
1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

1

Diamond Sketch: Accurate Per-flow
Measurement for Big Streaming Data
Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li

Abstract—Per-flow measurement is a critical issue in computer networks, and one of its key tasks is to count the number of packets in
each flow (for big streaming data). The literature has demonstrated that sketch is the most memory-efficient data structure for the
counting task, and is widely used in distributed systems. Existing sketches often use many counters that are of the same size to record
the number of packets in a flow, thus the counters are forced to be large enough to accommodate the size of the largest flow.
Unfortunately, as most flows are small (i.e., mice flows) and only a very few flows are large (i.e., elephant flows), many counters
represent very small values, which is a waste of memory. Sketches are often stored in fast but expensive memory (e.g., SRAM), thus it
is critical to achieve high memory efficiency. To address this issue, we propose a novel sketch, namely the Diamond sketch. The
Diamond sketch is composed of atom sketches, and each atom sketch uses small counters. The key idea of Diamond is to dynamically
assign an appropriate number of atom sketches to each flow on demand, thus optimizing memory efficiency. Experimental results
show that the Diamond sketch outperforms the best of the five typical sketches by up to 508.3 times in terms of relative error while
keeping comparable speed. We made the source code of all the six sketches available on GitHub [1].

Index Terms—sketch, data streams, accuracy, distributed monitoring.

F

1 INTRODUCTION

1.1 Background and Motivation

P ER-FLOW measurement is a critical issue in computer
networks, and it provides information for anomaly de-

tection, capacity planning, accounting and billing, and ser-
vice provising [2], [3], [4], [5], [6]. In per-flow measurement,
one fundamental problem is to estimate the number of pack-
ets in each flow (flow size) for big streaming data. A flow is
often identified by a certain combination of fields in the five-
tuple in the packet’s header: source IP address, destination
IP address, source port number, destination port number,
and protocol type. Network data in one second contains
hundreds of millions of flows. Real network flows have two
characteristics: high-speed and non-uniform distribution. On
the one hand, the speed of network traffic is so high that it
is very hard to make a precise record of sizes of flows [7].
On the other hand, the sizes of network flows are usually
non-uniformly distributed [8], [9], [10], which means a small
part of flows have very large sizes (elephant flows) while most
flows have small sizes (mice flows). Two typical distributions
of this kind of network traffic are Zipfian [11] and Powerlaw
[12], and the flows whose sizes follow Zipfian distribution
are called skewed network traffic.

Due to the first characteristic of network traffic – high
speed, approximately recording and estimating data with
sketches has gained popularity [9], [10], [13]. Sketches are
probabilistic data structures, and can achieve small mem-
ory footprints, high accuracy, and fast speed of insertions
and queries. Sketch plays an important role in distributed

• T. Yang, S. Gao, Z. Sun, Y. Wang and X. Li are with the School of
EECS, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing,
P.R. China. E-mail: yangtongemail@gmail.com, gao.siang@pku.edu.cn,
sunzhouyi@pku.edu.cn, wang.yufei@pku.edu.cn, lxm@pku.edu.cn.

• Y. Shen is with the School of Computer Science and Technology, Xidian
University, Xian 710071, China. E-mail: ylshen@mail.xidian.edu.cn.

system measurement, because it can perform network wide
measurement for the whole system [14], [15], [16]. In a
classical scenario, a data center has many monitoring nodes,
each running a sketch to monitor the network flows. And a
collector will collect all the data from those sketches and
produce useful information. Existing sketches work well
on uniform traffic. Unfortunately, they cannot work well
in practice because of the second characteristic of network
traffic – non-uniform distribution. Specifically, conventional
sketches (such as CM [13], CU [17], Count [18], CSM [19]
sketches) use counters that are of the same size to store the
number of packets. On the one hand, elephant flows are
often considered to be more important than mice flows, thus
the counters need to be large enough to represent the largest
size of the elephant flows. On the other hand, the large
quantity of mice flows means that most counters will only
represent a small value, and the higher bits in these counters
are all 0, leading to a waste of memory. Furthermore, the
memory usage is limited for sketches, because in order to
catch up with the high speed of network traffic, the sketch
should be stored in fast memory (such as SRAM, Static
RAM) [7]. Compared to DRAM (Dynamic RAM), SRAM
is tens of times faster, but is much more expensive and
limited in size [20]. Therefore, limited memory size and
big counters lead to a limited number of counters, which
further incurs a high collision rate in sketches, and finally
drastically degrades the accuracy of sketches. The goal of
this paper is to design a novel sketch that can achieve a much
higher accuracy than the prior art, especially when processing
non-uniformly distributed network traffic using just a small
memory footprint.

1.2 Proposed Approach
In this paper, we propose a new sketch, namely the Dia-
mond sketch, as it takes on a diamond shape. A Diamond

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

2

sketch is composed of many small sketches, whose counters
have a very small number of bits (e.g., 4). Each small sketch
is called a carbon atom sketch or an atom sketch, because a
Diamond sketch consists of many carbon atom sketches,
similar to that a diamond is composed of many carbon
atoms.

The key idea of Diamond is to assign atom sketches to
flows on demand. A Diamond consists of an increment part,
a carry part and a deletion part. The increment part, along
with the carry part, is used for insertion and query, and
the deletion part is used for deletion. These three parts are
all composed of atom sketches: the increment part contains
several atom sketches, while the carry part and the deletion
part both contain only one atom sketch.

We recommend using the CU sketch [17] as the atom
sketch, because of its easy implementation, high efficiency,
and high accuracy. Here we briefly show how the CU
sketch works. Specifically, the CU sketch is an array A with
w counters and k independent hash functions hi(.) (1 6
i 6 k, 1 6 hi(.) 6 w). Given an incoming packet, first,
it obtains the flow ID from the packet’s header, computes
k hash functions and locates k mapped counters. Then it
increments only the smallest counter(s) by 1. There could be
more than one smallest counters, and we need to increment
all the smallest counters by 1. When querying a flow ID, it
computes k hash functions, and returns the minimum value
of the k mapped counters.

As a matter of fact, the atom sketch could be any
common sketch mentioned in this paper. For example, if
we use the CM sketch as our atom sketch, due to the
similarity between the CM sketch and the CU sketch, the
algorithms of insertion and query remain the same. As for
the deletion part, we do not even need it as the CM sketch
supports deletions itself, and thus the memory usage can be
further reduced. However, because deletion operations are
far less frequent than insertions in network measurement,
and using CU sketches as atom sketch achieves higher
accuracy, we will mainly discuss the data structure using
the CU sketch as the atom sketch.

The Diamond sketch is composed of three parts: the
increment part, the carry part, and the deletion part. Each part
is composed of one or several atom sketches.
Increment part: As shown in Figure 1, the increment part
of our Diamond sketch is made up of d atom sketches:
I1, I2, ..., Id, where Ij has Lj counters. j is called the depth of
sketch Ij , and d is called the depth of our Diamond sketch.
Each counter of all these atom sketches has w1 bits. w1 is
usually very small (e.g. w1 = 4), thus overflows may happen
frequently. To record an incoming packet, we first insert it
into the first atom sketch I1. If the corresponding counters
in I1 overflow, we will insert it into I2, and so on and so
forth, until there is no overflow or counters in Id overflow.
Carry part: To record the overflow status of each flow, we
also need a carry part (an atom sketch C, as shown in Figure
1) to tell the deepest sketch a flow has been inserted into.
Suppose a flow causes overflows in atom sketch I1 and I2
when being inserted, and is successfully inserted into I3, 3
is called the overflow depth of the flow. We query this flow in
C. If the query result is 2, which means this flow is inserted
into I3 for the first time, we need to update the carry part
by inserting this flow into C. Otherwise, we do not update

the carry part. The carry part is also needed during query
operations. When querying a flow, we first query it in C.
Suppose the result is a, which means we need to query this
flow in I1, I2, ..., Ia to calculate the query result.
Deletion part: Per-flow measurement usually does not
require deletions, since the size of each flow will never
decrease as the network traffic passes by. Despite that dele-
tions are not always necessary, in some scenarios requiring
deletions (e.g., when a flow ends, some applications need
to delete its information from the sketch), Diamond can
support this operation by adding a deletion part, which is
also an atom sketch.

