was asked to answer two subjective questions based on a 0-6
Likert scale in which 6 is the best and 0 the worst.

AQ1 (Usability): How much did this visualization help you in
completing the tasks?

AQ2 (User Experience): How much do you like the experience
of using this visualization?

Result and analysis. We separately analyzed the experimental
results of the Eiffel summarization on the two tested influence
graphs, as these graph data differ significantly. As such, although
it was originally designed as a within-subject experiment, the ex-
periment then had a typical between-subject design in which each
subject experienced only a single visualization for a particular
graph. We set the significance level to 0.05.

First, we analyzed the user answer from task AT 1, i.e., the
topic keywords. To obtain an objective measure of the accuracy of
the subjects’ answers, we applied the dynamic topic model (DTM)
[49], which extracts multiple evolutionary topics from text corpora
with timestamps. In our study, we merged the title and abstract of
each paper included in the influence graph into a document, which
is used as the input to the DTM. The publication year of the paper
is used as the timestamp of the document. The DTM computes a
given number of topics and each topic is composed of a list of
keywords in each year. Each keyword is also associated with a
time-sensitive likelihood for each topic and year it is included in.
We fit the topic keywords provided by each subject to the DTM



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(a) (b) (c) (d)

Fig. 4: User study results comparing Eiffel with the Google
Scholar like interface: (a) Relatedness of user selected topic key-
words by their log likelihood in the DTM model; (b) completion
time; (c) usability; (d) user experience.

model using a maximum likelihood estimation (MLE) approach.
This computes a likelihood value for each topic stream answered
by the subject. The average likelihood of all the three topic streams
provided by each subject is then used as the measure of the answer
accuracy. Note that, we tested 5, 10, 15, 20, 25, and 30 topic
numbers by the DTM. Ten topic numbers achieved the highest
average likelihood value for all the subject answers, which is used
in the analysis of the experimental results in AT 1.

Figure 4(a) shows the distribution of this likelihood measure
on a per-keyword, logarithmic scale. Next, we conducted an inde-
pendent t-test to compare the mean topic keyword log-likelihood
of Eiffel and GS. The study result is divided. On influence graph
I, we found no significant difference between Eiffel (-4.74±0.34,
95% CI) and GS (-5.42±0.7), t(16.1) = 1.91, p = 0.074, effect
size= 0.43. On influence graph II, Eiffel achieved a signifi-
cantly higher log-likelihood (-4.12±0.29) than GS (-5.71±1.36),
t(12.0) = 2.52, p = 0.027, effect size= 0.59. Note that in these
t-tests, we used the Welch-Satterthwaite method to make an
adjustment to the degrees of freedom using because equality of
variance does not hold.

With respect to the task completion time, as the assumption
of normality does not hold, we applied the Mann-Whitney test to
compare the mean completion times of Eiffel and GS. The study
result reveals that for influence graph I, there is no significant dif-
ference between Eiffel (213.17±83.34) and GS (254.67±75.73),
U = 59.0, p = .45, effect size= 0.15, with a mean rank of 11.42
for Eiffel and 13.58 for GS (the rank value has a range of 1
to 24). For influence graph II, Eiffel achieved a significantly
shorter completion time (189.25±81.02) than GS (340.17±76.98),
U = 22.0, p = .004, effect size= 0.59, with a mean rank of 8.33
for Eiffel and 16.67 for GS. The completion time distributions are
shown in Figure 4(b).

The subjective ratings are summarized in Figure 4(c) and (d).
Again, the normality assumption does not hold for the subjective
ratings, and we applied the Mann-Whitney test to compare Eiffel
and GS. On all rating types and studied influence graphs, Eiffel
achieved significantly higher scores than GS. With respect to
usability, U = 15.0, p = .001 on graph I, and U = 17.0, p = .001
on graph II. For user experience, U = 14.0, p < .001 on both
graphs.

