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Abstract—Finding top-K frequent items has been a hot topic in
data stream processing with wide-ranging applications. However,
most existing sketch algorithms focus on finding local top-K in
a single data stream. In this paper, we tackle finding global
top-K across multiple data streams. We find that using prior
sketch algorithms directly is often unfair in global scenarios,
degrading global top-K accuracy. We define top-K-fairness and
show its importance for finding global top-K. To achieve this,
we propose the Double-Anonymous (DA) sketch, where double-
anonymity ensures fairness. We also propose two techniques,
hot-filtering and early-freezing, to improve accuracy further.
We theoretically prove that the DA sketch achieves top-K-
fairness while maintaining high accuracy. Extensive experiments
verify top-K-fairness in disjoint data streams, showing that the
DA sketch’s error is up to 129 times (60 times on average)
smaller than the state-of-the-art. To enhance the applicability
and technical depth, we also investigate how to extend the DA
sketch to general distributed data stream scenarios and how to
provide a fairer and more accurate global ranking for top-K
items. The experimental results show that the extended version
of the DA sketch can indeed compute better rankings and still
has significant advantages in general data streams.

Index Terms—data streams, global top-K, top-K-fairness,
sketch

I. INTRODUCTION

A. Background and Motivation

Finding top-K frequent items has been a hot topic in data
stream processing in recent years, which has a wide range
of applications, such as data mining [2]–[5], databases [6]–
[8], networking [9], [10], and network security [11], [12].
Finding top-K frequent items refers to selecting K items with
the largest number of frequencies, and providing frequency
estimation. In the era of big data, the speed and volume of data
are growing explosively. Sketches [3]–[9], [13]–[32], a kind of
probabilistic data structures, have obtained wide acceptance
and interests to address the task of finding top-K due to
their efficiency in terms of both time and space, although
they can have a small error [33]. For finding top-K frequent
items, most of existing sketch algorithms focus on providing
statistics over a single data stream [3], [4], [6], [8], [9], [13]–
[17], [34], [35], while a few of them [3], [6], [36] work on
merging the statistics over multiple related data streams into
one. In the preliminary version of this paper [1], we provide
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the first sketch that can compare the statistics over different
disjoint data streams (§III); in the current version, we discuss
in greater depth how to extend this sketch to general data
streams (§V-A). Specifically, given N data streams, how can
we compare their own top-K and select the global top-K.
Note that the sizes of these data streams are often skewed in
practice (e.g., power law distribution) [37].

We use an example to explain the problem. For an au-
tonomous system (AS) in a wide-area network (WAN), ex-
ternal traffic enters the AS through multiple border routers
[38]. Due to the principle of routing protocol [39], all network
packets sent to the AS from the same source address must
pass through the same border router. In other words, if we
regard the source address of the packets as the key, the packets
streams on different border routers are disjoint data streams.
Network operators usually need to monitor the main source
of traffic entering the AS, i.e., the K source addresses that
send the most packets [40]. To find these addresses, each
border router reports the local top-K frequent address and
their frequency, and operator sorts all local frequent addresses
to get the global top-K.

For finding global top-K frequent items, a typical solution is
to first use a sketch for each data stream to select local top-K
items, and then sort them based on their estimated frequency.
However, we find that directly apply existing sketches often
leads to unfairness. Specifically, the estimated frequency of
top-K items in prior sketches is largely influenced by the
local environment (e.g., the size of data streams). If we
directly sort all the selected local top-K items, the result
will be significantly related to the items’ local environment
rather than its real frequency. For instance, suppose there
are N disjoint data streams, some heavy data streams have
more items, and some light data streams have fewer items.
Suppose we use N SpaceSaving [17], which always provides
overestimated estimation and the degree of overestimation is
positively correlated to the size of the data stream, to find local
top-K from the N data streams. As a result, the items in the
heavy data streams will be overestimated more and get higher
chances to be selected as global top-K, while the frequent
items in the light data streams will tend to be ignored, which
is unfair.

To address this problem, we aim to achieve top-K-fairness:
the degree of overestimation or underestimation for the local
selected top-K items is a constant, i.e., not related to the data
stream. The formal definition of top-K-fairness is provided in
Section II-A.
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B. Prior Works

To the best of our knowledge, we are the first work to focus
on the top-K-fairness of global top-K items. Many existing
work focuses on providing unbiased estimation in distributed
scenarios [3], [6]. Unbiasedness is helpful if we want to
aggregate the statistics of multiple data streams for all items.
However, if we only focus on the estimated frequency of top-
K items, we can find that it is often overestimated. The main
reason is that if we select top-K items, we tend to select items
which are overestimated, which leads to unfairness. We use
the state-of-the-art unbiased sketches, Unbiased SpaceSaving
(USS) [6], to illustrate the problem.

As shown in Figure 1(a), although the estimation of USS
is unbiased when considering all items, it overestimates the
selected top-K items and underestimates others. Furthermore,
such top-K-unfairness in local data streams will cause top-
K-unfairness when finding global top-K items. As shown in
Figure 1(b)1, suppose the global top-1 item etop is in a light
data stream, and we deploy a USS for each data stream. USS
provides a slightly overestimated value for etop, and provides
significantly overestimated value for frequent items in heavy
data streams. As a result, when the size distribution of the data
streams is highly skewed, even the global top-1 item could be
ignored, which is often unacceptable in practice. In Section
VI-D, we also discuss that such unfairness cannot be alleviated
by re-weighting the estimated frequency.

C. Our Proposed Solution

To achieve top-K-fairness, we propose the Double-
Anonymous sketch (abbreviated as DA sketch). We first
propose a basic version which achieves top-K-fairness, and
then we optimize the accuracy through two techniques hot
filtering and early freezing. The DA sketch has the following
advantages: 1) It is the first work that discusses the fairness
problem for comparing multiple disjoint data streams. 2) It
is accurate: The error of our sketch is up to 129 times (60
times on average) smaller than Waving [3] and 3 ∼ 4 orders
of magnitude smaller than Frequent [34], USS [6], and SS
[17]. 3) It is generic: we implement existing four replacement
strategies in our framework to achieve top-K-fairness and
accuracy.

The key technique of our DA sketch to achieve top-K-
fairness is called double-anonymity. Double-anonymity is
often an effective strategy to achieve fairness. We leverage this
strategy to enable top-K sketches to achieve top-K-fairness.
A top-K sketch often consists of two parts, a top-K part for
finding top-K items and a count part for frequency estimation.
If it meets the following two conditions, we consider it
achieves double-anonymity: 1) the top-K part finds top-K
items independently, and does not know any items’ estimated
frequency in the count part; 2) the count part estimates item’s

1Settings for Figure 1(a): We perform the finding local top-K tasks on
CAIDA dataset [41] for 1000 times. Memory size is set to be 100KB, and
K = 1000; Settings for Figure 1(b): We conduct experiments on the Synthetic
Dataset [42]. We generate the dataset so that the global Top-1 item is always
in the light stream. We set N = 100,K = 50 and range skewness from 0.1
to 0.4. We allocate an extremely small amount of memory for USS, such that
it could only store K = 50 local top-K candidates.
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-2.25

-1

-0.25

0

0.25

1

2.25

 
6

 Selected Top-K Items      Other Items

(a) Internal unfairness

0.1 0.2 0.22 0.23 0.24 0.25 0.4
0

0.2

0.4

0.6

0.8

1

Skewness

 USS

(b) Recall of the Global Top-1 Item

Fig. 1: We demonstrate unfairness of USS, and show how
unfairness would harm accuracy for finding global top-K.

frequency independently, and does not know which items
are top-K. However, the existing unbiased sketches do not
meet the first condition. Our formal definition of double-
anonymity is provided in Section III-A. We theoretically prove
that double-anonymity is a sufficient condition for unbiased
sketches to achieve top-K-fairness. Therefore, we follow this
principle to design our solution.

In our basic version, we use a top-K sketch (e.g., SpaveSav-
ing [17]) as the top-K part and use an unbiased sketch (e.g.,
CMM sketch [43]) as the count part. To achieve double-
anonymity, our first version makes these two parts work inde-
pendently, i.e., it forbids any information transmission between
them. For an incoming item e, it will be inserted into the two
parts independently and respectively. Note that the independent
condition is stronger than double-anonymity. Obviously, our
first version is double-anonymous, and thus achieves top-
K-fairness. However, the first version fails to achieve high
accuracy. Therefore, we propose two important optimization
methods to significantly improve accuracy: hot filtering and
early freezing. Unlike the first version, in these two versions,
we allow some information transmission between the two parts
as long as it does not violate double-anonymity. Relaxing
the forbidden condition, we can have more opportunities to
improve accuracy.

Firstly, the main reason for the significant error in the first
version is that, despite identifying the potential top-K items
through the top-K part, we still insert the entire frequency of
these items into the count part. Considering that the estimation
error of sketches is often proportional to the total frequency of
inserted items, and the frequencies of the top-K items account
for the majority of the total frequency, reducing the frequency
of top-K items inserted into the count part can significantly
reduce the error. The key idea of the hot filtering version
is that, while identifying the top-K items using the top-K
part, most of the frequency of these potential top-K items
can be directly recorded in the top-K part, thus eliminating
the need to insert them into the count part. Secondly, the
number of items inserted into the count part also grows with
the data stream, causing the estimation error to grow as well.
The key idea of the early freezing version is that, instead of
querying the count part after the end of the data stream to get
the complete estimated frequency of the local top-K items, it
immediately queries the count part and records (freezes) the
result in the top-K part as soon as an item is recorded in the
top-K part, thereby reducing the error.

We show that the DA sketch is generic. Any replacement
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strategy independent with the CMM sketch can be applied
to the DA sketch, and we choose four [4], [16], [17], [34]
as case studies. In the current version, we also propose a
unified framework to describe the probability guarantees of
different algorithms for finding top-K items, and analyze
the probability guarantees of the DA sketch using different
replacement strategies for finding top-K items.

To further enhance top-k fairness and the applicability and
technical depth of the DA sketch, we discuss their extensions
from two aspects:
• First, we investigate how to define top-K-fairness in gen-

eral data streams; why existing unbiased algorithms cannot
achieve fairness; and how to extend the DA sketch to general
data stream settings to achieve fairness.

• Second, we start with relative ranking to study a more
stringent definition of top-K-fairness — ranking-fairness.
Using a ranking-fair algorithm, two items with the same
true frequency each have an equal probability of having a
higher estimated ranking.