Apart from per-flow measurement, Diamond can also
be applied in other important issues in computer networks,
such as top-k problems and multiple-set membership query
problems.

1.3 Key Contributions

• We propose a novel sketch, namely Diamond, to
accurately and quickly record and query the sizes
of flows in real network traffic.

• We use the Diamond sketch to address another two
important network issues: top-k and multiple-set
membership query.

• We have conducted extensive experiments, and re-
sults show that our Diamond sketch outperforms the
best of the prior art by two orders of magnitude
in terms of relative error in flow size estimtation,
and also significantly outperforms the state-of-the-
art solutions when handling the problems of top-k
and multiple-set membership query.

2 RELATED WORK

To address the per-flow measurement problem, three kinds
of data structures have been proposed: sketches, Bloom
filters, and counters. More details are provided in the survey
[9].
Sketches: We choose five most popular sketches in this
paper, namely CU [17], Count [18], CSM [19], Count-min
[13], and Augmented [10] sketches, and compare them with
Diamond. We have already introduced the CU sketch in
Section 1.2, and the other four sketches will be introduced
as follows.

The Count-min (CM) sketch is almost the same as the
CU sketch, except that during insertions, it adds one to all
the k mapped counters, instead of the smallest one(s) among
them. In this way, the CM sketch can support deletion.

As for conventional methods like the CU sketch, a
counter with small size will unexpectedly overflows which
could lead to the loss of accuracy especially for large flows.
However, in most scenarios, the measurement of large flows
is the most crucial part, such as finding heavy hitters,
finding heavy changes, finding SuperSpreaders, and finding
network anomaly. To cut the size of the counters of the CU
sketch would limit its usage.

In contrast, since our data structure allocates counters
more reasonably for large flows and small flows, it can
achieve a high accuracy under different scenarios while
consuming a small memory usage.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

3

The structure of the Count (C) sketch [18] is exactly the
same as the CM sketch, except that in addition to the k hash
functions hi(.) (1 6 i 6 k), the sketch is also associated with
another k hash functions gj(.) (1 6 j 6 k), each of which
hashes a flow ID to−1 or 1 with equal probability. To record
a packet with flow ID e, the Count sketch first calculates
hi(e) and gi(e) (1 6 i 6 k) and adds gi(e) to counter
A[hi(e)]. When querying an flow with ID e, it reports the
median of {Ai[hi(e)] · gi(e), (1 6 i 6 k)} as the estimated
query result.

The CSM sketch [19] computes k hash functions when
a packet with flow ID e is inserted, but instead of incre-
menting all k mapped counters, CSM sketches randomly
increment one of them. And during the query process, CSM
sketches will add up the values in the k mapped counters,
and return this result subtracted by a noise value.

The Augmented (A) sketch [10] is a sketch framework
built upon other sketches, like CM sketches or CU sketches.
It adds an additional filter to the existing sketches. To record
a packet with flow ID e, if e is already in the filter, A sketch
just updates its size in the filter; otherwise, it inserts it on
the sketch using the standard insertion operation of that
sketch, and queries e in the sketch. If the query result of
e is larger than the size of e′ which has the smallest size
in the filter, it replaces e′ with e and expels e′ into the
sketch. This technique will make the query results of only
those flows residing in the filter (which are usually elephant
flows) more accurate, at the cost of a loss in speed of queries
and insertions.
Bloom filters variants: The original Bloom filter [21] can tell
whether a flow has appeared or not. Later several variants
of the Bloom filter made enhancements on the original
one to let it be able to store the size of a flow instead of
merely determining its appearance. Those variants include
Counting Bloom filters (CBF) [22], Spectral Bloom filters
(SBF) [23], and Dynamic Count Bloom filters (DCF) [24].

There are several Bloom filter variants for frequency
estimation, such as SBF and DCF, which use complicated
techniques with many pointers to improve accuracy at
the cost of slow update. What is worse, they cannot be
implemented in hardware. We aim to achieve both higher
accuracy, comparable speed, and easy-to-implement in both
software and hardware. Therefore, We do not conduct ex-
periments to compare the performance of Diamond with
these variants.
Counter variants: The Counter Braids [25] algorithm per-
forms compression while counting, and can recover the
compression result almost errorlessly. However, the author
admits that it has to know the IDs of all flows beforehand
and does not support instantaneous point query. Further-
more, the CSM sketch performs better than the Counter
Braids in terms of accuracy according to literature [19].
Therefore, the Counter Braids algorithm is not included in
our experiments.

The key idea exploited in this paper may seem to be
similar to that of [26] (dividing counters into two groups),
but they are actually very different. Our paper mainly fo-
cuses on reducing the memory usage of the data structure to
accommodate it to small and expensive SRAM. There is no
dichotomy of storage, but different layers of sketches whose
sizes decrease gradually. Also, the process of allocating more

counters for large flows is completed by natural overflows.
In contrast, [26] focuses on balancing the number of counters
and the rate of updating between DRAM and SRAM. Recent
updates are held by the SRAM counters and is transferred to
the DRAM counterparts periodically. The algorithm in [26]
is a rough sorting algorithm, organizing counters into high
and low-order bins according to a threshold derived from
formal analyses.

When we only use the CU sketch, to avoid overflow of
counters for large flows which are often very important,
every counter should be large enough. In this way, for
counters that are mapped by small flows, their higher bits
will all be 0 and wasted. To minimize such a memory waste,
Diamond leverages natural overflows and reduces size of
deeper layers of the increment part, so as to automatically
allocate more atom sketches for large flows and fewer ones
for small ones.

3 THE DIAMOND SKETCH

3.1 Rationale
As mentioned in Section 1.1, real datasets are often non-
uniform or skewed. Existing sketches will achieve lower
accuracy for such datasets. To address this issue, we propose
the conception of carbon atom sketch (atom sketch for
short), which is a sketch composed of small counters (e.g.,
4 bits). We will start recording items with one atom sketch
I1. Since its counters are small, overflows may happen fre-
quently. When overflows happen, we use the second atom
sketch I2 to help record the value that cannot be represented
by one single small counter. I2 may also overflow, and we
can subsequently find another one I3, and so on. In this way,
an item with a large value will be recorded by several small
counters from several atom sketches. Obviously, the number
of items inserted into Ii+1 is smaller than that inserted
into Ii. Therefore, to achieve memory efficiency, the size of
Ii+1 should be smaller than Ii. Furthermore, those counters
located in deeper layers of the increment part will only be
accessed by large flows through the process of overflowing
during insertions. In contrast, small flows would mostly
stay in the surface of the increment part, e.g., the first layer.
In other words, we complete the task of assigning an appro-
priate number of atom sketches for each flow according to
its size naturally in the process of insertion. What is more,
when it comes to uneven distributions, the more skewed the
flow size distribution is, the longer and smaller their “tails”
will be, and the more likely the tails (small flows) will be
stored in the first layer, and large flows will be stored across
multiple layers. In this way, we can achieve high accuracy
for both large and small flows.

To compute the desired value when querying an item,
we also need to record the overflow depth of each item
during insertions. Specifically, when inserting an item e,
if it is inserted into I1, I2, ... Ii, we need to record its
overflow depth i. There are many ways to do that, such
as adding an extra bit to each counter to indicate whether it
has overflowed, or using a Bloom filter for each atom sketch
to record the items suffering overflows. We finally choose
to use another atom sketch C to record the overflow depth
of each item, because of the following two reasons. First,
the sketch can be more accurate than Bloom filters and flag

4

bits when using the same size of memory. Second, we use
another atom sketch to record the overflow depth, rather
than introduce heterogeneous data structures, so as to keep
the homogeneity of our Diamond.

