
DaVinci Sketch: A Versatile Sketch for Efficient and
Comprehensive Set Measurements

Yanshu Wang†, Jianan Ji‡, Chao-Hsuan Liu§, Hengyang Zhou¶, Tong Yang†
†Peking University, China ‡Carnegie Mellon University, USA §East China Normal University, China

¶China University of Petroleum, China
{yanshuwang, yangtong}@pku.edu.cn, {jji2}@andrew.cmu.edu, {10215501450}@stu.ecnu.edu.cn, {2021015426}@st.cupk.edu.cn

Abstract—Set measurements are fundamental in numerous
areas including network measurement, database queries, and
data mining. These measurements are typically executed on mul-
tisets. Existing algorithms optimize a specific set measurement
task, leading to sophisticated but narrowly focused solutions.
This specialization often results in inefficiencies when multiple
set measurement tasks are required simultaneously, consuming
excessive computational and storage resources.

This paper introduces DaVinci Sketch, a versatile sketch
designed to efficiently handle various set measurement tasks using
a single unified data structure. DaVinci Sketch employs a novel
approach by utilizing a dedicated structure to store frequent
elements, thereby reducing collisions among flows that have the
most significant impact on results. Remarkably, DaVinci Sketch
can simultaneously perform up to nine different measurement
tasks with a single data structure and a unified operation,
whereas other approaches typically support fewer tasks.

The experimental results demonstrate that DaVinci Sketch
achieves high accuracy across 9 measurement tasks. Further-
more, in multi-task scenarios, DaVinci Sketch significantly re-
duces the memory usage (by more than 59%) and achieves high
throughput (more than 23 times faster than other methods).

Index Terms—set measurement, database query, network mea-
surement, sketch algorithm

I. INTRODUCTION

Set measurements play a crucial role in data processing and
analysis. Whether it’s in database query [1], data mining [2],
[3], information retrieval [4], or network measurement [5]–[8]
fields, set measurements are an essential foundational tool.
In practical applications, sets are categorized into two main
types: single sets and multisets. A single set is a collection of
distinct elements where order does not matter and duplicates
are not allowed. For example, the set {a,b,c} is identical to
{c,a,b} because both contain the same elements regardless
of the order. On the other hand, a multiset extends the idea
of a set by allowing multiple occurrences of its elements,
essentially acknowledging the presence of duplicates. In a
multiset, while the order of elements still does not matter,
the count of each element is crucial. For instance, the multiset
{a,a,b,c} is different from {a,b,c} because the former includes
two occurrences of “a”.

This paper focuses on the measurements of multisets, as
single sets can be considered a special case of multisets
where the count of each element is limited to one. The

Corresponding author: Tong Yang (yangtong@pku.edu.cn).
Yanshu Wang and Tong Yang are with School of Computer Science, Peking

University, Beijing, China.

measurements applicable to single sets are also applicable
to multisets. The set measurements encompass heavy-hitter
detection, element frequency measurement, heavy-changer de-
tection, element frequency distribution measurement, entropy
measurement, cardinality measurement, difference, union, the
cardinality of the intersection, the cardinality of the inner join,
and so on.

Previous advancements in set measurement algorithms have
been primarily centered on optimizing a specific type of set
measurement task, motivated by the demand for the efficiency
and precision in specific data processing scenarios. This spe-
cialization has led to the development of highly sophisticated
algorithms at specific tasks. For instance, JoinSketch [9]
focuses on only the cardinality of the inner join. CM Sketch
(Count-Min Sketch) [10] is highlighted for element frequency
measurement. Elastic Sketch [7] is capable of computing the
union across various sets. Heavykeeper [11] emphasizes the
measurement of heavy-hitter. In addition, LossRadar [12],
FlowRadar [13], and FermatSketch [14] focus on a limited
set of measurement tasks.

The trend towards specialization in previous solutions stems
from distinct research streams and conflicting optimization
goals. Existing work in set operations can be divided into
three main streams: the database domain, which addresses
tasks like cardinality of inner join, set union, cardinality
measurement, and heavy-hitter detection, and the network
measurement domain, which focuses on element frequency
measurement, heavy-changer detection, element frequency dis-
tribution, entropy measurement, and set difference (packet
loss detection). Additionally, theoretical research stream tar-
gets element frequency measurement. These efforts have not
produced unified algorithms for cross-domain problems. In
contrast, our approach unifies set operations across multiple
domains. Furthermore, each task has conflicting optimization
goals, making it difficult to generalize a single sketch that
performs well across all measurement types.

Under these circumstances, when various set measurement
tasks need to be performed, it is necessary to run multiple
algorithms simultaneously, leading to significant overhead.
Therefore, designing an algorithm capable of handling mul-
tiple set measurements is crucial. However, such algorithm
poses significant challenges.

First, designing an unified data structure to conduct
multiple set measurement tasks: In practical application

scenarios, multiple tasks are often conducted simultaneously.
For example, in the task of network traffic monitoring, it is
necessary to measure flow size (frequency) and flow cardinal-
ity, detect heavy hitters, analyze flow distribution, and take
the union of traffic measurement results when aggregating
information from different measurement points. Different set
measurement tasks often require different algorithms, and
different algorithms typically utilize different data structures.
In order to accommodate various tasks while conserving
storage and computational resources, it is necessary to employ
different algorithms on the same data structure.

Second, optimizing for element frequency distribu-
tion: In practical applications, the frequency of elements
within a dataset often follows a Pareto distribution, where
a small proportion of elements accounts for the major-
ity of occurrences. For example, in network traffic, as
shown in Figure 1, a small number of large flows 1

dominate the bulk of the traffic, while many flows are
minor; in text processing, a few words occur very fre-
quently, while the majority of words appear infrequently.

0 5000 10000 15000
The Flow Size

0

50

100

C
D

F

Fig. 1: The distribution
of flow size.

The mixture of frequent and
infrequent elements is the key
source of estimation errors in
set measurement tasks, especially
those involving interactions be-
tween frequent and infrequent el-
ements. It is crucial to appropri-
ately handle the conflicts between
elements.

To address these two challenges and bridge the gap, we
propose DaVinci Sketch, a versatile sketch for efficient and
comprehensive set measurement tasks. The novelty of DaVinci
Sketch over existing solutions lies in its unified insertion
process and query operations on a shared data structure, which
dynamically places elements with varying frequencies into
distinct data structures without requiring prior knowledge of
their frequency. The guiding principle behind this placement is
to use a dedicated structure for frequent elements, thereby re-
ducing collisions among those elements that most significantly
impact results. Furthermore, DaVinci Sketch extends existing
sketch techniques to support querying the cardinality of inner
join. Consequently, DaVinci Sketch can simultaneously mea-
sure up to nine different set measurement tasks using a single
data structure.

The contributions of this paper can be summarized as
follows:

• Methodological Innovation: We propose DaVinci Sketch
to handle up to nine different set measurement tasks
simultaneously.

• Theoretical Contribution: We prove the boundedness of
the measurement results.

• Experimental Comparison: We conduct extensive ex-
periments, demonstrating that DaVinci Sketch can achieve
up to 59% memory savings and over 23x speed improve-

1Large flows mean the flows with a high frequency of an element.

ments in multi-task scenarios compared to traditional
approaches.

• Unification Across Domains: Existing work in set mea-
surements can be categorized into the database domain,
the network measurement domain, and theoretical re-
search. Our approach unifies the strengths across multiple
domains.

II. BACKGROUND

A. Problem Definition

The set measurement tasks we focus on are divided into
single-set and multi-set operations.

Let F and G be multisets with S and T elements, respec-
tively. We represent a data element in a multiset by ei, where
D is the domain of all possible elements. Assume |D| = N ,
such that D = {eβ1 , . . . , eβi , . . . , eβN

}. Within this context,
F = [e1, . . . , ei, . . . , eS] and G = [e′1, . . . , e

′
j , . . . , e

′
T], where

each element ei or e′j belongs to D. Note that the elements in
D are distinct, but those in F or G may not be.

For each multiset, we define a frequency vector: f for F ,
as (f1, . . . , fi, . . . , fN), and g for G, as (g1, . . . , gi, . . . , gN).
Here, fi and gi denote the frequencies of the element eβi

within F and G, respectively.

TABLE I: Set Measurement Tasks.

Category Measurement Formula

Single-Set

Frequency {(ei, fi) | ei ∈ F}
Heavy-Hitter {ei ∈ F | fi > θ} or {ei | fi ∈ Top k}
Distribution Histogram of f
Entropy H(F) = −

∑N
i=1

fi
S

log fi
S

Cardinality |{ei | ei ∈ F}|

Multi-Set

Heavy-Changer {ei | |fi − gi| > δ}
Difference F \ G = {ei | ei ∈ F , ei /∈ G}
Union F ∪ G = {ei | ei ∈ F or ei ∈ G}
Inner Join J = f ⊙ g =

∑N
i=1 fi · gi

The set operations we support are shown in Table I. Single-
set operations include element frequency measurement, which
is the number of occurrences of each distinct element within
the multiset; heavy-hitter detection, which identifies elements
within a multiset whose frequencies exceed a predetermined
threshold, θ, or those that are among the most frequent
elements; element frequency distribution, which refers to the
distribution of frequencies across different elements; entropy
measurement, which provides insights into the randomness or
predictability of the set; and cardinality measurement, which
is the count of distinct elements within F . Multi-set operations
include heavy-changer detection, which detects streaming data
sets whose frequencies undergo significant changes between
two observations; difference and union operations; and the
cardinality of the inner join between two sets. All listed queries
stem from the element frequency problem. If new operations
can be transformed into this framework, additional queries (not
listed in Table I) may be supported in the future.

