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Abstract—Given v sets and an incoming item e, multi-set
membership query is to report which set contains item e. Multi-
set membership query is a fundamental problem in computer
systems and applications. All existing data structures cannot
achieve small memory usage, fast query speed and high accuracy
at the same time. In this paper, we propose a novel probabilistic
data structure named Difference Bloom Filter (DBF) for fast
multi-set membership query, which not only is more accurate
than the state-of-the-art, but has a faster query speed. There
are two key design principles for DBF. The first one is to make
the representation of the membership of elements exclusive by
writing different number of 1s and 0s in the same filter, and
the second one is to use the slow but cheap DRAM memory to
improve the accuracy of the filter on the fast but expensive SRAM
memory. Experimental results show that in terms of accuracy,
DBF has a great advantage compared to state-of-the-art, being
hundreds of times more accurate than the state-of-the-art vBF
and ShBF. Furthermore, we have made the source code of our
DBF available at our homepage [1] and GitHub [2].

I. INTRODUCTION

A. Background and Motivation

There are v sets E1, E2 . . . Ev , each two of which have no
intersection. Given an item e, which set does item e belong
to? This is called multi-set query problem. Multi-set query
with fast speed is the fundamental issue in various fields of
computer networks, such as network packets processing [3]–
[5], network traffic measurement [6], deep packet inspection
[7], and more [8].

For example, in data centers, multi-set query mechanism
determines the performance of the core device – the data
center switch. To achieve fast forwarding speed, each switch
keeps a MAC address table, which associates a destination
MAC address with an outgoing port. The number of entries
of the MAC address table is tens of or hundreds of thousands
in practice. One straightforward solution is to use a hash
table to store and query the MAC table. However, due to the
large memory usage, the hash table is forced to be stored
in the slow memory (DRAM). Moreover, the worst query
performance of hash table is unbounded. Therefore, the query
speed of hash table can hardly catch up with the line speed.
To address this problem, several Bloom filter based algorithms
have been proposed, such as the well known vBF [4] and the
very recent work ShBF [9]. Bloom filters are memory efficient
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enough to be stored in fast memory (SRAM). Compared
with DRAM, SRAM is much faster, more expensive, and
limited in size. Bloom filters based algorithms can achieve
high query speed at the cost of a certain error rate. Since
handling errors need additional overhead, the error rate can
affect the performance of the Bloom filter based algorithm to
a large extent. Therefore, it is highly demanding to develop
a new scheme for multi-set membership query to achieve a
much lower error rate with fast query speed.

B. Limitations of Prior Art

As mentioned above, the hash table often needs too much
memory to be stored in fast but small SRAM. Meanwhile,
the Bloom filter based algorithms are not accurate enough. To
better understand prior art, it is worth introducing the Bloom
filter and the so far most space efficient algorithm, vBF [4],
in details.

The Bloom filter (BF) [10] is a data structure for recording
elements and reporting whether an element is in a set or not.
A BF consists of m bits with k hash functions. When inserting
an item e, BF first maps e to k bits by computing the k hash
functions, and then sets the k bits to 1. When querying an item
e, BF checks the k bits that e is mapped to. If all of them are
1, BF reports true. Otherwise, BF reports false. Given v sets,
the vBF algorithm [4] builds v Bloom filters, one Bloom filter
per set. When querying an element e, vBF performs query
operation on all the v Bloom filters. If BFi reports true, it
then reports that e is in set i. Otherwise, it reports that e
does not belong to set i. It can be proved that among all
Bloom filter based algorithms, vBF can achieve the maximum
possible information entropy, which is −0.5× log2(0.5)×2 =
1 when the probability that any bit in the Bloom filter is 1 is
0.5. Therefore, the accuracy of Bloom filter based algorithms
cannot be improved with the limited SRAM memory.

That seems to be a barrier that cannot be transcended before
we realize that the accuracy could be improved by taking
advantage of the auxiliary information written in DRAM.
If a DRAM data structure is used in the insertion process,
the Bloom filters can be guided to record the elements in a
better order. On the other hand, the DRAM data structure is
transparent for queries, if DRAM memory is never accessed
during the query process. Therefore, the query speed does not
decrease though the DRAM data structure is introduced. The
state-of-the-art solutions pay no attention to DRAM, which
limits their performances.