Our sketch can be extended to support deletions when
needed in some application scenarios. As mentioned before,
we recommend using the CU sketch as the atom sketch, but
the CU sketch does not support deletions. To address this
issue, we propose to use another atom sketchD to record the
frequency that each item has been deleted. When querying
an item e, we subtract the value reported by the deletion
part from that reported by the increment and carry part as
the estimated frequency of e.

In sum, our sketch is composed of three parts: increment
part, carry part, and deletion part. Increment part is com-
posed of several atom sketches, while carry part and dele-
tion part are both composed of one atom sketch. We name
our sketch Diamond sketch, because our whole sketch is
composed of atom sketches, which is like a diamond is
composed of carbon atoms.

By layering up the atom sketches of the increment
part, most counters in the deep layers will be preserved
primarily for storing large flows, and small flows will be
mostly recorded in the shallow layers. This is equivalent
to a dynamic allocation of atom sketches when inserting
flows of different sizes. This key feature of Diamond sketch
enables a efficient use of memory, and further guarantees
high accuracy as shown in later experiments. Moreover,
the design to gradually decrease the size of layers in the
increment part avoids the potential waste of memory in
deep layers. At last, the error rate of the carry part is
practically negligible, as values stored in it are indeed very
small (no more than the depth of the increment part), which
further ensures the overall accuracy of the Diamond sketch.

3.2 Data Structure

L1

······

L2

······

Ld

······

······

LD

······

LC

······

I1

I2

Id

D

C

Increment Part

Carry Part

Deletion Part

Fig. 1. Data structure of the Diamond sketch.

As shown in Figure 1, Increment part together with carry
part records the size of each flow that has been inserted.
It consists of d atom sketches, where we denote the ith

atom sketch with Ii. Each atom sketch Ii is composed of Li
counters, and each counter contains w1 bits. We denote the
jth counter of the ith atom sketch with Ii[j]. {L1, L2, ..., Ld}
is a decreasing sequence of numbers. Carry part records
the overflow depth (defined in section 1.2.) of each flow. It
is an atom sketch composed of LC counters, each of which
contains w2 bits (2w2 > d is a requisite). We denote this atom
sketch with C, and the jth counter with C[j]. Deletion part
is used to support deletions. It is an atom sketch composed
of LD counters, each of which contains w3 bits. We denote
this atom sketch with D, and the jth counter with D[j].

Each atom sketch Ii, C, and D is associated with k1,
k2, and k3 hash functions, whose output is uniformly dis-
tributed in the range [1, Li], [1, LC], and [1, LD]. And we
denote the jth hash function with hij(.), h

C
j (.), and hD

j (.),
respectively.

The initialization for the Diamond sketch is simply set-
ting all counters Ii[j], C[l], and D[m] to 0, where 1 6 i 6 d,
1 6 j 6 Li, 1 6 l 6 LC, and 1 6 m 6 LD. Next, we will
discuss the insertion, query, and deletion operation.

3.3 Insertion

Algorithm 1: Insertion for Diamond sketch
Input : Item e to insert.

1 Function Insertion(e):

2 dep← 0
3 no overflow← false
4 repeat
5 dep← dep + 1

6 S1 ← {Idep[h
dep
i (e)] | 1 6 i 6 k1}

7 Vmin ← min(S1)
8 if Vmin = 2w1 − 1 then
9 for each counter c ∈ S1 do

10 c← 0

11 else
12 no overflow← true
13 for each counter c ∈ S1 do
14 if c = Vmin then
15 c← c+ 1

16 until no overflow = true or dep = d
17 S2 ← {C[hC

j (e)] | 1 6 j 6 k2}
18 for each counter c′ ∈ S2 do
19 if c′ is less than dep− 1 then
20 c′ ← dep− 1

As shown in Algorithm 1, given an incoming packet with
flow ID e (packet e for short), to increment the flow size,
we first update the increment part and then the carry part.
We compute the k1 hash functions of the first atom sketch
I1: h11(e), h

1
2(e), ..., h

1
k1
(e), and increment the smallest one(s)

of the k1 counters I1[h11(e)], I1[h
1
2(e)], ..., I1[h

1
k1
(e)] (we call

them k1 mapped counters for short) by 1. If there are more
than one counters that have the smallest value, we would
increment them all by 1. If all the k1 counters hold the value
2w1 − 1, which is the largest number that w1 bits can rep-
resent, then incrementing them by 1 will result in overflows.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

5

I1 … 15 … 15 … 15 …

e

ℎ1
1 𝑒 ℎ2

1 𝑒 ℎ3
1 𝑒

0 0 0

I2 … 4 … 8 … 10 …

e

ℎ1
2 𝑒 ℎ2

2 𝑒 ℎ3
2 𝑒

5

C … 0 … 0 … 3 …

e

ℎ1
𝐶 𝑒 ℎ2

𝐶 𝑒 ℎ3
𝐶 𝑒

1 1

D … 78 … 52 … 99 …

53

e*

ℎ1
𝐷 𝑒∗

ℎ2
𝐷 𝑒∗ ℎ3

𝐷 𝑒∗

C … 3 … 1 … 2 … I1 … 2 … 12 … 7 …

e’

ℎ1
1 𝑒′ ℎ2

1 𝑒′ ℎ3
1 𝑒′

I2 … 13 … 2 … 3 …

e’

ℎ1
2 𝑒′ ℎ2

2 𝑒′ ℎ3
2 𝑒′

D … 63 … 24 … 51 …

e’

ℎ1
𝐷 𝑒′

ℎ2
𝐷 𝑒′ ℎ3

𝐷 𝑒′

e’

ℎ1
𝐶 𝑒′ ℎ2

𝐶 𝑒′ ℎ3
𝐶 𝑒′

Insertion of e

Query of e’

Deletion of e*

Fig. 2. Insertion, query and deletion of the Diamond sketch.

When the k1 mapped counters in Ii overflow, the following
steps need to be taken: 1) set the values of all k1 mapped
counters Ii[hi1(e)], Ii[h

i
2(e)], ..., Ii[h

i
k1
(e)] to 0; 2) compute

the k1 hash functions of Ii+1: hi+1
1 (e), hi+1

2 (e), ..., hi+1
k1

(e),
and increment the smallest one(s) of the k1 counters
Ii+1[h

i+1
1 (e)], Ii+1[h

i+1
2 (e)], ..., Ii+1[h

i+1
k1

(e)] by 1; 3) if all
the k1 mapped counters in Ii+1 overflow, then repeat step
1 and 2 until the termination condition is satisfied, and we
record the overflow depth dep. There are two termination
conditions: there is no overflow in Ii (1 6 i 6 d) (we set dep
to i) or the last atom sketch Id overflows (we set dep to d).
4) Compute the k2 hash functions of C, and get the smallest
value of the k2 counters: C[hC

1 (e)], C[h
C
2 (e)], ..., C[h

C
k2
(e)].

If the smallest value is smaller than dep − 1, we need
to update the carry part to guarantee that the smallest
value equals dep − 1. To achieve this, for each counter
in C[hC

1 (e)], C[h
C
2 (e)], ..., C[h

C
k2
(e)], if its value is less than

dep−1, we set its value to dep−1; otherwise, we do nothing.
To increment the flow size by x (x is larger than 1), we

first add x to the mapped counter at the first layer which has
the smallest value p. Then we check all the mapped counters
again, for each counter with value smaller than p+x, we set
its value to p+ x.

3.4 Deletion

Algorithm 2: Deletion for Diamond sketch
Input : Item e to delete.