Based on the experimental results, we can report two findings.
First, in some cases (influence graph II), the Eiffel summarization
helps users to understand the content and evolution of research
topics, as compared with searching in raw data. The user ac-
curacies, in terms of the likelihood in the DTM model, and
their completion times, are generally better with Eiffel than GS,
which shows only raw data. On influence graph I, we observed
no significant difference. We hypothesize that this is due to the

same reason with the result of Appendices A and B. The content
summary by Eiffel is more consistent in small and medium
graphs than in large graphs. Nevertheless, user experiments on
more influence graphs are necessary to validate this hypothesis.
Second, in the subjective ratings (usability and user experience),
Eiffel performed better than GS regardless of the size of influence
graphs. Users found Eiffel to be more effective in helping them
complete the designed task and would prefer to use Eiffel than
GS, although they did not realize that the two interfaces perform
similarly in task accuracy given some large influence graphs.

Threats to validity. First, the experiment result could be
further validated by conducting tests on more influence graphs,
albeit with the extra cost of hiring additional subjects. We observed
user fatigue after they completed the test with two graphs as the
study task requires considerable cognitive efforts. Second, the
analysis of the accuracy result relies on the DTM model and
could be improved with the use of more advanced models. Third,
the subjective rating could be affected by social expectation that
prefers visualization with an attractive appearance than a list-based
display.

6.2 User Experiment on Eiffel Visualization

In the following, we report the results of the user experiment we
conducted to evaluate the performance of the Eiffel visualization.
The experiment consisted of two formal test sessions, in which
the participants completed analysis tasks based on visualizations
of static and dynamic influence graphs, respectively. In the static
session, we compared two visualizations: a baseline approach
using a straight-line node-link graph drawing with a Sugiyama-
style layout (GraphVis, as shown in Figure 1(B).i) and the Eiffel
visualization (Figure 1(B).ii). In the dynamic session, all tests
were conducted using Eiffel visualizations and we compared two
evolutionary visualization modes: the flip-book and movie modes.
In all the approaches compared by the users, the node/edge visual
settings were the same.

Experiment design. We invited the same set of 24 subjects
described in Section 6.1. In each test session, the experiment
featured a within-subject design in which every subject completed
analysis tasks by the two visualizations in turn. Each visualization
displayed a different influence graph to eliminate any learning
effect. The two influence graphs used were of similar sizes in both
the original graph and their summarizations so that the focus of
the evaluation remained on the visualization method. The other
aspects of the experimental design followed those described in
Section 6.1.

Task. Six tasks were presented, three for the static graph
analysis session (ST 1-ST 3, corresponding to the overview task
in Section 3.3) and the other three for the dynamic graph analysis
session (DT 1-DT 3, corresponding to the evolution analysis task in
Section 3.3). All tasks were conducted on medium-sized citation
influence graphs similar to those described in Section 6.3.1. For
each task, four choices were provided.

ST1 (Static graph structure): Determine which paper cluster
directly influences the highest number of other paper clusters.

ST2 (Static graph in-flows): Determine which paper cluster
received the highest number of direct citation influences (i.e.,
citations of other papers.

ST3 (Static graph in/out-flows): Determine which paper clus-
ter generated the highest number of net citation influences (i.e.,
citation influence sent − citation influence received).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) Task Accuracy (b) Completion time (c) Subjective

Fig. 5: User performance in static graph tasks

DT1 (Local dynamic graph structure): Given one paper clus-
ter, determine which year the number of papers in this cluster
increased the most.

DT2 (Global dynamic graph structure): In a given time range,
determine which paper cluster increased by the highest number of
papers.

DT3 (Local dynamic graph in/out-flows): Given one paper
cluster, determine which year this cluster generated the highest
number of net citation influences.

After the subjects completed all the tasks for each visual-
ization, they responded to the subjective questions described in
Section 6.1.

