
Double-Anonymous Sketch: Achieving Top-𝐾-fairness for Finding
Global Top-𝐾 Frequent Items

ABSTRACT

Finding top-𝐾 frequent items has been a hot topic in data stream

processing in recent years, which has a wide range of applications.

However, most of existing sketch algorithms focuses on finding

local top-𝐾 in a single data stream. In this paper, we work on

finding global top-𝐾 in multiple disjoint data streams. We find that

directly deploying prior sketch algorithms is often unfair under

global scenarios, which will degrade the accuracy of global top-𝐾 .

We define top-𝐾-fairness and show that it is important for finding

global top-𝐾 . To achieve top-𝐾-fairness, we propose a new sketch

framework, called the Double-Anonymous sketch. The process of

finding global top-𝐾 items is similar to that of paper reviewing and

democratic elections. In these scenarios, double-anonymity is often

an effective strategy to achieve top-𝐾-fairness. We also propose

two techniques, hot panning, and early freezing, to further improve

the accuracy. We theoretically prove that the Double-Anonymous

sketch achieves top-𝐾-fairnesswhile keeping high accuracy. We

perform extensive experiments to verify top-𝐾-fairness in the sce-

nario of disjoint data streams. The experimental results show that

the Double-Anonymous sketch’s error is up to 129 times (60 times

on average) smaller than the state-of-the-art. All the related source

code is open-sourced and available at Github anonymously.

1 INTRODUCTION

1.1 Background and Motivation

Finding top-𝐾 frequent items has been a hot topic in data stream

processing in recent years, which has a wide range of applications,

such as data mining [1–4], databases [5–7], networking [8, 9], and

network security [10, 11]. Finding top-𝐾 frequent items refers to se-

lecting𝐾 items with the largest number of frequencies/occurrences,

and providing frequency estimation. In the era of big data, the speed

and volume of data are growing explosively. Sketches [2–8, 12–30],

a kind of probabilistic data structures, have obtained wide accep-

tance and interests to address the task of finding top-𝐾 due to their

efficiency in terms of both time and space, although they can have

a small error.

For finding top-𝐾 frequent items, most of existing sketch al-

gorithms focus on providing statistics over a single data stream

[2, 3, 5, 7, 8, 12–16, 31, 32], while a few of them [2, 5] work on merg-

ing the statistics over multiple related data streams into one. In this

paper, we provide the first sketch that can compare the statistics
over different disjoint data streams. Specifically, given 𝑁 disjoint

data streams, how can we compare their own top-𝐾 and select the

global top-𝐾 . Note that the sizes (volumes) of these data streams

are often skewed in practice (e.g., power law distribution) [33].

We use an example on network monitoring to explain the prob-

lem. For an autonomous system (AS) in a wide-area network (WAN),

external traffic enters the AS through multiple border routers [34].

Due to the principle of WAN routing protocol [35], all network

packets sent to the AS from the same source IP address must pass

through the same border router. In other words, if we regard the

source IP address of the network packets as the key, the network

packets streams on different border routers are disjoint data streams.
Network operators usually need to monitor the main source of traf-

fic entering the AS, i.e., the𝐾 source IP addresses that send the most

packets in a period of time [36]. To find these IP addresses, each

border router reports the local top-𝐾 frequent source IP address

and their frequency within this time period, and operator sorts all

local frequent IP addresses to get the global top-𝐾 .
For finding global top-𝐾 frequent items, a typical solution is to

first use a sketch for each data stream to select local top-𝐾 items,

and then sort them based on their estimated frequency to report

the most frequent 𝐾 items globally. However, we find that directly

apply existing sketch algorithms for each data stream often leads to

unfairness. Specifically, the estimated frequency of top-𝐾 items in

prior sketches is largely influenced by the local environment (e.g.,
the size of data streams). If we directly sort all the selected local

top-𝐾 items based on their estimated frequency, the result will be

significantly related to the items’ local environment rather than

its real frequency. For instance, suppose there are 𝑁 disjoint data

streams, some heavy data streams have more items, and some light
data streams have fewer items. Suppose we use 𝑁 SpaceSaving [16]

to find local top-𝐾 items from the 𝑁 data streams. SpaceSaving is a

well-known sketch, which always provides overestimated estima-

tion, and the degree of overestimation is positively correlated to

the size of the data stream. As a result, the items in the heavy data

streams will be overestimated more and get higher chances to be

selected as global top-𝐾 items, while the frequent items in the light

data streams will tend to be ignored, which is unfair.

To address this problem, we aim to achieve top-𝐾-fairness: the

degree of overestimation or underestimation for the local selected
top-𝐾 items is a constant, i.e., not related to the data stream. The

formal definition of top-𝐾-fairness is provided in Section 2.1. When

we achieve top-𝐾-fairness, the accuracy of global top-𝐾 will rise sig-

nificantly, especially if the sizes of data streams are highly skewed.

1.2 Prior Works

To the best of our knowledge, we are the first work to focus on the

top-𝐾-fairness of global top-𝐾 items. Many existing work focuses

on providing unbiased estimation in distributed scenarios [2, 5].

Unbiasedness is helpful if we want to aggregate the statistics of

multiple data streams for all items due to the Law of Larger Numbers.
However, although the estimation is unbiased over all items, if we

only focus on the estimated frequency of top-K items, we can find

that it is often overestimated. The main reason is that the top-K

selection process is not unbiased. In other words, if we select top-

K items, we tend to select items which are overestimated, which

leads to unfairness. We use two state-of-the-art unbiased sketches,

Unbiased SpaceSaving (USS) [5] and WavingSketch (Waving) [2],

to illustrate the problem.



(a) Internal unfairness (b) Recall of the Global Top-1 Item

Figure 1: We demonstrate internal unfairness of USS, and
show how external unfairness would severely harm accu-
racy for �nding global top-  items.

