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ABSTRACT

Finding top-𝐾 frequent items has been a hot topic in data stream

processing in recent years, which has a wide range of applications.

However, most of existing sketch algorithms focuses on finding

local top-𝐾 in a single data stream. In this paper, we work on

finding global top-𝐾 in multiple disjoint data streams. We find that

directly deploying prior sketch algorithms is often unfair under

global scenarios, which will degrade the accuracy of global top-𝐾 .

We define top-𝐾-fairness and show that it is important for finding

global top-𝐾 . To achieve top-𝐾-fairness, we propose a new sketch

framework, called the Double-Anonymous sketch. The process of

finding global top-𝐾 items is similar to that of paper reviewing and

democratic elections. In these scenarios, double-anonymity is often

an effective strategy to achieve top-𝐾-fairness. We also propose

two techniques, hot panning, and early freezing, to further improve

the accuracy. We theoretically prove that the Double-Anonymous

sketch achieves top-𝐾-fairnesswhile keeping high accuracy. We

perform extensive experiments to verify top-𝐾-fairness in the sce-

nario of disjoint data streams. The experimental results show that

the Double-Anonymous sketch’s error is up to 129 times (60 times

on average) smaller than the state-of-the-art. All the related source

code is open-sourced and available at Github anonymously.

1 INTRODUCTION

1.1 Background and Motivation

Finding top-𝐾 frequent items has been a hot topic in data stream

processing in recent years, which has a wide range of applications,

such as data mining [1–4], databases [5–7], networking [8, 9], and

network security [10, 11]. Finding top-𝐾 frequent items refers to se-

lecting𝐾 items with the largest number of frequencies/occurrences,

and providing frequency estimation. In the era of big data, the speed

and volume of data are growing explosively. Sketches [2–8, 12–30],

a kind of probabilistic data structures, have obtained wide accep-

tance and interests to address the task of finding top-𝐾 due to their

efficiency in terms of both time and space, although they can have

a small error.

For finding top-𝐾 frequent items, most of existing sketch al-

gorithms focus on providing statistics over a single data stream

[2, 3, 5, 7, 8, 12–16, 31, 32], while a few of them [2, 5] work on merg-

ing the statistics over multiple related data streams into one. In this

paper, we provide the first sketch that can compare the statistics
over different disjoint data streams. Specifically, given 𝑁 disjoint

data streams, how can we compare their own top-𝐾 and select the

global top-𝐾 . Note that the sizes (volumes) of these data streams

are often skewed in practice (e.g., power law distribution) [33].

We use an example on network monitoring to explain the prob-

lem. For an autonomous system (AS) in a wide-area network (WAN),

external traffic enters the AS through multiple border routers [34].

Due to the principle of WAN routing protocol [35], all network

packets sent to the AS from the same source IP address must pass

through the same border router. In other words, if we regard the

source IP address of the network packets as the key, the network

packets streams on different border routers are disjoint data streams.
Network operators usually need to monitor the main source of traf-

fic entering the AS, i.e., the𝐾 source IP addresses that send the most

packets in a period of time [36]. To find these IP addresses, each

border router reports the local top-𝐾 frequent source IP address

and their frequency within this time period, and operator sorts all

local frequent IP addresses to get the global top-𝐾 .
For finding global top-𝐾 frequent items, a typical solution is to

first use a sketch for each data stream to select local top-𝐾 items,

and then sort them based on their estimated frequency to report

the most frequent 𝐾 items globally. However, we find that directly

apply existing sketch algorithms for each data stream often leads to

unfairness. Specifically, the estimated frequency of top-𝐾 items in

prior sketches is largely influenced by the local environment (e.g.,
the size of data streams). If we directly sort all the selected local

top-𝐾 items based on their estimated frequency, the result will be

significantly related to the items’ local environment rather than

its real frequency. For instance, suppose there are 𝑁 disjoint data

streams, some heavy data streams have more items, and some light
data streams have fewer items. Suppose we use 𝑁 SpaceSaving [16]

to find local top-𝐾 items from the 𝑁 data streams. SpaceSaving is a

well-known sketch, which always provides overestimated estima-

tion, and the degree of overestimation is positively correlated to

the size of the data stream. As a result, the items in the heavy data

streams will be overestimated more and get higher chances to be

selected as global top-𝐾 items, while the frequent items in the light

data streams will tend to be ignored, which is unfair.

