Dynamic Sketch: Efficient and Adjustable Heavy
Hitter Detection for Software Packet Processing

Yipeng Wang*, Tong Yang', Ren Wang*, Charlie Tai*
*Intel Labs
{yipengl.wang, ren.wang, charlie.tai} @intel.com
TPeking University
yangtongemail @ gmail.com

Abstract—Heavy hitter detection is a key task for networking
traffic profiling, which can be used for various purposes such as
Denial of Service (DoS) attack detection, Quality of Service (QoS)
scheduling, load balancing, and flow size based routing, etc.
Over the years, many efforts have been made on designing data
structures and algorithms to achieve fast and memory-efficient
inline profiling in cloud networks. Traditional heavy hitter
detection methods, however, yield an innate and nonadjustable
profiling accuracy (i.e., false positive or false negative) once the
data structure is initialized. Users have no runtime feedback
information nor control on the profiling accuracy, which could
be an important factor for their usages.

In this paper, we propose and evalnate a novel dynamic
and memory-efficient heavy hitter detection algorithm, called
Dynamic sketch. Dynamic sketch performs runtime accuracy
monitoring and provides feedback to users via a sampling
based method. It also self-adjusts the accuracy at runtime to
satisfy the target given by the user. We implemented Dynamic
sketch and our evaluations show that Dynamic sketch is able to
report profiling accuracy with only a minimal 2% performance
overhead. In addition, Dynamic sketch is 2.35x faster than
the state-of-the-art hash table based heavy hitter detector and
achieves more than 2Xx memory efficiency than the state-of-the-
art sketch based implementation.

I. INTRODUCTION

The rapid growth of Software Defined Networking (SDN)
and Network Virtualization deployed in cloud poses great
challenges on high-speed software packet processing. Along
with networking functions such as switching and load balanc-
ing, monitoring the traffic characteristics at real time is critical
for network management and performance optimization. One
common and important aspect of traffic monitoring in the
cloud is heavy hitter detection, with the goal to identify
the set of “heavy” (or elephant) flows which have much
higher packet count or bandwidth consumption comparing
to other lighter (or mice) flows. The applications of heavy
hitter detection include DoS attack detection, flow-size based
routing and planning, billing and charging, and QoS for flow
scheduling [1]-[7]. Figure 1 shows an example heavy hitter
detector that co-locates with the virtual switch to profile traffic
destined to multiple services on a single platform.

Data streaming algorithms [8] are a class of algorithms
that can be used for heavy hitter detection. These algorithms,
however, may not be directly applicable to inline networking

978-1-7281-4832-8/19/$31.00 ©2019 IEEE

services] services] services]
| " | " |
| " |

Virtual
Switch

Server platform eavy Hitter:

traffi&7

Fig. 1. Heavy hitter detector that co-locates with virtual switch to profile
traffic destined to multiple services on a single platform.

traffic profiling tasks. Inline traffic profiling poses stringent
speed and memory efficiency constraints to achieve runtime
and low overhead monitoring of huge number of flows.
Additional processing of traffic in the middle of datapath
may trigger undesirable overhead thus negatively impact the
performance. Hence, heavy hitter detection algorithms need
to be extremely memory efficient and fast.

Many research efforts have been put forth on the area of
fast and efficient heavy hitter detection. From earlier counter
array based data structure [9] to more recent sketch based data
structure [10]. Most recently, researchers propose to combine
various data structures to support more features [11]-[13], or
apply specialized data structure for hardware switches [7].
However, current solutions have two drawbacks. First, these
algorithms do not provide runtime¢ accuracy estimation to
the user thus the users have no information on the quality
of currently reported results. Second, these algorithms yield
imnate and nonadjustable accuracy rates once data structure
is initialized while users may have different accuracy targets.
For example, with different usages, users may prefer either
higher precision rate (less false positives) or higher recall rate
(less false negatives).

Motivated by the need to provide high performance mon-
itoring with adjustable accuracy for the cloud networks, in
this paper, we propose a new heavy hitter detection algorithm
inspired by Elastic sketch [12], called Dynamic sketch. Specif-
ically, 1) Dynamic sketch is a new and enhanced sketch data
structure which is much more memory efficient comparing
to traditional sketch designs. 2) We propose and implement a
novel mechanism to efficiently estimate the profiling accuracy
at runtime so users understand the quality of the profiling

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from IEEE Xplore. Restrictions apply.

results. 3) Dynamic sketch is able to adjust the profiling
accuracy for different usages during runtime to meet the user-
defined accuracy. To the best of our knowledge, Dynamic
sketch is the first heavy hitter detector that has such capabili-
ties. Moreover, we also propose a more comprehensive metric
to evaluate the quality of heavy hitter detection algorithms.