Results and analysis. Static session. Figure 5(a)(b)(c) show
summaries of the task accuracies, completion times, and subjective
scores, respectively, for tasks ST 1-ST 3. With respect to task
accuracy, the results are split. On average, GraphVis achieved a
higher task accuracy than Eiffel on ST 1 (ST 1: 0.92 versus 0.71),
but was less accurate on ST 2 and ST 3 (ST 2: 0.83 versus 1, ST 3:
0.83 versus 0.92). Based on the results of an exact McNemar’s test,
the differences in task accuracy were statistically significant on
ST 2, p = .05 (1-tailed Exact Sig.), but not on ST 1 (p = .063) and
ST 3 (p = .34). With respect to task completion time, on average,
GraphVis took longer than Eiffel for subjects to complete tasks
(ST 1: 33.38s versus 28s, ST 2: 26.15s versus 19.6s, ST 3: 31.07s
versus 25.48s). The difference is significant, as determined by a
paired t-test on ST 2 (t(23) = 2.21, p = .037, effect size= 0.45).
We found no significant difference for ST 1 (p = .46) and ST 3
(p = .16). For the subjective rating scores, in both measures,
the ratings for Eiffel (usability: 5.21, user experience: 5.04) were
significantly better than those for GraphVis (usability: 4.54, user
experience: 4.5), as determined by the Wilcoxon test. For usabil-
ity, Z = −2.1, p = 0.036, and for user experience, Z = −1.95,
p = 0.05.

From the verbal feedbacks of users, we can draw two con-
clusions to interpret these results. First, Eiffel visualization out-
performs GraphVis in its display of static influence flow patterns
(i.e., significantly better accuracy and completion time in ST 2).
This is achieved using a flow map design that emphasizes flow rate
quantity. Second, Eiffel facilitates the analysis of static influence
graphs in a more user-friendly manner (subjective scores). Users
reported that Eiffel was less complex and more visually pleasing.

Dynamic session. Figure 6(a)(b)(c) show summaries of the
results for DT 1-DT 3. With respect to task accuracy, the flip-
book and movie modes achieved a similar average accuracies
for all tasks with no significant difference, as determined by the
McNemar’s test (DT 1: 0.96 versus 1, DT 2: 0.96 versus 0.96, DT 3:
0.87 versus 0.96). With respect to task completion time, the flip-
book mode required significantly longer time to complete than the
movie mode on all three tasks (on average, DT 1: 42.8s versus
36.19s, DT 2: 40.81s versus 23.97s, DT 3: 68.53s versus 45.63s).

(a) Task Accuracy (b) Completion time (c) Subjective

Fig. 6: User performance in dynamic graph tasks.

The differences are significant, as determined by the paired t-
test: for DT 1, t(23) = 2.22, p = .037, effect size= 0.45; for
DT 2, t(23) = 5.36, p < .001, effect size= 1.09; and for DT 3,
t(23) = 3.59, p = .002, effect size= 0.73. For the subjective
scores, in both measures, the ratings for the movie mode (usability:
5.17, user experience: 5.17) were significantly better than those
for the flip-book mode (usability: 3.88, user experience: 4.04) by
a Wilcoxon test. For usability, Z = −3.67, p < 0.001; for user
experience, Z =−3.1, p = 0.002.

The results and the user feedback from the dynamic session
indicate that: 1) On all the tested dynamic graph tasks such as
the identification of changes in the node/edge size in the graph,
both visualization modes can help users complete tasks correctly
(especially the movie mode, with an accuracy of at least 0.96); 2)
The subjects found the movie mode to be more efficient (required
significantly shorter task time) and user-friendly (better subjective
ratings), because this mode allows them to configure a static
change view for any selected time range, whereas users must
manually compare two flip-book views to perform the same task.

Threats to validity. First, the results were statistically signifi-
cant only on a few tasks with respect to accuracy and completion
time. This could be due to the relatively small sample size. Second,
there may have been the same social expectation bias as that
described in Section 6.1.

6.3 Case Studies
6.3.1 Citation Influence Graph
We applied Eiffel to academic citation influence graphs from the
AMiner V8 [51] and CiteSeerX [52] data sets. The AMiner data
set contains 2.38 million papers on computer science topics up to
early 2016, and there are 10.48 million citation links among these
papers. Each paper’s record includes its title, abstract, authors, and
date of publication, etc. From the AMiner data set, we extracted
a citation influence graph of 18010 papers from 37 visualization-
related venues1. We obtained these influence graphs by recursively
traversing the influence links (i.e., reversed citation links) from the
initial papers. We restricted the influence graph to papers within
the visualization domain by early pruning of irrelevant branches:
the papers influenced outside the 37 VIS venues were included in
the graph but were not traversed thereafter.