To address this problem, we aim to achieve top-𝐾-fairness: the

degree of overestimation or underestimation for the local selected
top-𝐾 items is a constant, i.e., not related to the data stream. The

formal definition of top-𝐾-fairness is provided in Section 2.1. When

we achieve top-𝐾-fairness, the accuracy of global top-𝐾 will rise sig-

nificantly, especially if the sizes of data streams are highly skewed.

1.2 Prior Works

To the best of our knowledge, we are the first work to focus on the

top-𝐾-fairness of global top-𝐾 items. Many existing work focuses

on providing unbiased estimation in distributed scenarios [2, 5].

Unbiasedness is helpful if we want to aggregate the statistics of

multiple data streams for all items due to the Law of Larger Numbers.
However, although the estimation is unbiased over all items, if we

only focus on the estimated frequency of top-K items, we can find

that it is often overestimated. The main reason is that the top-K

selection process is not unbiased. In other words, if we select top-

K items, we tend to select items which are overestimated, which

leads to unfairness. We use two state-of-the-art unbiased sketches,

Unbiased SpaceSaving (USS) [5] and WavingSketch (Waving) [2],

to illustrate the problem.
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Figure 1: We demonstrate internal unfairness of USS, and

show how external unfairness would severely harm accu-

racy for finding global top-𝐾 items.

As shown in Figure 1(a), although the estimation of USS is un-

biased when considering all items, it overestimates the selected

top-𝐾 items and underestimates others. Furthermore, such top-𝐾-

unfairness in local data streams will cause top-𝐾-unfairness when

finding global top-𝐾 items. As shown in Figure 1(b), suppose the

global top-1 item 𝑒𝑡𝑜𝑝 is in a light data stream with a very small

number of items, and we deploy a USS for each data stream. USS

provides a slightly overestimated value for 𝑒𝑡𝑜𝑝 , which is in the

light data stream, and provides significantly overestimated value

for frequent items in heavy data streams. As a result, when the

size distribution of the distributed disjoint data streams is highly

skewed, even the global top-1 item could be ignored, which is of-

ten unacceptable in practice. In Section 5.4, we also discuss that

such unfairness cannot be alleviated by re-weighting the estimated

frequency.

1.3 Our Proposed Solution

To achieve top-𝐾-fairness, we propose a new sketch framework,

called the Double-Anonymous sketch. We first propose a basic

version which achieves top-𝐾-fairness, and then we optimize the

accuracy and throughput through two techniques hot panning and

early freezing. The Double-Anonymous sketch has the following

advantages: 1) It is the first work that discusses the fairness problem

for comparingmultiple disjoint data streams. 2)We provide a formal

definition of top-𝐾-fairness and disjoint data streams in Section 2.1.

We also prove that our sketch can achieve top-𝐾-fairness while

keeping high accuracy as prior sketches. 3) It is accurate: The error

(average relative error) of our sketch is up to 129 times (60 times

on average) smaller than Waving and 3 ∼ 4 orders of magnitude

smaller than Frequent, USS, and SS. 4) It is generic: we implement

existing four replacement strategies in our framework to achieve

top-𝐾-fairness and accuracy.

The key technique of our Double-Anonymous sketch to achieve

top-𝐾-fairness is called double-anonymity. The process of find-

ing global top-𝐾 items is similar to that of paper reviewing and

democratic elections. Double-anonymity is often an effective strat-

egy to achieve fairness. We leverage this strategy to enable top-𝐾

sketches to achieve top-𝐾-fairness in global scenarios. A top-𝐾

sketch often consists of two parts, a top-𝐾 part for finding top-𝐾

items and a count part for frequency estimation. If a top-𝐾 sketch

meets the following two conditions, we consider it achieves double-

anonymity: 1) the top-𝐾 part finds top-𝐾 items independently, and

does not know any items’ estimated frequency in the count part;

2) the count part estimates item’s frequency independently, and

does not know which items are top-𝐾 . However, the existing two

unbiased sketches mentioned above do not meet the first condi-

tion, and thus are not double-anonymous. Our formal definition of

double-anonymity is provided in Section 3.1. We theoretically prove

that double-anonymity is a sufficient condition of top-𝐾-fairness.

Therefore, we follow this principle to design our solution.