We implement and evaluate our design with Intel Xeon
processor and real traffic traces. The experiment results show
that Dynamic sketch can self-monitor its accuracy with only
a minimal 2% performance overhead. Meanwhile, it is 2.35%
faster than the state-of-the-art hash table based heavy hitter
detector and achieves more than 2x memory efficiency than
the state-of-the-art sketch based implementation.

II. DESIGN OF DYNAMIC SKETCH

In this section, we describe the detailed design of Dynamic
sketch algorithm, including: 1) overview of the design of
Dynamic sketch, 2) the Door keeper mechanism to realize
high memory efficiency, 3) the sampling based mechanism for
runtime accuracy estimation, and 4) a closed-loop feedback
control mechanism using both the Door keeper and sampling
method to dynamically achieve the user-defined adjustable
accuracy. We use the terms of precision rate (PR), recall rate
(RR), false positives, and false negatives frequently throughout
the paper when we discuss the rationale behind our design
choices. PR refers to the percentage of heavy hitter flows
that are reported by the algorithm are real heavy hitters, and
RR refers to the percentage of real heavy hitters are indeed
reported by the algorithm. False positive means a light flow
gets mis-classified as a heavy flow, while false negative means
the opposite. Thus, more false positives means lower PR,
and more false negatives means lower RR. These are critical
measurements to evaluate the quality of heavy hitter detection
algorithms.

A. Overview of Dynamic sketch

Figure 2 shows the high level scheme of Dynamic sketch
algorithm. The data structure is based on Elastic sketch [12]
and composed of three major parts: 1) a bucket-based hash
table that contains information of heavy flows, 2) an additional
table containing a series of sampling buckets for online
accuracy monitoring, and 3) a count-min sketch as fall-back
data structure to capture heavy flows that temporarily fall out
of the hash table. For profiling heavy hitters, packet headers
go through the data structure and necessary information gets
recorded. After every profiling window, keys in the hash table
will be read out for analysis. If the estimated count of a key
is above certain threshold, it is reported as heavy flow.

The hash table data structure is similar to the one proposed
in Elastic sketch [12]. It is supposed to keep all the heavy
flow keys and their counts, thus it is also called the “heavy
part”. It is composed of an array of buckets with each bucket
containing multiple keys. Each key in the hash table has
a private counter field called vote+, and there is a shared
counter called vote— per each bucket. For every incoming
packet, the packet header (i.e. flow key) will be hashed first

to find the index of the bucket. If this key already exists in the
bucket (i.e. a table hit), the corresponding key will increment
its vote+ by 1. If not hit but there is an empty entry in the
bucket, the key will be inserted there and its vote+ counter is
initialized to be 1. If all the entries in this bucket are occupied
by existing keys, one of the keys that is not heavy enough will
be replaced by the new key. To find the key to be replaced,
Zgii; is calculated for cach existing key. If the result is greater
than a certain ratio, this key is deemed “light” and voted out
by the new incoming key. If none of the existing keys is light,
the new key will not replace any of the existing keys, however,
the vote— will be incremented by 1. Intuitively, a key has to
be heavy enough to stay in the hash table.

The keys that are either voted out of the hash table or missed
the hash table, will be fed into a count-min sketch (CMS) [10],
which is also the “light part”. A count-min sketch is a 2-
D array of counters that count the frequency of keys. Flow
keys are hashed and corresponding counter in each row of
the counter arrays is incremented. The final count of the key
that ends up in the CMS is the minimum of all corresponding
counters. For example in Figure 2, based on three hash values
of the key, counter 4 in row one, counter 3 in row two, and
counter 7 in row three are incremented. In this example, the
estimated count of the key will be 11 since it is the minimum
among all the three counters. As a sketch data structure, CMS
could over-estimate the flow count due to hash collisions,
which contributes to the false positives.