As shown in Figure 1(a), although the estimation of USS is un-
biased when considering all items, it overestimates the selected
top- items and underestimates others. Furthermore, such top- -
unfairness in local data streams will cause top- -unfairness when
�nding global top- items. As shown in Figure 1(b), suppose the
global top-1 item 4C>?is in a light data stream with a very small
number of items, and we deploy a USS for each data stream. USS
provides a slightly overestimated value for4C>?, which is in the
light data stream, and provides signi�cantly overestimated value
for frequent items in heavy data streams. As a result, when the
size distribution of the distributed disjoint data streams is highly
skewed, even the global top-1 item could be ignored, which is of-
ten unacceptable in practice. In Section 5.4, we also discuss that
such unfairness cannot be alleviated by re-weighting the estimated
frequency.

1.3 Our Proposed Solution
To achieve top- -fairness, we propose a new sketch framework,

called the Double-Anonymous sketch. We �rst propose a basic
version which achieves top- -fairness, and then we optimize the
accuracy and throughput through two techniqueshot panningand
early freezing. The Double-Anonymous sketch has the following
advantages: 1) It is the �rst work that discusses the fairness problem
for comparing multiple disjoint data streams. 2) We provide a formal
de�nition of top-  -fairness anddisjoint data streamsin Section 2.1.
We also prove that our sketch can achieve top- -fairness while
keeping high accuracy as prior sketches. 3) It is accurate: The error
(average relative error) of our sketch is up to129times (60times
on average) smaller than Waving and3 � 4 orders of magnitude
smaller than Frequent, USS, and SS. 4) It is generic: we implement
existing fourreplacement strategiesin our framework to achieve
top- -fairness and accuracy.

The key technique of our Double-Anonymous sketch to achieve
top- -fairness is calleddouble-anonymity . The process of �nd-
ing global top- items is similar to that of paper reviewing and
democratic elections. Double-anonymity is often an e�ective strat-
egy to achieve fairness. We leverage this strategy to enable top- 
sketches to achieve top- -fairness in global scenarios. A top- 
sketch often consists of two parts, a top- part for �nding top-  
items and a count part for frequency estimation. If a top- sketch
meets the following two conditions, we consider it achieves double-
anonymity: 1) the top- part �nds top- items independently, and
does not know any items' estimated frequency in the count part;
2) the count part estimates item's frequency independently, and
does not know which items are top- . However, the existing two

unbiased sketches mentioned above do not meet the �rst condi-
tion, and thus are not double-anonymous. Our formal de�nition of
double-anonymity is provided in Section 3.1. We theoretically prove
that double-anonymity is a su�cient condition of top- -fairness.
Therefore, we follow this principle to design our solution.

In our basic version, we use a top- sketch (e.g., SpaveSaving
[16]) as the top- part and use an unbiased sketch (e.g., CMM
sketch [37]) as the count part. To achieve double-anonymity, our
�rst version makes these two parts work independently,i.e., it
forbids any information transmission between them. Note that the
independent condition is stronger than double-anonymity. For an
incoming item4, it will be inserted into the two parts independently
and respectively. Obviously, our �rst version is double-anonymous,
and thus achieves top- -fairness.

However, although the �rst version achieves top- -fairness, it
fails to achieve high accuracy. Therefore, we propose two impor-
tant optimization methods to signi�cantly improve accuracy:hot
panning andearly freezing . Unlike the �rst version, in these two
versions, we allow some information transmission between the two
parts as long as it does not violate double-anonymity. Relaxing the
forbidden condition, we can have more opportunities to improve
accuracy. First, the main reason that brings large errors in the �rst
version is information redundancy: the information of hot items is
recorded in both two parts. The key idea ofhot panning is that us-
ing the top- part to pan the hot items, and only record them in the
top- part to remove such redundancy. More details are provided
in Section 3.2. Second, the error of a sketch accumulates with more
and more items inserted. The key idea ofearly freezing is that
using a freezing counter to freeze the continuously accumulating
error as early as possible, thus minimizing the error. More details
are provided in Section 3.3. According to Section 5.2, the error
of early freezing versionis about 66� lower than that of the basic
version after applying hot panning and early freezing.

We show that the Double-Anonymous sketch is generic. Any
replacement strategy independent with the CMM sketch can be ap-
plied to the Double-Anonymous sketch, and we choose four [3, 15,
16, 31] as case studies. We also show that the Double-Anonymous
sketch is versatile. The Double-Anonymous sketch not only achieves
top- -fairness, but also provides both upper bound and lower
bound for item frequency without additional data structures.
Key Contributions:
� We de�ne a new important property: top- -fairness. We de�ne

and analyze top- -fairness and derive its su�cient condition.
� We propose the Double-Anonymous sketch, which is accurate,

unbiased, and generic. The Double-Anonymous sketch is the �rst
work that achieves top- -fairness.

� We theoretically prove that the Double-Anonymous sketch achieves
top- -fairness and can keep high accuracy as prior sketches.

� We perform extensive experiments to verify top- -fairness in the
distributed scenario. We also show that the Double-Anonymous
sketch's error is much smaller than other existing works.

2 BACKGROUND AND RELATED WORK
In this section, we provide formal de�nitions of our problem and

top- -fairness. We discuss the di�erence between unbiasedness
and top- -fairness.
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2.1 Formal De�nitions and Preliminaries
Definition 2.1. (Disjoint data streams ) Given# data streams

S1•� � � •S# , whereS8 =
�
4¹8•1º•� � � • 4¹8•<8º

	
contains< 8 items, and

each item4¹8•9º belongs to setU8 =
�
D¹8•1º•� � � •D¹8•=8º

	
. # Data

streams are disjoint ifU8\U 9 = ; for any two di�erent data streams
S8 andS9.

Generally speaking, the settings of disjoint data streams require
that one item cannot appear in multiple di�erent data streams.
Disjoint data streams are common in scenarios such as distributed
storage systems and distributed network management. In these
scenarios, an item is often placed on only one device, and then only
appears in one data stream.