In our basic version, we use a top-𝐾 sketch (e.g., SpaveSaving
[16]) as the top-𝐾 part and use an unbiased sketch (e.g., CMM

sketch [37]) as the count part. To achieve double-anonymity, our

first version makes these two parts work independently, i.e., it
forbids any information transmission between them. Note that the

independent condition is stronger than double-anonymity. For an

incoming item 𝑒 , it will be inserted into the two parts independently

and respectively. Obviously, our first version is double-anonymous,

and thus achieves top-𝐾-fairness.

However, although the first version achieves top-𝐾-fairness, it

fails to achieve high accuracy. Therefore, we propose two impor-

tant optimization methods to significantly improve accuracy: hot

panning and early freezing. Unlike the first version, in these two

versions, we allow some information transmission between the two

parts as long as it does not violate double-anonymity. Relaxing the

forbidden condition, we can have more opportunities to improve

accuracy. First, the main reason that brings large errors in the first

version is information redundancy: the information of hot items is

recorded in both two parts. The key idea of hot panning is that us-

ing the top-𝐾 part to pan the hot items, and only record them in the

top-𝐾 part to remove such redundancy. More details are provided

in Section 3.2. Second, the error of a sketch accumulates with more

and more items inserted. The key idea of early freezing is that

using a freezing counter to freeze the continuously accumulating

error as early as possible, thus minimizing the error. More details

are provided in Section 3.3. According to Section 5.2, the error

of early freezing version is about 66 × lower than that of the basic

version after applying hot panning and early freezing.

We show that the Double-Anonymous sketch is generic. Any

replacement strategy independent with the CMM sketch can be ap-

plied to the Double-Anonymous sketch, and we choose four [3, 15,

16, 31] as case studies. We also show that the Double-Anonymous

sketch is versatile. TheDouble-Anonymous sketch not only achieves

top-𝐾-fairness, but also provides both upper bound and lower

bound for item frequency without additional data structures.

Key Contributions:

• We define a new important property: top-𝐾-fairness. We define

and analyze top-𝐾-fairness and derive its sufficient condition.

• We propose the Double-Anonymous sketch, which is accurate,

unbiased, and generic. The Double-Anonymous sketch is the first

work that achieves top-𝐾-fairness.

• We theoretically prove that theDouble-Anonymous sketch achieves

top-𝐾-fairness and can keep high accuracy as prior sketches.

• We perform extensive experiments to verify top-𝐾-fairness in the

distributed scenario. We also show that the Double-Anonymous

sketch’s error is much smaller than other existing works.

2 BACKGROUND AND RELATEDWORK

In this section, we provide formal definitions of our problem and

top-𝐾-fairness. We discuss the difference between unbiasedness

and top-𝐾-fairness.
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2.1 Formal Definitions and Preliminaries

Definition 2.1. (Disjoint data streams) Given 𝑁 data streams
S1, · · · ,S𝑁 , where S𝑖 =

{
𝑒 (𝑖,1) , · · · , 𝑒 (𝑖,𝑚𝑖 )

}
contains𝑚𝑖 items, and

each item 𝑒 (𝑖, 𝑗 ) belongs to set U𝑖 =
{
𝑢 (𝑖,1) , · · · , 𝑢 (𝑖,𝑛𝑖 )

}
. 𝑁 Data

streams are disjoint ifU𝑖 ∩U𝑗 = ∅ for any two different data streams
S𝑖 and S𝑗 .

Generally speaking, the settings of disjoint data streams require

that one item cannot appear in multiple different data streams.

Disjoint data streams are common in scenarios such as distributed

storage systems and distributed network management. In these

scenarios, an item is often placed on only one device, and then only

appears in one data stream.

Definition 2.2. (Global top-𝐾 items) Given 𝑁 disjoint data
streams S1,· · · , S𝑁 , for data stream S𝑖 =

{
𝑒 (𝑖,1) , · · · , 𝑒 (𝑖,𝑚𝑖 )

}
and

item setU𝑖 , we define that the frequency of item 𝑢 (𝑖, 𝑗 ) ∈ U𝑖 as

𝑓(𝑖, 𝑗 ) =
𝑚𝑖∑︁
𝑘=1

1{𝑒 (𝑖,𝑘 )=𝑢 (𝑖,𝑗 ) } .

The global top-𝐾 items are the 𝐾 items with the largest frequency.