Key Contributions: ❶ We define a new and important
property: top-K-fairness. We analyze it thoroughly and derive
its sufficient condition. Additionally, we propose the DA
sketch, an accurate, unbiased, and generic method, marking
the first work to achieve top-K-fairness. ❷ We provide a
theoretical proof that the DA sketch achieves top-K-fairness
while maintaining high accuracy. Furthermore, we analyze its
probability guarantees under different replacement strategies
for identifying top-K items. ❸ We extend the DA sketch to
general data streams, demonstrating its significant advantages
in broader settings. We also enhance the sketch to support
ranking-fairness and confirm that it achieves higher ranking
correlation coefficients. ❹ Through extensive experiments, we
validate top-K-fairness and show that the DA sketch achieves
significantly smaller errors compared to existing methods.

II. BACKGROUND AND RELATED WORK

In this section, we provide formal definitions of our prob-
lem and top-K-fairness. We discuss the difference between
unbiasedness and top-K-fairness.

A. Formal Definitions and Preliminaries

Definition 1. (Disjoint data streams) Given N data streams
S1, · · · ,SN , where Si =

{
e(i,1), · · · , e(i,mi)

}
contains

mi items, and each item e(i,j) belongs to set Ui ={
u(i,1), · · · , u(i,ni)

}
. N Data streams are disjoint if Ui∩Uj =

∅ for any two different data streams Si and Sj .

Generally speaking, the settings of disjoint data streams
require that one item cannot appear in multiple different
data streams. Disjoint data streams are common in scenarios
such as distributed storage systems and distributed network
management. In these scenarios, an item is often placed on
only one device, and then only appears in one data stream.

Definition 2. (Global top-K items) Given N disjoint data
streams S1,· · · , SN , for data stream Si =

{
e(i,1), · · · , e(i,mi)

}
and item set Ui, we define that the frequency of item u(i,j) ∈ Ui

as f(i,j) =
∑mi
k=1 1{e(i,k)=u(i,j)}. The global top-K items are

the K items with the largest frequency.

To find global top-K items, each data stream Si uses the
top-K algorithm to find the set Ti =

{
u(i,p1), · · · , u(i,pK)

}
of

local top-K items and their estimated frequency f̂(i,pj). Each
data stream Si reports the set Ti and frequency of items to
a central machine. The central machine obtains the global set
U =

⋃N
i=1 Ti, and then uses K items with the largest estimated

frequency in U to form global top-K items.

Definition 3. (Top-K-fairness) Given an algorithm, for any
data stream Si, let Ti be the set of local top-K frequent items
reported by Si. We call the algorithm a top-K-fair algorithm
if, for any item u(i,j) ∈ Ti, the following equation holds:

E
(
f̂(i,j) | u(i,j) ∈ Ti

)
= α×f(i,j)+δ, where f(i,j) and f̂(i,j)

are the real frequency and estimated frequency of item u(i,j)
respectively, and α and δ are two constants independent of
data streams.

The existing research on fairness and equality mainly fo-
cuses on other areas. For example, the previous work in the
field of machine learning uses condition probability to define
group fairness, which requires that each decision has the same
probability for members of different groups; the previous work
in the field of recommendation system uses ratio to define
ranking fairness, which requires that the attention received by
each object is proportional to its relevance.

Although these fairness concerns focus on different areas,
we can find a commonality among them: the evaluation of
different individuals should depend on their intrinsic attributes
rather than their environment. Our definition of top-K-fairness
originates from this common point as well: we want the
selection of global top-k items to depend on their true fre-
quencies (i.e., intrinsic attributes) rather than the statistical
characteristics of their local data streams (i.e., environment).
In fact, overestimated algorithms will make frequent items in
small data streams be easily ignored, while underestimated
algorithms will make frequent items in large data streams be
easily ignored, as verified in Section VI-D. However, for top-
K-fair algorithms, we can ensure that two items with the same
true frequency have the same expected estimated frequency
when listed as global top-K candidates. After discussing and
analyzing ranking fairness in Section V-B, we can even ensure
that these two items each have a 50% probability of having
a higher estimated frequency. Our algorithm achieves top-K-
fairness with α = 1, δ = 0, which, for an unbiased algorithm,
is equivalent to E

(
f̂(i,j) | u(i,j) ∈ Ti

)
= E

(
f̂(i,j)

)
.

B. Unbiasedness v.s. Top-K-fairness

Sketches [10], [11], [44]–[55] are a kind of probabilistic al-
gorithm which is often used to find top-K items due to its high
speed and small memory consumption. There are two kinds
of top-K sketch algorithms, biased algorithm and unbiased
algorithm. Biased top-K algorithms include SpaceSaving [17],
Frequent [34], HeavyGuardian [4], Randomized Admission
Policy [16], and etc [8], [9], [13], [14], [56]. Because all these
biased algorithm’s biases are highly related to the data streams,
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they cannot achieve top-K-fairness. Among all existing works,
USS and WavingSketch [3] claim to be unbiased. However, it
should be noted that unbiased algorithms are not necessarily
top-K-fair. We first use USS as an example to discuss why
an algorithm being unbiased does not imply that the algorithm
is top-K-fair, and further discuss its behavior in general data
streams. We will also discuss the relationship between disjoint
data streams and general data streams. We show the definition
of unbiased algorithm.

Definition 4. (Unbiased algorithm) When finding local top-
K items in a single data stream Si, the top-K algorithm
maintains the estimated frequency f̂(i,j) of each item u(i,j).

The algorithm is unbiased if ∀u(i,j) ∈ Ui, E
(
f̂(i,j)

)
= f(i,j).

1) Case Study of USS: The main difference between our
top-K-fairness and unbiasedness is that the top-K-fairness has
an additional condition that u(i,j) ∈ Ti. That is to say, we
only consider the behavior of an item u(i,j) when it is listed
as a global top-K candidate. Although USS is an unbiased
algorithm, it estimates the frequency of all non-top-K items as
0, i.e., E

(
f̂(i,j) | u(i,j) ̸∈ Ti

)
= 0, E

(
f̂(i,j) | u(i,j) ∈ Ti

)
=

f(i,j)

Pr(u(i,j)∈Ti)
.

• USS is an unbiased algorithm:
E
(
f̂(i,j)

)
= E

(
f̂(i,j) | u(i,j) ̸∈ Ti

)
× Pr

(
u(i,j) ̸∈ Ti

)
+

E
(
f̂(i,j) | u(i,j) ∈ Ti

)
× Pr

(
u(i,j) ∈ Ti

)
= f(i,j)

• USS is not a top-K-fair algorithm: The amplification
coefficient α = 1

Pr(u(i,j)∈Ti)
varies largely among data

streams, so USS cannot achieve top-K-fairness.
• Unfairness brought by USS in general data streams:

Taking USS as an example, we demonstrate why unbiased
but top-K-unfairness sketch algorithms still fail in the
context of general data streams. Consider an item u, and
without loss of generality, assume it appears in the first
m data streams S1,S2, · · · ,Sm. When u is considered a
candidate for global top-K, that is, u ∈ U , it is reported as
local top-K by at least one of the local data streams. In other
words, only when S1, · · · ,Sm all do not report item u, then
it is u ̸∈ U , and in this case, E

(
f̂u | u ̸∈ U

)
= 0. Therefore,

we have E
(
f̂u | u ∈ U

)
= fu

1−
∏m
i=1 Pr(u ̸∈Ti) , where fu is

the true frequency of u, and f̂u is the estimated frequency
of u. For USS, f̂u is the sum of the estimated frequencies
reported by each data stream.

Relationship with Disjoint Data Streams: Through the for-
mula above, we can see that as m increases, the denominator
gradually approaches 1, and thus E

(
f̂u | u ∈ U

)
gradually

approaches fu. This means that for USS, when m = 1, that
is, when item u appears in only one unique data stream, the
estimated frequency of the item is most affected by the data
stream. Therefore, we believe that for algorithms without top-
K-fairness, disjoint data streams represent the scenario where
top-K-unfairness is most severe.

2) Extension to other unbiased algorithms: In fact, for any
unbiased algorithm, E

(
f̂(i,j) | u(i,j) ∈ Ti

)
= f(i,j) + δ and

δ =
Cov(f̂(i,j),Pr(u(i,j)∈Ti|f̂(i,j)))

Pr(u(i,j)∈Ti)
. WavingSketch [3] achieves

unbiasedness based on the C sketch [15]. When an item’s
estimated frequency is large, WavingSketch uses the heavy part
to record its ID and frequency. However, WavingSketch tends
to favor recording the overestimated items in the heavy part,
i.e., Pr

(
u(i,j) ∈ Ti | f̂(i,j)

)
increases with f̂(i,j), meaning

δ > 0. Moreover, the deviation δ depends on not only the
frequency distribution of the data stream, but also the arrival
order of the items. Therefore, WavingSketch cannot achieve
top-K-fairness. In conclusion, no existing work achieves top-
K-fairness in the task of finding global top-K items.

C. The CMM Sketch

The CMM sketch [43] can provide an unbiased estimation
of items’ frequency. Since we use the CMM sketch as a
component of our algorithm, we describe the data structure
and operators of the CMM sketch in detail in this section.
Data Structure: A CMM sketch consists of d arrays, each of
which includes w counters A[i, j] (1 ⩽ i ⩽ d, 1 ⩽ j ⩽ w) and
is associated with a hash function gi(·). Each hash function
maps an item to a counter uniformly at random.
Insertion: Given an incoming item e, the CMM maps e to the
counter A[i, gi(e)] in each array and increments each of them
by 1.
Query: Given a query about item e, the CMM can give the
overestimation and unbiased estimation of its frequency. The
unbiased estimation Cunbiased(e) is given by the following for-
mula. Cunbiased(e, i) = A[i, gi(e)]− 1

w−1 · (N −A[i, gi(e)]).

Cunbiased(e) =
1
d ·
(∑d

i=1 Cunbiased(e, i)
)

. Where N is the
sum of the frequencies of all distinct items.

III. THE DOUBLE-ANONYMOUS SKETCH

In this section, we propose the Double-Anonymous sketch.
We first introduce double-anonymity, which is the key tech-
nique to achieve top-K-fairness. Then we introduce hot fil-
tering, a tricky technique that can keep the characteristic of
double-anonymity and raise the accuracy. Finally, we introduce
early freezing, a technique that can further raise accuracy.