Definition 2.2. (Global top- items) Given# disjoint data
streamsS1,� � � , S# , for data streamS8 =

�
4¹8•1º•� � � • 4¹8•<8º

	
and

item setU8, we de�ne that the frequency of itemD¹8•9º 2 U8 as

5¹8•9º =
< 8Õ

: =1

1f 4¹8•: º=D¹8•9º g”

The global top- items are the items with the largest frequency.

To �nd global top- items, each data streamS8 uses the top- 
algorithm to �nd the set T8 =

�
D¹8•?1º•� � � •D¹8•? º

	
of local top-

 items and their estimated frequencŷ5¹8•?9º . Each data stream
S8 reports the setT8 of local top- items and frequency of items
to a central machine. The central machine obtains the global set
U =

Ð #
8=1 T8, and then uses items with the largest estimated

frequency inU to form the setT � U of global top- items.

Definition 2.3. (Top- -fairness) Given a top- -fair algorithm,
for any data streamS8, letT8 be the set of local top- frequent items
reported byS8, and for any itemD¹8•9º 2 T8, the following equation
holds:

�
�
5̂¹8•9º j D¹8•9º 2 T8

�
= U� 5¹8•9º ¸ X•

where5¹8•9º and5̂¹8•9º are the real frequency and estimated frequency
of itemD¹8•9º respectively, andUandXare two constants independent
of data streams.

The existing research on fairness and equality mainly focuses on
other areas. For example, the previous work in the �eld of machine
learning uses condition probability to de�negroup fairness, which
requires that each decision has the same probability for members of
di�erent groups; the previous work in the �eld of recommendation
system uses ratio to de�neranking fairness, which requires that the
attention received by each object is proportional to its relevance.
Our de�nition of fairness is inspired by these work, and adjusted to
the scenario of disjoint data streams. We argue that top- -fairness
is an important property for algorithms in the task of �nding global
top- items. It can avoid the in�uence of skewed data streams in the
distributed scenarios: overestimated algorithms will make frequent
items in small data streams be easily ignored, while underestimated
algorithms will make frequent items in large data streams be easily
ignored. If an algorithm achieves top- -fairness, it means that its
degree of overestimation or underestimationfor the selected top- 
itemsis a constant,i.e., not related to the data stream. Our algorithm
achieves top- -fairness withU = 1, X = 0.

2.2 Unbiasednessv.s.Top- -fairness
Sketches [9, 10, 38, 38� 49] are a kind of probabilistic algorithm

which is often used to �nd top- items due to its high speed
and small memory consumption. There are two kinds of top- 
sketch algorithms, biased algorithm and unbiased algorithm. Bi-
ased top- algorithms include SpaceSaving [16], Frequent [31],
HeavyGuardian [3], Randomized Admission Policy [15], and etc
[7, 8, 12, 13, 50]. Because all these biased algorithm's biases are
highly related to the data streams, they cannot achieve top- -
fairness. Among all existing works, USS and WavingSketch [2]
claim to be unbiased. However, it should be noted that unbiased
algorithms are not necessarily top- -fair. We discuss why both USS
and WavingSketch are top- -unfair through some brief mathemat-
ical analysis. We �rst show the de�nition of unbiased algorithm.

Definition 2.4. (Unbiased algorithm ) When �nding local top-
 items in a single data streamS8, the top- algorithm maintains
the estimated frequencŷ5¹8•9º of each itemD¹8•9º . The algorithm is
unbiased if

�
�
5̂¹8•9º

�
= 5¹8•9º 8D¹8•9º 2 U8•

Unbiasednessv.s.top-  -fairness: The main di�erence between
our top- -fairness and unbiasedness is that the top- -fairness has
an additional condition thatD¹8•9º 2 T8. Take theUSSfor example.
Although USS is an unbiased algorithm, it estimates the frequency
of all non-top- items as0, i.e.,

�
�
5̂¹8•9º j D¹8•9º 8 T8

�
= 0

�
�
5̂¹8•9º j D¹8•9º 2 T8

�
=

5¹8•9º

Pr
�
D¹8•9º 2 T8

�

The ampli�cation coe�cient U = 1
Pr¹D¹8•9º 2 T8º

varies largely among

data streams, so USS cannot achieve top- -fairness.
WavingSketch [2] achieves unbiasedness based on the Count
sketch [14]. When an item's estimated frequency is large, WavingS-
ketch uses the heavy part to record its ID and frequency. However,
WavingSketch tends to favor recording the overestimated items

in the heavy part,i.e., Pr
�
D¹8•9º 2 T8 j 5̂¹8•9º

�
increases with5̂¹8•9º .

This means

�
�
5̂¹8•9º j D¹8•9º 2 T8

�
= 5¹8•9º ¸ X

and

X =
Cov

�
5̂¹8•9º•Pr

�
D¹8•9º 2 T8 j 5̂¹8•9º

� �

Pr
�
D¹8•9º 2 T8

� ¡ 0”

The deviationXdepends on not only the frequency distribution of
the data stream, but also the arrival order of the items. Therefore,
WavingSketch cannot achieve top- -fairness.

In conclusion, no existing work achieves top- -fairness in the
task of �nding global top- items.
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2.3 The CMM Sketch
The CMM sketch [37] can provide an unbiased estimation of

items' frequency. Since we use the CMM sketch as a component of
our algorithm, we describe the data structure and operators of the
CMM sketch in detail in this section.
Data Structure: A CMM sketch consists of3 arrays, each of which
includesF countersA»8• 9¼(1 6 86 3•1 6 96 F ) and is associated
with a hash function� 8¹�º. Each hash function maps an item to a
counter uniformly at random.
Insertion: Given an incoming item4, the CMM maps the counter
A»8• �8¹4º¼in each array and increments each of them by1.
Query: Given a query about item4, the CMM can give the over-
estimation and unbiased estimation of its frequency. The overes-
timation � >E4A¹4º = min3

8=1 A»8• �8¹4º¼. The unbiased estimation
� D=180B43¹4º is given by the following formula.