In the case studies, we first looked at a paper regarding the
Jigsaw visual analytics system in the VAST’07 proceedings [50],
for which Figure 2(a) shows the initial Eiffel view (k = 20). There
are five directly influenced paper groups (from top to bottom): 39
papers on user interactions, notably the Apolo CHI’11 work that
combines user interaction and machine learning [53]; 5 papers on
document entity analysis, including an extension of the Jigsaw
paper in next year’s IV journal; three seminal works on the

1. We only looked at papers with more than five direct citations.
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(a) 2007-2010 (b) 2011-2012 (c) 2013-2015

Fig. 7: Citation influence graph of Jigsaw paper published in VAST’07 [50].

(a) Topic relevance

(b) Importance by #citations

(c) Influence of Prof. John Stasko   

Fig. 8: Multifaceted analysis of the influence of Jigsaw paper.

reasoning and navigation of visualization; 120 papers on data and
streams; and 106 papers on visual text analytics. By analyzing the
multi-hop influence, i.e., the evolution of related research topics,
we can identify two backbone topic streams. The first stems from
three analytical reasoning studies (labels: “view”, “process”, more
details available by drilling down to bigram summarizations) that
seek insight into provenance and reasoning processes, and finally
split into two branches: the visualization system (e.g. use of eye
gaze data), and the user evaluation of the visualization and the
analytical process. The second backbone topic was triggered by
the 120 paper cluster on the data stream and user interface. In
addition to the side branches of the visual text analytics (also
a directly influenced cluster) and 210 miscellaneous papers, the
main stream propagated through the study of user interfaces
(two clusters with 66 and 124 papers) and finally to human-

computer interaction (HCI) research (gestures, citizen science,
field studies, etc.). By examining the influence graph structure,
we also identified two outstanding paper clusters. A cluster of
three papers (labels: “view”, “process”) including the analytical
reasoning paper by Shrinivasan and Wijk appear to be the most
influential. This small cluster receives little incoming influence
but generates a large influence flow. Another noticeable cluster
is that of four papers (labels:“gesture”, “creation”), as indicated
by the mouse hovering in Figure 2(a). This cluster serves as a
gateway between visualization research (left) and HCI research
(right), with large flows passing through the cluster.

We further analyzed the dynamics of the Jigsaw paper’s
influence by Eiffel evolutionary visualization. In a flip-book mode,
we displayed in animations the process of how influence propa-
gates, and captured the overall dynamic picture, although it is
still difficult to detect and memorize detailed dynamic influence
patterns. In another movie mode, by incorporating the temporal
summarization result, the evolution of Jigsaw’s influence is di-
vided into three time periods and displayed in more succinctly: i)
2007-2010, when some initial papers on visual text analytics and
user navigation process cited the Jigsaw paper (Figure 7(a)); ii)
2011-2012, when more indirect influences occurred, but the focus
continued to be on text analytics and summarization, as well as
the user analysis process and performance (bottom-left and top-
right large paper groups in Figure 7(b)); iii) recently, 2013-2015,
the influenced topic became more diversified (Figure 7(c)). One
emerging topic is “display”. When we selected the major paper
group on that topic (the node in the center of Figure 7(c) on
“study”) and examined their details, we found that most papers
had reported studies of an HCI topic called “public display”.