C. Proposed Difference Bloom Filters

In this paper, we design a novel probabilistic structure
named Difference Bloom Filter (DBF) for the sake of small
error rate and fast query speed. DBF consists of a SRAM filter
and a DRAM chaining hash table. The SRAM filter is a m-
bit array with k independent hash functions. In the insertion
process, elements in set i are mapped to k bits of the filter, of
which arbitrary k− i+1 bits are set to 1, and other i− 1 bits
are set to 0. We call this < i, k > constraint. If an incoming
element is conflicted with other existed elements on one of the
mapped k bits, DBF uses the dual-flip strategy proposed
in this paper to seek for conformity between the conflicted
elements to make the bit shared. The essence of dual-flip is to
change a series of mapping bits of the filters, so as to make
every inserted elements satisfy the < i, k > constraint. Notice
that the dual-flip operations are assisted by the DRAM table.
In the query process, DBF checks the k bits mapped by the
queried element e. If exactly k − i + 1 of them are 1, e is
reported to be in set i. In the deletion process, DBF locates
the k bits mapped by e, and for each of them, DBF decides
whether to reset it or not with the assistance of the DRAM
table.

The first design principle of DBF is to make the represen-
tation of the membership of elements exclusive in the same
filter. Therefore, the query result for an element is definite, and
any element, if inserted successfully, will never be reported to
be in other sets. The second design principle is to use the
slow but cheap DRAM memory to improve the accuracy of
the filter on the fast but expensive SRAM memory. During an
insertion, the slow DRAM table is accessed to assist the dual-
flip operation. However, DBF does not access DRAM during
the query process, so the DRAM table is transparent for query
and does not influence the query speed. In a nutshell, with the
same SRAM memory, DBF has a much smaller error rate and
faster query speed than the state-of-the-art at the cost of slower
update speed.

D. Key Contributions

The key contributions of this paper lie in following aspects.
1) First, we propose a novel filter, named Difference Bloom

filter (DBF), which is used for fast multi-set membership
query.

2) Second, we carried out theoretical analyses and ex-
tensive experiments, and results show that our DBF
algorithm significantly outperforms the state-of-the-art
algorithms in terms of accuracy.

3) Third, we release the source code of our DBF algorithm
and all other related algorithms at our homepage [1] and
GitHub [2].

II. RELATED WORK

The algorithms for fast multi-set membership query include
the Summary Cache [11], perfect hashing [12], kBF [13],
Bloomtree [14], Bloomier [15], Coded BF [6], Sparsely Coded
Filters [16], Combinatorial BF [17], and iSet [18]. It is worth
noting that those solutions are mostly based on Bloom filters.

The coded BF and the Bloomier are faster than vBF. They
both convert the set id of the element to a binary string. The
coded BF builds one BF for each bit of the binary string and
inserts e into the BFs corresponding to the bits with value
1. In contrast, for each bit, the Bloomier builds two BFs and
inserts e into one of the two BFs according to whether the bit
of the binary string of e is 1 or 0. These two algorithms need
a significantly larger space than vBF.

Another solution is proposed by Fang et al. called Com-
binatorial BF. It uses a single Bloom filter and uses multiple
sets of hash functions to encode the set id. It improves the
performance of the data structure by using constant weight
error correcting codes for encoding the set id. However, the
Combinatorial BF is not memory efficient and fast enough.

A recent study proposed a new algorithm called the Shifting
Bloom Filter (ShBF) [9]. Instead of building v different filters
for v sets, it uses the location offset to record elements with
different values in only one filter. To be specific, ShBF first
hashes e to k bits. We call them k bases to make things clear.
Then instead of setting those k bases to 1, for the elements in
set i, it sets the i − 1th bits from the right of every bases to
1. ShBF is the fastest algorithm and is as memory efficient as
vBF, so it is the best solution so far.

III. THE DIFFERENCE BLOOM FILTER

For a better understanding of DBF, we first introduce how
DBF works for two sets. For more sets, the process is similar,
and will be introduced later.

A. Problem Formulation

Suppose there are two disjoint sets E1 and E2. We define
the union of them to be E, and the collection of elements out
of E is denoted as E. An element in E1 is denoted as e1, and
an element in E2 is denoted as e2. The mission of DBF is to
keep track of E and handle membership query. In other words,
DBF needs to report which set the queried element belongs
to, E1, E2 or E.