� D=180B43¹4•8º = A»8• �8¹4º¼ �
1

F � 1
� ¹N � A» 8• �8¹4º¼º ”

� D=180B43¹4º =
1
3

�

 
3Õ

8=1

� D=180B43¹4•8º

!

” (1)

WhereN is the sum of the frequencies of all distinct items.

3 THE DOUBLE-ANONYMOUS SKETCH
In this section, we propose the Double-Anonymous sketch. We

introduce three techniques of the Double-Anonymous sketch by
three progressive versions. We �rst introducedouble-anonymity ,
which is the key technique to achieve top- -fairness. Then we
introducehot panning , a tricky technique that can keep the char-
acteristic of double-anonymity and raise the Double-Anonymous
sketch's accuracy at the same time. Finally, we introduceearly
freezing , a technique that can further raise accuracy.

3.1 The Basic Version
De�nition of double-anonymity: Suppose the estimation has
already been unbiased, onesu�cient conditionof top- -fairness
is that the covariance of the result of �nding top- items and
estimating frequency is 0,i.e., they are unrelated. A more formal
de�nition of double-anonymityis shown in Theorem 3.1. Achieving
double-anonymity means that the algorithm meets this condition.

Theorem 3.1.(Double-anonymity ) Given a single data stream
S: and an itemD¹:•8º 2 U : , letK ¹8º be an indicator random variable
indicating whether itemD¹:•8º is selected as top- (D¹:•8º 2 T: ), if

there is�
�
5̂¹:•8º

�
= 5¹:•8º , then�

�
5̂¹:•8º j K8 = 1

�
= 5¹:•8º is equiva-

lent toCov
�
K8• 5̂¹:•8º

�
= 0.

Proof. Under the condition of�
�
5̂¹:•8º

�
= 5¹:•8º (unbiasedness),

h
�

�
5̂¹:•8º j K8 = 1

�
= 5¹:•8º

i
�

h
�

�
5̂¹:•8º j K8 = 1

�
= �

�
5̂¹:•8º

� i
”

Expanding�
�
5̂¹:•8º � K8

�
, we have

�
�
5̂¹:•8º � K8

�
= �

�
5̂¹:•8º j K8 = 1

�
� � ¹K8º

Therefore,
h
�

�
5̂¹:•8º j K8 = 1

�
= 5¹:•8º

i

�
h
�

�
5̂¹:•8º � K8

�
= �

�
5̂¹:•8º

�
� � ¹K8º

i
�

h
Cov

�
K8• 5̂¹:•8º

�
= 0

i
”

In the above formulas,� stands for equivalence. �

The data structure of the basic version has two parts: a Ran-
domized Admission Policy (RA) [15] as the top- part and a CMM
sketch [37] as the count part. For an incoming item4, 4 will be
inserted into the RA and the CMM sketch independently. To �nd
top- items, we query the RA and report the result. To query an
item 4's frequency, we query the CMM sketch and report the re-
sult. Notice that these two query processes are also independent.
Obviously, the basic version is double-anonymous and achieves
top- -fairness.

3.2 The Hot Panning Version
Keeping the characteristic of double-anonymity, the hot panning

version aims to pan the hot items, and only record them in the
top- part to remove the redundancy compare to the �rst version.
We �rst use a top- part to classify and record hot items, and then
use a count part to record the cold items. Because the top- part
pans the hot items, only cold items will be inserted into the count
part, which makes the Hot panning version accurate.
Data Structure: As shown in Figure 2, the Double-Anonymous
sketch has two parts: a top- part and a count part. The top- part
is an array of bucketsB»0• ” ” ” •<� 1¼. Each item will be hashed into
a bucket using� ¹”º, a hash function that maps each item to»0•< � 1¼
uniformly at random. Each bucket has_ cells. Each cell records the
information of one item: the item ID (key), the strategy frequency
(� B), and the real frequency (� A). The strategy frequency is a counter
used to decide whether this item should be evicted according to
di�erent replacement strategies. It is often biased,i.e., overestimated
or underestimated. The real frequency is another counter used to
record the number of appearances of this item after it was inserted
into the top-: part. The count part is a CMM sketch [37], which
can provide an unbiased estimation and an overestimation value.
We detail CMM in Section 3.1.
Insertion: We �rst try inserting the incoming item into the top- 
part. If the replacement strategy thinks the item is frequent, we
record it in the top- part. Otherwise, we insert it into the count
part. Given an incoming item4, we hash it into the bucketB»� ¹4º¼.
For any case, we �rst run thereplacement strategyof the Double-
Anonymous sketch to �nd the top- frequent items (we implement
four classic replacement strategies in Section 3.4 for case study).
Usually, the replacement strategy (e.g., SpaceSaving) will �nd the
top- frequent items and keep their ID in the top- part according
to their strategy frequency� B. To guarantee that the replacement
strategy works properly, the Double-Anonymous sketch rules that
the ID and the strategy frequency can only be changed by the
replacement strategy. In other words, the replacement strategy
works independently in the top- part. Then we run theunbiased
operations of the Double-Anonymous sketch depend on di�erent
cases to provide unbiased estimation for top- items. The unbiased
operations are following this principle: if the incoming item4 is
in the top- part at that time, we use the top- part to record this
increment (it can avoid hot items inserting into the count part to
minimize the Double-Anonymous sketch's error). Otherwise, we

4



Figure 2: An running example of the Hot panning version of the Double-Anonymous sketch with RA Policy.

use the count part to record this increment. There are three cases
as follows.