To find global top-𝐾 items, each data stream S𝑖 uses the top-𝐾
algorithm to find the set T𝑖 =

{
𝑢 (𝑖,𝑝1 ) , · · · , 𝑢 (𝑖,𝑝𝐾 )

}
of local top-

𝐾 items and their estimated frequency
ˆ𝑓(𝑖,𝑝 𝑗 ) . Each data stream

S𝑖 reports the set T𝑖 of local top-𝐾 items and frequency of items

to a central machine. The central machine obtains the global set

U =
⋃𝑁
𝑖=1 T𝑖 , and then uses 𝐾 items with the largest estimated

frequency inU to form the set T ⊂ U of global top-𝐾 items.

Definition 2.3. (Top-𝐾-fairness) Given a top-𝐾-fair algorithm,
for any data stream S𝑖 , let T𝑖 be the set of local top-𝐾 frequent items
reported by S𝑖 , and for any item 𝑢 (𝑖, 𝑗 ) ∈ T𝑖 , the following equation
holds:

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
= 𝛼 × 𝑓(𝑖, 𝑗 ) + 𝛿,

where 𝑓(𝑖, 𝑗 ) and ˆ𝑓(𝑖, 𝑗 ) are the real frequency and estimated frequency
of item 𝑢 (𝑖, 𝑗 ) respectively, and 𝛼 and 𝛿 are two constants independent
of data streams.

The existing research on fairness and equality mainly focuses on

other areas. For example, the previous work in the field of machine

learning uses condition probability to define group fairness, which
requires that each decision has the same probability for members of

different groups; the previous work in the field of recommendation

system uses ratio to define ranking fairness, which requires that the

attention received by each object is proportional to its relevance.

Our definition of fairness is inspired by these work, and adjusted to

the scenario of disjoint data streams. We argue that top-𝐾-fairness

is an important property for algorithms in the task of finding global

top-𝐾 items. It can avoid the influence of skewed data streams in the

distributed scenarios: overestimated algorithms will make frequent

items in small data streams be easily ignored, while underestimated

algorithms will make frequent items in large data streams be easily

ignored. If an algorithm achieves top-𝐾-fairness, it means that its

degree of overestimation or underestimation for the selected top-𝐾
items is a constant, i.e., not related to the data stream. Our algorithm

achieves top-𝐾-fairness with 𝛼 = 1, 𝛿 = 0.

2.2 Unbiasedness v.s. Top-𝐾-fairness
Sketches [9, 10, 38, 38–49] are a kind of probabilistic algorithm

which is often used to find top-𝐾 items due to its high speed

and small memory consumption. There are two kinds of top-𝐾

sketch algorithms, biased algorithm and unbiased algorithm. Bi-

ased top-𝐾 algorithms include SpaceSaving [16], Frequent [31],

HeavyGuardian [3], Randomized Admission Policy [15], and etc

[7, 8, 12, 13, 50]. Because all these biased algorithm’s biases are

highly related to the data streams, they cannot achieve top-𝐾-

fairness. Among all existing works, USS and WavingSketch [2]

claim to be unbiased. However, it should be noted that unbiased

algorithms are not necessarily top-𝐾-fair. We discuss why both USS

and WavingSketch are top-𝐾-unfair through some brief mathemat-

ical analysis. We first show the definition of unbiased algorithm.

Definition 2.4. (Unbiased algorithm) When finding local top-
𝐾 items in a single data stream S𝑖 , the top-𝐾 algorithm maintains
the estimated frequency ˆ𝑓(𝑖, 𝑗 ) of each item 𝑢 (𝑖, 𝑗 ) . The algorithm is
unbiased if

𝐸

(
ˆ𝑓(𝑖, 𝑗 )

)
= 𝑓(𝑖, 𝑗 ) ∀𝑢 (𝑖, 𝑗 ) ∈ U𝑖 ,

Unbiasedness v.s. top-𝐾-fairness: The main difference between

our top-𝐾-fairness and unbiasedness is that the top-𝐾-fairness has

an additional condition that 𝑢 (𝑖, 𝑗 ) ∈ T𝑖 . Take the USS for example.

Although USS is an unbiased algorithm, it estimates the frequency

of all non-top-𝐾 items as 0, i.e.,

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∉ T𝑖

)
= 0

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
=

𝑓(𝑖, 𝑗 )

Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
The amplification coefficient 𝛼 = 1

Pr(𝑢 (𝑖,𝑗 ) ∈T𝑖 ) varies largely among

data streams, so USS cannot achieve top-𝐾-fairness.