The influence of the Jigsaw paper can also be analyzed with
respect to the actual topics, their importance, and the associated
key authors. In Figure 8(a), we filtered the influence graph to
show only papers with high similarity (>0.7) to the topic of
the original Jigsaw paper. The similarity score between any two
papers is derived from the word mover distance [54] on the
vector representation of their title+abstract. Each vector adopts
a distributed representation of words using Word2Vec [55]. By
examining the result in Figure 8(a), we found that two initial
branches on the graph have a larger ratio displayed in the fore-
ground (i.e., 3/5 and 68/106), which indicates that the follow-up
research on document entity analysis and the visual text analytics
are related more to the original Jigsaw paper. Meanwhile, research
on reasoning/navigation (0/3) and their follow-up papers are less
relevant (7/27, 18/49, and 20/39). We further filtered the influence
graph to show the papers with at least two citations in the database.
As shown in Figure 8(b), the papers on document entity analysis
(5/5) and reasoning/navigation (3/3) are more influential than the
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Fig. 9: Influence graph of the hierarchical aggregation survey
paper in TVCG [56].

other topics in the same graph. We also studied the influence of
Prof. John Stasko, the leading author of the Jigsaw paper, on this
research topic by displaying the papers he has co-authored on
the graph. As shown in Figure 8(c), after authoring the Jigsaw
paper, he published seven more papers with citation linkages
to the original paper, which cover most of the branches in the
influence graph. On citation influence analysis, we also include
expert feedback in Appendix F to evaluate the usefulness of Eiffel
outside the visualization community.

In another trial, we studied the influence of a survey paper
on hierarchical aggregation for information visualization [56],
as shown in Figure 9. By configuring the node transparency to
reflect the average number of citations/influence, we identified two
classes out of four directly influenced paper clusters. The first class
is the cluster with 19 papers in the top, which is large in size but
has little average influence. Drilling down to the content of this
cluster reveals a diversified summary ranging from network data
to approximation algorithms. The follow up large cluster with 40
papers is similar in its mixed content and low level of influence.
This research thread may not be the major core field influenced by
the source paper.

In the lower area of the figure, there are three small but
highly influential paper clusters directly connected to the source.
The top cluster, i.e., a single paper studying tangible views for
visualization, appears to have the largest influence. Its follow-
up four branches continue to address different types of tangible
interactions, including bending interaction, tabletop interaction,
mobile interaction, and augmented-reality interactions, etc. The
small cluster in the middle area is a paper on real-time visual
queries of big data, and its follow-up works are mostly related to
visual queries. The last smaller cluster at the bottom of the figure
contains two papers, with surprisingly similar titles on TreeMatrix
visualization. We double-checked the data set and found these
papers to be duplicate entries (we have made significant efforts to
reduce duplication, but may not have eliminated all of them). This
provides side evidence of the correctness of the summarization
result: papers with the same citation relationship are put into the
same cluster. The TreeMatrix paper has a few direct influences,
but only one about aggregation algorithms has further influenced
other papers.

6.3.2 Social Influence Graph
In another case study, we applied Eiffel to a large-scale social
influence graph on Twitter, which describes the spread of rumors

and announcements regarding the discovery of the Higgs boson
[57] [58].

We constructed the original influence graph by aggregating
posts by the same users into nodes and folding the links among
posts into influence links among users. An artificial node is
inserted into the graph as the influencer. Influence links are added
from the influencer to each source user who posted related original
tweets during this time. The influence graph was summarized
using the Eiffel summarization framework, whose flow rate max-
imization approach fits well the objective of detecting salient in-
fluence diffusion patterns. Meanwhile, the backbone tree extracted
by the edge summarization accounts for more than 85.5% of the
overall flow rate after the node summarization. To reveal the user’s
characteristics, the node color transparency is used to represent the
average #followers of users in the same cluster. Twitter’s policy
forbids the display of further details regarding the identity of users.

Figure 10(a) shows the overall structure of the social influence
graph (k = 20), which is composed of two subgraphs: i) The left
area features a two-stage propagation pattern in which the posts of
a small portion of users (opinion leaders) were retweeted by a large
number of other users (ordinary people). This pattern is validated
by Figure 10(b), which shows the average #followers of users by
the transparency of their node color. Opinion leaders generally
have a higher average #followers, whereas ordinary people have
fewer followers. ii) The right area shows the interactions between
large groups of people, i.e., the discussions held in small circles
of ordinary people.