Case 1:4 is in the bucketB»� ¹4º¼. So we increment4”�A by 1.
Case 2:4 is not in the bucketB»� ¹4º¼. We insert4 into the count

part: we use3 other hash functions61¹”º ” ” ” 63 ¹”º to map each item
to »0• " � 1¼, and increment the3 countersA»61¹”º ” ” ” 63 ¹”º¼by 1,
which are called the3 mapped counters.

Case 3:An item 44E82Cis evicted by the replacement strategy. We
increase the3 mapped countersin the count part by44E82C”� A, i.e.,
the real frequency of44E82Cbefore the eviction. This operation can
transfer the frequency of44E82Cfrom the top- part to the count
part. Therefore, we would not lose the frequency information of
44E82Cwhen it was evicted.
Query: To estimate a local top- item4, we need to query both the
top- part and the count part. The count part,i.e., CMM sketch[37],
reports an overestimated value� >E4Aand an unbiased value� D=180B43.
We report three kinds of estimation:

� an unbiased estimation valuê58 = � A ¸ � D=180B43
� an overestimation value58 = � A ¸ � >E4A
� an underestimated value58 = � A

Notice that, if4”�>E4A= 0, 58 will be equal to58, which means

the estimation58 or 58 has no error.
Finding Top-  Items: In this task, we query thestrategy frequen-
ciesof items in the top- part and sort it in descending order. Then
we report the largest items as top- items.
An running example: Figure 2 shows a running example of Hot
panning version of the Double-Anonymous sketch with Random-
ized Admission Policy. For each item recorded in the top- part,
we record its item ID, strategy frequency (� B), and real frequency
(� A). Notice that the process of �nding top- and estimating fre-
quency are Double-Anonymous,i.e., information that may in�uence
their covariance is not shared between these two processes. In the
perspective of �nding top- , 1) To insert41, it successes, so we
increment41”� B by 1. 2) To insert42, it evicts44 successfully (ac-
cording to the Randomized Admission Policy, the chance of success
is 1

26). Then we record42 and make42”� B = 26. 3) To insert43, we
�nd an empty cell, so we just record43 and make43”� B = 1. In the
perspective of estimating frequency, 1) To insert41, it successes, so
we increment41”� A by 1. 2) To insert42, it successes, so we make
42”� A to 1. At the same time,44 is evicted, so we insert44 � 20into

the count part,i.e., the mapped counters in the CMM sketch are
increased by 20. 3) To insert43, we �nd an empty cell, so we just
record43 and make43”� A = 1.

3.3 The Early Freezing Version
As time goes by, the count part's variance will increase with the

increasing number of items inserted into the count part. We propose
using a freezing counter (� 5 A44I8=6) to freeze the unbiased estima-
tion result in the count part (� B:4C2�) for each frequent item as early
as possible, so that we can freeze the error of� B:4C2�and achieve
a more accurate estimation. Specially, we add a freezing counter
for every cell in the top- part. Inserting a new incoming item
(i.e., an incoming item not in the top- part before this insertion),
we make� 5 A44I8=6= � B:4C2�at that moment. Then the unbiased
estimation result of an item4change into4”�A¸ 4”� 5 A44I8=6instead
of 4”�A¸ 4”�B:4C2�. Because� 5 A44I8=6is the earlier value of� B:4C2�,
the variance of the unbiased estimation result will be smaller.

3.4 Using Di�erent Replacement Policies
The Double-Anonymous sketch can be applied by any top- 

algorithm (replacement strategy). We pick four classic top- strate-
gies: Randomized Replacement Strategy (RA) [15], Spacesaving (SS)
[16], Frequent (Freq) [31] and HeavyGuardian (HG) [3] as case
studies. For each strategy, we introduce how it works and how to
apply it in the Double-Anonymous sketch (di�erent replacement
strategies only modify the insertion operation of the Top- part
of the Double-Anonymous sketch). Given an incoming item4, we
�rst hash it into B»� ¹4º¼. Then the strategies work as follows.
RA Policy [ 15]: DS+RA(Double-Anonymous sketch with Ran-
domized Admission Policy) runs the Insertion operation of RA �rst.
Suppose the item whose strategy frequency is smallest in the bucket
is 4<8= . If 4 is in the bucket, we increment4”�B by 1. If4 is not in
the bucket, we evict4<8= with the probability of 1

4<8= ”� B¸ 1. If the
eviction successes, we record4 with its � B = 4<8= ”� B ¸ 1. To make
the estimation unbiased,DS+RAthen runs the Insertion operation
of the Double-Anonymous sketch mentioned in Section 3.2.
SpaceSaving (SS) [16]: DS+SS(Double-Anonymous sketch with
SpaceSaving) runs the Insertion operation of SS �rst. Suppose the
item whose strategy frequency is smallest in the bucket is4<8= .
If 4 is in the bucket, we just increment4”�B by 1. If 4 is not in
the bucket, we evict4<8= and record4 with its � B = 4<8= ”� B ¸ 1.
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SpaceSaving's estimation is overestimated. To make it unbiased,
DS+SSthen runs the Insertion operation of the Double-Anonymous
sketch mentioned in Section 3.2.
Frequent (Freq) [ 31]: DS+Freq(Double-Anonymous sketch with
Frequent) runs the Insertion operation of Freq �rst. If4 is in the
bucket, we increment4”�B by 1. If4 is not in the bucket, we decre-
ment the strategy frequency of every item in this bucket by 1. If
the strategy frequency of an item44E82Cis decreased to 0, we evict
44E82Cand record4 with its � B = 1. Frequent's estimation is under-
estimated. To make it unbiased,DS+Freqthen runs the Insertion
operation of the Double-Anonymous sketch mentioned in Section
3.2.
HeavyGardian (HG) [ 3]: DS+HG(Double-Anonymous sketch
with HeavyGardian) runs the Insertion operation of HG �rst. Sup-
pose the item whose strategy frequency is smallest in the bucket
is 4<8= . If 4 is in the bucket, we increment4”�B by 1. If 4 is not
in the bucket, we decrement4<8= ”� B by 1 with a probability of
1”08� 4<8= ”� B. If 4<8= ”� B is decreased to 0, we evict4<8= and insert
4 with its � B = 1. HeavyGardian's estimation is underestimated. To
make it unbiased,DS+HGthen runs the Insertion operation of the
Double-Anonymous sketch mentioned in Section 3.2.