Many studies use CMS alone to implement a heavy hitter
detector. However, comparing to a hash table, CMS needs to
access multiple cache lines for each update, and requires an
extra sorted data structure to store the heavy keys. Here, the
CMS is used as the fall-back data structure to capture heavy
hitters that fall out of the hash table. The reason is that the
voting mechanism described above is not perfect. Heavy flows
can be voted out of the hash table temporarily by highly bursty
light flows which leads to false negatives. Although those light
flows are light across the whole profiling window, they could
be heavy in a short period of time with bursty behavior. They
accumulate vote— quickly enough to evict potential heavy
flows. This is especially true for short connections that happen
frequently in mobile network and data centers. Without the
CMS, the false negative rate could be high. While with the
CMS, the heavy flows that are occasionally voted out of the
hash table will not lose any information. When the heavy flow
gets back to the hash table, all the history count of this flow
is still recorded in the CMS, thus the false negative rate is
reduced. At the end of each profiling window, the total count
of the key will be estimated by adding the key’s vole+ from
the hash table to the count getting from the CMS.

Besides the hash table and the CMS, sampling buckets
shown in the middle of the figure are used to monitor the
profiling accuracy. Each sampling bucket has the same data
structure as the regular bucket of the hash table but of larger
size. Every key that hits the sampled buckets in the hash table
will also be fed into the sampling buckets. The sampling
buckets are responsible for estimating the accuracy of the

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from |IEEE Xplore. Restrictions apply.

Door keeper

i s

key | Vote+ key |Votet

| | | !15+1

Vote- —I_'

Vote+ key

key

Votet+ | key Vote+ | Vote-

—
LIl Ed [T 1]

-

Bucketized Hash table

Sampling buckets

Count-min sketch
(CMS)

Fig. 2. The data structure of Dynamic sketch. (D): flow is input into the data structure; certain buckets are sampled for accuracy monitoring. Certain flows
that go to those sampled buckets are also added into the sampling buckets. (2) flow that misses the hash table or flows voted out of the hash table will be fed

into the CMS, corresponding counters are incremented.

current profiling window to provide useful feedback to the
user. We will discuss more details of the sampling buckets
later.

B. Door Keeper to Adjust Accuracy

One issue of the above described baseline algorithm is that
the CMS has to be very large to not over-estimate the packet
count too much. Over-estimation in the CMS could cause huge
false positive rate. In Elastic sketch with similar design, the
CMS has to use 2x more memory space than the hash table
to keep a relatively good false positive rate.

To reduce the size of the CMS to be more memory efficient,
we propose the Door keeper mechanism. The purpose of Door
keeper is to keep light flows out of the CMS as much as
possible while still receive heavy flows that are accidentally
voted out of the hash table. With Door keeper, the CMS only
accepts flows that are: 1) evicted from the hash table with
a vote+ larger than the door keeping threshold, and 2) miss
the hash table but hit CMS with non-zero counter. The first
condition is to limit the flows allowed into CMS to be heavy
flows only. We observe that most light flows never enter the
hash table. The flows that get evicted from hash table with
a large count are more likely to be heavy flows. The second
condition is to guarantee that heavy flows that have already
been evicted out of the hash table keep getting updates during
its temporary stay in the CMS.

Adjustable Accuracy One major benefit of the Door keeper
algorithm is that the door keeping threshold directly trades
off between the false positive and false negative rates, and it
can be tuned during runtime. When the threshold is high, the
data structure eftectively becomes a hash-table only algorithm
since very few flows can make it into the CMS. In this case,
the false positive rate is minimal since the over-estimation
caused by CMS is negligible. On the other hand, with a low
threshold, we conservatively allow many flows to enter the
CMS. In such case, Dynamic sketch regresses to the baseline
algorithm without Door keeper, thus the false negative rate
will be smaller (but false positive rate becomes higher).

With Door keeper, users can adjust false positive and
false negative rates w.r.t. different use cases even during
runtime. For example, for DoS detection, low false negative

is much more critical than low false positive. In such case,
the threshold should set to be low. On the other hand, for
flow-size based routing and planning, both false negatives
and false positives are important. Thus the threshold should
be moderate. Later we will describe a closed-loop feedback
mechanism to adjust the door keeping threshold automatically
during runtime, to achieve accuracy targets specified by the
users.