A. The Basic Version

Definition of double-anonymity: Suppose the estimation has
already been unbiased, one sufficient condition of top-K-
fairness is that the covariance of the result of finding top-K
items and estimating frequency is 0. A more formal definition
is shown in Definition 5. Achieving double-anonymity means
that the algorithm meets this condition.

Definition 5. (Double-anonymity) Given an algorithm, for
a single data stream Sk and an item u(k,i), let K(i) be an
indicator indicating whether item u(k,i) is selected as top-K
(u(k,i) ∈ Tk). We call the algorithm has double-anonymity if,

for any item u(k,i), Cov
(
Ki, f̂(k,i)

)
= 0.

Theorem 1. (Sufficient Condition) Given an algorithm, if it is
unbiased, i.e., E

(
f̂(k,i)

)
= f(k,i), then it being top-K-fair2,

2Here we only consider top-K-fairness with α = 1 and δ = 0
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Fig. 2: A running example of the Hot filtering version of the Double-Anonymous sketch with RA Policy.

i.e., E
(
f̂(k,i) | Ki = 1

)
= f(k,i), is equivalent to it having

double-anonymity, i.e., Cov
(
Ki, f̂(k,i)

)
= 0.

Proof. Expanding E
(
f̂(k,i) · Ki

)
, we have E

(
f̂(k,i) · Ki

)
=

E
(
f̂(k,i) | Ki = 1

)
· E (Ki). Therefore, under the condition

of E
(
f̂(k,i)

)
= f(k,i) (unbiasedness),[
E
(
f̂(k,i) | Ki = 1

)
= f(k,i)

]
≡
[
E
(
f̂(k,i) · Ki

)
= E

(
f̂(k,i)

)
· E (Ki)

]
≡
[
Cov

(
Ki, f̂(k,i)

)
= 0
]
.

In the above formulas, ≡ stands for equivalence.
The data structure of the basic version has two parts: a

Randomized Admission Policy (RA) [16] as the top-K part
and a CMM sketch [43] as the count part. For an incoming
item e, e will be inserted into the RA and the CMM sketch
independently. To find top-K items, we query the RA and
report the result. To query an item e’s frequency, we query
the CMM sketch and report the result. Obviously, the basic
version is double-anonymous and achieves top-K-fairness.

B. The Hot Filtering Version

Keeping the characteristic of double-anonymity, the hot
filtering version aims to filter the hot items, and only record
them in the top-K part to remove the redundancy. We first
use a top-K part to classify and record hot items. Because
the top-K part filters the hot items, only cold items will be
inserted into the count part, which makes the Hot filtering
version accurate.
Data Structure: As shown in Figure 2, the Double-
Anonymous sketch has two parts: a top-K part and a count
part. The top-K part is an array of buckets B[0, . . . ,M − 1].
Each item will be hashed into a bucket using h(.), a hash func-
tion that maps each item to [0,M − 1] uniformly at random.
Each bucket has λ cells. Each cell records the information of
one item: the item ID (key), the strategy frequency Cs, and
the real frequency Cr. The Cs is a counter used to decide
whether this item should be evicted according to different
replacement strategies. It is often biased, i.e., overestimated
or underestimated. The Cr is another counter used to record
the number of appearances of this item after it was inserted
into the top-k part. The count part is a CMM sketch [43],
which can provide an unbiased estimation.

Insertion: We first try inserting the incoming item into the top-
K part. If the replacement strategy thinks the item is frequent,
we record it in the top-K part. Otherwise, we insert it into the
count part. Given an incoming item e, we hash it into the
bucket B[h(e)]. For any case, we first run the replacement
strategy of the Double-Anonymous sketch to find the top-
K frequent items (we implement four strategies in Section
III-D for case study). Usually, the replacement strategy (e.g.,
SpaceSaving) will find the top-K frequent items and keep their
ID in the top-K part according to their strategy frequency Cs.
To guarantee that the replacement strategy works properly,
the Double-Anonymous sketch rules that the ID and the
strategy frequency can only be changed by the replacement
strategy. Then we run the unbiased operations of the Double-
Anonymous sketch to provide unbiased estimation for top-K
items. The unbiased operations are following this principle: if
the incoming item e is in the top-K part at that time, we use
the top-K part to record this increment. Otherwise, we use the
count part to record this increment. There are three cases as
follows.
Case 1: e is in the bucket B[h(e)]. We increment e.Cr by 1.
Case 2: e is not in the bucket B[h(e)]. We insert e into
the count part: we use d other hash functions g1(.) . . . gd(.)
to map item to [0, w − 1], and increment the d coun-
ters A[1, g1(e)], . . .A[d, gd(e)] by 1, which are called the d
mapped counters.
Case 3: An item eevict is evicted by the replacement strategy.
We increase the d mapped counters in the count part by
eevict.Cr, i.e., the real frequency of eevict before the eviction.
This operation can transfer the frequency of eevict from the
top-K part to the count part. Therefore, we would not lose the
frequency information of eevict.
Identifying local top-K items: We traverse the
top-K part of the DA sketch and collect all the
⟨item e, strategy frequency Cs⟩ pairs from all buckets.
We then sort all collected pairs by Cs. The K items with the
highest strategy frequency Cs are selected as the local top-K
items, forming the local top-K set T .
Estimating frequencies of local top-K items: For each
selected local top-K item e, part of its frequency is recorded in
the true frequency Cr, and the remaining part is recorded in the
count part, which is the CMM sketch. Therefore, we query the
CMM for an unbiased estimate Cunbiased of the remaining part
of the frequency using its ID e, and take f̂ = Cr +Cunbiased
as the estimated frequency of item e.
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Before the replacement After  the replacement The end of the data stream Estimated frequency

ID Stra. Real. Free.
𝑒𝑒4 25 20 10

ID Stra. Real. Free.
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𝒆𝒆𝟒𝟒 × 𝟐𝟐𝟐𝟐 𝟕𝟕𝟕𝟕 − (𝟑𝟑𝟑𝟑𝟑𝟑− 𝟕𝟕𝟕𝟕)/𝟑𝟑

𝒆𝒆𝟐𝟐,𝟑𝟑𝟕𝟕.𝟔𝟔 = 𝟑𝟑𝟑𝟑+ 𝟐𝟐𝟔𝟔.𝟔𝟔
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ID Stra. Real.
𝑒𝑒4 25 20

ID Stra. Real.
𝑒𝑒2 26 1

ID Stra. Real.
𝑒𝑒2 56 31

103 12 29 21 78 92 103 32 29 21 78 92 114 56 106 87 84 189
𝒆𝒆𝟒𝟒 × 𝟐𝟐𝟐𝟐

𝒆𝒆𝟐𝟐,𝟒𝟒.𝟔𝟔 = 𝟑𝟑𝟑𝟑 + 𝟕𝟕𝟒𝟒 −
𝟔𝟔𝟑𝟑𝟔𝟔− 𝟕𝟕𝟒𝟒

𝟑𝟑

Early Freezing Version

Hot Filtering Version

Fig. 3: The process after item e2 replaces item e4: we immediately query the count part and obtain the current estimated
frequency of e2 as 26.6 using the CMM sketch’s query method and record it in Cfreezing . When querying, the early freezing
version returns the estimated frequency as 57.6 based on the real frequency Cr and the frozen frequency Cfreezing; in contrast,
the hot filtering version queries the CMM at this point and gets an estimated frequency of 4.6.

Identifying global top-K items: We obtain the local top-K
set Ti reported by each local data stream Si, along with the
estimated frequency f̂ of each local top-K item in the set. The
K local top-K items with the highest estimated frequencies
f̂ (selected from U =

⋃
Ti) are chosen as the global top-K

items.3

A running example: Figure 2 shows a running example
of Hot filtering version of the DA sketch with Randomized
Admission Policy. Notice that the process of finding top-K and
estimating frequency are Double-Anonymous, i.e., information
that may influence their covariance is not shared between these
two processes. In the perspective of finding top-K, 1) To insert
e1, it successes, so we increment e1.Cs by 1. 2) To insert
e2, it evicts e4 successfully (according to the Randomized
Admission Policy, the chance of success is 1

26 ≈ 3.85%). Then
we record e2 and make e2.Cs = 26. 3) To insert e3, we find
an empty cell, so we just record e3 and make e3.Cs = 1.
In the perspective of estimating frequency, 1) To insert e1,
it successes, so we increment e1.Cr by 1. 2) To insert e2,
it successes, so we make e2.Cr to 1. At the same time, e4
is evicted, so we insert e4 × 20 into the count part, i.e., the
mapped counters in the CMM sketch are increased by 20. 3)
To insert e3, we find an empty cell, so we just record e3 and
make e3.Cr = 1.

C. The Early Freezing Version
As shown in Figure 3, the early freezing version of the DA

sketch uses an additional frozen frequency counter Cfreezing
in each cell of the top-K part. If a newly arrived item e is
not originally recorded in the top-K part but is decided to
be recorded under the replacement strategy used in the top-
K part, we immediately query the count part to obtain an
unbiased estimate of the current frequency of item e and record
it in the frozen counter Cfreezing .

When querying the frequency of top-K items, we use
Cr + Cfreezing instead of Cr + Cunbiased. Since the error
of the sketch in the count part increases with the number of
inserted items, Cfreezing is an earlier and lower-error version
of Cunbiased.

D. Using Different Replacement Policies
The DA sketch can be applied by any top-K algorithm

(replacement strategy). We pick four classic top-K strategies:

3We describe this process in Section II-A and reiterate it here.

Randomized Replacement Strategy (RA) [16], Spacesaving
(SS) [17], Frequent (Freq) [34] and HeavyGuardian (HG) [4]
as case studies. For each strategy, we introduce how it works
and how to apply it in the DA sketch. Given an incoming item
e, we first hash it into B[h(e)]. Then the strategies work as
follows. Suppose the item whose Cs is smallest in the bucket
is emin.
RA Policy [16]: DS+RA (Double-Anonymous sketch with
Randomized Admission Policy) runs the operation of RA first.
If e is in the bucket, we increment e.Cs by 1. If e is not in the
bucket, we evict emin with the probability of 1

emin.Cs+1 . If the
eviction successes, we record e with its Cs = emin.Cs + 1.
DS+RA then runs the unbiased operation of the DA sketch.
SpaceSaving (SS) [17]: DS+SS (Double-Anonymous sketch
with SpaceSaving) runs the operation of SS first. If e is in the
bucket, we just increment e.Cs by 1. If e is not in the bucket,
we evict emin and record e with its Cs = emin.Cs+1. DS+SS
then runs the unbiased operation of the DA sketch.
Frequent (Freq) [34]: DS+Freq (Double-Anonymous sketch
with Frequent) runs the operation of Freq first. If e is in the
bucket, we increment e.Cs by 1. If e is not in the bucket, we
decrement the Cs of every item in this bucket by 1. If the Cs
of an item eevict is decreased to 0, we evict eevict and record
e with its Cs = 1. DS+Freq then runs the unbiased operation
of the DA sketch.
HeavyGardian (HG) [4]: DS+HG (Double-Anonymous
sketch with HeavyGardian) runs the operation of HG first.
Suppose the item whose Cs is smallest in the bucket is emin.
If e is in the bucket, we increment e.Cs by 1. If e is not in
the bucket, we decrement emin.Cs by 1 with a probability
of 1.08−emin.Cs . If emin.Cs is decreased to 0, we evict emin
and insert e with its Cs = 1. DS+HG then runs the unbiased
operation of the DA sketch.