We further discuss the di�erences between these four replace-
ment policies based on the experimental results in Section 5, and
show that our algorithm is general. Specially, In Section 5.4, we
show the degree of top- -unfairness of these four replacement
policies, analyze how top- -unfairness a�ects their performance in
the task of �nding global top- items, and show that our Double-
Anonymous sketch can indeed make them top- -fair; In Section
5.5, we show a more comprehensive performance comparison of
Double-Anonymous sketch using di�erent replacement policies.

4 MATHEMATICAL ANALYSIS
In this section, we analyze the behavior ofour hot panning version

on a single data stream, and prove that it meets top- -fairness. We
then give some conclusions about the error of the algorithm. We
also discuss how to apply the proof process to theearly freezing
version.

4.1 Preliminary
We then de�ne the stateB¹:•Cº of the Double-Anonymous sketch

on data streamS: at time CasB¹:•Cº = fB¹:• 1•Cº•� � � •B¹:•= : •Cºg,
whereB¹:•8•Cº = h5) ¹:•8•Cº• 5( ¹:•8•Cº i . In general, let5) ¹:•8•Cº be the
frequency of itemD¹:•8º recorded in the top- part at timeC, and
let 5( ¹:•8•Cº be the frequency of item8recorded in the count part at
time C. In particular, if itemD¹:•8º is not recorded in the top- part
at time 9, let 5) ¹:•8•Cº = 0.

Given a data streamS: , let asketching processR be a sequence
of states of the Double-Anonymous sketch at each time,i.e., R =
fB¹:• 1º•B¹:• 2º•� � � •B¹:•< : ºg. The replacement policyP determines
the distribution of the sketching process,i.e., R � P¹S : º.

4.2 Proof of Top-  -fairness
In this section, we prove that the Double-Anonymous sketch

achieves top- -fairness. We �rst give a lemma about the sketching
process.

Lemma 4.1.Given a data streamS: and a sketching processR =
fB¹:• 1º•� � � •B¹:•< : ºg, for any itemD¹:•8º and any time9, there is

5) ¹:•8•Cº ¸ 5( ¹:•8•Cº = 5¹:•8•Cº ” (2)

Proof. When timeC= 0, for any itemD¹:•8º , there is

5) ¹:•8•0º = 5( ¹:•8•0º = 5¹:•8•Cº = 0•

so there is
5) ¹:•8•0º ¸ 5( ¹:•8•0º = 5¹:•8•0º ”

Suppose that Equation 2 holds for any itemD¹:•8º and any time
CŸ C0. At time C= C0, according to Section 3.2, if4¹:•Cº = D¹:•8º , we

insert frequency
�
5) ¹:•8•C0º � 5) ¹:•8•C0� 1º ¸ 1

�
into the CMM sketch

of the count part, thus

5( ¹:•8•C0º = 5( ¹:•8•C0� 1º ¸ 5) ¹:•8•C0º � 5) ¹:•8•C0� 1º ¸ 1

and
5) ¹:•8•C0º ¸ 5( ¹:•8•C0º = 5¹:•8•C0� 1º ¸ 1 = 5¹:•8•C0º ;

If 4¹:•Cº < D¹:•8º , we insert frequency
�
5) ¹:•8•C0º � 5) ¹:•8•C0� 1º

�
into

the CMM sketch of the count part, thus

5( ¹:•8•C0º = 5( ¹:•8•C0� 1º ¸ 5) ¹:•8•C0º � 5) ¹:•8•C0� 1º

and
5) ¹:•8•C0º ¸ 5( ¹:•8•C0º = 5¹:•8•C0� 1º = 5¹:•8•C0º ;

Therefore, Equation 2 also holds forC= C0, so it holds for any time
1 6 C6 < : . �

Now we prove the following lemma holds for any replacement
policy P.

Lemma 4.2.Given a data streamS: . For any itemD¹:•8º , let
5( 0¹:•8•Cº be the estimate of5( ¹:•8•Cº given by the count part, and

let 5̂¹:•8º = 5) ¹:•8•< º ¸ 5( 0¹:•8•< º be the estimation of5¹:•8º given by
the Double-Anonymous sketch. For any replacement policyP, any
sketching processR, there is

�
�
5̂¹:•8º j R

�
= 5¹:•8º ”

Proof. According to Lemma 4.1, in the sketching processR,

5) ¹:•8•<: º ¸ 5( ¹:•8•<: º = 5¹:•8•<: º ”

Since5̂¹:•8º = 5) ¹:•8•<: º ¸ 5( 0¹:•8•<: º , and5) ¹:•8•<: º is determined
by sketching processR, we only need to prove

�
�
5( 0¹:•8•<: º j R

�
= 5( ¹:•8•<: º•

Recall that we use a CMM [37] sketch as the count part. Speci�cally,
assume that the count part uses3 counter arrays, each of which has
F counters and is associated with a hash function� ; ¹�º. � ; ¹�º maps
each itemD¹:•8º to one of theF counters uniformly at random.