B. Sketch-Based Set Measurement Tasks

Sketches are a class of probabilistic data structures designed
to approximate various statistical characteristics of large-scale

datasets efficiently. These algorithms are particularly valuable
in big data contexts, where they facilitate the high-speed
processing and analysis of voluminous data streams. However,
to our knowledge, there is not yet a single sketch algorithm in
the literature that covers the majority of measurement tasks.
While various sketch data structures provide highly effective
approximations for processing large-scale datasets, most of
these algorithms are designed for specific statistical properties
or types of queries.

There are several lines of related work focused on specific
measurement tasks. For element frequency measurement, CM
Sketch [10] is the classical algorithm. Count Sketch [15] and
CU Sketch [16] improve the accuracy of CM Sketch, and
Count Sketch is unbiased, i.e. on average, it produces values
that are equal to the true parameter being estimated. Elastic
Sketch [7] divided the elements into heavy-part and light-
part. This adaptability leads to a higher accuracy in estimat-
ing statistical characteristics of skewed data distributions. To
adapt to characteristics of skewed data distributions, more
algorithms have been proposed, including variable counters
size [17]–[20], enlarged count range [21]–[23], multi-level
counters [24]–[32], multi-layer sketch [33], [34], frequency-
aware updating [35]. A line of previous works focus on heavy-
hitter detection [7], [36]–[41]. For the purpose of detecting
heavy-hitters, two primary methodologies are utilized, each
distinguished by its approach to managing temporal data: one
employs exponentially decaying weights [42]–[44], while the
other utilizes a sliding window mechanism [41], [45], [46].
These algorithms utilize a min-heap structure for the identifica-
tion of large flows. Heavy-changer detection is usually derived
from the heavy-hitters in the difference set. Element frequency
distribution can be calculated by Expectation-Maximization
algorithm in count sketch [47]. By leveraging the entropy
of traffic distributions, a broad range of network applications
can be facilitated, including anomaly detection, clustering
to uncover intriguing patterns, and traffic classification [16].
IMP [132] is the inaugural method developed to estimate
the entropy between each origin-destination pair. The AMS-
estimator [48] presents an algorithm that approximates the
empirical entropy of a stream of m values in a single pass.
Defeat [49] applies the entropy of the empirical distribution
of individual features to identify anomalous traffic patterns.
A lines of work for cardinality estimation are also proposed,
including MinCount [50], PCSA [51], LogLog [52], HLL [53],
Sliding HLL [54], HLL-TailCut+ [55], Refined LL [56] and a
sampling-based adaptive cardinality estimation [57]. To detect
significant changes between two consecutive time intervals,
various methods such as Fast Sketch [58], MV-sketch [59],
LD-sketch [60], Modular Hashing [61], Deltoid [62], Re-
versible sketch [63], and Group testing [62] are used. These
methods compute the difference sketch Sd = |S2−S1|, where
S1 and S2 are the sketches recorded for the two consecutive
time intervals. Due to the linearity of sketches, the difference
between flows can be estimated by querying the result. To
calculate the difference and union of two sets, the algorithms
encode the element IDs. The LossRadar [12], FlowRadar [13]

思想自由 兼容并包 < 2/29 >

- c:2 - b:1001 - a:2000

𝑒!: 1 𝑒": 1 𝑒#: 1

𝑒$: 1𝐾 𝑒%: 1𝐾 𝑒&: 1𝐾

Fig. 2: Hash collisions.

and FermatSketch [14] ingeniously encode IDs into their data
structures, thereby enabling operations such as set intersection
and union. This allows for the computation results to be
decoded. For cardinality of the inner join, the traditional
algorithms include AGMS sketch [64], [65] and Fast-AGMS
sketch [66]. They employ the count sketch to represent sets and
use the inner product of each row to calculate the cardinality
of the inner join. JoinSketch [9] separates frequency and
infrequency and achieves a higher accuracy.

Although previous algorithms can handle large and small
flows separately [7], [9], they have not been applied to
multiple tasks simultaneously. Implementing multiple tasks
simultaneously requires significant resource consumption and
space waste.

III. DaVinci Sketch

A. Rationale of DaVinci Sketch

We first analyze the causes of errors in set measurement
tasks, and then introduce the rationale of DaVinci Sketch based
on these causes.

The hash collisions can be classified into three types: (a)
hash collisions between frequent elements, (b) hash collisions
between frequent elements and infrequent elements, (c) hash
collisions between infrequent elements. Different types of hash
collisions impact the estimation errors of set measurement
tasks to varying degrees. We will analyze how different types
of hash collisions affect the result of set measurement tasks.

Consider a set F that consists of 6 distinct elements. The
frequency vector of F is

f = (f1, f2, . . . , f6) = (1, 1, 1, 1000, 1000, 1000),

where fi represents the frequency of the i-th element ei
(ei ̸= ej ̸= 0). We mainly consider the error of element
frequency estimation and the cardinality of the inner join.
The hash collision type is shown in Figure 2. If we calcu-
late f ⊙ f , the original correct inner joins are calculated as
1 × 1 + 1 × 1 + 1 × 1 + 1, 000 × 1, 000 + 1, 000 × 1, 000 +
1, 000 × 1, 000 = 3 + 3, 000, 000 = 3, 000, 003. Type (a)
collision errors significantly influence the results. As shown
in Figure 2, type (a) collisions cause a 50% error in the
frequency estimation of frequent elements (e5, e6). The impact
on the cardinality of the inner joins is particularly significant;
elements e5 and e6 contribute 2, 000 × 2, 000 + 2, 000 ×
2, 000 = 8, 000, 000, compared to the correct contribution
of 1, 000 × 1, 000 + 1, 000 × 1, 000 = 2, 000, 000. The
error rate is 8,000,000−2,000,000

3,000,003 ≈ 199.9%. Similarly, type (b)

collision errors affect both element frequency estimation and
the cardinality of the inner joins. Figure 2 illustrates that type
(b) collisions can cause a 1000-fold error in infrequent element
estimations and a 0.1% error in frequent element estimations.
The impact on the cardinality of the inner join is also sub-
stantial; for instance, elements e3 and e4 would contribute
1, 001×1, 001+1, 001×1, 001 = 2, 004, 002, compared to the
correct contribution of 1×1+1, 000×1, 000 = 1, 000, 001. The
error rate is 2,004,002−1,000,001

3,000,003 ≈ 33.5%. Type (c) collision
errors have a minor impact. As depicted in Figure 2, type
(c) collisions change the frequency of elements e1 and e2
from 1 to 2. This minor change has little effect on the overall
estimation error of frequent element estimations (compared
to 1000-fold error of e3). For the cardinality of the inner
join, the influence is negligible. Elements e1 and e2 contribute
2 × 2 + 2 × 2 = 8, compared to the correct contribution of
1×1+1×1 = 2. The error rate is 8−2

3,000,003 ≈ 0.00019%. Given
the small impact relative to the contributions from frequent
elements, we conclude that type (a) and type (b) collisions
significantly influence accuracy, whereas the impact of type
(c) collisions is less critical. Therefore, to minimize errors,
the algorithm should focus on reducing the occurrence of
type (a) and type (b) collisions among frequent and infrequent
elements. Therefore, properly handling the collisions between
different elements can improve the accuracy of the algorithm.
We propose DaVinci Sketch to handle such collisions.

The key idea of DaVinci Sketch is to distinguish between
frequent and infrequent elements. As shown in Figure 3,
DaVinci Sketch consists of three components: the frequent part,
the element filter and the infrequent part. The frequent part
is a hash table used to record frequent elements and evict
infrequent elements to the element filter. The element filter
is a TowerSketch [67] to filter out infrequent elements and
insert larger infrequent elements 2 into the infrequent part.
This filter improves the algorithm by focusing on elements that
have moderate frequency. The infrequent part is a sketch data
structure to encode key and frequency of different elements.
To encode the keys efficiently, we employ Fermat’s Little
Theorem3. We also designed a cross-validation algorithm for
Fermat Sketch to improve accuracy. Upon inserting an element,
DaVinci Sketch prioritizes accumulation in the frequent part.
Should a more frequent element arrive and the frequent part
reaches its capacity, the least frequent element within it is then
evicted to other two parts. This ensures that the frequent part
primarily stores the most frequent elements, optimizing the
efficiency of set measurement tasks.

This three-part design separates frequent and infrequent el-
ements, ensuring that frequent and infrequent elements do not
collide, thus mitigating type (b) collisions. Besides, frequent
elements use a hash table to precisely store each element’s
frequency, alleviating type (a) collisions.

2Larger infrequent elements means the infrequent elements that are not
filtered by TowerSketch.

3Fermat’s Little Theorem states that if p is a prime number, then for any
integer a such that: a ̸≡ 0 (mod p), it holds that ap−1 ≡ 1 (mod p).

Equivalently, this can be written as ap−2 × a ≡ 1 (mod p).

思想自由 兼容并包

𝑒 Frequent part

(eID, fcnt) ecnt flag
(eID, fcnt) ecnt flag
(eID, fcnt) ecnt flag

Counting Fermat sketch

iID icnt iID icnt iID icnt

iID icnt iID icnt iID icnt

(eID, fcnt) ecnt flag

… … …

𝑒!

Infrequent part

iID icnt iID icnt iID icnt

Evict

Hash

(eID, fcnt)
(eID, fcnt)
(eID, fcnt)
(eID, fcnt)

…
Hash Table

Element Filter

Frequency > 𝑇

TowerSketch

𝑐

𝑚

𝑑

𝑤

Fig. 3: Data structure of DaVinci Sketch.