1 Function Deletion(e):

2 S ← {D[hD
j (e)] | 1 6 j 6 k3}

3 Vmin ← min(S)
4 if Vmin 6= 2w3 − 1 then
5 for each counter c ∈ S do
6 if c = Vmin then
7 c← c+ 1

As discussed in Section 1.2, the deletion opera-
tion is not requisite in per-flow measurement, but can
be added if needed in other scenarios. To delete a
packet e, the Diamond sketch only updates its dele-
tion part. We compute the k3 hash functions of D:

hD
1 (e), h

D
2 (e), ..., h

D
k3
(e), and check the corresponding k3

counters D[hD
1 (e)], D[hD

2 (e)], ..., D[hD
k3
(e)]. If all k3 mapped

counters are 2w3 − 1, which is the biggest number that w3

bits can represent, we do nothing; otherwise, we increment
the smallest one(s) among the k3 mapped counters by 1.

3.5 Query

Algorithm 3: Query for Diamond sketch
Input : Item e to query.
Output: Query result Vquery .

1 Function Query(e):

2 S1 ← {C[hC
j (e)] | 1 6 j 6 k2}

3 dep← min(S1) + 1
4 for i ∈ range[1, dep] do
5 S2 ← {Ii[hij(e)] | 1 6 j 6 k1}
6 Vi ← min(S2)

7 Vinsert ←
∑dep
i=1 Vi · (2w1)i−1

8 S3 ← {D[hD
j (e)] | 1 6 j 6 k3}

9 Vdelete ← min(S3)
10 Vquery ← Vinsert − Vdelete
11 return Vquery

When querying the size of a flow with ID e, we need
to check the status of all the three parts. First, we check
the carry part. Specifically, the Diamond sketch computes
the k2 hash functions of C and returns the smallest value
among C[hC

1 (e)], C[h
C
2 (e)], ..., C[h

C
k2
(e)]. Second, we check

the increment part. Specifically, we add 1 to this smallest
value returned by the carry part, and suppose the result is
dep, so we need to check dep atom sketches I1, I2, ..., Idep. For
each atom sketch Ii in these dep atom sketches, we compute
k1 hash functions and get the smallest value Vi of those
k1 mapped counters Ii[hi1(e)], Ii[h

i
2(e)], ..., Ii[h

i
k1
(e)]. Once

all dep smallest values have been calculated, the query result
determined by increment part and carry part is computed by
the following formula: Vinsert =

∑dep
i=1 Vi · (2w1)i−1. Third,

we need to check the deletion part. Specifically, we compute
the k3 hash functions of D and return the smallest value
(Vdelete) among D[hD

1 (e)], D[hD
2 (e)], ..., D[hD

k3
(e)]. Finally,

we compute Vinsert − Vdelete as the query result.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

6

3.6 Examples

We will use three examples to illustrate the insertion, query
and deletion operations of the Diamond sketch, as illus-
trated in Figure 2. In those examples, we assume that d = 4,
(w1, w2, w3) = (4, 2, 7), and (k1, k2, k3) = (3, 3, 3).

To record a packet e, first, we insert it into I1 in the in-
crement part. Specifically, we compute three hash functions
and locate the three counters I1[h11(e)], I1[h

1
2(e)], I1[h

1
3(e)],

and find out that all of the three counters have the value 15,
so incrementing the smallest counters will cause overflows.
We set all the three counters to 0, and insert e into I2.
Second, we compute three hash functions and locate the
three corresponding counters I2[h21(e)], I2[h

2
2(e)], I2[h

2
3(e)].

They have value 4, 8, 10, respectively, and the smallest value
is 4 stored in I2[h

2
1(e)]. We increment it by 1 and I2[h

2
3(e)]

becomes 5. Since there is no overflow in I2, we record
dep = 2 and update the carry part in the next step. Third,
we locate the three counters C[hC

1 (e)], C[h
C
2 (e)], C[h

C
3 (e)].

C[hC
1 (e)] and C[hC

2 (e)] have the value of 0, which is smaller
than 1 (computed by dep − 1), so we need to set C[hC

1 (e)]
and C[hC

2 (e)] to 1; C[hC
3 (e)] has the value 3, which is greater

than 1, so we do nothing.
Similarly, to query a packet e′, first, we check the carry

part (by computing three hash functions and locate the three
counters C[hC

1 (e
′)], C[hC

2 (e
′)], C[hC

3 (e
′)]) and find out that

the smallest value is 1, so we need to check I1 and I2 to
determine the value of e′. Second, we check I1 and get the
smallest value 2, and check I2 and get the smallest value
2. The query result determined by increment part and carry
part is computed as follows: 2+2 ·16 = 34. Third, we check
the deletion part. The smallest value of e′ in the deletion
part is 24, so the final query result is 34− 24 = 10.

To delete a packet e∗, we update the deletion part by
incrementing the smallest counter, D[hD

2 (e
∗)], from 52 to 53.

3.7 Other Uses of the Diamond Sketch

The Diamond sketch can be used to address other important
issues in computer networks as well. Here we take top-k and
multiple-set membership query as two examples.
Top-k: The top-k problem is to find the k largest elephant
flows from the network traffic. A classic method [13] is to
use a CM sketch and a min-heap to address this issue. In this
paper, we propose to use a Diamond sketch to replace the
CM sketch. The process is as follows: 1) For each incoming
packet e, we first insert it, then query it, in the Diamond
sketch, and get its size val; 2) We search e in the min-heap, if
found, increment its size by 1, and go back to step 1; 3) If not
found, we check the size of the min-heap. If its size is less
than k, we insert (e, val) into the min-heap; 4) Otherwise,
we compare val with the value of the element in the root
node of the min-heap (the one with the smallest size in the
heap), and if val is larger, we pop out the element at the root,
and insert (e, val + 1) into the min-heap; otherwise, we do
nothing.
Multiple-set Membership Query: Given sets S1, S2, ..., Sn,
the multiple-set membership query problem is to determine
which set an item e belongs to. To address this problem,
suppose an item e is from set Si. We regard i as the size
of e, and insert e into the Diamond sketch for i times. One

classical algorithm for this problem is the BUFFALO [27],
which uses one individual Bloom filter for each set.

3.8 Limitations
Since the family of sketch algorithms mainly target the

case where limited memory is available, we will not ad-
dress the problem of maintaining flow identifiers, which
consumes a significant amount of memory. Besides, all
our experiments are conducted using sketches like CM,
CU, CSM, C, and ASketch, all of which do not keep flow
identifiers as well.
4 MATHEMATICAL ANALYSES

In this section, we make mathematical analyses on the
error rate of the Diamond sketch, and derive the upper
bound of the space required to answer a query with a
specific error and probability in the presence of skewed
distributions.

Since the accurate bound of the CU sketch is really hard
to derive [28], [29], in this part, we will mainly focus on
the result when the atom sketch is the CM sketch. Assume
the skewness of the Zipfian distribution is z. For the situ-
ation z < 1, which could be named as moderate skew, the
experimental results in later sections show our algorithms
outperform others significantly. As for the situation z > 1,
we will show in this section that the upper bound of the
required space of the Diamond sketch is smaller than that
of the CM sketch under the same restriction of error and
probability.
4.1 Facts about Zipfian distribution
As pointed by the literature [30], there are two facts as
follows. For a Zipfian distribution with parameter z, if we
denote the relative frequency of the ith most frequent item
as fi, then fi = cz

iz , where cz is an scaling constant.
Fact 1: For z > 1, 1− 1

z ≤ cz ≤ z − 1.

Fact 2: For z > 1, czk
1−z

z−1 ≤
∑U
i=k fi ≤

cz(k−1)1−z

z−1 ,
where U is the range of the distribution.

4.2 Upper bound of the CM sketch
From [30] we could know for a Zipfian distribution with
parameter z, the upper bound of required space for a CM
sketch to answer a query with error ε||α|| with probability
at least 1 − δ is O(ε−min{1,1/z} ln 1

δ), where α is the size of
the flow.