When we switch to analyze the influence graph in the movie
mode, we can compare the influence propagation patterns in
two time periods: i) from July 1st to July 4th before/upon the
announcement of the new particle, during which a rumor was
spread on Twitter (Figure 10(c)); ii) from July 4th to July 7th
upon/after the announcement when more discussions were posted
by Twitter users (Figure 10(d)). If we compare these two graphs,
we see little difference in their propagation paths, i.e., rumors
and news spread on Twitter via similar information channels from
opinion leaders to the masses, and later on among the masses
themselves. One interesting finding is that whereas the graph size
in the second stage is almost three times larger than that of the
first stage, the number of opinion leaders remains stable (< 50%
growth) as more discussions arise regarding the confirmed news.

7 DISCUSSION

In evolutionary IGS, the number of clusters (k) is fixed. This
is mainly because as k increases, the maximal IGS objective
achieved (i.e., the overall flow rate) also increases [5]. There may
not be an optimal k under the IGS summarization framework. In
Eiffel, we compute IGS summarizations with multiple ks (e.g.,
10, 20, 40) and allow users to switch between visualizations of
different granularities based on their analysis goals (e.g., overview
or details). The limitations of the current design are two-fold:
for an overview, the labels selected for each cluster can be too
general to interpret, and there is no way to drill down to the
detailed summarization of each cluster for further analysis. For
a detailed view, the number of clusters can be so large that the
visualization becomes very cluttered. In future work, to overcome
these limitations, we plan to develop hierarchical summarizations
of influence graphs, in which the visualizations can be fully
customized to display both an overview and the details of any
particular cluster.
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(a) Overview (b) Avg. of #Follower (c) July 1st-4th (d) July 4th-7th
Fig. 10: Eiffel visualization on Higgs social influence graph.

Regarding the application of citation influence analysis in
Eiffel, we currently obtain the maximal influence graph of one
source paper by an exhaustive search along its reversed citation
links. This primitive approach can lead to a very large initial
graph in which many nodes (papers) are unrelated to the topic of
the source paper. Although venue-based filtering can restrict the
graph to pertinent research communities, it cannot generate topic-
based influence graphs. As the next step in the Eiffel system, we
plan to study the semantics of citation links between papers and
the computation of fine-grained topic-based influence graphs.

We showcased this work with the citation influence analysis
as the main application. The same technique can be also used in
a wide range of other scenarios, including the social influence
analysis mentioned in Section 6.3.2, the functional influence
analysis of a suspicious line of code in the execution of a program,
etc. In these applications, users should first determine the level of
basic elements as the node of the influence graph. We choose the
scientific papers in the citation case and the posting authors in the
social case because they are considered the fundamental unit that
generates the influence. When multiple sources of influence exist,
special treatments should be placed before using our technique.
In the social case, we introduce an artificial influence node
that triggers all the sources of influence. Finally, the selected
granularity of time could also be important for the success of
evolutionary influence graph visualization. For influence process
that develops at a moderate pace, e.g., the citation influence, we
adopt the granularity of a year or a month. For other processes that
evolve rapidly, e.g., social influence on Twitter, we can choose a
finer granularity of a day or even an hour.

8 CONCLUSION

In this paper, we presented Eiffel, a system that draws dynamic
influence graphs with evolutionary flow map visualizations. Eif-
fel addresses multiple challenges when summarizing structurally
complex and time-varying influence graphs, which are formulated
as evolutionary influence graph summarization problems. To solve
these problems, we proposed scalable matrix decomposition, flow
selection, and temporal segmentation algorithms to summarize the
influence graph in nodal, relational, and temporal dimensions. The
flow map of an influence graph summarization is designed to
highlight the dominant flow patterns with minimal visual clutter
while maximizing the information efficiency of the influence
flows. The results of two case studies, which address academic
citation influence graphs and Twitter social influence graphs,
demonstrate the usefulness of the Eiffel system. We conducted a
controlled user experiment to compare Eiffel visualization design
with baseline static graph visualization. The results confirm the
effectiveness of the use of flow map in evolutionary influence
graph analysis tasks.
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