B. Data Structure and Operations

1) Data Structure: As shown in Figure 3, DaVinci Sketch
consists of frequent part, element filter and infrequent part.

Frequent part (FP): The frequent part is a hash table of k
buckets and is associated with a hash function H(.). The i-th
bucket of the frequent part consists of evict counter FP[i].ecnt,
the evict flag FP[i].flag and c entries. Each entry stores an
element ID FP[i][e].eID and frequency FP[i][e].fcnt.

Element filter (EF): The element filter is a TowerSketch
consisting of m arrays. Each array consists of li counters,
and is associated with a hash function gi(·). The size of each
counter in array EF [i] is δi bits. The key difference between
TowerSketch and the CM sketch is in array configuration:
lower-level arrays have more, smaller counters, while higher-
level arrays have fewer, larger ones, following the principle
that set element frequencies are typically skewed, with fre-
quent elements being more numerous and infrequent elements
less so.

Infrequent part (IFP): The infrequent part is a counting
Fermat sketch. The sketch consists of d arrays. Each array is
composed of w buckets and is associated with a hash function
hi(.) and a random function ζi(.). The bucket of the ith row
and jth column is made up of a infrequent ID IFP [i][j].iID
and a infrequent counter IFP [i][j].icnt.

2) Operations: DaVinci Sketch supports three primary op-
erations: inserting an element, performing operations between
sets, and querying.

Insertion: When an element e is inserted, DaVinci Sketch
uses Algorithm 1 for insertion. Additionally, we list the four
cases in the algorithm separately (case1-case4).

Case 1: (lines 2–4 in algorithm 1) If bucket FP [i] contains
element e, the counter of element fcnt will be increased by
1.

Case 2: (lines 5–8 in algorithm 1) If bucket FP [i] does not
contain element e but there exists at least one empty entry, we
insert element e into an empty entry of bucket FP [i].

Case 3: (lines 9–16 in algorithm 1) If bucket FP [i] does not
contain element e and it is full, we increase the evict counter

Algorithm 1: The insertion algorithm of frequent part.
Require: The element e.

1 i← H(e);
2 if e ∈ FP [i] then
3 FP [i][e].fcnt← FP [i][e].fcnt+ 1;
4 return;
5 else if FP [i] is not full then
6 FP [i][e].fcnt← 1;
7 FP [i][e].eid← e;
8 return;
9 else if FP [i] is full then

10 FP [i].ecnt← FP [i].ecnt+ 1;
11 if FP [i].ecnt > λ× FP [i][e].fcnt then
12 insert (FP [i][e].eid, FP [i][e].fcnt) to EF ;
13 FP [i][e].eid← e;
14 FP [i][e].fcnt← 1;
15 FP [i].f lag ← True;
16 return;
17 else
18 insert (e, 1) to EF ;
19 return;

Algorithm 2: The insertion algorithm of infrequent
part.

Input: The element ID e, the element frequency cnt.
1 for i = 1 to d do
2 j ← hi(e);
3 IFP [i][j].iID ← (IFP [i][j].iID + cnt× e) mod p;
4 IFP [i][j].icnt← IFP [i][j].icnt+ ζi(e)× cnt;

FP [i].ecnt. If FP [i].ecnt is larger than λ × FP [i][e].fcnt,
element FP [i][e] is classified as an infrequent element, and we
evict FP [i][e] and insert (FP [i][e].eID, FP [i][e].fcnt) into
the element filter.

Case 4: (lines 17–19 in algorithm 1) If bucket FP [i]
does not contain element e and it is full, we increment the
eviction counter FP [i].ecnt. If FP [i].ecnt is no larger than
λ × FP [i][e].fcnt, element e is believed to be an infrequent
element, and we inserted (e, 1) into the element filter.

To insert an element e into element filter, we first
calculate the m hash functions to locate m counters:
EF1[g1(e)], EF2[g2(e)], . . . , EFm[gl(e)]. We call these coun-
ters the m mapped counters. Then, for each of the m mapped
counters, we update it by the element frequency unless it
is overflowed. To query the frequency of element e in the
element filter, we simply report the minimum value among
the m mapped counters. For an element e, the element filter
processes it as follows. First, we insert it into the element filter
and query the frequency of element e. Then, with the queried
element frequency, we decide whether to insert element e into
infrequent part according to a threshold T . If the queried result
is larger the threshold T , we insert the e to the infrequent part.
In other conditions, e is left in the element filter.

The insertion process of infrequent part is shown in algo-
rithm 2. To insert the element into the infrequent part, we
calculate the hash value of each array in infrequent part (lines
2–4 in algorithm 2). In each hashed bucket, we encode the
element id and element frequency, respectively (lines 3–4 in
algorithm 2). When we encounter non-numerical elements,

there are two cases depending on the key length. For the case
where the key is fixed-length and relatively short, we directly
use the existing approach, as binary encoding in memory
can be interpreted as numerical values, making non-numerical
elements able to undergo numerical computation. Algorithm 2
supports non-numerical items through hash functions and
modular arithmetic applied to their binary representation. For
the case where the key is variable-length and relatively long
(for example, exceeding the numerical representation range),
we first hash the key into a fixed-length fingerprint. The result
of the hash function can then be used for relevant numerical
computations. A separate mapping between the fingerprint and
the original key is maintained for query.

Performing operations between sets: Operations between
sets including union and difference of two sets. Each set is
represented by a DaVinci Sketch data structure. The result of
operations also is a DaVinci Sketch data structure.

Algorithm 3: The union of the frequent part and
infrequent part.

Input: The first set S1, the second set S2.
1 for i = 1 to k do
2 foreach e ∈ FPS1

[i][.].eID ∩ FPS2
[i][.].eID do

3 TS.eID ← e;
4 TS.fcnt← FPS1

[i][e].fcnt+ FPS2
[i][e].fcnt;

5 topc← getTopcEntry(TS ∪ FPS1\TS [i] ∪ FPS2\TS [i]);
6 FP [i]Sr .add(topc);
7 evictele← FPS1\topc[i] ∪ FPS2\topc[i];
8 if evictele is not empty then
9 evict evictele to IFP ;

10 f ← True;

11 FPSr [i].f lag ← FPS1 [i].f lag or FPS2 [i].f lag or f ;

12 for i = 1 to d do
13 for j = 1 to w do
14 j ← hi(e);
15 IFPSr [i][j].iID ←

(IFPS1 [i][j].iID + IFPS2 [i][j].iID) mod p;
16 IFPSr [i][j].icnt←

(IFPS1
[i][j].icnt+ IFPS2

[i][j].icnt) mod p;

17 return Sr ;

Union: The DaVinci Sketch data structure is distinctively
divided into the frequent part, the element filter and the
infrequent part. The process for calculating the union re-
sult considers these three parts independently. For element
filter, we can obtain the result by summing each row and
column of two tower sketch correspondingly. It is worth
noting that, in order to prevent overflow, only half of the
value range of the element can be used when performing
the union operation. Then, we calculate the results of the
frequent part (lines 1–11 in algorithm 3) and the infrequent
part (lines 12–17 in algorithm 3). It is noteworthy that there
is a difference between merging measurements after using
the union operation (denoted as union version) and directly
using a single measurement structure to measure the entire set
(denoted as original version) when analyzing the allocation
of elements. For example, an element may be in the frequent
part of the union version but not in the frequent part of the

original version. We conducted experiments on CAIDA data
to measure the distribution of frequent elements identified by
both the original version and union version (where we consider
the top α elements to be frequent elements, and α is the
capacity of the frequent part). The results showed that the F1
score for the original version was 0.73, while the F1 score for
the union version was 0.77. We also analyzed the proportion
of frequent elements that were not included in the frequent
part. For the original version, this proportion was 0.26, and
for the union version, it was 0.22. Since the union version
utilizes twice the space before merging, the frequent elements
are more likely to remain in the frequent part before the merge,
and the frequent part before merging is more likely to stay in
the frequent part after merging. Therefore, the union version
captures the frequent elements more accurately.

Difference: When calculating the difference set A − B
between sets A and B, previous approaches [12]–[14] pri-
marily addressed the case where A contains B (notated as
B ⊂ A). We also have extended this approach to accommodate
scenarios where A and B do not mutually contain each other.
For given sets (A = {a, a, b, d}) and (B = {a, b, b, c}), the
operation yields (A−B = {a,−b, d,−c}), where: The positive
sign (+) indicates elements that are present in set (A) but not
in set (B). The negative sign (−) indicates elements that are
present in set (B) but not in set (A). In line with this method-
ology, we describe set difference algorithm. The element filter
of the result can be calculated by subtracting each row and
column of the two sketch data structures correspondingly. The
algorithm for computing the difference between the frequent
part and the infrequent part of two sets is similar to the union
algorithm, except that addition is replaced with subtraction.

Querying: We support query operations for element fre-
quency measurement, heavy-hitter detection, cardinality mea-
surement, element frequency distribution, entropy measure-
ment, heavy-changer detection and cardinality of inner join.
Additionally, set union and set difference are operations
involving two sets, and queries can be performed on the
resulting sets after these operations. The element frequency
measurement is described in Algorithm 4. The heavy-hitter
detection algorithm simply adds a threshold check based
on the frequency measurement. The cardinality measurement
algorithm calculates the cardinality for different parts of the
DaVinci Sketch and then combines the results from these parts.
The cardinality in the frequency part is obtained directly,
while the linear counting algorithm [68] is applied to compute
the cardinality in other parts. Duplicates are then removed
based on the flags in the frequency part. The frequency
distribution is estimated by decoding the frequency results and
counting how many elements correspond to each frequency,
iteratively refined using the EM algorithm [47]. The entropy
measurement is calculated by applying the frequency results to
the entropy formula, and heavy-changer detection is performed
by subtracting the DaVinci Sketch of two time windows and
conducting heavy-hitter detection on the resulting sketch. The
query of the cardinality of the inner join is described in the
following text of Section III-B2. Since heavy hitters, heavy

changers, as well as the measurement of element frequency
distribution, entropy, and cardinality, are all based on querying
element frequency, the cardinality of the inner join is calcu-
lated separately. In the following sections, we primarily focus
on querying element frequency and the cardinality of the inner
join.