We further discuss the differences between these replace-
ment policies based on the experimental results in Section VI,
and show that our algorithm is general. Specially, In Section
VI-D, we show the degree of top-K-unfairness of these four
replacement policies, analyze how top-K-unfairness affects
their performance, and show that our DA sketch can indeed
make them top-K-fair.

E. Probability Guarantees for Finding Local Top-K

Although the DA sketch is designed for global top-K
identification, its initial step is to precisely identify the local
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top-K within the local data stream, and then provide fair
frequency estimates for these items. Therefore, it is crucial to
offer theoretical guarantees for the DA sketch in finding local
top-k and to configure parameters based on these theoretical
assurances.

In this section, we analyze the probability guarantees of
identifying local Top-K frequent items using the DA sketch
under various replacement strategies. To achieve this, we
first generalize and formulate a unified representation of the
probability guarantees for existing Top-K algorithms. After
examining the probability guarantee forms of several Top-
K algorithms, we define an (ψ, 1 − ϕ)-Top-K algorithm as
follows.

Definition 6. Given a data stream S = {e1, · · · , em} com-
prising m items and a Top-K algorithm A with λ cells, where
each cell captures the information of an item. For any item
ui, if its frequency fi ⩾ ψ · mλ , then the probability of it being
ultimately recorded in one of the cells is at least 1−ϕ. Under
these conditions, we categorize algorithm A as an (ψ, 1−ϕ)-
Top-K algorithm.

For instance, both the SpaceSaving [17] and Frequent [34]
algorithms are (1, 1)-Top-K algorithms, which means they are
guaranteed to record items with a frequency exceeding m

λ . On
the other hand, the Unbiased SpaceSaving [6] algorithm is
an (ψ, 1− e−ψ)-Top-K algorithm. Next, we extend the proof
approach presented in [57] to provide probability guarantees
for the DA sketch under both general frequency distributions
and Zipfian frequency distributions.

Theorem 2. Given a data stream S = {e1, · · · , em} com-
prising m items, and a DA sketch whose top-k part contains
M buckets, each bucket containing λ cells, and employing
an (ψ, 1 − ϕ)-Top-K algorithm as the replacement strategy.
Without assuming any frequency distribution, we can assert
that the DA sketch is an

(
ψ′,
(
1− ψλ

(λ−ψ)ψ′

)
(1− ϕ)

)
-Top-K

algorithm.

Proof. For any item e with frequency fi ⩾ ψ′ · m
Mλ , and the

sum of the frequencies f̂ of the other items mapped to the same
bucket, the expected value of f̂ satisfies: E

(
f̂
)
< m

M . Then,

let T =
(
λψ

′

ψ − ψ′
)

m
Mλ , according to Markov’s inequality,

we have: Pr
(
f̂ > T

)
⩽ ψλ

(λ−ψ)ψ′ . When f̂ ⩽ T , we have

fi ⩾ ψ (fi+f̂)
λ , which implies that the item e has at least a

1 − ϕ probability of being ultimately recorded. That is, the
probability Pr of item e being ultimately recorded satisfies:
Pr ⩾ Pr

(
f̂ ⩽ T

)
(1− ϕ) ⩾

(
1− ψλ

(λ−ψ)ψ′

)
(1− ϕ).

Lemma 1. Given a data stream S comprising m items, and
a DA sketch whose top-k part contains M buckets, each
bucket containing λ cells. Without loss of generality, assume
f1 > f2 > · · · . Assuming the frequencies follow a Zipfian
distribution with parameter s > 1, i.e., fi = m

ζ(s) i
−s, the

expected sum of frequencies f̂ of all items mapped to a
particular bucket satisfies the following with a probability of
at least 3−

k
M : E

(
f̂
)
⩽ mk1−s

M .

Proof. For any positive integer k, when the number of buckets
M is sufficiently large, the probability that no top-k item is
mapped to this bucket is

(
1− 1

M

)k
> 3−

k
M . In this case, the

expected sum of frequencies f̂ of all non-top-k items mapped
to this bucket satisfies:

E
(
f̂
)
=

∑
i=k+1 fi

M
=

∑
i=k+1

m
ζ(s) i

−s

M

⩽
m

M

(∫ +∞

k

x−sdx

)(∫ +∞

1

x−sdx

)−1

⩽
m

M

k1−s

s− 1
(s− 1) =

mk1−s

M
.

Theorem 3. Given a data stream S comprising m items,
and a DA sketch whose top-k part contains M buck-
ets, each bucket containing λ cells, and employing an
(ψ, 1 − ϕ)-Top-K algorithm as the replacement strategy.
Without loss of generality, assume f1 > f2 > · · · . As-
suming the frequencies follow a Zipfian distribution with
parameter s > 1, we can assert that the DA sketch

is an
(
ψ′, sup

η>0

(
3−η(1− ϕ)

(
1− ψλ

(λ−ψ)ψ′(ηM)s−1

)))
-Top-

K algorithm.

Proof. For any item e with frequency fi ⩾ ψ′ · m
Mλ , and

the sum of the frequencies f̂ of the other items mapped to
the same bucket, we define condition C as: no other top-
k item is mapped to the same bucket as item e. Then, let
T =

(
λψ

′

ψ − ψ′
)

m
Mλ , according to Lemma 1, we have

Pr
(
f̂ > T | C

)
⩽

ψλk1−s

(λ− ψ)ψ′ .

Thus, for any positive integer k, we have

Pr
(
f̂ > T

)
⩽ Pr

(
f̂ > T , C

)
+ Pr(¬C)

⩽ 3−
k
M

(
ψλk1−s

(λ− ψ)ψ′ − 1

)
+ 1.

For simplicity of form, let k = ηM , iterating over all η, we
obtain

Pr ⩾ sup
η>0

(
3−η(1− ϕ)

(
1− ψλ

(λ− ψ)ψ′(ηM)s−1

))
.

Comparison of DS+USS and USS: As shown in Figure 4, we
compare the probability guarantees of USS and the DA sketch
using USS (DS+USS). For DS+USS, we set the parameters as
λ = 16 and M = 105; for the Zipfian distribution, we set its
parameter as s = 1.5. There are two points to explain.
• In Theorem 2 and 3, for a given ψ′, ψ can take

any value. Thus, for the probability guarantee of
DS+USS under general distributions, we present the curve(
ψ′, sup

ψ>0

((
1− ψλ

(λ−ψ)ψ′

)
(1− e−ψ)

))
; the same logic

applies to the probability guarantee under Zipfian distribu-
tion. For example, when ψ′ = 5, for general distribution, we
take ψ = 1.353; for Zipfian distribution, we take ψ = 4.535
and η = 0.0152.

• USS is an (ψ, 1 − e−ψ)-Top-K algorithm. However, in
the implementation of USS, each cell needs to record
the item’s key (4 bytes), frequency (4 bytes), and four



8

� � � � � � � 	 
 ��
���

���

���

���

���

���

Pr

 U S S     D S + U S S     D S + U S S  ( z i p f i a n )

Fig. 4: Probability guarantees for DS+USS and USS in finding
local top-K items.

pointers (32 bytes) [8], requiring a total of 40 bytes. In the
implementation of DS+USS, if only considering the lookup
of local top-K, each cell only needs to record the key (4
bytes) and Cs (4 bytes)4, requiring only 8 bytes. Therefore,
with the same memory, if DS+USS can use λM cells, USS
can only use λM

5 cells. Hence, for USS, we present the

curve
(
ψ′, 1− e

−ψ′
5

)
.

Corollary 1. Given a data stream S comprising m items,
assuming the frequencies follow a Zipfian distribution with
parameter s > 1, to maximize the probability of recording the
local top-K frequent items in the DA sketch, we recommend
setting the number of cells per bucket to λ = ψs

s−1 .

Proof. According to Theorem 3, to maximize the probability
guarantee Pr, when the total number of cells λM = N is
fixed, we should minimize λ

(λ−ψ)Ms−1 . The derivative of this
expression is:[

λ

(λ− ψ)Ms−1

]′
=
λs−1(λ+ s(ψ − λ))

(λ− ψ)2Ns−1

Consequently, the optimal λ should be λ = ψs
s−1 .

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the behavior of our hot filtering
version on a single data stream, and prove that it meets top-
K-fairness. We then give some conclusions about the error of
the algorithm. We also discuss how to apply the proof process
to the early freezing version.

A. Preliminary

We then define the state s(k,t) of the Double-Anonymous
sketch on data stream Sk at time t as s(k,t) =
{s(k,1,t), · · · , s(k,nk,t)}, where s(k,i,t) = ⟨fT (k,i,t), fS(k,i,t)⟩.
In general, let fT (k,i,t) be the frequency of item u(k,i) recorded
in the top-K part at time t, and let fS(k,i,t) be the frequency
of item i recorded in the count part at time t. In particular,
if item u(k,i) is not recorded in the top-K part at time j, let
fT (k,i,t) = 0.

Given a data stream Sk, let a sketching process R be a
sequence of states of the Double-Anonymous sketch at each
time, i.e., R = {s(k,1), s(k,2), · · · , s(k,mk)}. The replacement
policy P determines the distribution of the sketching process,
i.e., R ∼ P(Sk).

4We do not consider the memory occupied by Cr and Cfreezing

B. Proof of Top-K-fairness

In this section, we prove that the DA sketch achieves top-
K-fairness. We first give a lemma about the sketching process.