We de�ne some useful random variables. Let the indicator ran-
dom variable� ¹8•9•;º indicates whether� ;

�
D¹:•8º

�
and� ;

�
D¹:•9º

�

are equal, thus we have

Pr
�
� ¹8•9•;º = 1

�
=

1
F

”
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Let the random variable- ¹8•;º be the value of the� ;

�
D¹:•8º

�
-th

counter in the;-th array, thus we have

5( 0¹:•8•<: º =
1
3

� ©
­
«

3Õ

: =1

©
­
«

- ¹8•;º �
1

F � 1
� ©
­
«

=:Õ

9=1

5( ¹:•9•<: º � - ¹8•;º
ª
®
¬

ª
®
¬

ª
®
¬

”

According to the rules of CMM, we have

- ¹8•;º = 5( ¹:•8•<: º ¸
=:Õ

9=1•9<8

�
� ¹8•9•;º � 5( ¹:•9•<: º

�
”

We can obtain the conditional expectation of- 8•:, i.e.,

�
�
- ¹8•;º j R

�
= 5( ¹:•8•<: º ¸

1
F

� ©
­
«

=:Õ

9=1•9<8

5( ¹:•9•<: º
ª
®
¬

”

Using the linear property of expectation again, we have

�
�
5( 0¹:•8•<: º j R

�

=
1
3

�

 
3Õ

: =1

�
F

F � 1
� 5( ¹:•8•<: º �

1
F � 1

� 5( ¹:•8•<: º

� !

= 5( ¹:•8•<: º ”

�

Now we prove that the Double-Anonymous sketch achieves
both unbiasednessandDouble-anonymity , thus achieving top-
 -fairness.

Theorem 4.3 (unbiasedness ). Given a data streamS: . For any
replacement policyP and any itemD¹:•8º , there is

�
�
5̂¹:•8º

�
= 5¹:•8º ”

Proof. According to Lemma 4.2 and using the law of total ex-
pectation, we have

�
�
5̂¹:•8º = 1

�
=

Õ

R

�
�
5̂¹:•8º j R

�
� Pr ¹Rº = 5¹:•8º ”

�

Theorem 4.4 (Double-anonymity ). Given a data streamS: .
For any replacement policyP and any itemD¹:•8º , letK8 be an indi-
cator random variable indicating whether itemD¹:•8º is selected as
top- , there is

Cov
�
5̂¹:•8º•K8

�
= 0”

Proof. Because sketching processR determines whether item
D¹:•8º is selected as top-K, allR can be divided into two kinds:
R 2 G0 makesK8 = 0, andR 2 G1 makesK8 = 1. Therefore, we
expand� ¹5̂¹:•8ºK8º as follows:

�
�
5̂¹:•8º � K8

�
=

Õ

R2 G1

� ¹ 5̂¹:•8º � K8jRº �Pr¹Rº

= ©
­
«

Õ

R2 G1

Pr¹Rºª®
¬

� 5¹:•8º = � ¹K8º � 5¹:•8º ”

Combined with unbiasedness, we have

Cov
�
5̂¹:•8º•K8

�
= �

�
5̂¹:•8º � K8

�
� �

�
5̂¹:•8º

�
� ¹K8º = 0”

�

4.3 Error Bounds of Estimations
In this section, we give some theorems about the error bounds

of estimations. The item frequencies which are inserted into the
count part are5( ¹:• 1•< : º•� � � • 5( ¹:•= : •< : º . According to lemma 4.1,
they are less than or equal to5¹:• 1•< : º•� � � • 5¹:•= : •< : º , i.e., 5¹:• 1º ,
� � � , 5¹:•= : º . Based on this insight, we give the following lemmas
and theorems, which show that the Double-Anonymous sketch has
tighter error bounds than the sketches of CMM [37] and CM [12].

Lemma 4.5.Given a data streamS: , for any replacement policy
P and any itemD¹:•8º , let 5̂¹:•8º be the unbiased estimation of5¹:•8º
given by the Double-Anonymous sketch, then we have

�
�
5̂¹:•8º

�
6

1
3 � ¹F � 1º

� ©
­
«

=:Õ

9=1

52
( ¹:•9•<: º

ª
®
¬

Ÿ
1

3 � ¹F � 1º
� ©
­
«

=:Õ

9=1

52
¹:•9º

ª
®
¬

”

Where3 andF are parameters of the count part (CMM).

Proof. We �rst derive the upper bound of the conditional vari-

ance�
�
5̂¹:•8º j R

�
of a given itemD¹:•8º in a given sketching pro-

cessR. Recalling the de�nition of5̂¹:•8º and5( 0¹:•8•<: º , we have

5̂¹:•8º =

5) ¹:•8•<: º

¸
1
3

� ©
­
«

3Õ

: =1

©
­
«

- ¹8•;º �
1

F � 1
� ©
­
«

=:Õ

9=1

5( ¹:•9•<: º � - ¹8•;º
ª
®
¬

ª
®
¬

ª
®
¬

”

(3)

Since5) ¹:•8•<: º and5( ¹:•9•<: º are constants when then sketching
processR is determined, we have

�
�
5̂¹:•8º j R

�
=�

 
1
3

�

 
3Õ

: =1

F
F � 1

� - ¹8•;º

!

j R

!

=
1

32 �

 
3Õ

: =1

� � F
F � 1

� 2
� �

�
- ¹8•;º j R

� � !

” (4)

By expanding- ¹8•;º and considering the independence between
� ¹8•9•;º , we have

�
�
- ¹8•;º j R

�
=

1
F

�
�
1 �

1
F

�
� ©
­
«

=:Õ

9=1•9<8

�
5( ¹:•9•<: º

� 2ª
®
¬

6
1
F

�
�
1 �

1
F

�
� ©
­
«

=:Õ

9=1

�
5( ¹:•9•<: º

� 2ª
®
¬

” (5)

In other words

�
�
5̂¹:•8º j R

�
6

1
3 � ¹F � 1º

� ©
­
«

=:Õ

9=1

�
5( ¹:•9•<: º

� 2ª
®
¬

” (6)

Since we derive the unbiasedness and conditional unbiasedness of
the estimated frequencŷ5¹:•8º in Theorem 4.3 and Lemma 4.2, that
is

�
�
5̂¹:•8º j R

�
= �

�
5̂¹:•8º

�
= 5¹:•8º• (7)
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(a) P : SpaceSaving (b) P : Randomized Admission Policy