Algorithm 4: The element frequency querying algo-
rithm.

Data: The element e.
1 i← H(e);
2 if e ∈ FP [i] and FP [i].f lag is False then
3 cnt← FP [i][e].fcnt;
4 return cnt;

5 else if e ∈ FP [i] and FP [i].f lag is True then
6 cnt← FP [i][e].fcnt;

7 else if e /∈ FP [i] then
8 cnt = 0;

9 elemap← Decode();
10 if elemap[e] is not empty then
11 return elemap[e] + cnt+ T ;
12 else
13 Initiate counter array eccounters;
14 for i← 1 to m do
15 eccounters[i]← EF [i][gi(e)];

16 if minimum(eccounters) ≥ T then
17 Initiate counter array ifpcounters;
18 for i← 1 to d do
19 ifpcounters[i]← IFP [i][hi(e)];

20 return cnt+ minimum(ifpcounters) + T ;
21 else
22 return minimum(eccounters);

Element frequency: Algorithm 4 outlines the procedure to
query the frequency of an element e. The query process is
consisted of two steps, i.e. querying the frequent part and the
infrequent part. The algorithm begins with hashing the element
to determine its location i within the frequent part of the data
structure. If e is found in FP [i] and the flag at this location is
False, indicating no need for further querying, the frequency
cnt of e is directly returned (lines 2–4 in algorithm 4). If e
is present in FP [i] but with a True flag, or if e is not found
in FP [i], additional steps are taken to accurately compute its
frequency (lines 5–8 in algorithm 4).

For elements not directly found or requiring further query-
ing, the algorithm initiates a decoding process through the
decode function to identify any additional contributions to the
element’s frequency from the infrequent part of the data struc-
ture. If the process decodes the frequency of e, the frequency is
added to cnt (Lines 9–12 in algorithm 4). If decoding process
does not reveal the frequency of e, the algorithm employs
a minimum computation of selected counters from element
filter and a median computation of infrequent part. If the
query result from element filter is larger than the threshold,
the algorithm returns the sum of the frequency count plus T
cnt+T , otherwise, return the result from element filter (lines
13–22 in algorithm 4).

Algorithm 5 describes the procedure for decoding the fre-
quencies of elements within the infrequent part. The decode

Algorithm 5: The decode algorithm.
1 Function canDecode(i, j):
2 e← IFP [i][j].iID × IFP [i][j].icnt(p−2) mod p;
3 return (j == hi(e) and QueryEF (e) ≥ T) or

(j == hi(p− e) and QueryEF (p− e) ≥ T);

4 Function Remove(IFP [i][j], IFP [i′][j′]):
5 FP [i][j].icnt← FP [i][j].icnt− IFP [i′][j′].icnt;
6 FP [i][j].iID ← FP [i][j].iID − IFP [i′][j′].iID mod p;

7 Function Decode(IFP):
8 Initiate empty queue queue;
9 Initiate empty map elemap;

10 for i = 1 to d do
11 for j = 1 to w do
12 if IFP [i][j] is not empty then
13 queue.enqueue(IFP [i][j]);

14 while queue is not empty do
15 IFP [i][j] ← queue.dequeue();
16 if canQuery(i, j) then
17 e ← IFP [i][j].iID × IFP [i][j].icnt(p−2) mod p;
18 if j == hi(e) then
19 elemap[e] = elemap[e] + IFP [i][j].icnt;
20 rmkey = e;

21 else
22 elemap[e] = elemap[e]− IFP [i][j].icnt;
23 rmkey = p− e;

24 for i′ = 1 to d do
25 Remove(IFP [i′][hi′ (rmkey)], IFP [i][j]);
26 if IFP [i′][hi′ (rmkey)] ̸= 0 then
27 queue.enqueue(IFP [i′][hi′ (rmkey)]);

28 return elemap;

algorithm is crucial for accurately determining element fre-
quencies that are not directly stored in the frequent part.

The canDecode function (lines 1–3 in algorithm 5) cal-
culates an element’s decoded value, subsequently determin-
ing its validity based on predefined hash functions. Accord-
ing to Fermat’s Little Theorem, e equals IFP [i][j].iID×
IFP [i][j].icnt(p−2) mod p. If the decoded id e can be re-
hashed to the same position, indicating the element is correctly
decoded. In addition, because the element in infrequent part is
evicted from the element filter, which has the threshold T , the
frequency in element filter is used for cross-validation. Such
double verification is intended to ensure a higher decoding
rate. Note that we validate both e and p − e for the set
difference operation. This is essential because any negative
equivalent, such as −e, will be adjusted to p − e by the
modular operation, ensuring all values within the appropriate
range defined by the modulus p. This careful consideration
prevents errors in the identification process by accounting for
the cyclic nature of modular arithmetic.

The remove function adjusts the infrequent part structure
(lines 4–6 in algorithm 5). The adjustments are made to the
count (icnt) and identifier (iID) of elements.

The decode algorithm is shown as lines 7–28 in algorithm 5.
Initially, it initiates a queue with all non-empty elements in
infrequent part. Subsequently, through an iterative process
involving the canDecode and Remove functions, the algorithm

updates an element map (elemap), accruing decoded elements
alongside their corresponding counts. At last the element
counter map elemap is returned.

The cardinality of the inner join: To calculate the cardinality
of the inner join, we decompose the cardinality of the inner
join into multiple parts and calculate the cardinality of the
inner join for each part separately. We define the frequent
vector as fF = (fF1, fF2, . . . , fFN), i = 1, . . . , N . This
vector represents frequencies of elements in the frequent part.
The infrequent vector is denoted as fI = (fI1, fI2, . . . , fIN),
capturing frequencies of elements recorded in the infrequent
part. The filter vector is denoted as fE = (fE1, fE2, . . . , fEN).

The composition of these vectors fF , fI and fE encapsulate
the partial frequency vectors for elements recorded in their
respective parts. The aggregate frequency vector f is a sum
of the frequent, infrequent, and element filter, expressed as
f = fF+fI+fE . Assuming another dataset’s frequency vectors
are gF , gI , and gE , the cardinality of the inner join of F, and
G, denoted by J, simplifies the calculation of join operations
as follows:

J = f ⊙ g

= (fF + fI + fE)⊙ (gF + gI + gE)

= fF ⊙ gF + fF ⊙ gI + fF ⊙ gE

+ fI ⊙ gF + fI ⊙ gI + fI ⊙ gE

+ fE ⊙ gF + fE ⊙ gI + fE ⊙ gE

= JFF + JFI + JFE + JIF + JII + JIE + JEF + JEI + JEE .

This formula highlights the method to compute the contri-
butions of the interactions between the frequent, infrequent,
and element filter parts across two sets (FPS1

and FPS2
).

The join result, denoted as J, is dissected into nine principal
components: JFF , JFI , JFE , JIF , JII , JIE , JEF , JEI , and
JEE . These components elucidate the interactions between
the frequent, infrequent, and element filter parts of each set.
Specifically: JFF is calculated by iterating through each ele-
ment e located in the intersection of the frequent parts of both
sets, multiplying their frequency counts FPS1

[H(e)][e].fcnt×
FPS2

[H(e)][e].fcnt, and accumulating this product to the join
result. JFE , JEF , JFI and JIF capture the cardinality of
the inner join stemming from the interactions between the
frequent part of one set and the infrequent part or element
filter of the other. For JFI , each element e in the frequent
part of S1 and S1. Because we can obtain element key from
the frequent part, the frequency of other part can be directly
queried. The result can be obtained by multiplying the two
values. For JIE and JEI , we use the same hash function for
the row of the infrequent part and the element filter, and the
number of buckets are either equal or multiples of each other.
When calculating the cardinality of the inner join, we fold the
array with the larger number of buckets, and then perform
multiplication and addition at corresponding positions. For
JII , and JEE , we can obtain the result by performing the
dot product at corresponding positions and then calculating
the average across different rows.

3) Analysis of Time Complexity: Let PFP denote the prob-
ability that element stays in the frequent part, PEF the prob-

ability it stays in the element filter, and PIFP the probability
it stays in the infrequent part.

The frequent part is a multi-bucket hash table, where the
access complexity is c+ 2 (accessing c buckets + one access
to ecnt + one access to flag). The element filter is an m-layer
TowerSketch, with an access complexity of m. The infrequent
part is a Fermat sketch, with the complexity of inserting and
fast querying (using a count-sketch style query in Counting
Fermat sketch) being d, and the full decoding complexity is
wd2 [14]. Thus, the time complexity for inserting and fast
querying an element is given by O(c + m + d) as follows:
PFP ×(c+2)+PEF ×(c+2+m)+PIFP ×(c+2+m+d) =
(PFP + PEF + PIFP)(c+ 2) + (PEF + PIFP)m+ PIFP d.

For better visualization of the actual complexity in practice,
we conducted tests with d = 3, m = 2, and c = 7, and
as shown in Figure 8a, the average memory access (time
complexity) of our algorithm was 6.68, which is significantly
lower than that of the compared algorithm, which was 29.47.
Additionally, if full decoding is required, the time complexity
becomes O(c+m+ wd2).