B. The Structure of DBF

Before going into the details of our algorithm, we first
describe the structure of our DBF. As shown in figure 1, DBF
has two parts, a filter on SRAM and a chaining-hash table
on DRAM. The filter is an array with m bits, and the table
consists of m cells corresponding to the m bits of the filter.
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Fig. 1. Structure of DBF



Each cell is composed of a counter to count the number of
elements in this cell, and a linked list which stores the informa-
tion of the elements, including the key and the membership of
the elements. DBF is associated with k uniformly distributed
independent hash functions hi(.) (1 6 hi(.) 6 w).

C. Building DBF for Static Sets

In this section, we first introduce how the query works in
DBF, and then discuss the construction of DBF for two static
sets E1 and E2.

1) Query: During the query process, DBF accesses only
the fast SRAM memory. Suppose we query for an element e,
which is mapped to k positions by the k hash functions hi(e)
(1 6 i 6 k). The corresponding k bits in the SRAM filter,
A[hi(e)] (1 6 i 6 k), are checked. There are three possible
results: 1) All these k bits are 1, then it reports that e belongs
to E1. 2) Only k− 1 bits are 1, then it reports that e belongs
to E2. 3) Less than k−1 bits are 1, then it reports that e does
not belong to these two sets, or we can say it belongs to E.

2) Construction: The construction of DBF are divided into
two steps, and we propose a strategy called dual-flip to deal
with collisions.

The first step is to insert every element into DBF without
distinguishing between e1 and e2. To be specific, every el-
ement is mapped to k cells of the DRAM table, which are
denoted as B[hi(e)] (1 6 i 6 k). For each of the k cells,
its counter is increased by 1, and the element is inserted into
the linked list of the cell. Then, the corresponding bit in the
SRAM filter, A[hi(e1)], is set to 1. After this step, all e1s are
inserted successfully, but all e2s are in wrong status.

The second step is to settle every e2. To settle an e2 means
to turn exactly one bit of its k mapped bits from 1 to 0, which
will make its query result correct. It’s simple to settle an e2
that is not sharing all its k cells with others. Among those
k cells, DBF finds out a cell whose counter is one, and turn
the corresponding bit of the filter from 1 to 0. However, if
an element e2 is sharing all its k bits with others, flipping
(changing the bit from 1 to 0 in this case) any one of them
will lead to conflicts. If we do not handle these conflicts, DBF
will mistake some e1s for e2s and vice versa.

To address this issue, we propose a dual-flip strategy,
which flips two bits of an existed element concurrently.
Figure 2 shows an example of dual-flip. Dual-flip is adapted
when DBF finds out that the counters of the k cells that
the inserted e2 is mapped to are all larger than one. First,
among those k cells, DBF finds all cells in whose linked
list all elements belong to E2, denoted as B[hfind(e2)]s.
Then, for each element e′2 in a B[hfind(e2)], we call it
flippable if it satisfies one of the following two conditions.
1) e′2 has not been settled. 2) e′2 has already been settled,
but it is the only element mapped to its 0 bit, denoted as
A[hfind′(e′2)]. If all e′2s sharing a B[hfind(e2)] are flippable,
we flip A[hfind(e2)] and A[hfind′(e′2)]s synchronously, and
the dual-flip of B[hfind(e2)] succeeds. The settling of e2 will
fail if the dual-flip efforts for all B[hfind(e2)]s fail.
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Fig. 2. Dual-flip strategy: This is a part of DBF. There is an e2 shares all k
bits with others, so it cannot write a 0 directly. Notice that it shares the 4th

bit with e′2, whose 0 bit is in the 5th bit solely. Therefore, flipping the 4th

bit and the 5th bit concurrently produces no side-effect.

D. Dynamic Update of DBF

In this section, first we discuss the mechanics of dynamic
insertion, then we present the details of deletion.

1) Dynamic Insertion: Similar to the construction process,
the dynamic insertion also aims to set all k bits of e1 to 1, and
to set k − 1 bits of e2 to 1 and the other one to 0. However,
more conflicts will occur during this process. We divide them
into two categories and discuss them respectively.

a) An inserted 1 conflicts with an existed 0: This will happen
when a newly inserted e1 conflicts with the 0 bit of an existing
e2, or a newly inserted e2 conflicts with the 0 bit of two other
existing e2s. In this situation, we try to move the 0 away using
the dual-flip strategy shown in Figure 3.