Lemma 2. Given a data stream Sk and a sketching process
R = {s(k,1), · · · , s(k,mk)}, for any item u(k,i) and any time
j, there is

fT (k,i,t) + fS(k,i,t) = f(k,i,t). (1)

Proof. When time t = 0, for any item u(k,i), there is
fT (k,i,0) = fS(k,i,0) = f(k,i,t) = 0, so there is fT (k,i,0) +
fS(k,i,0) = f(k,i,0). Suppose that Equation 1 holds for
any item u(k,i) and any time t < t′. At time t = t′,
according to Section III-B5, if e(k,t) = u(k,i), we insert
frequency

(
fT (k,i,t′−1) − fT (k,i,t′) + 1

)
into the CMM sketch

of the count part, thus fT (k,i,t′) + fS(k,i,t′) = f(k,i,t′−1) +
1 = f(k,i,t′); If e(k,t) ̸= u(k,i), we insert frequency(
fT (k,i,t′−1) − fT (k,i,t′)

)
into the CMM sketch of the count

part, thus fT (k,i,t′) + fS(k,i,t′) = f(k,i,t′−1) = f(k,i,t′);
Therefore, Equation 1 also holds for t = t′, so it holds for
any time 1 ⩽ t ⩽ mk.

Now we prove the following lemma holds for any replace-
ment policy P .

Lemma 3. Given a data stream Sk. For any item u(k,i), let
fS′(k,i,t) be the estimate of fS(k,i,t) given by the count part,
and let f̂(k,i) = fT (k,i,m) + fS′(k,i,m) be the estimation of
f(k,i) given by the DA sketch. For any replacement policy P ,

any sketching process R, there is E
(
f̂(k,i) | R

)
= f(k,i).

Proof. According to Lemma 2, in the sketching process R,
fT (k,i,mk)+fS(k,i,mk) = f(k,i,mk). Since f̂(k,i) = fT (k,i,mk)+
fS′(k,i,mk), and fT (k,i,mk) is determined by sketching process
R, we only need to prove E

(
fS′(k,i,mk) | R

)
= fS(k,i,mk),

Recall that we use a CMM [43] sketch as the count part.
Specifically, assume that the count part uses d counter arrays,
each of which has w counters and is associated with a hash
function gl(·).

Let the indicator random variable I(i,j,l) indicates whether
gl
(
u(k,i)

)
and gl

(
u(k,j)

)
are equal, thus Pr

(
I(i,j,l) = 1

)
=

1
w . Let the random variable X(i,l) be the value of the
gl
(
u(k,i)

)
-th counter in the l-th array, thus we have

fS′(k,i,mk)

=
1

d
·

 d∑
k=1

X(i,l) −
1

w − 1
·

 nk∑
j=1

fS(k,j,mk) −X(i,l)

 .

According to the rules of CMM, we can obtain the conditional
expectation of Xi,k, i.e.,

E
(
X(i,l) | R

)
= fS(k,i,mk) +

1

w
·

 nk∑
j=1,j ̸=i

fS(k,j,mk)

 .

Using the linear property of expectation, we have
E
(
fS′(k,i,mk) | R

)
= fS(k,i,mk).

Now we prove that the DA sketch achieves both unbiased-
ness and Double-anonymity, thus achieving top-K-fairness.

5e(k,t) is defined in Section II-A; in Section III-B, we simplify e(k,t) to
e.
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Theorem 4 (unbiasedness). Given a data stream Sk. For any
replacement policy P and any item u(k,i), there is

E
(
f̂(k,i)

)
= f(k,i).

Proof. According to Lemma 3 and using the law of total
expectation, we have

E
(
f̂(k,i)

)
=
∑
R
E
(
f̂(k,i) | R

)
· Pr (R) = f(k,i).

Theorem 5 (Double-anonymity). Given a data stream Sk.
For any replacement policy P and any item u(k,i), let Ki be
an indicator random variable indicating whether item u(k,i)
is selected as top-K, there is

Cov
(
f̂(k,i),Ki

)
= 0.

Proof. Because sketching process R determines whether item
u(k,i) is selected as top-K, all R can be divided into two kinds:
R ∈ G0 makes Ki = 0, and R ∈ G1 makes Ki = 1. Therefore,
we expand E(f̂(k,i)Ki) as follows:

E
(
f̂(k,i) · Ki

)
=
∑
R∈G1

E(f̂(k,i) · Ki|R) · Pr(R)

=

(∑
R∈G1

Pr(R)

)
· f(k,i) = E(Ki) · f(k,i).

Combined with unbiasedness, we have
Cov

(
f̂(k,i),Ki

)
= E

(
f̂(k,i) · Ki

)
− E

(
f̂(k,i)

)
E (Ki) = 0.

C. Error Bounds of Estimations

In this section, we give some theorems about the error
bounds of estimations. The item frequencies which are in-
serted into the count part are fS(k,1,mk), · · · , fS(k,nk,mk).
According to lemma 2, they are less than or equal to
f(k,1,mk), · · · , f(k,nk,mk), i.e., f(k,1), · · · , f(k,nk). Based on
this insight, we give the following lemmas and theorems,
which show that the DA sketch has tighter error bounds than
the sketches of CMM [43].

Lemma 4. Given a data stream Sk, for any replacement policy
P and any item u(k,i), let f̂(k,i) be the unbiased estimation of
f(k,i) given by the DA sketch, then we have

Var
(
f̂(k,i)

)
⩽

1

d · (w − 1)
·

 nk∑
j=1

f2S(k,j,mk)

 .

Where d and w are parameters of the count part (CMM).

Theorem 6. Given a data stream Sk, for any replacement
policy P and any item u(k,i), let f̂(k,i) be the unbiased
estimation of f(k,i) given by the DA sketch, then we have

Pr
(∣∣∣f̂(k,i) − f(k,i)

∣∣∣ ⩾ ε
)
⩽

1

ε2 · d · (w − 1)
·

 nk∑
j=1

f2S(k,j,mk)


<

1

ε2 · d · (w − 1)
·

 nk∑
j=1

f2(k,j)

 .

 Early FreezingHot Filtering 
Loose Bound  Tight Bound

w

(a) P: SpaceSaving

 Early FreezingHot Filtering 
Loose Bound  Tight Bound

w

(b) P: RA Policy

Fig. 5: Sample variances and their theoretical upper bounds.

D. Analysis on Early Freezing

By using the early freezing optimization, the DA sketch
gives a more accurate item frequency estimation f̃(k,i) =
fT (k,i,mk) + fS′(k,i,ti), where ti is the time when item u(k,i)
is recorded in the top-K part. In particular, ti = mk when
item u(k,i) is not recorded. On the one hand, following the
proof in Section IV-B and IV-C and replacing fS′(k,i,mk) with
fS′(k,i,ti), we can still prove the top-K-fairness and derive the
error bound; On the other hand, according to Lemma 5 shown
below, we know that the variance of fS′(k,i,ti) is smaller than
that of fS′(k,i,mk) in any sketching process R, so we have
Theorem 7.

Lemma 5. Given a data stream Sk and a sketching process
R = {s(k,1), · · · , s(k,m)}, for any item u(k,i) and any time j,
there is

fS(k,i,j−1) ⩽ fS(k,i,j).

Theorem 7. Given a data stream S, for any replacement
policy P and any item u(k,i), we have

Var
(
f̃(k,i)

)
⩽ Var

(
f̂(k,i)

)
.

E. Experimental Verification

To verify the correctness of Lemma 4 and Theorem 7, we
show two kinds of variance bound. The CMM sketch itself pro-
vides a loose P-independent bound: 1

d·(w−1) ·
(∑nk

j=1 f
2
(k,j)

)
,

while Lemma 4 offers a tight R-dependent bound. We use
SpaceSaving and Randomized Admission Policy as the strat-
egy P , and vary the length w of the count part. As shown in
Figure 5, it is worth noting two points: 1) The tight bounds
are extremely close to the sample variances, which indicates
our bounds are accurate. 2) Filtering hot items to reduce the
redundancy is beneficial to reduce variance, and the strategy
of finding top-K frequent items more accurately has a smaller
variance.

V. DISCUSSION

A. Top-K-fairness for General Data Streams

We focus on the problem of identifying global top-K items
in disjoint data streams, which dictates that an item appears in
only one unique data stream. However, a more general scenario
in distributed data streams is where an item may be present
in multiple data streams. Thus, a question arises: how is top-
K-fairness defined in general data streams6? Is it possible to

6In general data streams, it is not required that Ui ∩ Uj = ∅.
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adapt the DA sketch, as proposed in this paper, to general data
streams? We thoroughly discuss and answer these questions in
this section.
Top-K-fairness in General Data Streams: Reflecting on our
method for finding global top-K frequent items in distributed
data streams, we require each data stream Si to report a set
of local top-K items Ti. Thus, we obtain a candidate set for
global top-K items U =

⋃N
i=1 Ti. Different algorithms can

provide an estimated frequency f̂u for each candidate item
u ∈ U in various ways. Top-K-fairness demands that for any
item u ∈ U , f̂u = α × fu + δ, where α and δ are constants
consistent across all items.
Using DA sketch for Finding Global Top-K: For each local
data stream Si, we use a DA sketch to find the local top-
K, and form a set Ti based on the frequency of items in the
top-K part. However, beyond reporting Ti, we also need to
report the entire DA sketch, referred to as Di. Then, on the
central server, we first generate the candidate set U . For each
item u in the set U , we go through the N local DA sketches
Di, and query the unbiased estimated frequency f̂(i,u) of u
in the data stream Si using the method described in Section
III-B7, summing these query results to obtain its estimated
frequency f̂u =

∑N
i=1 f(i,u). Then, we can consider the K

items u with the largest estimated frequencies f̂u as the global
top-K frequent items.
Brief Proof of Top-K-fairness: First, let’s revisit two impor-
tant properties of the DA sketch Di: E

(
f̂(i,u) | u ∈ Ti

)
=

f(i,u) and E
(
f̂(i,u) | u ̸∈ Ti

)
= f(i,u), where the former

represents double anonymity and the latter directly results
from the combination of double anonymity and unbiasedness.
Therefore, for the data stream Si, if u appears in Si and u ∈ Ti,
then E

(
f(i,u)

)
= f(i,u); if u appears in Si and u ̸∈ Ti, then

E
(
f(i,u)

)
= f(i,u) as well; if u does not appear in Si, then

E
(
f(i,u)

)
= 0; thus, we have E

(
f̂u | u ∈ U

)
= fu. This

satisfies top-K fairness with α = 1 and δ = 0.