IV. THEORETICAL ANALYSIS

Since all the tasks are based on the measurement of frequen-
cies, we will derive the error bound related to frequencies, and
other errors are similar. The frequency of element in DaVinci
Sketch consists of three parts, frequent part, element filter and
infrequent part, i.e. f = fFP+fEF+fIFP , where f represents
the total frequency of an element, fFP represents the frequent
part of the element, fEF represents the element filter, and
fIFP represents the infrequent part of the element.

fFP part is a hash table which accurately records the
element frequency. The infrequent part accurately estimates
the decoded element frequency. And for undecoded element
frequency of infrequent part and all element frequency of
the element filter, DaVinci Sketch gives rough estimates of
element frequency. From this perspective, the frequency can
also be expressed as a composition of the precise part and the
rough estimates of element filter and infrequent part. Thus, the
frequency estimation of each element can be refined as:

f = fFP + fPrecise
IFP + fRough

IFP + fEF . (1)
To better complete the proof, we first consider a one-

dimensional basic structure, namely an counter array A of
length R, is associated with a hash function θ(.) and a random
function ϕ(.). When an element e arrives, the corresponding
counter is updated as A[θ(e)] ← A[θ(e)] + ϕ(e) × 1. When
querying, DaVinci Sketch returns A[θ(e)].

Lemma 1. The frequency estimation for element e is fe, then
fe is unbiased, i.e. E(f̂e) = fe.

Proof.

f̂e =
∑
j

(
Iθ(j)=θ(e) · fj · ϕ(j)

)
· ϕ(e)

=
(
fe · ϕ(e)2

)
+
∑
j

(
Ij ̸=e
h(j)=h(e) · fj · ϕ(j) · ϕ(e)

)
.

(2)

The indicator function, denoted as I, is a function that
evaluates a given condition. It returns a value of 1 when the

condition is true and 0 when the condition is false. Notice
that, ϕ(e) = 0 as the expected value of an even distribution is
the sum of the values divided by the number of values, which
in this case is 0. In addition, E(ϕ(e)2) = 1 as ϕ(e)2 → {1}.
Knowing these expectations, we wish to calculate E(f̂e), the
expectation of the estimator for fe:

E(f̂e) =
(
fe · E

(
ϕ(e)2

))
+∑

j

(
E
(
Ij ̸=e
h(j)=h(e)

)
· fj · E (ϕ(j)) · E (ϕ(e))

)
. (3)

By knowing ϕ(e) = 0, we simplify the equation to:

E(f̂e) = fe · E
(
ϕ(e)2

)
. (4)

Since E
(
ϕ(e)2

)
= 1, our final result becomes:

E(f̂e) = fe. (5)

Lemma 2. The variance of the frequency estimation A[·] is
||A||22
R .

Proof. Consider the variance of the estimated frequency f̂e:

Var(f̂e) = E

[(
f̂e − fe

)2]
(6)

= E

[(∑
j

Ih(j)=h(e)
j ̸=e · fj · ϕ(j) · ϕ(e)

)2]
(7)

= E

∑
j ̸=e

I2j · f2
j · ϕ(j)2 · ϕ(e)2

 (8)

+ E

∑
j ̸=e
k ̸=e

IjIk · fj · fk · ϕ(j)ϕ(k) · ϕ(e)2

 . (9)

By knowing that, E
(
Ij ̸=e
h(j)=h(e)

)
= 1

R , ϕ(e) = 0 and
E
(
ϕ(e)2

)
= 1, the variance simplifies to:

Var(f̂e) = E

∑
j ̸=e

I2j · f2
j

 =
1

R

∑
j ̸=i

f2
j =

||F ||22
R

, (10)

where ||F ||22 represents the L2-norm squared of the frequency
vector f , excluding the frequency of element e itself.

Lemma 3. Given an error tolerance probability of 1
k , the error

bound for frequency estimation of the basic structure is given
by:

Pr

(∣∣∣f̂e − fe

∣∣∣ >√ k

R
||F ||2

)
<

1

k
. (11)

Proof. We use Chebyshev’s inequality to prove this lemma:

Pr
(
|X − E(X)| >

√
kσ
)
<

1

k
. (12)

And according to Lemma 2, where σ =

√
Var(f̂e), substitut-

ing into Chebyshev’s inequality yields:

Pr

(∣∣∣f̂e − fe

∣∣∣ >√ k

R
||F ||2

)
<

1

k
. (13)

A. Error Analysis of DaVinci Sketch
Theorem 1. Given an error tolerance probability of 1

k , the
error bound for frequency estimation of the DaVinci Sketch is
given by:

f − error1 ≤ f̂ ≤ f + error1 +
k∏d

i=t wi

∥FEF ∥1, (14)

error1 =

√
k

RIFP
||FIFP ||2, (15)

where REF is the length of selected array in element filter and
RIFP is the length of count Fermat sketch. FEF and FIFP

are the elements frequency in the element filter and infrequent
part.

Proof. To calculate the error bound of frequency estimated by
DaVinci Sketch, we decompose the error bound of frequency
estimation according to Equation 1. Then, We calculate the
error bound of each component and sum up the results.
Because the frequency estimations for f̂FP and ̂fPrecise

IFP are
accurate, they are error-free.

Error[f̂] = Error[f̂Rough
IFP] + Error[f̂EF]. (16)

The frequency of infrequent part is queried by d basic
structures and our algorithm returns the median of each
queried results. According to Equation 13, the error bond of
infrequent part is:

fRough
IFP − error1 ≤ f̂Rough

IFP ≤ fRough
IFP + error1. (17)

For element filter which uses count min update, we use the
error bound in [67]. Let δ0 = 0. Note that δ0 ≤ δ1 ≤ · · · ≤ δm.
Given an arbitrary element ej , without loss of generality, we
assume its real frequency fj satisfies 2δt−1−1 ≤ fj ≤ 2δt−1,
where 1 ≤ t ≤ m. Let ne be the number of elements and
fs be the sum of the frequency sizes of all elements, i.e.,
fs = ∥FEF ∥1 =

∑ne

j=1 fj . Given an arbitrary small positive
number ϵ, when fj + ϵ · fs < 2δt−1, the estimation error of
element ej is bounded by Pr{f̂j ≤ fj+ϵ·fs} > 1−

∏d
i=t

1
ε·wi

.
Let k =

∏d
i=t ε · wi and we can get ε = k∏d

i=t wi
.

0 ≤ f̂Rough
EF ≤ fRough

EF +
k∏d

i=t wi

∥FEF ∥1. (18)

For DaVinci Sketch:

f − error1 ≤ f̂ ≤ f + error1 +
k∏d

i=t wi

∥FEF ∥1. (19)

Theorem 2. Given an error tolerance probability of 1
k ,

the biasedness of frequency estimated is bounded by
k∏d

i=t wi
∥FEF ∥1.

Proof. According to theorem 1:

f − error1 ≤ f̂ ≤ f + error1 +
k∏d

i=t wi

∥FEF ∥1. (20)

The biasedness of the estimated frequency is bounded by
k∏d

i=t wi
∥FEF ∥1. The element filter employs small counters

and large number of buckets, i.e. wi is large. And element
filter keeps infrequent element, i.e. ∥FEF ∥1 is small. Hence,
the unbiased bound k∏d

i=t wi
∥FEF ∥1 is very small.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup,
then use micro-benchmarks to test the accuracy of DaVinci
Sketch across different set operations. Finally, in the Overall
Performance section, we comprehensively test the performance
and throughput of DaVinci Sketch when handling multiple
overall performance tasks simultaneously.

Dataset: We conduct the evaluation using three real-world
data traces:

(1) CAIDA [69] is an anonymized IP trace stream collected
in 2019 from the Center for Applied Internet Data Analysis
(CAIDA). This dataset provides valuable insights into Internet
traffic, enabling researchers to study network performance,
security, and usage patterns.

(2) MAWI [70] serves as a comprehensive database de-
signed to aid researchers in evaluating traffic anomaly detec-
tion methods. This resource provides a collection of labels
identifying traffic anomalies within the MAWI archive.

(3) TPC-DS [71] is widely recognized as the industry
standard benchmark for evaluating the performance of decision
support solutions, including big data systems. It captures
various essential elements of a decision support system, such
as query processing and data maintenance tasks.

Table II summarizes the characteristics of these datasets,
including the number of packets, the number of flows, and
cardinality.

TABLE II: Dataset statistics

Datasets # of packets # of flows cardinality
CAIDA 2,472,727 109,642 109,642
MAWI 2,000,000 200,471 200,471

TPC-DS 4,903,874 1,834 1,834

Platform and implementation: Our evaluations are con-
ducted on a single server equipped with an Intel(R) Core(TM)
i9-10980XE CPU, operating at a base frequency of 3.00 GHz,
capable of reaching up to 4.80 GHz under maximum load.
This CPU comprises 18 cores and 36 threads, supported by
a substantial 24.8MB L3 cache and 18MB of L2 cache,
ensuring high performance and responsiveness. All algorithms
are implemented in C++ and compiled using g++ version 7.5.0
on Ubuntu, optimized with the -O3 compiler flag for maximum
efficiency. The hash functions utilized are Bob Hash, known
for its speed and effectiveness in data handling. The full
implementation of DaVinci Sketch has been open-sourced for
community use and further development [72].

Metrics: The evaluation of the algorithm involves various
metrics, each serving a unique purpose in assessing perfor-
mance.