Specifically, if e1 conflicts with a 0 at A[hx(e1)], every
element in the linked list of B[hx(e1)] must be in E2. We
denote each of them as e2i. For each e2i, among the other
k − 1 cells it is mapped to, DBF tries to find a cell whose
counter is 1, which is denoted as B[hfind(e2i)]. If such a cell
is found for every e2i, DBF sets A[hx(e1)] to 1 and every
A[hfind(e2i)] to 0. Otherwise, DBF still sets A[hx(e1)] to 1.
In this way, it is ensured that every e1 can be inserted correctly,
at the cost of introducing errors of e2s.

b) An inserted 0 is mapped to k 1s: If all the k bits that
an incoming e2 is mapped to have already been set to 1, one
of these k bits needs to be flipped from 1 to 0. The dual-flip
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Fig. 3. Dual-flip strategy: This is a part of DBF. The inserted element e1
conflicts with an e2 on the 4th bit. The 5th cell holds this e2 solely, so
flipping the 4th bit and the 5th bit concurrently produces no side-effect.



strategy can be applied in the same way with the construction
process.

2) Deletion: To perform a deletion, DBF first modifies the
DRAM table, then updates the SRAM filter according to the
status of the table. The details are presented below.

First, it calculates the values of the k hash functions hi(e)
(1 6 i 6 k), and finds the k cells B[hi(e)] (1 6 i 6 k)
in the DRAM table. Second, it deletes the entries of e in the
linked lists of these k cells, and decreases the counters of
the k cells by 1. Third, if the counter of a cell B[hx(e)] has
been decreased to 0, the corresponding bit in the SRAM filter,
which is A[hx(e)] in this case, will be set to 0.

E. Periodically Refresh of DBF

Although our DBF supports dynamic updates, it will have
a better performance if it is rebuilt periodically. With the
assistance of the DRAM table, the reconstruction of DBF can
be done in situ. First, every e2 in DBF is recorded in a queue.
Second, every bit corresponding to a non-empty cell is set to
1. Third, every e2 in the queue is settled in the same way with
the construction process.

F. DBF for Multi-set Membership Query

The DBF for 2-set can be extended naturally to handle
multi-set membership query. We denote the application of
DBF to v-set as DBFv . To insert an element in Ei, DBFv

maps it to k bits of the filter, and try to set k − i + 1 bits
of them to 1 and i − 1 bits to 0. If conflicts occur during
the insertion, the dual-flip strategy is applied to resolve them.
During the construction, the set with larger id is settled earlier,
which can decrease the overall error rate. For the query of an
element e, DBFv checks the number of 1s among the k bits
it is mapped to. It reports e belongs to Ei if there are exact
k − i+ 1 (1 6 i 6 v) 1s, and reports e belongs to E if there
are less than k−v+1 1s. To delete an element e, it is deleted
in the table first. If the counter of a cell is decreased to 0, the
corresponding bit in the filter is reset to 0.

IV. ANALYSIS

In this section, we will analyze the performance of DBF
for 2-set membership query theoretically. The DBF algorithm
may suffer the following types of errors:

1) f1: e1 is reported to be in E2.
2) f2: e2 is reported to be in E1.
3) f3: e is reported to be in E1.
4) f4: e is reported to be in E2.
First we present some conclusions of the Bloom filter

proved in [19]. If we know the total number of inserted
elements n and the length of BF m, there is an equation to
calculate the optimal value of the number of hash functions
k, and we use that equation to adjust the parameters of DBF.

k = ln2× m

n
(1)

According to the insertion strategy of DBF, if a conflict
occurs, e1 is guaranteed to be inserted successfully. As a result,

all the k bits mapped by e1 are set to 1, and e1 will never be
reported to be in E2.

P (f1) = 0 (2)

f2 comes from insertion failures. To analyze the probability
of insertion failures, first we should know how many cells
are mapped by e1 and how many are mapped by e2. For a
certain cell, the probability that it is not mapped by e1 is(
1− 1

m

)k|E1|. Note that k is determined by ln2 × m
|E1|+|E2| ,

so the expression above can be simplified as 2
− |E1|

|E1|+|E2| . For
an arbitrary cell, the probability that it is mapped by e1 is
defined as I1. Similarly, that for e2 is defined as I2.

I1 = 1− 2
− |E1|

|E1|+|E2| (3)

I2 = 1− 2
− |E2|

|E1|+|E2| (4)

In the building process, an insertion failure of e2 takes place
in these two situations:

1) All cells that e2 is mapped to are occupied by e1s. The
probability is Ik1 .