Figure 3: Sample variances and their theoretical upper
bounds.

by using the law of total expectation, we have

�
�
5̂¹:•8º

�
=

Õ

R

�
� �

5̂¹:•8º � 5¹:•8º

� 2
j R

�
� Pr ¹Rº

6
1

3 � ¹F � 1º
� ©
­
«

=:Õ

9=1

�
5( ¹:•9•<: º

� 2ª
®
¬

”

According to Lemma 4.1, we have

1
3 � ¹F � 1º

� ©
­
«

=:Õ

9=1

�
5( ¹:•9•<: º

� 2ª
®
¬

6
1

3 � ¹F � 1º
� ©
­
«

=:Õ

9=1

52
¹:•9º

ª
®
¬

” (8)

The left and right sides are the upper bounds of variance of the
Double-Anonymous sketch and the CMM sketch, respectively.�

Theorem 4.6.Given a data streamS: , for any replacement policy
P and any itemD¹:•8º , let 5̂¹:•8º be the unbiased estimation of5¹:•8º
given by the Double-Anonymous sketch, then we have

Pr
� ��
� 5̂¹:•8º � 5¹:•8º

�
�
� > Y

�
6

1
Y2 � 3 � ¹F � 1º

� ©
­
«

=:Õ

9=1

52
( ¹:•9•<: º

ª
®
¬

Ÿ
1

Y2 � 3 � ¹F � 1º
� ©
­
«

=:Õ

9=1

52
¹:•9º

ª
®
¬

”

Theorem 4.7.Given a data streamS: , for any replacement policy
P and any itemD¹:•8º , let 5¹:•8º be the overestimation of5¹:•8º given
by the Double-Anonymous sketch, then we have

Pr
� ��
� 5¹:•8º � 5¹:•8º

�
�
� > Y

�
6 ©

­
«

1
Y� F

� ©
­
«

=:Õ

9=1

5( ¹:•9•<: º
ª
®
¬

ª
®
¬

3

Ÿ ©
­
«

1
Y� F

� ©
­
«

=:Õ

9=1

5¹:•9º
ª
®
¬

ª
®
¬

3

”

4.4 Analysis on Early Freezing
By using theearly freezingoptimization, the Double-Anonymous

sketch gives a more accurate item frequency estimation~5¹:•8º =
5) ¹:•8•<: º¸ 5( 0¹:•8•C8º , whereC8 is the time when itemD¹:•8º is recorded
in the top-K part. In particular,C8 = < : when itemD¹:•8º is not
recorded. On the one hand, following the proof framework in
Section 4.2 and 4.3 and replacing5( 0¹:•8•<: º with 5( 0¹:•8•C8º , we can
still prove the top- -fairness and derive the error bound of the early
freezing version; On the other hand, according to Lemma 4.8 shown

below, we know that the variance of5( 0¹:•8•C8º is smaller than that
of 5( 0¹:•8•<: º in any sketching processR, so we have Theorem 4.9.

Lemma 4.8.Given a data streamS: and a sketching processR =
fB¹:• 1º•� � � •B¹:•< ºg, for any itemD¹:•8º and any time9, there is

5( ¹:•8•9� 1º 6 5( ¹:•8•Cº ”

Theorem 4.9.Given a data streamS, for any replacement policy
P and any itemD¹:•8º , we have

�
�

~5¹:•8º

�
6 �

�
5̂¹:•8º

�
”

4.5 Experimental Veri�cation
To verify the correctness of Lemma 4.5 and Theorem 4.9, we show

two kinds of variance bound. Lemma 4.5 provides aP-independent
loss bound, and anR-dependent tight bound. We use SpaceSaving
and Randomized Admission Policy as the strategyP, and vary the
lengthF of the count part. As shown in Figure 3, we plot the loose
upper bounds, the tight upper bounds, and the sample variances
of the hot panning version and the early freezing version. It can
be found that the bounds of variances are always greater than
the sample variances of the hot panning version, and then greater
than the sample variances of the early freezing version, which
veri�es our theorems and shows the bene�ts of Early Freezing. It is
worth noting two points: 1) The tight bounds are extremely close to
the sample variances, which indicates our bounds are accurate. 2)
Panning hot items to reduce the redundancy is bene�cial to reduce
variance, and the strategy of �nding top- frequent items more
accurately has a smaller variance.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
A. Implementation : We have implemented the Double-Anonymous
sketch (DA sketch) and all other algorithms in C++. We apply four
replacement strategies to the DA sketch: Randomized Admission
Policy (RA) [15], SpaceSaving (SS) [16], Frequent (Freq) [31] and
HeavyGuardian (HG) [3]. We �nd in our experimental results that
applying Randomized Admission Policy yields the best results;
therefore, we mainly demonstrate the experimental results of DA
sketch + RA. We also compare our results with several state-of-the-
art top- sketching algorithms: Frequent [31], SpaceSaving [16],
Unbiased SpaceSaving (USS) [5] and WavingSketch (Waving) [2].
All our experiments are repeatedly performed 10 times to ensure
statistical stability. Our source code is publicly available at Github
[51]. We conduct all our experiments on a machine with two 6-core
processors (12 threads, Intel Xeon CPU E5-2620 @2 GHz) and 64
GB DRAM memory.
B. Datasets: We use three real-world datasets and one synthetic
dataset for our experiments. The details of the datasets are shown
below: 1) IP Trace Dataset (CAIDA) [52]: The IP Trace Dataset
consists of streams of anonymous IP traces collected by CAIDA in
2016. Each item is identi�ed by its 13-byte "5-Tuple". We use the �rst
20M items for our experiments. 2) Web Page Dataset [53]: The Web
page dataset is built from a collection of web pages downloaded
from the website. Each item is 4 bytes long. 3) Network Dataset
[54]: The network dataset consists of users' posting history on
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