B. Top-K-fairness for Rankings

In Section III, we discussed in detail the top-K-fairness
in frequency estimation. In this section, we delve deeper
into the fairness of the process of obtaining global top-K
items through ranking. During the ranking process, when
comparing the estimated frequencies of two items, not only the
mathematical expectation of the estimated frequency affects
fairness, but its distribution also impacts fairness. As shown
in Figure 68, in case 1, even through both distributions have
the same expectation, there is more than a 50%9 chance that
a value from orange distribution is larger than a value from
the blue distribution during comparison; whereas in case 2,
this probability is exactly 50%. Therefore, we can say that
the comparisons in case 2 are fairer than those in case 1. Of
course, we need a more formalized definition of fairness under

7Note that even if item u does not appear in data stream Si, it can still
obtain a non-zero estimated frequency f(i,u) through the sketch Di.

8The orange distribution is X ∼ N(4, 10), the blue distribution in case 1
is Y ∼ Γ(2, 2), and in case 2, the blue distribution is Z ∼ N(4, 5).

9Pr(X > Y ) ≈ 0.525 > 0.5, Pr(X > Z) = 0.5.

Case 1

Case 2

Fig. 6: Case studies of two distributions. The second case is
fairer in terms of ranking.

ranking. We attempt to define the following ranking-fairness,
a stricter form of top-K-fairness.

Definition 7. (Ranking-fairness) Given any two data stream
Si1 and Si2 , and any two items u(i1,j1) and u(i2,j2), if
f(i1,j1) ≥ λf(i2,j2), then for any monotonically non-decreasing
function g, it holds that

E
[
g
(
f̂(i1,j1) − λf̂(i2,j2)

)]
≥ E

[
g
(
λf̂(i2,j2) − f̂(i1,j1)

)]
.

Intuitively, we hope after calculating f̂(i1,j1) − λf̂(i2,j2),
regardless of the standard g used to judge this difference, the
central analyzer will be more inclined to choose f̂(i1,j1) over
λf̂(i2,j2). Additionally, ranking-fairness implies the following
properties:

• Let g(x) = 1x>0, then it can be deduced that
if f(i1,j1) ≥ f(i2,j2), then Pr

(
f̂(i1,j1) > f̂(i2,j2)

)
≥

Pr
(
f̂(i2,j2) > f̂(i1,j1)

)
.

• Let g(x) = 1x>0, then it can be deduced that
if f(i1,j1) = f(i2,j2), then Pr

(
f̂(i1,j1) > f̂(i2,j2)

)
=

Pr
(
f̂(i2,j2) > f̂(i1,j1)

)
= 0.5.

• Let g(x) = x, then it can be deduced that E[f̂(i,j)] = α ×
f(i,j) + δ. This indicates that ranking-fairness is a stricter
version of top-K-fairness.

The proofs of the first two properties are obvious, and here
we provide the proof for the last property.
Proof. We first set g(x) = x, λ = 1, and find two items
u(i1,j1) and u(i1,j1) such that f(i1,j1) = f(i2,j2), we then can
obtain

E
[
f̂(i1,j1) − f̂(i2,j2)

]
≥ E

[
f̂(i2,j2) − f̂(i1,j1)

]
⇒E

[
f̂(i1,j1)

]
≥ E

[
f̂(i2,j2)

]
.

Similarly, we also have E
[
f̂(i1,j1)

]
≤ E

[
f̂(i2,j2)

]
, therefore

we can conclude E
[
f̂(i1,j1)

]
= E

[
f̂(i2,j2)

]
. This indicates

that E
[
f̂(i,j)

]
can be considered a function of f(i,j), that is,

E
[
f̂(i,j)

]
= h

(
f(i,j)

)
.

Next, we proof that h
(
f(i,j)

)
is a linear function. We find

two items u(i1,j1) and u(i1,j1) satisfying f(i1,j1) = λf(i2,j2),
then through a process similar to the above, we can ob-
tain E

[
f̂(i1,j1)

]
= λE

[
f̂(i2,j2)

]
, that is, h

(
f(i1,j1)

)
=

h
(
λf(i2,j2)

)
= λh

(
f(i2,j2)

)
. Consider the arbitrariness of

f(i2,j2), we have h
(
λf(i,j)

)
= λh

(
f(i,j)

)
. By differentiating
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both sides of this equation, we can get
∂h
(
λf(i,j)

)
∂f(i,j)

= λh′
(
λf(i,j)

)
= λh′

(
f(i,j)

)
=
∂hλ

(
f(i,j)

)
∂f(i,j)

Due to the arbitrariness, we know h′
(
f(i,j)

)
is a constant func-

tion, which means h′
(
f(i,j)

)
= α, thus we have h

(
f(i,j)

)
=

α× f(i,j) + δ.
Sufficient Condition: After defining ranking-fairness, a ques-
tion arises: what kind of algorithms satisfy ranking-fairness?
We have identified a sufficient condition, namely that the
distribution of estimated frequencies of items given by the
algorithm is symmetric with respect to their true frequencies,
i.e., Pr

(
f̂(i,j) > f(i,j) + δ

)
= Pr

(
f̂(i,j) < f(i,j) − δ

)
. We

briefly summarize its proof.
Proof. If the distributions of f̂(i1,j1) and f̂(i2,j2) are both
symmetric, then the distribution of X = f̂(i1,j1) − λf̂(i2,j2)
is also symmetric, i.e., F (E(X) + x) = 1 − F (E(X) − x),
where F (x) is the cumulative distribution function (CDF). If
E(X) > 0, i.e., f(i1,j1) − λf(i2,j2) ≥ 0, then g(x + E(x)) −
g(x− E(X)) > 0, and

E(g(X))− E(g(−X)) =

∫
g(x)dF (x)−

∫
g(−x)dF (x)

=

∫
(g(x+ E(x))− g(x− E(X)))dF (x+ E(x)) ≥ 0.

Symmetric Distribution Version of DA Sketch: We only
need to replace the count part of the DA sketch with the
C sketch [15], an unbiased courting sketch that provides
symmetric distribution of estimated frequencies, to make the
estimated frequency distribution of DA sketch symmetric and
thus achieving ranking-fairness. The data structure of the C
sketch is completely identical to the CMM sketch, except that
each array of counters is also associated with a hash function
hi(·), which maps each item uniformly and randomly to
{−1, 1}. During insertion, the C sketch increments the mapped
counter A[i, gi(e)] by hi(e). For querying, the C sketch use
the median median{h1(e)A[1, g1(e)], · · · , hd(e)A[d, gd(e)]}
of the d mapped counters as the unbiased estimated value.
Analysis: Proving that the distribution of the estimated fre-
quencies for any item e in the DA sketch with C sketch is
symmetric is trivial: in any given sketching process R, the
randomness of the estimated frequency of item e is entirely
derived from the C sketch, hence its frequency distribution is
symmetric. Thus, considering all possible R, the distribution
of e’s estimated frequency remains symmetric about its true
frequency. We have empirically validated in Section VI-F that
the DA sketch with C sketch outperforms the DA sketch with
CMM sketch under several ranking-related metrics.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Implementation: We have implemented the DA sketch
and all other algorithms in C++. We apply four replacement
strategies to the DA sketch: Randomized Admission Policy
(RA) [16], SpaceSaving (SS) [17], Frequent (Freq) [34] and
HeavyGuardian (HG) [4]. We find that applying RA Policy
yields the best results; therefore, we mainly demonstrate the
experimental results of DA sketch + RA. We also compare our

results with state-of-the-art top-K sketching algorithms: Fre-
quent [34], SpaceSaving [17], Unbiased SpaceSaving (USS)
[6] and WavingSketch (Waving) [3]. Our source code is
publicly available at Github [58].

2) Datasets: We use three real-world datasets and one
synthetic dataset. The details are shown below: 1) The IP
Trace Dataset (CAIDA) [41] consists of streams of anonymous
IP traces collected by CAIDA in 2016. Each item is identified
by its 13-byte ”5-Tuple”. We use the first 20M items. 2) The
Web Page Dataset [59] is built from a collection of web pages
downloaded from the website. Each item is 4 bytes long. 3)
The Network Dataset [60] consists of users’ posting history on
the StackExchange website. 4) We generated Synthetic Dataset
following the Zip-f distribution [42]. Each dataset contains
32M items, and each item is 4 bytes long. Here we use the
generated dataset with skewness=0.6.

3) Metrics:
Average Relative Error (ARE): 1

|Ψ|
∑
ei∈Ψ

|fi−f̂i|
fi

, where
fi is the ground truth frequency of item ei, f̂i is its estimated
frequency, and Ψ is the query set.
F1 Score: 2∗CR∗PR

CR+PR , where PR (Precision rate) represents
the proportion of the correctly selected items among all the
selected items, and CR (Recall rate) represents the proportion
of the correctly selected items among all the real top-K items.
Throughput: The number of operations (insertions) in million
per second (Mops). It indicates the overall speed of insertion.
Zero Error Rate: The proportion of items selected by our
sketch whose estimated frequency is guaranteed to be exactly
the same as its ground truth frequency.
Relative Bias: This metric is used in section VI-D. For the
local sketch i, the relative bias is defined

∑
ej∈Ψ f̂j∑
ej∈Ψ fj

, where Ψ

is the set of items that local sketch i returns as the local top-K
items.
Recall on Aggregation: ||{(T̂i∩T )∩T̂ }||

||{T̂i∩T }|| for local sketch i,

where T denotes the set of global top-K items, T̂ denotes
the set of predicted global top-K items (after aggregation),
and T̂i denotes the selected local top-K items from sketch i.

4) Common Settings: Let Mem denote the total amount of
memory allocated to the sketches, Mtop−K denote the amount
of memory allocated to the top-K part for the DA sketch, K
denote that we query the top-K frequent items, and λ denotes
the number of cells in each bucket of the top-K part. For the
DA sketch, we set λ = 8, Mtop−K

Mem = 0.55. For DA sketch, the
size of count part’s buckets is set to be 2 bytes10. All other
parameters of the baseline top-K algorithms are set according
to the recommendations of their authors.

B. Experiments on Local Top-K

Experimental Settings: In this experiment, we use the CAIDA
dataset. We set K = 1000, and range the memory size from
100KB to 500KB for all sketches to see how different sketches
perform in different amounts of memory.
ARE (Figure 7(a)): Results show that our approach achieves
much more accurate estimation thanks to the hot filtering and

10For the basic version, the size of count part’s buckets is set to be 4 bytes.
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Fig. 7: Performance of finding local top-K items.
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Fig. 8: Performance of finding global top-K items.
early freezing technique. When Mem = 100KB, our approach
is around 500-1000 times more accurate than USS, SS, and
Frequent and around 50-100 times more accurate than Waving.