2) Some of the cells that e2 is mapped to are occupied
by e1s, and other cells are being occupied by e′2s
which fail the dual-flip operation. For an arbitrary cell,
the probability that it holds another e′2 is I22 , and the
probability that the 0 bit of this e′2 is shared by two or
more elements is also about I22 .

Taking both situations into account, we deduce P (f2) for
DBF using dynamic insertion as follows:

P (f2) ≈
(
I1 + I42

)k
(5)

In order to deduce P (f3) and P (f4), first we should
estimate the number of 1s in the SRAM filter after the building
process. 1 is used to determine the optimal value of k for DBF,
so there are about m

2 1s in the filter before settling. Most of
e2s can be settled successfully, so there are about m

2 − |E2|
1s after settling.
f3 happens when all the k bits that the query element is

mapped to are 1.

P (f3) ≈
(
m− 2|E2|

2m

)k

(6)

f4 happens when arbitrary k−1 of the k bits that the query
element is mapped to are 1, and the other bit is 0.

P (f4) ≈ k

(
m− 2|E2|

2m

)k−1 (
m+ 2|E2|

2m

)
(7)

The performance of DBF is relative to the ratio between
E1 and E2. All of the four kinds of errors tend to decrease
when the percentage of E1 decreases. Given the amount of
E1, E2 and E, we can calculate the overall error rate of DBF
(denoted as P (f)).

P (f) =
P (f2)|E2|+ (P (f3) + P (f4))|E|

|E1|+ |E2|+ |E|
(8)
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V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of DBF,
vBF and ShBF for 2-set membership query and multi-set
membership query.

A. Experimental Setup

All of the experiments are running on a machine with
12-core CPUs (24 threads, Intel Xeon CPU E5-2620 @2
GHz) and 62 GB DRAM memory. The datasets used in the
experiments are generated to simulate MAC addresses and
their destination ports. In all experiments, the SRAM usage
of DBF, vBF and ShBF are all the same, which is m bits,
while the DRAM usage has no limitation.

B. 2-set Membership query

We implement DBF, 2-BF (vBF for 2-set) and ShBF for
2-set membership query to verify the equation 8.

1) Overall Error Rates with Changing Ratio Between E1

and E2: With the percentage of E1 varies from 90% to 10%,
our experimental and theoretical results show that DBF is
10 ∼ 107 times more accurate than 2-BF and ShBF. In this
experiment, k is set to 10, n is set to 20M , and m is calculated
by the optimal equation 1, which is 289M . The memory usage
of the two bloom filters of 2-BF are adjusted dynamically
according to the percentage of E1 and E2. To test the overall
error rates of these three structures, every inserted element
is queried once, and no element in E is queried. Figure 4
shows that as the percentage of E1 increases, the error rate of
DBF increases. The overall error rate of DBF varies from 0
to 4.8× 10−5, which matches well with the theoretical values
calculated by equation 8. When the proportion of E1 is 10%,
the experimental value is 0, and the theoretical value is 1 ×
10−11 On the contrary, the overall error rate of 2-BF and ShBF
are staying around 4.8× 10−4.

2) Overall error rates with Changing Ratio Between E and
E: The experimental results show that DBF has the best
performance when the proportion of the queries of E is less
than 11%. The experimental conditions remain the same. k is
10, n is 20M , and m is 289M . The ratio between E1 and
E2 is fixed to 1 : 1. In addition to all the inserted elements,
different number of elements in E are queried, which account
for at most 12% of the total queried elements. Experimental
results of Figure 5 show that the overall error rate of DBF
increases from 2.4× 10−6 to 7.1× 10−4 with the increasing
of the proportion of E. By contrast, that of 2-BF and ShBF
increases from 4.8×10−4 to 6.5×10−4. When the percentage
of E is less than 11%, DBF has an advantage over the other
two structures. From Figure 5, it can also be seen that the
simulation values of P (fDBF ) satisfy the theoretical value
calculated by equation 7 well.

C. Multi-set membership query

In this section, MAC addresses are grouped into 10 sets
denoted by Ei (1 6 i 6 10) according to their ports. The Eis
are of almost the same size. We implement DBF10 with the
algorithm of DBFv , ShBF with offsets from 0 to 9, and 10-BF
with 10 individual BFs. Next, We will test the performance of
the three structures with various parameters.