4.3 Upper bound of Diamond sketch
First, given parameters (ε, δ), set the width of the carry
part wc = e

ε and the number of hash functions kd = ln 1
δ ,

then with probability at least 1 − δ, âi ≤ ai + ||α||k1−zd /w,
where âi is the result of estimation of the ith item. Since the
query result of the carry part is quite small and always a
integer, if we adjust the size of the width and the number of
hash functions, we could guarantee that it returns the right
answer with a probability 1− δ and the cost is rather small
and calculable. Also, this fact that the error rate of the carry
part is consistent could be partially illustrated by Fig. 16.

To better illustrate the problem, we will mainly focus
on the situation when the Diamond sketch has two layers.
When the Diamond sketch has only one layer, it is exactly

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

7

the same as CM sketch and it doesn’t need the help of the
carry part. As for the situation of more that two layers, the
analyses are basically the same, but would be much more
complicated in terms of form, so we would only discuss the
situation of two layers here.

The error could be divided into two parts. The first is the
collisions with larger items and the second is the collisions
with smaller items. By choosing hash functions and settings
like k = w

3 , we could avoid the collisions with kth larger
items with constant probability (23).

In the first layer, when the result of the carry part is
correct, suppose the estimation is âi,

Pr[âi > ai + ε||α||] = Pr[∀jcount[hj(i)] > ai + ε||α||]
= Pr[∀jXi,j > ai + ε||α||]

= Pr[∀jai +
1

w

U∑
n=k+1,x

ax > ai + ε||α||]

< Pr[
1

w

U∑
n=k+1,x

ax > ε||α||]

<
2

3

d

The third line is derived from the fact mentioned before,
and the fifth line the Markov inequality.The correct rate
hence could be guaranteed by the choice of parameters.

In the deeper layers, the number of “small flows” de-
creases significantly (simply by applying the beformen-
tioned facts again), which means we could use lesser coun-
ters to balance the memory usage of the carry part. As long
as the depth of the increment part is enough, the memory
usage of Diamond sketch would surly be lesser than that of
the CM sketch under the same restriction in terms of error
and probability.

5 PERFORMANCE EVALUATION

5.1 Metrics

The performance of sketches is often evaluated by accuracy
and speed with a fixed size of memory. The accuracy is
usually measured by AAE and ARE, and speed is usually
measured by Throughput.
Average Absolute Error (AAE): Let fe be the real size of
a packet e, and f̂e be the estimated size of the flow e
reported by the sketch, then the absolute error (AE) of flow
e is calculated as |fe − f̂e|, and the average absolute error
is calculated as AAE = 1

|S|
∑
e∈S |fe − f̂e|, where S is the

query set.
Average Relative Error (ARE): The relative error (RE) of a
packet e is calculated as |fe−f̂e|/fe, and the average relative
error is calculated as ARE = 1

|S|
∑
e∈S

|fe−f̂e|
fe

.
Throughput: Let n be the number of certain operations
(insertion, deletion or query) executed on a sketch, and t be
the total execution time in nanosecond. The throughput can
be calculated as Throughput = 1000·n

t Mops, where Mops is
the abbreviation of Million Operations per Second.

5.2 Experimental Setup

5.2.1 Datasets
To extensively evaluate the performance of Diamond, we
use three kinds of datasets as the input: real IP trace streams,
a real-life transactional dataset, and synthetic datasets. The
methods we use to acquire those datasets and generate the
query set are discussed below.

5.2.1.1 Real IP trace streams: The real IP trace
streams are captured by the main gateway of our campus,
which is a collection of flows. We adopt the most widely
used method that considers the source IP address and the
destination IP address as the flow ID. In the IP trace streams,
there are totally 12, 285, 667 entries, including 763, 206 dis-
tinctive flows, whose sizes vary from 1 to 56, 889, with a
mean of 16.1, and a variance of 4, 729. Notice that 52.9%
flows have the size of 1, so when the query result of a
flow is 1, 001, whose real size is 1, the relative error will
be 1000 for this flow. Therefore, the experimental results of
average relative error seem large, but the error is already
small enough. We have compared our real IP trace with
CAIDA trace, they are similar in flow size distributions:
about half of flows have only one packet, and the average
flow size is 3 ∼ 10.

5.2.1.2 Real-life transactional dataset: This dataset
is generated from a spidered collection of web HTML docu-
ments. First, each document is filtered; second, a set of all the
distinct item (which is regarded as a flow) is extracted from
the document; finally, a distinct transaction is generated
based on that set. This dataset can be downloaded from [31].
Since the whole dataset is considerably large, we choose
10% consecutive entries from the original dataset as our
experimental dataset, which has totally 32, 475, 964 entries,
including 980, 759 distinct items (flows). The numbers of
occurrences of items vary from 1 to 65, 327, with a mean of
33.1, and a variance of 14, 218.6.

5.2.1.3 Synthetic datasets: Our synthetic datasets
are generated by a performance testing tool called Web
Polygraph [32]. There are 11 generated datasets, which
all follow the Zipfian [11] distribution with the skewness
ranging from 0.0 to 1.0. Note that when the skewness is
0.0, the distribution is actually uniform. Each dataset has
exactly 10M strings, and each distinct string represents a
flow ID, taking up 13 bytes to represent the five-tuple. The
maximum size of flow increases from 28 to 21, 423 as the
skewness increases from 0.0 to 1.0.

5.2.1.4 Query Set: In our experiments, the query
set is exclusively composed of all the items belonging to
the dataset, and each item only appears once in the query
set. Notice that in the recent paper of the Augmented
sketch [10], the query set is generated differently: the top-
k items/flows are queried a great number of times, while
other flows are not queried. The details of the query set are
not available from the paper, so we cannot reproduce the
experimental results of the Augment sketch paper. Using
our query set, our following experiments show that it has
almost the same accuracy as the CM sketch.

5.2.2 Parameters Setting
We compare our Diamond sketch with five typical sketches:
CM sketches [13], CU sketches [17], Count (C) sketches

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

8

[18], CSM sketches [19], and Augmented (A) sketches [10].
For those five kinds of sketches, each sketch has 4 hash
functions, and every counter has 16 bits, a proper size to
accommodate the maximal size of flows appearing in the
three kinds of datasets described above. We set the filter
size of the Augmented sketch to be 32, as recommended by
the authors. We allocate 0.5 MB memory for each of the five
sketches and the Diamond sketch.

5.2.3 Implementation
We use C++ as the programming language and implement
the insertion, query, and deletion (if possible) operation for
C, CU, CM, CSM, Augmented (based on CM sketches),
and Diamond sketches. In our code, we implement the
data structure single-threaded using a single core. The hash
functions we use are BOB Hash acquired from an open
source website [33]. We have made the source code of our
experiments available on GitHub [1].

5.2.4 Computation Platform
We performed all the experiments on a machine with 4-core
CPUs (8 threads, Intel Core i7@2.5 GHz) and 16 GB total
DRAM memory. CPU has three levels of cache memory: two
32KB (where 1KB = 210 bytes) L1 caches for each core, one
256KB L2 cache for each core, and one 6MB (where 1MB =
220 bytes) L3 cache shared by all cores.

5.3 Parameters of Diamond Sketch
To maximize the performance of Diamond, we choose ap-
propriate parameters for Diamond: 1) To fully utilize every
bit in the carry part, d (number of atom sketches in the
increment part) needs to be the power of 2, and we use
d = 4 in our experiments. 2) According to our tests, to
achieve high accuracy, the ratio p of memory usage of the
carry part to that of the increment part should be in range
[0.1, 0.2], and we choose p = 0.15 in our experiments. 3)
According to our experimental results of various datasets,
when {L1, L2, ..., Ld} is a geometric sequence with a com-
mon ratio (L2/L1) between 4.0 and 5.0, the performance of
Diamond is high without obvious fluctuations. Therefore,
we choose the median value 4.5 for the common ratio.