F1 Score (Figure 7(b)): When applying RA to our approach,
the DA sketch achieves sufficiently high F1 Score (≥ 95%)
even when memory is extremely tight. This is because for the
DA sketch, local top-K items’ selection is determined by only
the replacement policy, and RA itself is accurate in selecting
local top-K items. In contrast, Frequent, USS, and SS are
much more inaccurate in finding top-K items. The discussion
will be further elaborated in section VI-C.

Zero Error Rate (Figure 7(c)): We demonstrate the pro-
portion of items of which we are confident that frequency
estimation error is guaranteed to be 0 (as denoted by zero
error rate). We could determine this because Cfreezing = 0
indicates that such item has never been evicted from the Top-
K part throughout the process. The results show that our
approach achieves a zero error rate greater than 40% when
memory is as tight as 100KB, and greater than 72% when
Mem = 500KB. The results suggest that for the majority of
items, our algorithm could tell with 100% confidence that their
estimated frequencies are perfectly accurate.

Comparison between the three versions (Figure 7(d)): We
find that both the hot filtering and early freezing significantly
improve the accuracy of our unbiased frequency estimation.
On average, the final version — the early freezing version is
approximately 66 times more accurate than the first version —
the basic version and approximately 10 times more accurate
than the second version — the hot filtering version.

C. Experiments on Global Top-K with Same Sizes across
Different Data Streams

Application Description: In a distributed scenario, there are
N data streams S1, · · · ,SN . Data stream Si contains mi

items. Each data stream is measured by a sketch on one
machine. Memory sizes of all the sketches on different data
streams are set the same. We denote S =

⋃N
i=1 Si. In different

scenarios, the skewness of the size distribution across different
data streams could be small or large. We set m1 = r∗|S|, and
mi =

1−r
N−1 |S|, i ≥ 2, where r ≥ 1

N represents the skewness of
the size distribution across different data streams. We denote
S1 as a heavy stream, and other data streams as light streams.
In this subsection, we focus on the case when the sizes of
different data streams are the same, i.e., r = 1

N .
Experimental settings: We use all the four datasets mentioned
in VI-A2 for our experiments. There are in total N = 10
data streams, and we select K = 1000 global top-K items.
We allocate the same amount of memory for each sketch on
different machines, and the total memory size for the N = 10
sketches in total ranges from 100KB to 500KB.
ARE (Figure 8(a) - 8(d)): We find that our approach could
achieve much lower ARE than prior art. On CAIDA dataset,
when Mem = 100KB, ARE of our approach is 3 orders of
magnitude times lower than Frequent, USS, SS, and 70 times
lower than Waving. We observe similar results on the other
three datasets.
F1 Score (Figure 8(e) - 8(h)): Results show that in this
scenario, our approach could achieve a high F1 Score on both
datasets even when Mem is small. When Mem = 100KB, the
F1 Score of our approach is greater than 90% on both datasets,
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while the F1 Score of Frequent, USS, and SS is lower than
60% on the Webpage dataset and lower than 40% on the rest of
the datasets. We also find that our approach achieves a slightly
better F1 Score than Waving .
Throughput (Table I): Our approach achieves higher or
comparable throughput compared with prior art. Specifically,
the throughput of our approach is on average 3.19, 2.89 and
3.15 times higher than Frequent, USS, and SS respectively
over the four datasets, and is comparable with Waving.

CAIDA Webpage Net Synthesis
Frequent (300KB) 5.3 6.2 4.5 5.1

USS (300KB) 5.4 6.9 5.3 5.7
SS (300KB) 5.9 6.4 4.8 4.7

Waving (300KB) 14.8 21.2 13.4 16.8
Ours + RA (300KB) 14.9 25.5 12.7 15.6

TABLE I: Throughput (Mops) of finding top-K frequent items.
Analysis: 1) Our approach is accurate in frequency estimation
on global top-K items. Prior works, like Frequent, USS, and
SS tend to provide highly underestimated or overestimated
frequency estimation, so their frequency estimation tends to
be significantly inaccurate. 2) F1 Score of our approach is
mainly determined by the top-K replacement strategy, and
when applying RA replacement strategy, the DA sketch could
achieve a high F1 Score. F1 Score of Frequent, USS, and
SS is significantly lower than our approach since all of them
use the Stream Summary [17], which consumes more memory
to store one item than our approach, and those strategies
are not as accurate as the RA. 3) Both our approach and
Waving sketch use bucket-array data structure, which is cache-
friendly and requires fewer memory access, resulting in higher
insertion throughput. For Frequent, USS, and SS, frequent
pointer operations would lead to cache misses, making the
insertion much slower.

D. Experiments on Top-K-fairness with Highly Skewed Data
Streams’ Sizes

1) Experimental Setup:
In this subsection, we focus on the case when the size

distribution is highly skewed. We show why top-K-fairness is
important in finding global top-K items in this scenario. We
compare our results with four biased algorithms: Frequent, SS,
HG, and RA, and two unbiased algorithms: USS, and Waving.
F1 Score is used to demonstrate the overall performance.
Relative bias is used to demonstrate the top-K-fairness of our
approach and the top-K-unfairness of prior art. Considering
the global top-K aggregation: before that, sketch i proposes
several local top-K candidates, and some of them are real
global top-K. Among those real global top-K proposed by
sketch i, only a proportion of them are selected as global top-
K. Recall on aggregation, which refers to the proportion
mentioned above, is used to demonstrate the top-K-fairness
of the global top-K selector on aggregation. Specifically, we
use this metric to answer our questions: does the global top-
K selector favors items from heavy machines or from light
machines, or is the global top-K-fair so that it selects global
top-K items solely based only on their real frequency.

Experimental Settings: We set N = 100, K = 1000, and
vary the skewness r from 0.01 to 0.5. In order to eliminate
the effects of selecting local top-K itself on the performance of
finding global top-K, we adjust the memory sizes for different
algorithms so that they could store exactly the same number
of local top-K candidates. For Frequent, SS, and USS, we
use 40KB; for HG, RA, Waving, and DA sketch, we use
15KB. We use the synthetic dataset with skewness=0.9, which
is relatively low in skewness, to better demonstrate the concept
of ”top-K-fairness”.

2) Overall Performance & Top-K-fairness:
F1 Score (Figure 9(a) and 9(e)): Results show that when
skewness increases, our F1 Score degradation is much slower
than all the prior art. Specifically, when skewness r = 0.5,
Ours + Frequent achieves F1 Score ≥ 73%, while Frequent
itself only achieves F1 Score ≤ 48%; Ours + SS achieves F1
Score ≥ 72%, while SS itself only achieves F1 Score ≤ 31%.
Ours + RA achieves F1 Score ≥ 98%, while RA itself only
achieves F1 Score ≤ 83%. Ours + HG achieves F1 Score
≥ 95%, while HG itself only achieves F1 Score ≤ 76%. F1
Score of Waving Sketch and USS is 62%, 30% respectively,
which is also significantly lower than that of our approach.
Relative Bias on Top-K items (Figure 9(b) and 9(f)): Results
show that SS, USS and Waving tend to provide overestimated
frequency. For these algorithms, items in heavy machines
tend to be overestimated much more than light machines,
so the global top-K selector tends to favor items in heavy
machines. Similarly, Frequent, RA, and HG tend to provide
underestimated frequency, and items in heavy machines tend to
be underestimated much more, so the global top-K selector
tends to favor items in light machines. More detailed recall
rates on aggregation are shown in Section 5.4.3.
Analysis: 1) One of the desired properties that top-K-fairness
brings is that the F1 Score of top-K-fair algorithms, like our
DA sketch, tends to be higher than top-K-unfair algorithms.
For example, for SS and USS, local top-K candidates in heavy
machines tend to be highly overestimated, so even if an item
is low in real frequency, its estimated frequency is still high
enough to be falsely selected as a global top-K. With items in
heavy machines falsely selected as global top-K items and
items in light machines ignored, the F1 Scores of SS and
USS become unacceptably low when skewness is large. 2) The
degree of top-K-unfairness of algorithms is often negatively
related to their F1 scores. Specifically, the top-K-unfairness
of SS, USS, and Frequent is very significant, so their F1
scores are lower than other algorithms. Although Waving,
RA, and HG are also top-K-unfair, their top-K-unfairness is
relatively slight, so they have higher F1 scores. For top-K-
fair algorithms, the accuracy of the replacement policy they
use determines their performance, so Ours+RA and Ours+HG
have the highest F1 scores. 3) Our approach is generic: we can
make any top-K algorithm top-K-fair simply by applying the
DA sketch to this top-K algorithm. Meanwhile, the F1 Score
is also much improved. Specifically, for Frequent and SS with
significant top-K-unfairness, DA sketch can improve their F1
scores by up to 25.5% and 42.5%; and for RA and HG with
slight top-K-unfairness, DA sketch can still improve their F1
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Fig. 9: Performance and fairness for finding global top-K items comparing our approaches with baseline algorithms.
scores by 15.0% and 19.8%.

3) Recall on Aggregation:
Recall on Aggregation (Figure 9(c) - 9(d) and 9(g) - 9(h)):
For light machines, we find that Recall on Aggregation of over-
estimation algorithms, like SS, USS, and Waving, decreases
fast as r increases, while that of other algorithms keeps at a
high level (≥ 90%). Conversely, for heavy machines, Recall
on Aggregation of underestimation algorithms like Frequent,
RA, and HG, decreases as r increases, while other algorithms
remain ≥ 90%. It can be concluded that for overestimation
algorithms, it is more difficult for items in light machines
to be selected as global top-K items; for underestimation
algorithms, it is more difficult for items in heavy machines
to be selected as global top-K items.
Analysis: Top-K-fairness is determined by the bias of fre-
quency estimation. For overestimation sketches like SS, USS,
and Waving, many local top-K candidates from light machines
that are supposed to become global top-K items would actu-
ally be evicted during aggregation. It can be concluded that
the global top-K selector favors items from heavy machines.
Conversely, for underestimation sketches like Frequent, RA,
and HG, global top-K selector tends to favors items from
light machines. We argue that top-K-unfair aggregation is
unacceptable since the global top-K selector should not be
partial to items from any machine.