C. Bucket Sampling for Accuracy Monitoring

Besides Door keeper, we design a sampling method to
monitor the profiling accuracy. None of the existing heavy
hitter detection algorithms can report profiling accuracy to
users. There is no estimation on false positive and false
negative rates of current profiling results and users have no
means to flexibly balance between memory cost and accuracy
in real-time, which could be important for high level decision
making. Many traditional streaming algorithms provide certain
mathematical error bound but it is difficult to relate the bound
to false-positive and false-negative rate of a running sketch,
which could be very different from the theoretical error bound.
For example, many sketch-based algorithms provide a so-
called (e, d) error bound. It means that the estimated packet
count will fall into the error bound of e with a probability
of 4. With fixed memory space, one could choose to cither
have tighter e or higher 4. It is hard to decide which yields
better accuracy for different workloads. Thus, it is ideal for
a monitoring based mechanism to provide users with more
insight instead of only providing the loose mathematical
bound.

Hence, we propose a sampling based mechanism on the
hash table to estimate the false positive and false negative rates
of the current sketch at runtime. The proposed method is very
light-weight and only requires a small amount of additional
memory space. We sample a small percentage of buckets in
the hash table, augmenting them with larger sampling buckets,
to emulate a larger hash table. We treat the content in those
larger sampling buckets as the ground truth. At the end of each
sampling window, we compare the content of the sampled
buckets in the hash table with the content of the sampling
buckets to calculate the false positive and false negative rate.

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from IEEE Xplore. Restrictions apply.

We report this as the estimated accuracy. In Section III, we
show that this sampling mechanism tracks the real accuracy
closely with only sampling 5% of the total buckets.

D. Dynamic Sketch: Closed-loop accuracy control

With the sampling method and the Door keeping algorithm,
Dynamic sketch can dynamically monitor and adjust itself to
achieve certain accuracy targets. Specifically, users can specity
their precision and recall rate targets to Dynamic sketch, and
Dynamic sketch aims to reach the targets via adjusting the
door keeping threshold dynamically based on the feedback
from the sampling mechanism.

As discussed, the door keeping threshold trades off between
the false positives and false negatives (precision vs. recall
rate) which means higher precision rate (PR) leads to lower
recall rate (RR) and vice versa. Thus, we design the algorithm
to achieve PR target meanwhile to maintain RR as high as
possible. Both PR and RR are reported to users so that they
can adjust the target if necessary in the following profiling
windows. During the self-adjusting phase, the algorithm starts
with a low door keeping threshold. This is to start with RR
as high as possible. It might be necessary to trade RR for
PR later on. Every 100k packets (or specified by user), the
sketch reads the sampling sets and estimates PR and RR. If
PR drops below the specified target value and RR is still higher
than the target, the sketch performs the following two steps:
1) increase door keeping threshold for next sampling window,
and 2) reset certain percentage of counters in the CMS. The
first action is to improve PR for the next sampling window as
we described in the Door keeper section. However, many mice
flows may have already sneaked into the CMS due to the initial
low threshold. Thus, the second action of resetting certain
amount of counters in the CMS effectively removes those
flows. We choose to reset only certain percentage of the total
counters (e.g. 20%) due to the following considerations: 1) to
trade off between the false positive and false negative with
finer granularity, and 2) to reduce the overhead of the counter
resetting. To further reduce the cost of resetting counters, a
more passive resetting process may be applied. For example,
in the next sampling window, when a new packet comes to
the CMS, we reset the corresponding counter once and mark
it as reset done. The process can be repeated until certain
percentage of counters are marked.

If the monitored RR is lower than the target, the algorithm
lowers the current door keeping threshold. If neither RR nor
PR target can be reached after the adjusting phase finishes,
a warning is sent to the user. User can then choose to either
enlarge the data structure or lower the target in the next phase.

E. Heavy Hitter Detection Metric

After describing the design of Dynamic sketch, we now
introduce a new metric to evaluate heavy hitter detection
algorithm. With the traditional binary classification used by
many previous studies, a flow would be classified as either
heavy or light with a crisp boundary (c.g. 500 packets),
without considering the distance of this flow’s packet count to

TABLE 1
TRAFFIC TRACES USED FOR EVALUATIONS
trace flow info.
CAIDA 10 traces, 2.5m packets each, 110k flows, 850 heavy flows
Facebook | 9.1m packets, 16k flows, 739 heavy flows
UCLA 10m packets, 30k flows, 740 heavy flows

the boundary. We believe the classification of flows close to
the boundary should carry different weight comparing to the
flows far off from the boundary during accuracy evaluation.
For example, if we wrongly classified a flow of 490 packets as
a heavy flow, it should be much better than mis-classifying a
flow of only 100 packets. Thus, we propose an improved false
positive and false negative definition to take consideration of
such factor.