Average Relative Error (ARE) is defined as ARE =
1
|Ω|

∑
fi∈Ω

|vi−v̂i|
vi

, where Ω represents the set of all elements,
vi the true size of element ei, and v̂i its estimated frequency.
In contrast, Average Absolute Error (AAE) can be defined as
AAE = 1

|Ω|
∑

fi∈Ω |vi − v̂i|.
F1 Score calculates as F1 Score = 2·PR·RR

PR+RR , with PR
(Precision Rate) indicating the ratio of correctly reported
instances to all reported instances, and RR (Recall Rate) being
the ratio of correctly reported instances to all correct instances.

Relative Error (RE) is determined by RE = |Tru−Est|
Tru ,

contrasting the true and estimated statistics, Tru and Est,
respectively.

Weighted Mean Relative Error (WMRE) is articulated as
WMRE =

∑z
i=1 |ni−n̂i|∑z
i=1

(
ni+n̂i

2

) , with z marking the maximum

element frequency and ni, n̂i the true and estimated numbers
of frequency of element i.

Throughput (Mpps) denotes the processing speed, measured
in million packets per second.

Setup: We compare our algorithm with fifteen algorithms in
ten tasks: Hashpipe, ElasticSketch, CocoSketch, FCM-sketch,
CM, CU, CountHeap [73], UnivMon, MRAC, FlowRadar,
LossRadar, Fermat, JoinSketch, F-AGMS and SkimmedS-
ketch. For heavy-hitter detection and heavy-changer detection,
we set their thresholds ∆h and ∆c to about 0.02% and 0.01%
of the total packets respectively. The configurations of these
competitors are recommended in the literature.

A. Micro-benchmarks
In this section, we primarily conduct experiments to com-

pare the performance of DaVinci Sketch in various set mea-
surement tasks against other algorithms. The experimental
results for the CAIDA, MAWI, and TPC-DS datasets are
shown in Figure 4, Figure 5, and Figure 6, respectively.

Element frequency estimation: For CAIDA dataset, as
shown in Figure 6a, DaVinci Sketch demonstrates a higher
accuracy than other algorithms. Utilizing only 200KB of
memory, the Average Relative Error (ARE) of DaVinci Sketch
is significantly smaller, being 23.1 times, 15.2 times, 7.4 times,
and 9.9 times smaller than that of CM, CU, Elastic, and FCM,
respectively. The result of MAWI dataset is similar, and the
TPC-DS dataset shows instability of results due to the small
number of flows. We also conducted experiments on AAE,
but due to space limitations, we have only included the AAE
for element frequency estimation, as shown in Figure 7c. The
results show that the AAE performance of DaVinci Sketch is
also better than existing algorithms in most cases.

Heavy-hitter Detection: For CAIDA dataset, as shown in
Figure 6b, experimental results indicate that DaVinci Sketch
achieves comparable accuracy with HashPipe and elastic
sketch. Additional, DaVinci Sketch has a higher accuracy than
other algorithms. With only 200KB of memory, the F1 score
of DaVinci Sketch is 99.7%, while that of Coco and UniMon
is lower than 99%. The result of MAWI dataset is similar, and
the TPC-DS dataset also shows instability in the results due
to the small number of flows.

Heavy-changer Detection: For CAIDA dataset, as shown
in Figure 6c, the DaVinci Sketch achieves a higher accuracy
than other algorithms in detecting heavy changes. With just
200KB of memory, DaVinci Sketch achieves a 100% F1 score,
surpassing the performance of other algorithms which remain
below 97.0%. The results of MAWI and TPC-DS datasets are
similar.

Cardinality Estimation: For cardinality estimation of
CAIDA dataset, as shown in Figure 6d, DaVinci Sketch signifi-
cantly outperforms other algorithms. With 200KB of memory,

the Relative Error (RE) of DaVinci Sketch is much lower, being
0.00021, 109.9 times, 262.3 times, and 361.3 times smaller
than UnivMon, Elastic, and FCM, respectively. The results of
MAWI and TPC-DS datasets are similar.

Element frequency distribution For CAIDA dataset, as
shown in Figure 6e, DaVinci Sketch achieves comparable
accuracy with Elastic sketch and MRAC. Besides, DaVinci
Sketch outperforms FCM. When using 600KB of memory, the
Weighted Mean Relative Error (WMRE) of DaVinci Sketch
is notably lower, being 0.018, 2.4 times, 3.4 times and 2.2
times smaller than Elastic, FCM and MRAC, respectively. The
results of TPC-DS dataset are similar. And for MAWI datasets,
DaVinci Sketch is comparable to the optimal algorithm.

Entropy Estimation: For CAIDA dataset, as shown in
Figure 6f, DaVinci Sketch shows a higher accuracy than other
algorithm in entropy estimation. With 600KB of memory, the
ARE of DaVinci Sketch is an impressive 0.000229417, 53.2,
20.3, 12.4, 6.1 times smaller than that of UnivMon, Elastic,
FCM and MRAC. The results of TPC-DS dataset are similar.
And in the MAWI datasets, DaVinci Sketch is comparable to
the optimal algorithm.

Union: To experimentally evaluate the union operation of
two sets, we first compute the union and then calculate the
frequency to assess the union operation. For CAIDA dataset,
as shown in Figure 6g, DaVinci Sketch demonstrates a higher
accuracy than other algorithms. Utilizing only 200KB of
memory, the Average Relative Error (ARE) of DaVinci Sketch
is significantly smaller, being 1.8 times and 1.9 times smaller
than that of Elastic and Fermat, respectively. The results of
MAWI and TPC-DS datasets are similar.

Difference: To evaluate the difference operation, we first
compute the difference of two sets and then evaluate the
accuracy of frequency measurement. We test two scenarios:
subtracting half of the set from the whole set (inclusion
difference, Figure 6j) and subtracting the last two-thirds
from the first two-thirds (overlap difference, Figure 6h). The
DaVinci Sketch demonstrates superior accuracy compared to
other algorithms in handling inclusion differences. With just
200KB of memory, the Average Relative Error (ARE) of
DaVinci Sketch is significantly reduced, being 23.8 times
smaller than FlowRadar, 2.9 times smaller than LossRadar,
2.9 times smaller than Fermat. The results of MAWI and
TPC-DS datasets are similar. Similarly, for overlap differences,
the DaVinci Sketch also exhibits a higher accuracy than
comparative algorithms. Utilizing the same memory allocation
of 200KB, the ARE of DaVinci Sketch is substantially lower,
amounting to 1.4 times less than FlowRadar, 1.1 times less
than LossRadar, and 1.1 times less than Fermat. And for the
results of MAWI and TPC-DS datasets, DaVinci Sketch also
has the best performance.

The cardinality of the inner join: For CAIDA dataset,
as shown in Figure 6i, DaVinci Sketch shows comparable
accuracy with JoinSketch and outperforms Skimmed and F-
AGMS in calculate the cardinality of the inner join. With
600KB of memory, the ARE of DaVinci Sketch is 29.7, 29.8
times smaller than that of Skimmed, Elastic and F-AGMS.

200 300 400 500 600
Memory (KB)

0

2

4

A
R

E
Ours
Elastic
FCM
CMSketch
CUSketch

(a) Element frequency esti-
mation.

200 300 400 500 600
Memory (KB)

0.4

0.6

0.8

1.0

F1
 s

co
re Ours

Elastic
FCM
UnivMon
Hashpipe
Coco
CountHeap

(b) Heavy hitters.

200 300 400 500 600
Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

Ours
FCM
UnivMon
CountHeap
Elastic
Coco

(c) Heavy changers.

200 300 400 500 600
Memory (KB)

0.00

0.02

0.04

0.06

0.08

0.10

R
E

Ours
FCM
UnivMon
Elastic

(d) Element cardinality.

200 300 400 500 600
Memory (KB)

0.0

0.2

0.4

0.6

0.8

W
M

R
E

Ours
FCM
Elastic
MRAC

(e) Element frequency dis-
tribution.

200 300 400 500 600
Memory (KB)

0.00

0.02

0.04

0.06

0.08

0.10

R
E

Ours
FCM
UnivMon
Elastic
MRAC

(f) Entropy.

200 300 400 500 600
Memory (KB)

0.4

0.6

0.8

1.0
A

R
E Ours

Elastic
Fermat

(g) Union of two sets.

200 300 400 500 600
Memory (KB)

0.9

1.0

1.1

1.2

1.3

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(h) Difference of two sets
(overlap difference).

200 300 400 500 600
Memory (KB)

0

2

4

6

8

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(i) Difference of two sets
(inclusion difference).

200 300 400 500 600
Memory (KB)

0.000

0.001

0.002

0.003

0.004

0.005

A
R

E

Ours
Skimmed
F-AGMS
JoinSketch

(j) The cardinality of the
inner join.

Fig. 4: Experimental results of CAIDA dataset.

200 300 400 500 600
Memory (KB)

0

1

2

3

A
R

E

Ours
Elastic
FCM
CMSketch
CUSketch

(a) Element frequency esti-
mation.

200 300 400 500 600
Memory (KB)

0.4

0.6

0.8

1.0

F1
 s

co
re Ours

Elastic
FCM
UnivMon
Hashpipe
Coco
CountHeap

(b) Heavy hitters.

200 300 400 500 600
Memory (KB)

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

Ours
FCM
UnivMon
CountHeap
Elastic
Coco

(c) Heavy changers.

200 300 400 500 600
Memory (KB)

0.00

0.02

0.04

0.06

0.08

0.10

R
E

Ours
FCM
UnivMon
Elastic

(d) Element cardinality.

200 300 400 500 600
Memory (KB)

0.0

0.2

0.4

0.6

0.8

W
M

R
E

Ours
FCM
Elastic
MRAC

(e) Element frequency dis-
tribution.