5.4 Accuracy
In this section, we present the experimental results on AAE
and ARE of Diamond compared to C, CU, CSM, CM, and
A sketches. We use Dia to represent our Diamond sketch in
experimental figures due to space limitation.

1) Experiments on AAE

Absolute Error CDF on three types of datasets: Our experi-
mental results, reported in Figure 3, 4, and 5, show that the AAE
is similar on the three types of datasets, which are 1) synthetic
dataset with a skewness of 1.0, 2) real IP trace streams, and
3) real-life transactional dataset, respectively. Therefore, in the
following experiments, we will focus on the experimental
results on synthetic datasets and real IP trace streams.

We cut off because the y-axis value of the Diamond
sketch has become the maximum value – 1. Although the
accuracies of other sketches may be not that bad on skewed
traffic distributions, the experiments show clearly that out

0 1 2 3 4 5 6 7 8
AE

0.0

0.5

1.0

1.5

C
D

F

CSM
CM

A
C

CU
Dia

Fig. 3. Absolute Error CDF on Transactional Dataset.

0 1 2 3 4 5 6 7 8
AE

0.0

0.5

1.0

1.5

C
D

F

CSM
CM

A
C

CU
Dia

Fig. 4. Absolute Error CDF on Real IP Traces.

0 1 2 3 4 5 6 7 8
AE

0.0

0.5

1.0

1.5

C
D

F

CSM
CM

A
C

CU
Dia

Fig. 5. Absolute Error CDF on Synthetic Dataset with a Skewness of 1.0.

Diamond sketch does much better than all of them. At the
tail of the distributions, the y-axis value of all algorithms
approaches the maximum value – 1. This figure shows that
when the memory is tight, Diamond is the best choice to
achieve smallest error. When memory size is large, user can
choose any sketch to achieve almost zero error.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skewness

0

50

100

150

200

A
A

E

CSM
CM

A
C

CU
Dia

Fig. 6. Absolute Error vs. Skewness.

Absolute Error vs. Skewness: Our experimental results, re-
ported in Figure 6, show that as the skewness of the synthetic
dataset ranges from 0.0 to 1.0, the average absolute error of
Diamond sketch is [1.9, 308.4], [8.7, 11.8], [8.7, 11.8], [1.9, 4.9],

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

9

[4.6, 6.2] times smaller than the average absolute errors of CSM,
CM, A, C, CU sketches, respectively. The average absolute
error of our Diamond sketch drops from 9.6 to 4.5 as the
skewness of the synthetic dataset increases from 0.0 to 1.0.

1 2 3 4 5 6 7 8 9 10 11 12 13
Insertion(M)

0

10

20

30

40
A

A
E

CSM
CM

A
C

CU
Dia

Fig. 7. Absolute Error vs. # of Insertions.

Absolute Error vs. # of Insertions: Our experimental results,
reported in Figure 7, show that as the number of the insertions of
the real IP trace ranges from 1.3M to 12.7M, the average absolute
error of Diamond sketch is [56.1, 196.0], [3.6, 5.5], [3.6, 5.5],
[5.1, 7.6], [1.6, 3.1] times smaller than the average absolute errors
of CSM, CM, A, C, CU sketches, respectively. Initially, we insert
the first 10% of the real IP traces into the sketches, and the
number of insertions is 1.3M. We then calculate the average
absolute errors of the sketches. Following the same process,
we keep on inserting the next 10% of the IP traces into
the sketches, calculating the corresponding average absolute
errors, until all IP traces are inserted. AAE of the Diamond
sketch is better than that of the CU sketch even when the
number of insertions of Diamond sketch is twice over that
of CU sketch.

i-8.8 i-10.1 i-11.4 i-12.6 d-1.3 d-2.5 d-3.8

Insertion&Deletion(M)
0

10

20

30

40

A
A

E

CM Dia

Fig. 8. Absolute Error vs. # of Deletions.

Absolute Error vs. # of Deletions: Our experimental results,
reported in Figure 8, show that as the number of the deletions
of the real IP trace ranges from 1.3M to 3.8M, the average
absolute error of Diamond sketch is [3.1, 4.7] times smaller than
the average absolute error of CM sketches. We do not show
the deletion results of other sketches, as they either do not
support deletion or do not show the deletion algorithm in
their papers. To measure the absolute errors of sketches
during deletions, we first insert all of the real IP traces into
the sketches, and then measure the average absolute errors
after deleting the last 10%, 20%, 30% of the IP traces from
the sketches. When when making N random deletions, the
result is almost the same.
Absolute Error vs. Memory Size: Our experimental results,
reported in Figure 9, show that, in case of real IP trace streams,

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory(M)

0

20

40

60

80

100

120

A
A

E

CSM
CM

A
C

CU
Dia

Fig. 9. Absolute Error vs. Memory Size.

as the overall memory size ranges from 0.25 MB to 2.0 MB,
the average absolute error of Diamond sketch is [26.6, 50.3],
[2.3, 6.0], [2.4, 6.0], [4.7, 5.4], [1.4, 3.4] times smaller than the
average absolute errors of CSM, CM, A, C, CU sketches, re-
spectively. Our Diamond sketch outperforms other sketches
more observably in terms of AAE when the memory size is
limited, such as 0.5 MB.

Indeed, when the memory size is large enough, all
sketches can achieve almost zero error, which makes the
comparisons meaningless. However, we argue that for the
high speed network traffic, the sketch should be stored
in the on-chip memory. The on-chip memory is often ten
or more times faster than the off-chip memory (e.g., 16GB
DRAM) [7], [34]. However, the on-chip memory (i.e., SRAM,
often less than several MBs) is very expensive and limited
in size. In such cases, to catch up with the line speed, the
Diamond sketch will be the best choice rather than other
sketches.
2) Experiments on ARE

0.0 0.2 0.4 0.6 0.8 1.0
RE

0.00

0.25

0.50

0.75

1.00

C
D

F

CSM
CM

A
C

CU
Dia

Fig. 10. Relative Error CDF.

Relative Error CDF: In Figure 10, when the x-axis value is
1.0, the y-axis value means the percentage of flows whose relative
error is less than 1.0. Our experimental results, reported in Figure
10, show that in case of real IP trace streams, the percentage of
Diamond is 62.46%, which is 24.6, 9.29, 9.29, 3.02, and 4.91
times higher than the corresponding percentages for CSM, CM,
A, C, CU sketches, respectively.
Relative Error vs. Skewness: Our experimental results, re-
ported in Figure 11, show that as the skewness of the synthetic
dataset ranges from 0.0 to 1.0, the average relative error of Dia-
mond sketch is [2.0, 383.3], [10.9, 12.6], [10.9, 12.6], [1.9, 6.1],
[6.0, 7.2] times smaller than the average relative errors of CSM,
CM, A, C, CU sketches, respectively. The Diamond sketch has
a steady high performance no matter how the skewness of
the dataset changes (uniform or non-uniform).

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

10

0.0 0.2 0.4 0.6 0.8 1.0
Skewness

0

10

20

30

40

A
R

E

CSM
CM

A
C

CU
Dia

Fig. 11. Relative Error vs. Skewness.

1 2 3 4 5 6 7 8 9 10 11 12 13
Insertion(M)

0

10

20

30

A
R

E

CSM
CM

A
C

CU
Dia

Fig. 12. Relative Error vs. # of Insertions.

Relative Error vs. # of Insertions: Our experimental results,
reported in Figure 12, show that as the number of the insertions
of the real IP trace increases from 1.3M to 12.6M, the average
relative error of Diamond sketch is [255.8, 342.3], [9.5, 18.2],
[9.5, 18.2], [9.0, 34.0], [5.7, 9.0] times smaller than the average
relative errors of CSM, CM, A, C, CU sketches, respectively.

i-8.8 i-10.1 i-11.4 i-12.6 d-1.3 d-2.5 d-3.8

Insertion&Deletion(M)
0

5

10

15

20

25

A
R

E

CM Dia

Fig. 13. Relative Error vs. # of Deletions.