We use a linear weight algorithm to weigh false predictions
differently depending on their deviation from the boundary. As
indicated by the following equation, we treat a mis-classified
flow as a fraction of one¢ false-positive or false-negative if its
packet count z is within a range of the boundary.

: (|z — boundary|) > range
: (|x — boundary|) < range

f(z) :{ }Houndaw\
range
For example, a flow with 490 packets that is mis-classified
as a heavy flow (i.e. above 500 packets) is only counted as
0.2 false positives with a range of 10% around the boundary.
We believe the new metric could more practically reflect the
quality of the heavy hitter detector. We use such improved
metric throughout the evaluation section. However, it’s worth
noting that even with the original simple cut-off definitions,
the conclusion of the evaluation section still holds.

III. PERFORMANCE EVALUATION
A. Platform and Data Set Configuration

Platform:; We use Intel® Xeon® Platinum 8160 CPU (code
name Skylake SP) on a two-socket platform with each CPU
running at 2.1GHz. Each CPU chip has 24 cores and there
are in total of 48 cores. We run the software implementation
on a single core for all the evaluations. We have in total of
88GB DDR4-2666 DRAM on board.

Dataset: For comparison, we use the data traces provided
by Elastic sketch [14], which consist of multiple datasets
based on CAIDA traffic traces. We also use two longer traces,
from Facebook [15] and UCLA [16]. They have very distinct
characteristics than the CAIDA traces w.r.t. flow and packet
count, which allows us to evaluate our design with various
traffic scenarios. We use the Source IP as the flow ID in
all the evaluations, 0.02% packet count as the heavy flow
threshold for CAIDA and Facebook traces, and 0.002% for
UCLA traces. The number of heavy flows is roughly under
1000 for all traces, thus we can use similar memory size for
comparison. More details on the dataset are shown in Table 1.

Software Parameters: For all the tests, 5% of the hash
table size of memory is allocated to the count-min sketch,

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from |IEEE Xplore. Restrictions apply.

RR

1]
]
[}
7
1
]
[
7
I3

69K 92k 115 23K sk 69K 92
memory size

115 23K

6K
mermory size

(a) (b)

Fig. 3. Precision rate (a) and recall rate (b) comparisons among various
configurations.

PR . RR

0.6 —m=cyn_0 —m=dyn_0

=t=dyn_0.4

0a ——dyn_0.4

—adyn_0.6 ——yn_0.6

—clyn_1 =s=dyn_1

12.5€ 25K 77K 101K 12.5K 25K 77K 101K

50K 50K
memory size mermory size

(a) (b)

Fig. 4. Precision rate (a) and recall rate (b) comparisons among various
configurations with Facebook trace.

comparing to 2x in the Elastic sketch paper [12]. For com-
parison with other algorithms, we fixed the total memory size
for fairness. We use the same 1-row count-min sketch structure
as Elastic sketch, and the hash table is a 8-entry bucketized
hash table structure. The baseline door-keeper threshold is the
average count of the counters of the bucket, and it is increased
or decreased depending on the control loop.

B. Accuracy of Heavy Hitter Detection

We run all CAIDA traces and plot the average recall and
precision rates for comparison with various parameters in
Figure 3. The memory size of the x-axis is the total memory
size including the sampling buckets for Dynamic sketch. In
these tests, we apply different preset target PRs, and allow the
algorithm to freely trade off RR and maintain targeted PR.
We sample 5% of total buckets with each sampling bucket
consisting of 16 entries. The hash table itself has 8 entries
per bucket. Intuitively larger sampling buckets can be used
for higher accuracy estimation, but we found 16-entry is
sufficient to effectively predict PR for closed-loop control. As
aresult, only 10% additional memory is allocated for sampling
purpose.

Figure 3(a) shows that PR are kept above the target for
all the tests. As expected, higher PR usually trades off for

. PR,
095
0.8 b
0.6 £
2 S o5 —m=dyn_0
- - —s—dyn_0 3 -
06 e ——dyn_0.6
0.2 —-—dyn 08 05 =4=dyn_08
—=dyn_1
o —edn_t 07
12.5K 25K 50K 7K 101K 12.5K 25K S0K 7K 101K
mmmmm y size merriory size
(a) (b)

Fig. 5. Precision rate (a) and recall rate (b) comparisons among various
configurations with UCLA trace.

dyn sketch vs heavy keeper

23K 69K 92K

46K
Fig. 6. Recall rate comparison to heavy keeper

RRrate
o o ©
> o ®

o
N

0 I

11.5K
heavy keeper B dyn_sketch

lower RR. Note that original Elastic sketch (i.c. the “orig”
curve in the figure) without Door keeper and uses a large
CMS needs significant more memory and cache resource
(which may negatively impact the performance of co-running
workloads), produces much lower RR and provides no self-
adjusting capability.