200 300 400 500 600
Memory (KB)

0.00

0.02

0.04

0.06

R
E

Ours
FCM
UnivMon
Elastic
MRAC

(f) Entropy.

200 300 400 500 600
Memory (KB)

0.2

0.4

0.6

0.8

1.0

A
R

E Ours
Elastic
Fermat

(g) Union of two sets.

200 300 400 500 600
Memory (KB)

0

10

20

30

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(h) Difference of two sets
(overlap difference).

200 300 400 500 600
Memory (KB)

0.6

0.7

0.8

0.9

1.0

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(i) Difference of two sets
(inclusion difference).

200 300 400 500 600
Memory (KB)

0.0

0.5

1.0

A
R

E

1e 5

Ours
F-AGMS
JoinSketch

(j) The cardinality of the
inner join.

Fig. 5: Experimental results of MAWI dataset.

200 300 400 500 600
Memory (KB)

0.0

0.1

0.2

0.3

A
R

E

Ours
Elastic
FCM
CMSketch
CUSketch

(a) Element frequency esti-
mation.

200 300 400 500 600
Memory (KB)

0.7

0.8

0.9

1.0

F1
 s

co
re Ours

Elastic
FCM
UnivMon
Hashpipe
Coco
CountHeap

(b) Heavy hitters.

200 300 400 500 600
Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

Ours
FCM
UnivMon
CountHeap
Elastic
Coco

(c) Heavy changers.

200 300 400 500 600
Memory (KB)

0.000

0.005

0.010

0.015

0.020

R
E

Ours
FCM
UnivMon
Elastic

(d) Element cardinality.

200 300 400 500 600
Memory (KB)

0.00

0.01

0.02

0.03

W
M

R
E

Ours
FCM
Elastic
MRAC

(e) Element frequency dis-
tribution.

200 300 400 500 600
Memory (KB)

0.000

0.005

0.010

0.015

0.020

R
E

Ours
FCM
UnivMon
Elastic
MRAC

(f) Entropy.

200 300 400 500 600
Memory (KB)

0.0

0.1

0.2

0.3

0.4

0.5

A
R

E Ours
Elastic
Fermat

(g) Union of two sets.

200 300 400 500 600
Memory (KB)

0

100

200

300

400

500

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(h) Difference of two sets
(overlap difference).

200 300 400 500 600
Memory (KB)

0.0

0.5

1.0

1.5

2.0

A
R

E

Ours
LossRadar
FlowRadar
Fermat

(i) Difference of two sets
(inclusion difference).

200 300 400 500 600
Memory (KB)

0.000

0.002

0.004

0.006

A
R

E

Ours
Skimmed
F-AGMS
JoinSketch

(j) The cardinality of the
inner join.

Fig. 6: Experimental results of TPC-DS dataset.

200 300 400 500 600
Memory (KB)

0

5

10

15
A

A
E

Ours
Elastic
FCM
CMSketch
CUSketch

(a) CAIDA dataset.

200 300 400 500 600
Memory (KB)

0

2

4

A
A

E

Ours
Elastic
FCM
CMSketch
CUSketch

(b) MAWI dataset.

200 300 400 500 600
Memory (KB)

0

200

400

A
A

E

Ours
Elastic
FCM
CMSketch
CUSketch

(c) TPC-DS dataset.

Fig. 7: AAE of different datasets.

And for the results of MAWI and TPC-DS datasets, DaVinci
Sketch has the best performance.

B. Overall Performance

In the evaluation of overall performance, we employ the
DaVinci Sketch to execute a multitude of measurement tasks.
We compare its results with those of a combination of state-of-
the-art algorithms for each measurement task, which achieve
comparable or lower 4 accuracy for the same tasks. We
refer to the algorithm that combines multiple algorithms to
achieve the same functions and accuracy as the Composite
Set Operations Algorithm (CSOA). The accuracy of different
tasks is shown in Table III. We tried different comparison
algorithms and finally selected three algorithms based on
a comprehensive consideration of the number of algorithms
(choosing as few comparison algorithms as possible) and the
accuracy of the algorithms (choosing comparison algorithms
with as high accuracy as possible). The CSOA consists of
three algorithms: FCM for element frequency, heavy-hitter
detection, heavy-changer detection, cardinality measurement,
element frequency distribution, and entropy measurement.
Fermat Sketch for set difference and union operations. JoinS-
ketch for the cardinality of the inner join.

We primarily analyze the average memory access, through-
put and the memory savings of DaVinci Sketch while achieving
the same accuracy for different set operations. We use the
CAIDA dataset in the experiment of overall performance.

Average Memory Access: The experimental results of
Average Memory Access (AMA) 5 are shown in Figure 8a.
As the memory increases, the number of memory accesses
for both DaVinci Sketch and CSOA decreases because more
elements are stored in the frequent part and CSOA also
features a structure similar to the frequent part in some of
its algorithms. On average, the number of memory accesses
for DaVinci Sketch is 22.60% of that for the CSOA algorithm.

TABLE III: Accuracy under different cases.
Frequency HH HC Card Distribution Entropy Union Difference Inner join

Case 1 2.7 0.93 0.84 0.0043 0.58 0.054 0.85 1.4 0.31
Case 2 1.2 0.98 0.95 0.0036 0.33 0.031 0.73 1.1 0.27
Case 3 0.67 0.99 0.97 0.0022 0.26 0.022 0.66 0.96 0.56
Case 4 0.45 0.99 0.98 0.0034 0.23 0.017 0.62 0.88 0.33
Case 5 0.16 1.00 1.00 0.0059 0.12 0.0068 0.50 0.77 0.044
Case 6 0.081 0.99 1.00 0.0082 0.063 0.0033 0.42 0.71 0.035
Case 7 0.046 1.00 1.00 0.012 0.034 0.0017 0.36 0.68 0.018
Case 8 0.027 1.00 1.00 0.015 0.017 0.00080 0.30 0.66 0.0083
Case 9 0.017 1.00 1.00 0.017 0.010 0.00040 0.26 0.64 0.0054

4Some algorithms cannot achieve our level of accuracy.
5The AMA is defined as the total number of memory accesses divided by

the total number of insertions.

Throughput Analysis: As shown in Figure 8b, we can
see that DaVinci Sketch demonstrates higher throughput than
CSOA. In case 4, the throughput of DaVinci Sketch is signifi-
cantly higher, being 3.9 (Mpps), 111.9 times higher than that
of CSOA. In case 9, which is our worst case, the throughput
of DaVinci Sketch is 2.4, being 22.1 times higher than that of
CSOA.

1 2 3 4 5 6 7 8 9
Cases

0
10
20
30
40

AM
A

Ours
CSOA

(a) Average memory access.

1 2 3 4 5 6 7 8 9
Cases

0

2

4

Th
ro

ug
hp

ut
 (M

pp
s) Ours

CSOA

(b) Throughput.

1 2 3 4 5 6 7 8 9
Cases

0

500

1000

1500

M
em

or
y

co
ns

um
pt

io
n

(K
B) Ours

CSOA

0

10

20

30

40

50

M
em

or
y

pe
rc

en
ta

ge
 (%

)

(c) Memory consumption.

Fig. 8: Experimental results of overall performance.
Memory Savings: We evaluate the memory consumption

and memory percentage 6 of each algorithm across different
cases. DaVinci Sketch consistently shows superior memory
savings. As illustrated in Figure 8c, DaVinci Sketch outper-
forms CSOA in terms of reduced memory consumption. In
case 2, the memory savings of DaVinci Sketch are particularly
significant, reducing 660 KB of memory, which is 7.03%
of CSOA’ memory. In case 9, which is our worst case, the
memory used by DaVinci Sketch is 40.54% of CSOA’ memory.

VI. CONCLUSION

In this paper, we present DaVinci Sketch, which can inte-
grate multiple set measurement tasks within a unified frame-
work. In addition, DaVinci Sketch can simultaneously perform
up to nine different measurement tasks with a single data
structure and a unified operation. We have fully implemented
a DaVinci Sketch prototype. Experimental results verify that
1) DaVinci Sketch can achieve high accuracy in 9 set mea-
surement tasks; 2) DaVinci Sketch can save more memory
(by more than 59%) in multi-task scenarios and achieve high
throughput (more than 23 times faster than other methods).

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China (No. 2024YFB2906603), the National Nat-
ural Science Foundation of China (NSFC) (No. U20A20179,
62372009), research grant No. SH-2024JK29, and High Per-
formance Computing Platform of Peking University.

6The memory percentage is calculated as the ratio of DaVinci Sketch’s
memory consumption to that of CSOA.

REFERENCES

[1] Y. Park, B. Mozafari, J. Sorenson, and J. Wang, “Verdictdb: Univer-
salizing approximate query processing,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1461–1476.

[2] I. Nunes, M. Heddes, P. Vergés, D. Abraham, A. Veidenbaum, A. Nico-
lau, and T. Givargis, “Dothash: Estimating set similarity metrics for
link prediction and document deduplication,” in Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2023, pp. 1758–1769.

[3] X. Wan and X. Han, “Efficient top-k frequent itemset mining on massive
data,” Data Science and Engineering, pp. 1–27, 2024.

[4] J. S. Culpepper and A. Moffat, “Compact set representation for infor-
mation retrieval,” in International Symposium on String Processing and
Information Retrieval. Springer, 2007, pp. 137–148.

[5] B. Chen, Z. Lv, X. Yu, and Y. Liu, “Sliding window top-k monitoring
over distributed data streams,” Data Science and Engineering, vol. 2,
pp. 289–300, 2017.