Relative Error vs. # of Deletions: Our experimental results,
reported in Figure 13, show that as the number of the deletions
of the real IP trace ranges from 1.3M to 3.8M, the average
relative error of Diamond sketch is [6.0, 8.6] times smaller than
the average relative error of CM sketches. Figure 14 shows that the
sequence of deletions has limited influence on accuracy, compared
to Figure 13, in which deletions are completed sequentially.
Relative Error vs. Memory Size: Our experimental results,
reported in Figure 15, show that as the overall memory size
ranges from 0.25 MB to 2.0 MB, the average relative error of Di-
amond sketch is [34.0, 508.3], [7.7, 21.7], [7.7, 21.7], [5.9, 39.8],
[4.6, 11.6] times smaller than the average relative errors of CSM,
CM, A, C, CU sketches, respectively. Our Diamond sketch
outperforms other sketches more observably in terms of
ARE when the memory size is limited.
Absolute Error CDF on Real IP Traces: Our experimental

2 4 6
Deletions(M)

0

10

20

A
R

E

CM D

Fig. 14. Relative Error vs. # of Deletions.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Memory(M)

0

20

40

60

80

A
R

E

CSM
CM

A
C

CU
Dia

Fig. 15. Relative Error vs. Memory Size.

0 1 2 3 4 5 6 7 8
AE

0.0

0.5

1.0

1.5

C
D

F
Dia(CM-I) Dia(CU)

Fig. 16. Absolute Error CDF on Real IP Traces.

results, reported in Figure 16, show that the AAE of the Diamond
sketch is always smaller when the atom sketch of the increment
part is the CU sketch rather than the CM sketch. The change of
the atom sketch of the carry part makes very small difference in
terms of accuracy, because for the carry part, it can achieve very
high accuracy as it only needs to record the overflow times of large
flows while the number of large flows is small. Thus the results
are not included.

5.5 Speed

In this section, we present the experimental results on # of
memory accesses and throughput of Diamond compared to C,
CU, CSM, CM, and A sketches. We use software simulations
to measure the number of memory accesses. Specifically,
we use a variable to record the number of memory ac-
cesses. When one counter is accessed, we increment the
corresponding variable.
of (Query) Memory Accesses vs. # of Insertions: Our
experimental results, reported in Figure 17, show that as the
number of the insertions of the real IP trace ranges from 1.3M
to 12.7M, the number of query memory accesses of Diamond
sketch is [6.3, 6.7], which is comparable to CSM, CM, A, C, CU

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

11

1.3 2.5 3.8 5.1 6.3 7.6 8.8 10.111.412.6

Insertion(M)
0

2

4

6

8

10

12

#
M

em
or

y
A

cc
es

s

CSM
CM

A
C

CU
Dia

Fig. 17. # of (Query) Memory Accesses vs. # of Insertions.

sketches. As discussed in Section 3, when querying a flow e,
our Diamond sketch needs to check both the carry part and
the increment part, thus needs more memory accesses than
the prior art.

Although our Diamond sketch needs more memory ac-
cesses, the throughput is still high owing to better cache
behavior. Specifically, the memory size of C and I1 is much
smaller than other sketches and each query will access these
two parts, so they will be cached with high probability.
Therefore, the query speed of the Diamond Sketch is com-
parable to other sketches.

1 2 3 4 5 6 7 8 9 10 11 12 13
Insertion(M)

0

5

10

15

20

25

T
hr

ou
gh

pu
t(

M
ip

s)

CSM
CM

A
C

CU
Dia

Fig. 18. Insertion Throughput vs. # of Insertions.

Insertion Throughput vs. # of Insertions: Our experimental
results, reported in Figure 18, show that as the number of the
insertions of the real IP trace ranges from 1.3M to 12.7M, the
throughput of our Diamond sketch during insertions is [3.4, 3.8]
Mops, which is comparable to CSM, CM, A, C, CU sketches.
CSM does only one memory access during insertion, so its
insertion throughput is higher than other sketches. Query

1 2 3 4 5 6 7 8 9 10 11 12 13
Insertion(M)

0

4

8

12

T
hr

ou
gh

pu
t(

M
ip

s)

CSM
CM

A
C

CU
Dia

Fig. 19. Query Throughput vs. # of Insertions.

Throughput vs. # of Insertions: Our experimental results,
reported in Figure 19, show that as the number of the insertions
of the real IP trace ranges from 1.3M to 12.7M, the throughput

of our Diamond sketch during queries is [3.0, 3.5] Mops, which
is comparable to CSM, CM, A, C, CU sketches. Deletion

1 2 3 4 5 6 7 8 9 10 11 12 13
Insertion(M)

0

3

6

9

12

T
hr

ou
gh

pu
t(

M
ip

s)

CM Dia

Fig. 20. Deletion Throughput vs. # of Insertions.

Throughput vs. # of Insertions: Our experimental results,
reported in Figure 20, show that as the number of the insertions
of the real IP trace ranges from 1.3M to 12.7M, the throughput
of our Diamond sketch during deletions is [1.4, 1.7] times higher
than CM sketch.

5.6 Experiments on Other Uses of Diamond
The metrics and experimental setup of the two sets of
experiments are as follows. As for the top-k problem, let
S1 be the set of all the real top-k flows, and S2 be the
set of all the estimated top-k flows, then the correct rate
of the top-k problem is defined as |S1∩S2|

|S1| , and the AAE of
the top-k problem is determined by the AAE of S1 ∩ S2. As
for the multiple-set membership query problem, the correct
rate of the multiple-set membership query problem represents
the proportion of items whose query result is correct. We
use synthetic datasets for both problems. The multiple-set
data are generated such that the sizes of sets conform to the
Zipfian distribution with the skewness of 1.0. As for the top-
k problem, we keep the maximum size of the min-heap to
k, and as for the multiple-set membership query problem,
half of the queried items belong to a certain set, and the
other half do not belong to any one of the multiple sets. The
Count sketch [18], the Space Saving [35] and BUFFALO [27]
are the most widely used algorithms in top-k and multiple-
set membership query, respectively. Therefore, we compare
Diamond with them in our experiments. The Diamond
sketch greatly outperforms the prior art in experimental
results because of its adaptation to skewed datasets.

100 200 300 400 500
k

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

Dia C

Fig. 21. (Top-k) Precision vs. k.

(Top-k) Precision vs. k: Our experimental results, reported in
Figure 21, show that as k ranges from 100 to 500, the Precision
of our Diamond sketch is comparable to that of the Count sketch.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

12

100 200 300 400 500
k

0.0

0.2

0.4

0.6

0.8

1.0

A
A

E

Dia C

Fig. 22. (Top-k) AAE vs. k.

(Top-k) AAE of Correct Flows vs. k: Our experimental results,
reported in Figure 22, show that as k ranges from 100 to 500, the
AAE of our Diamond sketch is [2.15, 300] times lower than that
of the Count sketch.

100 200 300 400 500
k

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

SS Dia

Fig. 23. (Top-k) Precision vs. k.

reviewA(Top-k) Precision vs. k: Our experimental results,
reported in Figure 23, show that as k ranges from 100 to 500,
the precision of our Diamond sketch is comparable to that of the
Space-Saving.

0.1 0.4 0.7 1.0
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

R
at

e

Dia BUFFALO

Fig. 24. (Multiple-set) Correct rate vs. Memory Size.

(Multiple-set) Correct Rate vs. Memory: Our experimental
results, reported in Figure 24, show that as memory usage ranges
from 100 to 500, the correct rate of our Diamond sketch is
[12.6, 1940] times higher than that of the BUFFALO.
(Multiple-set) Throughput vs. Dataset: Our experimental
results, reported in Figure 25, show that for all the four datasets,
the throughput of our Diamond sketch is [10.2, 11.1] times higher
than that of the BUFFALO.