Facebook and UCLA traces Figure 4 and Figure 5 show
the evaluation results of the Facebook and UCLA traces. Due
to the much higher packet count and more uniform distribution
than the CAIDA traces, we sample 5% buckets with 32 entries
per bucket in these tests. Both sets of results show similar
effectiveness comparing to that of the CAIDA traces. For the
Facebook trace, we observe that RR does not change notably
when PR target is adjusted, meaning that RR is more tightly
bounded by the size of total memory rather than the CMS in
this case. This is because the Facebook trace exhibits more
uniform distribution than the other two traces.

Comparing to Heavy Keeper We¢ also compare the ac-
curacy with the state-of-the-art hash table based heavy hitter
detection algorithm, Heavy keeper [17]. We allocate various
memory sizes and configure Heavy keeper to identify top-
900 heavy flows. A major issue of Heavy keeper lies in the
extra memory required to maintain the heap for heavy flows.
From the open source implementation [18], we found that
54 extra bytes are needed for each heavy flow, comparing to
only 8 bytes in Dynamic sketch. Figure 6 shows that Heavy
keeper cannot start with smaller memory sizes, while for
larger memory sizes, Dynamic sketch achieves better accuracy.
Figure 8 shows that the heap consumes significant higher
overhead to maintain. It costs 2-3x more cycles for processing
each packet for Heavy keeper. Other counter and heap based
algorithms have even worse accuracy and performance [17].
It is also not straightforward on how to monitor the accuracy
during runtime for heap based algorithms.

C. Set Sampling Evaluation

Figure 7 evaluates how accurate the sampling method tracks
runtime PR and RR. As we can see, for most cases the
absolute error is within 0.05 with the exceptions for very low
memory size cases. When smaller memory size is allocated
to the hash table, the absolute number of sampling buckets
are also small which leads to lower accuracy due to inherent
sampling variations. Another observation is that the Facebook
trace yields lower accuracy than the CAIDA traces even if we
give 32 entries per sampling buckets (comparing to 16-entry

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from IEEE Xplore. Restrictions apply.

absolute prediction errors 015 absolute prediction errors

01 N

008 WER_MPR mRR ®PR
01

0.06

0.04
0.05

o m - _ - 0 -
10.5k 21k 42k 63k 84k 125K 25K 50 77K 101K
(a) (b)

Fig. 7. Absolute error comparison: CAIDA trace estimation errors with 5%
16-entry sampling (a) and Facebook trace estimation errors with 5% 32-entry
sampling (b) reported by the sampling technique.

Normalized cycle/packet 2.67
2.50
2.00
150
1.00 1.02 1.04 1.13
1.00
>~ I I I
0.00
baseline sampling door keeper dynamic heavy keeper

Fig. 8. Performance comparison

for CAIDA traces). This is again due to the more uniform
distribution of the Facebook trace.

D. Processing Speed Evaluation

The performance comparison is based on the 5% sampling
ratc with 16-entry sampling buckets. Figure 8 shows that
during steady state operations, the Sampling and Door keeper
algorithms only incur a small overhead of 2-4%. Meanwhile,
during active dynamic control phase (resetting counters and
calculating RR and PR every 100k packets), the processing
overhead is more pronounced, at 13%. In practise, when the
profiling accuracy reached the target, the algorithm exits the
dynamic control phase and operates at steady state. During the
steady state operation, the sampling window is much larger
which reduces overhead significantly.

IV. RELATED WORKS

Various algorithms have been proposed for heavy hitter
detection. These algorithms in general fall into two categories.
The first category is counter-based algorithms. Examples in
this category include Frequent [19], [20], Lossy Counting [21]
and Space Saving [9], summarized in [22]. With counter-based
algorithms, candidate heavy flows are stored in a linear table
of counters, which requires O(n) overhead for key lookups.
Periodically, the table also needs to be swept to evict keys with
smaller counters. More advanced algorithms could achieve
O(1) for lookup and update, however they require much more
memory [23]. A recent study [7] proposed a variant of counter-
based algorithm which works better for hardware pipeline
implementation, but not for software packet processing. The
second major category is sketch-based algorithms [1], [10],
[11], [24]-[26]. Traditionally sketch-based algorithm uses
sketch with a sorted data structure such as min-heap to record
the key of the heavy flows. Time consuming operations are

required to maintain the heap for example in the Heavy
keeper [17].