1) Query Speed and Construction Speed: The experimental
results show that the query speed of DBF10 is 5 times faster
than that of the 10-BF algorithm. In this experiment, we set n
to 20M , m to 289M for the three structures. The k of 10-BF
and ShBF is 10, which is their optimal value. And the k of
DBF10 is 20, which is the practical best value for DBF10. In
the query process, we first fetch all the k bits, and then judge
which set the element is in. We use ten different datasets to
repeat this experiment for ten times. As shown in Figure 6,
the query speed of DBF10 keeps at 0.82MPS when dataset
changes, while that of ShBF is 1.3MPS and that of 10-BF
is 0.15MPS. In conclusion, though DBF10 performs not so



well as the fastest existing algorithm, ShBF, it is significantly
faster than the widely used algorithm, vBF.

Due to the accesses to the DRAM table, the construction and
updating speed is the drawback of DBF10. As shown in Figure
7, the speed of construction of DBF10 is 0.1MPS, while that
of ShBF is about 1.6MPS and that of 10-BF achieves about
3.0MPS. However, the construction and update speed is not a
concerned problem for relatively static sets, which is the case
of the MAC forwarding tables.

2) Error rate of Elements in different sets: The exper-
imental results show that DBF10 tends to perform better
for elements in the set with smaller id. The experimental
parameters are the same with the speed experiment, and each
set is of the same size. Figure 8 shows that the error rates
increase when the set id increases. Elements in set 1 ∼ 4
suffer no faults, or we can say the error rate is lower than
5×10−7. Meanwhile, elements in set 9 have the highest error
rate, 4.15× 10−5. The error rate of set 10 is not the highest,
because it is the first settled set in the construction process.

3) Overall error rate with Changing n: The experimental
results show that DBF10 is 24 ∼ 5× 103 times more accurate
than 10-BF and ShBF when n changes. In this experiment,
we set m to 289M , k of 10-BF and ShBF to 10, and k of
DBF10 to 20. Besides, n varies from 15M to 25M . Figure 9
shows that DBF performs the best and has a larger advantage
when the demand for accuracy grows. The overall error rate
of DBF10 increases from 1.0×10−7 to 8.6×10−4, while that
of 10-BF increases from 5.3× 10−4 to 1.9× 10−2 and ShBF
is similar.

4) Overall error rate with Changing k: The experimental
results show that DBF10 is 430 times more accurate than 10-
BF and ShBF when the parameters of them are all set to their
optimal value. In this experiment, we set m to 289M and n
to 20M . k of 10-BF and ShBF varies from 6 to 15, and k
of DBF10 varies from 16 to 25, which is 10 larger than the
former. The x-axis refers to k of 10-BF and ShBF. Figure 10
shows that all of the three structures’ error rates first go up
and then go down. The overall error rate of DBF10 reaches
the minimum value 1.0× 10−5 when its k is 20, while at the
same time that of 10-BF and ShBF reach the minimum value
4.3 × 10−3 when k is 10. DBF10 outperforms the other two
structures no matter how k changes.

5) Overall error rate with Changing m: The experimental
results show that DBF10 is 30 ∼ 2× 104 times more accurate
than 10-BF and ShBF when m changes. In this experiment,
we set n to 20M , k of 10-BF and ShBF to 10, and k of
DBF10 to 20. Besides. We change m from 240M to 350M .
Figure 11 shows that DBF always performs the best and has a
greater advantage when the memory footprint becomes larger.
The overall error rate of DBF10 increases from 2 × 10−7 to
4.2 × 10−4, while that of 10-BF and ShBF increases from
1.1× 10−3 to 1.5× 10−2.

VI. CONCLUSION

Multi-set query is an important issue in various fields of
computer science. In this paper, we propose a novel probabilis-

tic filter named Difference Bloom Filter (DBF) for
fast multi-set membership query, which not only is more
accurate than the state-of-the-art, but has a faster query speed.
The key operation of DBF is the dual-flip. The essence of dual-
flip is to change a series of mapping bits of the filters, so as to
make every inserted elements satisfy the < i, k > constraint.
Theoretical analyses and extensive experimental results show
that in terms of accuracy, DBF has a great advantage compared
to state-of-the-art, being hundreds of times more accurate than
vBF and ShBF. We believe that our DBF can be applied to
many more fields with multi-set query problem.
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