6 CONCLUSION

Per-flow measurement is a criticial issue in computer net-
works, and sketch is a popular data structure used to

1 2 3 4
Dataset ID

0.0

0.5

1.0

1.5

2.0

T
hr

ou
gh

pu
t(

M
op

s)

Dia BUFFALO

Fig. 25. (Multiple-set) Throughput on multiple datasets.

address this problem. Existing sketches have poor memory
efficiency and are not accurate enough, especially for non-
uniform datasets. In this paper, we propose the Diamond
sketch, including increment part, carry part, and deletion
part. Our Diamond sketch can dynamically assign an ap-
propriate number of atom sketches to record the size of
each flow in an on-demand way, thus can optimize memory
efficiency. We compared our Diamond sketch with five
typical sketches: CM, CU, Count, Augmented, and CSM
sketches, and extensive experimental results show that the
Diamond sketch outperforms the best of the five typical
sketches by up to two orders of magnitude in terms of
relative error. To guarantee that our experimental results are
reproducible and objective, we release the source code of all
the six sketches on GitHub [1].

7 ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their
insightful suggestions. This work is supported by Primary
Research Development Plan of China (2018YFB1004403,
2016YFB1000304), NSFC (61672061). Yulong Shen (yl-
shen@mail.xidian.edu.cn) is the corresponding author.

REFERENCES

[1] S. C. of Diamond sketch and related sketches, “
https://github.com/data-kth/Diamond-Sketch.git.”

[2] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy
counting: an efficient algorithm for finding heavy hitters,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 1, pp. 5–5,
2008.

[3] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,”
ACM Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp.
270–313, 2003.

[4] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: methods, evaluation, and applications,” in Proc.
ACM IMC, pp. 234–247.

[5] X. Li, F. Bian, and et al., “Detection and identification of network
anomalies using sketch subspaces,” in Proc. ACM SIGCOMM,
2006, pp. 147–152.

[6] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in
small memory,” in Proc. IEEE INFOCOM 2009.

[7] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better netflow for
data centers,” in Proc. USENIX NSDI, 2016.

[8] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters
for data streams with skewed distributions,” in Proc. IEEE RIDE-
SDMA 2005, pp. 63–69.

[9] G. Cormode, “Sketch techniques for approximate query pro-
cessing,” Synposes for Approximate Query Processing: Samples, His-
tograms, Wavelets and Sketches, Foundations and Trends in Databases.
NOW publishers, 2011.

[10] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and
more accurate stream processing,” in Proc. ACM SIGMOD, 2016,
pp. 1449–1463.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2923772, IEEE
Transactions on Parallel and Distributed Systems

13

[11] D. M. Powers, “Applications and explanations of zipf’s law,”
in Proceedings of the joint conferences on new methods in language
processing and computational natural language learning. Association
for Computational Linguistics, 1998, pp. 151–160.

[12] L. A. Adamic and B. A. Huberman, “Power-law distribution of the
world wide web,” science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[13] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[14] C. Baquero, P. S. Almeida, R. Menezes, and P. Jesus, “Extrema
propagation: Fast distributed estimation of sums and network
sizes,” IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 4, pp. 668–675, 2012.

[15] T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pallickara,
“Synopsis: A distributed sketch over voluminous spatiotemporal
observational streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 11, pp. 2552–2566, 2017.

[16] D. Tong and V. K. Prasanna, “Sketch acceleration on fpga and its
applications in network anomaly detection,” IEEE Transactions on
Parallel and Distributed Systems, 2017.

[17] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,”
ACM Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp.
270–313, 2003.

[18] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2002, pp. 693–703.

[19] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Network-
ing (TON), vol. 20, no. 5, pp. 1622–1634, 2012.

[20] W. Feng and H. Mounir, “Matching the speed gap between sram
and dram,” in Proc. IEEE HSPR, 2008, pp. 104–109.

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM TON,
vol. 8, no. 3, pp. 281–293, 2000.

[23] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. ACM
SIGMOD, 2003, pp. 241–252.

[24] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J.-L.
Larriba-Pey, “Dynamic count filters,” ACM SIGMOD Record,
vol. 35, no. 1, pp. 26–32, 2006.

[25] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kab-
bani, “Counter braids: a novel counter architecture for per-flow
measurement,” Proc. ACM SIGMETRICS, pp. 121–132, 2008.

[26] S. Ramabhadran and G. Varghese, “Efficient implementation
of a statistics counter architecture,” SIGMETRICS Perform. Eval.
Rev., vol. 31, no. 1, pp. 261–271, Jun. 2003. [Online]. Available:
http://doi.acm.org/10.1145/885651.781060

[27] M. Yu, A. Fabrikant, and J. Rexford, “Buffalo: Bloom filter forward-
ing architecture for large organizations,” in Proc. ACM Conex, 2009,
pp. 313–324.

[28] G. Einziger and R. Friedman, “A formal analysis of conservative
update based approximate counting,” in 2015 International Confer-
ence on Computing, Networking and Communications (ICNC). IEEE,
2015, pp. 255–259.

[29] G. Bianchi, K. Duffy, D. Leith, and V. Shneer, “Modeling conserva-
tive updates in multi-hash approximate count sketches,” in 2012
24th International Teletraffic Congress (ITC 24). IEEE, 2012, pp. 1–8.

[30] G. Cormode and S. Muthukrishnan, “Summarizing and mining
skewed data streams,” in Proceedings of the 2005 SIAM International
Conference on Data Mining. SIAM, 2005, pp. 44–55.

[31] R. life transactional datasets, “http://fimi.ua.ac.be/data/.”
[32] A. Rousskov and D. Wessels, “High-performance benchmarking

with web polygraph,” Software: Practice and Experience, 2004.
[33] H. website, “http://burtleburtle.net/bob/hash/evahash.html.”
[34] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy,

“Guarantee ip lookup performance with fib explosion,” in ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM,
2014, pp. 39–50.

[35] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computa-
tion of frequent and top-k elements in data streams,” in Interna-
tional Conference on Database Theory. Springer, 2005, pp. 398–412.

Tong Yang received his Ph.D. degree in Com-
puter Science from Tsinghua University in 2013.
Now he is an associate professor in Computer
Science Department, Peking University, China.
His research interests include data streams,
sketches, measurements, and machine learning.
He published papers in SIGCOMM, SIGKDD,
SIGMOD, SIGCOMM CCR, VLDB, ATC, ToN,
JSAC, ICDE, INFOCOM, ICNP, ICDCS, etc.

Siang Gao is a senior student and an under-
graduate researcher at the Institute of Network
Computing and Information Systems (NS&IS),
School of EECS, Peking University. His research
interests include network traffic measurement
and big data analysis.

Zhouyi Sun is a senior student and an under-
graduate researcher at the Institute of Network
Computing and Information Systems (NS&IS),
School of EECS, Peking University. His research
interests include network traffic measurement
and big data analysis.

Yufei Wang is a senior student and an under-
graduate researcher at the Institute of Network
Computing and Information Systems (NS&IS),
School of EECS, Peking University. His research
interests include network traffic measurement
and big data analysis.

Yulong Shen received the B.S. and M.S. de-
grees in computer science and the Ph.D. degree
in cryptography from Xidian University, Xian,
China, in 2002, 2005, and 2008, respectively. He
is currently a Professor with the School of Com-
puter Science and Technology, Xidian University,
and also an Associate Director of the Shaanxi
Key Laboratory of Network and System Security.
He has also served on the technical program
committees of several international conferences,
including the ICEBE, the INCoS, the CIS, and

the SOWN. His research interests include wireless network security and
cloud computing security.

Xiaoming Li is a professor in computer science
and technology and the director of Institute of
Network Computing and Information Systems
(NCIS) at Peking University, China. His current
research interest is in search engine and web
mining. He led the effort of developing a Chinese
search engine (Tianwang) since 1999, and is
the founder of the Chinese web archive (Web
InfoMall).