4) Other Baseline Algorithms:
Comparison algorithms: We compare two other baseline
algorithms designed for skewed data streams: algorithms based
on global sampling and algorithms based on weighting. For
sampling algorithms, we use the same sampling rate for each
data stream to sample items and send them to the global top-
K selector. On the global top-K selector, we use sketch or
directly use deterministic data structures (e.g., maps) to find
global top-K items in the sampled data stream. For weighted
algorithms, we maintain sketch of different sizes on different
machines according to the number of items contained in the
data stream. Specifically, if the data stream on the heavy
machine contains 10 times as many items as that on the light

machine, the sketch size on the heavy machine is set to be 10
times as large as that on the light machine.
DA sketch v.s. weighted algorithms (Figure 10): We
compare weighted USS, weighted Waving, and weighted
Ours+RA. As shown in Figure 10(b), for weighted USS and
weighted Waving, their overestimation on heavy machines
is reduced, but their overestimation on light machines is
significantly increased. This is due to the non-linear rela-
tionship between their overestimation and the size of the
data stream. However, as shown in Figures 10(a), 10(c), and
10(d), weighting can indeed improve the performance of USS
and Waving, especially when the distribution is particularly
skewed. Specifically, when r = 0.5, the F1 score of weighted
USS is 57.9%, that of weighted Waving is 96.4%, and that of
weighted Ours+RA is 99.0%.
DA sketch v.s. sampling algorithms (Figure 11): We com-
pare with the sampling algorithms using different sampling
rates and different global data structures on global top-K
selectors. The sampling rate we default to ensures that the
amount of data transmitted to the global analyzer from all
machines is equal to the total memory usage of the Ours+RA
sketch data structures on all machines. For example, a sam-
pling rate of p = 0.04 would transfer 3.2MB of data, whereas
using a 32KB Ours+RA sketch would require a total memory
of 100 × 32KB = 3.2MB. The label “5×” indicates that
we have used a sampling rate that is five times the default
value. “Sampling+Precise” indicates that we use a precise data
structure, such as a hash table, on the global analyzer to count
global frequency information and find global top-K elements;
“Sampling+RA” means we use an RA sketch on the global
analyzer to find global top-K elements. The experimental
results show that higher sampling rate means higher accuracy,
but the performance of the sampling algorithm using “5×”
sampling rate and precise global data structure is still inferior
to Ours+RA.
Analysis: For the two comparison algorithms, the sampling
algorithms are top-K-fair, and the weighted algorithms can
indeed improve the performance. However, our algorithm still
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Fig. 10: Performance and fairness of weighted algorithms for finding global top-K items.
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Fig. 11: Comparisons between the sampling approach and our
approach.
shows its superiority over the two algorithms. In addition,
there is another artificial weighted algorithm: manually correct
the overestimation or underestimation of reported top-K items
from different data streams. On the one hand, this algorithm is
difficult to practice, and on the other hand, it cannot achieve
the exact top-K-fairness.

E. Experiments on Parameter Settings

In order to find the optimal parameter settings, we conduct
experiments on finding local top-K items and vary λ and
Mtop−K
Mem to see how AAE, ARE, F1 Score and Throughput

change. We set Mem to be 100KB, λ to range from 1 to 64,
and Mtop−K

Mem to range from 0.05 to 0.95.
Varying λ (Figure 12(a)-12(b)): We find that, as λ in-
creases from 1 to 64, ARE of Our+RA and Ours+SS first
decreases when λ grows from 1 to 8 and then remains steady.
For Ours+HG and Ours+Freq, ARE keeps roughly steady.
However, as λ increases, the throughput of all DA sketch
applications drops severely. Therefore in practice, we choose
λ = 8 as the best setting.
Varying Mtop−K

Mem (Figure 12(c)-12(d)): We find that F1 scores
grow as Mtop−K

Mem increases, since F1 scores are only determined
by the top-K part. However, we find that when Mtop−K

Mem ≥
0.55, growth rate of F1 scores becomes slow11. Besides,
Ours+HG and Ours+RA reach their respective minimal ARE
score when Mtop−K

Mem ≈ 0.55, while Ours+Freq and Ours+SS
reach their minimal ARE when Mtop−K

Mem ≈ 0.75. In practice,
we choose Mtop−K

Mem = 0.55 as the default parameter setting.
Analysis: 1) Among the four replacement policies, Ours+RA
and Ours+HG often have higher performance than Ours+Freq
and Ours+SS. Specifically, Ours+RA has more advantages in
F1 score, while Ours+HG has more advantages in ARE. Con-
sidering that Ours+RA has higher throughput, we recommend

11In addition, in this experiment, Mem = 100KB is tight, and if Mem

becomes larger, growth of F1 scores contributed by
Mtop−K
Mem

will become
more negligible.

using Ours+RA in practice. 2) However, although Ours+Freq
and Ours+SS are slightly inferior in accuracy, Freq and SS are
famous for their formal and comprehensive error theories and
error bounds. Benefiting from their theories, we suggest that
Ours+Freq and Ours+SS should be considered in scenarios
where exact error guarantees are required.

F. Experiments on Ranking Fairness

In this section, we verify the impact on ranking fairness
after replacing the CMM sketch [43] used in the counting
part of the DA sketch with the C sketch [15]. To measure
ranking fairness, we introduce two different rank correlation
coefficients:
• Kendall’s τ rank correlation coefficient: τ = n1−n2

(|T̂ |
2 )

. Where

n1 and n2 are the numbers of concordant and discordant
pairs, respectively, in the global top-K set T̂ reported by
the algorithm. A concordant pair ⟨ui, uj⟩ refers to f̂i ⩾ f̂j
and fi ⩾ fj or f̂i < f̂j and fi < fj , while a discordant pair
refers to otherwise.

• Spearman’s ρ rank correlation coefficient:

ρ =
∑

(ri−rj)(si−sj)
(ri−rj)2 = 1 − 6

∑|T̂ |
i=1 d

2
i

n(n2−1) . Where ri is
the true ranking of item ui, and si is the ranking of item
ui in the global top-K set T̂ reported by the algorithm,
with di = si − ri.
We vary the skewness of distributed data streams on syn-

thetic datasets, CAIDA datasets, and Webpage datasets, and
assess the τ and ρ rank correlation coefficients of different
algorithms. It can be observed that the rank correlation coef-
ficient of all algorithms decreases as the skewness of the data
stream increases.
Kendall’s τ coefficient (Figure 13(a), 13(e), 13(g)): For
Ours+CMM and Ours+C, we can see that the τ coefficients of
both algorithms consistently exceed 0.9; when the skewness of
the data stream is 0.5, the τ coefficient of Ours+C is higher
than that of Ours+CMM by 1.58%, 2.57%, and 1.65% on
the three datasets respectively; although this number is small,
taking the Webpage dataset as an example, τ increased from
0.958 to 0.974, and the number of discordant pairs decreased
by 38.7%.
Spearman’s ρ coefficient (Figure 13(b), 13(f), 13(h)): For
Ours+CMM and Ours+C, we can see that the ρ coefficients of
both algorithms consistently exceed 0.95; when the skewness
of the data stream is 0.5, the ρ coefficient of Ours+C is
higher than that of Ours+CMM by 1.32%, 0.94%, and 1.89%
on the three datasets respectively; although this number is
small, taking the Webpage dataset as an example, ρ increased
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Fig. 12: Experiments on different parameter settings (λ and Mtop−K
Mem ) of Double-Anonymous Sketch.
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Fig. 13: Performance of ranking fairness.
from 0.971 to 0.989, and the sum of squared rank differences
decreased by 63.4%.

An interesting phenomenon is that on the Webpage dataset,
the τ and ρ coefficients of Waving are even the highest,
which is because Waving is based on the C sketch [15] and
naturally benefits from the symmetric distribution of frequency
estimates.
F1 Score and ARE (Figure 13(c), 13(d)): It can be seen
that the ARE of Ours+C and Ours+CMM does not show a
significant difference, but the F1 score of Ours+C is higher
than that of Ours+CMM; we believe this is because Ours+C
achieves better ranking fairness, thus being able to more
accurately identify the global Top-K items. As for other
comparison algorithms, their F1 score trends are consistent
with those in Figures 9(a) and 9(e).

G. Experiments on General Data Streams

In this section, we demonstrate that the DA sketch still
exhibits better performance under general distributed data
stream settings. We construct general data streams based
on synthetic datasets: for each item u, each occurrence is
uniformly and randomly assigned to one of the N = 100
data streams. In this setup, the number of distinct items in
each data stream is larger compared to disjoint data streams.
Therefore, we allocate 160KB of memory to SS, USS, and
Frequent, while the other algorithms use 60KB of memory.
F1 Score and Kendall’s τ (Figure 14): As shown in Figure
14, when we gradually increase the skewness among the

distributed data streams, the F1 scores and Kendall’s τ coef-
ficients of algorithms like Waving, SS, and USS significantly
decrease, while ours+C and ours+CMM consistently maintain
scores and coefficients close to 100%. An interesting finding
is that the scores and coefficients of Frequent also remain
almost unchanged. We believe this is because, in the design of
the Frequent algorithm, the underestimation of the frequencies
of local top-K items is almost proportional to the scale of
the data stream, and the global top-K items generally appear
in all data streams. Therefore, under the experimental setup,
the underestimation of the frequencies of the global top-K
candidates is proportional to the overall scale of the data
stream and is almost independent of the skewness among the
distributed data streams, leading to the almost unchanged F1
scores and Kendall’s coefficients for the Frequent algorithm.
Variation of Parameters λ and M (Figure 15): As λ in-
creases, the F1 score improves significantly before stabilizing,
while the ARE decreases substantially and then stabilizes.
When M increases, we reduce the memory allocated to the
count part to maintain constant total memory. It can be
observed that the performance of the DA sketch deteriorates
when M is either too small or too large. The variation in the
F1 score is not entirely consistent with Figure 12(d), as finding
the global top-K depends more heavily on accurate frequency
estimation than identifying the local top-K.

VII. CONCLUSION

In this paper, we propose the Double-Anonymous sketch,
which is the first work that achieves top-K-fairness of global
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top-K. We theoretically prove that the DA sketch achieves
both unbiasedness and double-anonymity, so as to achieve top-
K-fairness. We conduct extensive experiments on three real
and one synthetic dataset. Our experimental results show that
compared with the state-of-the-art, our algorithm improves the
accuracy 129 times.
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