[6] L. Yuan, C.-N. Chuah, and P. Mohapatra, “Progme: towards pro-
grammable network measurement,” in Proceedings of the 2007 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2007, pp. 97–108.

[7] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 2018, pp. 561–
575.

[8] Y. Wang, D. Li, Y. Lu, J. Wu, H. Shao, and Y. Wang, “Elixir: A high-
performance and low-cost approach to managing hardware/software
hybrid flow tables considering flow burstiness,” in 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22),
2022, pp. 535–550.

[9] F. Wang, Q. Chen, Y. Li, T. Yang, Y. Tu, L. Yu, and B. Cui, “Joinsketch:
A sketch algorithm for accurate and unbiased inner-product estimation,”
Proceedings of the ACM on Management of Data, vol. 1, no. 1, pp.
1–26, 2023.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[11] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: An accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845–1858,
2019.

[12] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast detection of
lost packets in data center networks,” in Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies, 2016, pp. 481–495.

[13] L. Yuliang, M. Rui, K. Changhoon, and Y. Minlan, “Flowradar: A better
netflow for data centers,” in 13th USENIX symposium on networked
systems design and implementation (NSDI 16), 2016, pp. 311–324.

[14] K. Yang, Y. Wu, R. Miao, T. Yang, Z. Liu, Z. Xu, R. Qiu, Y. Zhao,
H. Lv, Z. Ji et al., “Chamelemon: Shifting measurement attention as
network state changes,” arXiv preprint arXiv:2301.00615, 2023.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[16] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming al-
gorithms for estimating entropy of network traffic,” ACM SIGMETRICS
Performance Evaluation Review, vol. 34, no. 1, pp. 145–156, 2006.

[17] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proceedings of the
2003 ACM SIGMOD international conference on Management of data,
2003, pp. 241–252.

[18] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-
Pey, “Dynamic count filters,” Acm Sigmod Record, vol. 35, no. 1, pp.
26–32, 2006.

[19] G. Einziger and R. Friedman, “Counting with tinytable: Every bit
counts!” in Proceedings of the 17th International Conference on Dis-
tributed Computing and Networking, 2016, pp. 1–10.

[20] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of the 2017
ACM international conference on Management of Data, 2017, pp. 775–
787.

[21] R. Stanojevic, “Small active counters,” in IEEE INFOCOM 2007-26th
IEEE International Conference on Computer Communications. IEEE,
2007, pp. 2153–2161.

[22] J. Qi, W. Li, T. Yang, D. Li, and H. Li, “Cuckoo counter: A novel frame-
work for accurate per-flow frequency estimation in network measure-
ment,” in 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE, 2019, pp. 1–7.

[23] T. Yang, J. Xu, X. Liu, P. Liu, L. Wang, J. Bi, and X. Li, “A
generic technique for sketches to adapt to different counting ranges,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 2017–2025.

[24] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” ACM SIGMETRICS Performance Evaluation Review, vol. 36,
no. 1, pp. 121–132, 2008.

[25] N. Hua, B. Lin, J. Xu, and H. Zhao, “Brick: A novel exact active
statistics counter architecture,” in Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, 2008, pp. 89–98.

[26] D. Nyang and D. Shin, “Recyclable counter with confinement for real-
time per-flow measurement,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 3191–3203, 2016.

[27] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1442–1453, 2017.

[28] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Transactions
on Networking, vol. 25, no. 2, pp. 1249–1262, 2016.

[29] Y. Zhou, P. Liu, H. Jin, T. Yang, S. Dang, and X. Li, “One memory
access sketch: a more accurate and faster sketch for per-flow mea-
surement,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. IEEE, 2017, pp. 1–6.

[30] J. Gong, T. Yang, Y. Zhou, D. Yang, S. Chen, B. Cui, and X. Li, “Abc: a
practicable sketch framework for non-uniform multisets,” in 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp.
2380–2389.

[31] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta-framework for faster and more accurate stream
processing,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 741–756.

[32] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond sketch:
Accurate per-flow measurement for real ip streams,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, 2018, pp. 1–2.

[33] Y. Zhou, H. Jin, P. Liu, H. Zhang, T. Yang, and X. Li, “Accurate
per-flow measurement with bloom sketch,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 1–2.

[34] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proceedings of the 2016 International
Conference on Management of Data, 2016, pp. 1449–1463.

[35] J. Bruck, J. Gao, and A. Jiang, “Weighted bloom filter,” in 2006 IEEE
International Symposium on Information Theory. IEEE, 2006, pp.
2304–2308.

[36] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: An accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845–1858,
2019.

[37] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 113–126.

[38] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and guard hot items in data streams,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 2584–2593.

[39] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication. ACM, 2019, pp. 334–350.

[40] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2020, pp. 1574–
1584.

[41] X. Gou, L. He, Y. Zhang, K. Wang, X. Liu, T. Yang, Y. Wang, and
B. Cui, “Sliding sketches: A framework using time zones for data
stream processing in sliding windows,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1015–1025.

[42] A. Shrivastava, A. C. Konig, and M. Bilenko, “Time adaptive sketches
(ada-sketches) for summarizing data streams,” in Proceedings of the
2016 International Conference on Management of Data, 2016, pp. 1417–
1432.

[43] S. Matusevych, A. Smola, and A. Ahmed, “Hokusai-sketching streams
in real time,” arXiv preprint arXiv:1210.4891, 2012.

[44] G. Cormode, F. Korn, and S. Tirthapura, “Exponentially decayed aggre-
gates on data streams,” in 2008 IEEE 24th International Conference on
Data Engineering. IEEE, 2008, pp. 1379–1381.

[45] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

[46] F. Xing, F. Zhang, X. Tian, W. Li, H. Chen, and H. Jin, “Identifying the
most recent heavy hitters in large-scale streams using block-wise count-
ing,” in 2017 IEEE 10th Conference on Service-Oriented Computing
and Applications (SOCA). IEEE, 2017, pp. 239–244.

[47] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” ACM
SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, pp. 177–
188, 2004.

[48] A. Chakrabarti, G. Cormode, and A. McGregor, “A near-optimal algo-
rithm for computing the entropy of a stream,” in SODA, vol. 7. Citeseer,
2007, pp. 328–335.

[49] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, 2006, pp. 147–152.

[50] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Randomization and
Approximation Techniques in Computer Science: 6th International Work-
shop, RANDOM 2002 Cambridge, MA, USA, September 13–15, 2002
Proceedings 5. Springer, 2002, pp. 1–10.

[51] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[52] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
in Algorithms-ESA 2003: 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003. Proceedings 11. Springer, 2003, pp.
605–617.

[53] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proceedings of the 16th International Conference on Extending
Database Technology, 2013, pp. 683–692.

[54] Y. Chabchoub and G. Heébrail, “Sliding hyperloglog: Estimating car-
dinality in a data stream over a sliding window,” in 2010 IEEE
International Conference on Data Mining Workshops. IEEE, 2010,
pp. 1297–1303.

[55] Q. Xiao, Y. Zhou, and S. Chen, “Better with fewer bits: Improving
the performance of cardinality estimation of large data streams,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[56] L. Wang, T. Yang, H. Wang, J. Jiang, Z. Cai, B. Cui, and X. Li, “Fine-
grained probability counting for cardinality estimation of data streams,”
World Wide Web, vol. 22, pp. 2065–2081, 2019.

[57] R. Cohen and Y. Nezri, “Cardinality estimation in a virtualized network
device using online machine learning,” IEEE/ACM Transactions on
Networking, vol. 27, no. 5, pp. 2098–2110, 2019.

[58] Y. Liu, W. Chen, and Y. Guan, “A fast sketch for aggregate queries
over high-speed network traffic,” in 2012 Proceedings IEEE INFOCOM.
IEEE, 2012, pp. 2741–2745.

[59] L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 2026–2034.

[60] Q. Huang and P. P. Lee, “A hybrid local and distributed sketching design
for accurate and scalable heavy key detection in network data streams,”
Computer Networks, vol. 91, pp. 298–315, 2015.

[61] M. Kallitsis, S. A. Stoev, S. Bhattacharya, and G. Michailidis, “Amon:
An open source architecture for online monitoring, statistical analysis,
and forensics of multi-gigabit streams,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 6, pp. 1834–1848, 2016.

[62] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not: tracking
most frequent items dynamically,” ACM Transactions on Database
Systems (TODS), vol. 30, no. 1, pp. 249–278, 2005.

[63] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, 2004, pp. 207–212.

[64] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, 1996, pp. 20–29.

[65] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy, “Tracking join
and self-join sizes in limited storage,” in Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, 1999, pp. 10–20.

[66] G. Cormode and M. Garofalakis, “Sketching streams through the net:
Distributed approximate query tracking,” in Proceedings of the 31st
international conference on Very large data bases, 2005, pp. 13–24.

[67] K. Yang, S. Long, Q. Shi, Y. Li, Z. Liu, Y. Wu, T. Yang, and Z. Jia,
“Sketchint: Empowering int with towersketch for per-flow per-switch
measurement,” IEEE Transactions on Parallel and Distributed Systems,
2023.

[68] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM
Transactions on Database Systems (TODS), vol. 15, no. 2, pp. 208–229,
1990.

[69] CAIDA, “The caida ucsd anonymized internet traces 2018,” https://www.
caida.org/catalog/datasets/passive dataset/, 2018.

[70] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT ’10, Philadelphia, PA,
December 2010.

[71] TPC, “tpc-ds,” in https://www.tpc.org/tpcds/, 2024.
[72] “Davinci sketch,” https://github.com/DaVinciSketch/DaVinci-Sketch,

2024.
[73] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items

in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