A most recent work on traffic profiling is Elastic
sketch [12]. In this study, the authors propose to combine a
hash table with a count-min sketch (CMS) [10] to accurately
report heavy flows. Previous studies also use a hash table
as the key storage for a CMS [27], [28]. The difference is
that Elastic sketch puts the hash table in front of the CMS.
Dynamic sketch is based on Elastic sketch. However, with
the algorithms we proposed, Dynamic sketch is much more
memory efficient than Elastic sketch and able to adjust itself
for accuracy targets which the Elastic sketch cannot do.

V. CONCLUSION

In this paper, we propose Dynamic sketch which provides
users profiling accuracy information at runtime, and adjusts
accuracy toward user specified target via a dynamic closed-
loop feedback control. None of existing algorithms have such
capability. Comparing to traditional algorithms which give a
rough mathematical error bound, Dynamic sketch provides
more practical information in real networking deployment.
Evaluation shows that Dynamic sketch successfully tracks user
specified accuracy targets and reports PR and RR accurately
with minimal performance overhead. Meanwhile, Dynamic
sketch is much more memory efficient than the state-of-the-
art heavy hitter algorithms including Elastic sketch and Heavy
keeper. This is critical for networking services running on
the same platform with many cloud applications, who are
competing for hardware resources.

REFERENCES

[1] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI'13, 2013.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies,
ser. CONEXT 11, 2011.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14, 2014.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI'10, 2010.

[5] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-
derstanding tcp incast throughput collapse in datacenter networks,” in
Proceedings of the Ist ACM Workshop on Research on Enterprise
Networking, ser. WREN ’09, 2009.

[6] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Proceedings of the Sym-
posium on SDN Research, ser. SOSR 18, 2018.

[7] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, 2017.

[8] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proceedings of the Twenty-
eighth Annual ACM Symposium on Theory of Computing, ser. STOC
"96, 1996.

[9] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proceedings of the 10th
International Conference on Database Theory, 2005.

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from IEEE Xplore. Restrictions apply.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” Journal of Algorithms,
2005.

[11] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16, 2016.

[12] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018.

[13] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM 19, 2019.

[14] Elastic sketch GitHub repo, 2019 (accessed April 10, 2019),
https://github.com/Blockliu/ElasticSketchCode.

[15] Facebook mnetworking trace, 2019 (accessed April 10, 2019),
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-
datacenter-network/.

[16] UCLA networking trace, 2019 (accessed April 10, 2019),
https://lasr.cs.ucla.edu/ddos/traces/.

[17] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L.. Uden, and
X. Li, “Heavykeeper: An accurate algorithm for finding top-k elephant
flows,” in Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC 18, 2018.

[18] Heavy keeper GitHub repo, 2019 (accessed April 10, 2019),
https://github.com/papergitkeeper/heavy-keeper-project.

[19] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems, 2003.

[20] E. D. Demaine, A. L6pez-Ortiz, and J. I. Munro, “Frequency estimation
of internet packet streams with limited space,” in Proceedings of the
10th Annual European Symposium on Algorithms, ser. ESA 702, 2002.

[21] G.S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proceedings of the 28th International Conference on Very
Large Data Bases, ser. VLDB ’02, 2002.

[22] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proceedings of the 29th International Collogquium
on Automata, Languages and Programming, 2002.

[23] R. Ben-Basat, G. Finziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” Proceedings of he 35th Annual IEEE
International Conference on Computer Communications, 2016.

[24] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proceedings of the Twenty-
eighth Annual ACM Symposium on Theory of Computing, 1996.

[25] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, ser. IMC 04, 2004.

[26] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” ACM Transaction on
Knowledge Discovery from Data, 2008.

[27] O. Alipourfard, M. Moshref, and M. Yu, “Re-evaluating measurement
algorithms in software,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, ser. HotNets-XIV, 2015.

[28] O. Alipourfard, M. Moshref, Y. Zhou, T. Yang, and M. Yu, “A
comparison of performance and accuracy of measurement algorithms in
software,” in Proceedings of the Symposium on SDN Research, 2018.

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:25:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