WavingSketch [2] achieves unbiasedness based on the Count

sketch [14]. When an item’s estimated frequency is large, WavingS-

ketch uses the heavy part to record its ID and frequency. However,

WavingSketch tends to favor recording the overestimated items

in the heavy part, i.e., Pr
(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖 | ˆ𝑓(𝑖, 𝑗 )

)
increases with

ˆ𝑓(𝑖, 𝑗 ) .

This means

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
= 𝑓(𝑖, 𝑗 ) + 𝛿

and

𝛿 =

Cov
(
ˆ𝑓(𝑖, 𝑗 ) , Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖 | ˆ𝑓(𝑖, 𝑗 )

))
Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖

) > 0.

The deviation 𝛿 depends on not only the frequency distribution of

the data stream, but also the arrival order of the items. Therefore,

WavingSketch cannot achieve top-𝐾-fairness.

In conclusion, no existing work achieves top-𝐾-fairness in the

task of finding global top-𝐾 items.

3



2.3 The CMM Sketch

The CMM sketch [37] can provide an unbiased estimation of

items’ frequency. Since we use the CMM sketch as a component of

our algorithm, we describe the data structure and operators of the

CMM sketch in detail in this section.

Data Structure: A CMM sketch consists of 𝑑 arrays, each of which

includes𝑤 countersA[𝑖, 𝑗] (1 ⩽ 𝑖 ⩽ 𝑑, 1 ⩽ 𝑗 ⩽ 𝑤 ) and is associated

with a hash function ℎ𝑖 (·). Each hash function maps an item to a

counter uniformly at random.

Insertion: Given an incoming item 𝑒 , the CMM maps the counter

A[𝑖, ℎ𝑖 (𝑒)] in each array and increments each of them by 1.

Query: Given a query about item 𝑒 , the CMM can give the over-

estimation and unbiased estimation of its frequency. The overes-

timation 𝐶𝑜𝑣𝑒𝑟 (𝑒) = min
𝑑
𝑖=1

A[𝑖, ℎ𝑖 (𝑒)]. The unbiased estimation

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒) is given by the following formula.

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒, 𝑖) = A[𝑖, ℎ𝑖 (𝑒)] −
1

𝑤 − 1

· (N − A[𝑖, ℎ𝑖 (𝑒)]) .

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒) =
1

𝑑
·
(
𝑑∑︁
𝑖=1

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒, 𝑖)
)
. (1)

Where N is the sum of the frequencies of all distinct items.

3 THE DOUBLE-ANONYMOUS SKETCH

In this section, we propose the Double-Anonymous sketch. We

introduce three techniques of the Double-Anonymous sketch by

three progressive versions. We first introduce double-anonymity,

which is the key technique to achieve top-𝐾-fairness. Then we

introduce hot panning, a tricky technique that can keep the char-

acteristic of double-anonymity and raise the Double-Anonymous

sketch’s accuracy at the same time. Finally, we introduce early

freezing, a technique that can further raise accuracy.

3.1 The Basic Version

Definition of double-anonymity: Suppose the estimation has

already been unbiased, one sufficient condition of top-𝐾-fairness

is that the covariance of the result of finding top-𝐾 items and

estimating frequency is 0, i.e., they are unrelated. A more formal

definition of double-anonymity is shown in Theorem 3.1. Achieving

double-anonymitymeans that the algorithm meets this condition.

Theorem 3.1. (Double-anonymity) Given a single data stream
S𝑘 and an item𝑢 (𝑘,𝑖 ) ∈ U𝑘 , letK(𝑖 ) be an indicator random variable
indicating whether item 𝑢 (𝑘,𝑖 ) is selected as top-𝐾 (𝑢 (𝑘,𝑖 ) ∈ T𝑘 ), if
there is 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) , then 𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 ) is equiva-

lent to Cov
(
K𝑖 , ˆ𝑓(𝑘,𝑖 )

)
= 0.

Proof. Under the condition of 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) (unbiasedness),[

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 )

]
≡

[
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)]
.

Expanding 𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
, we have

𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
· 𝐸 (K𝑖 )

Therefore,[
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 )

]
≡

[
𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
· 𝐸 (K𝑖 )

]
≡

[
Cov

(
K𝑖 , ˆ𝑓(𝑘,𝑖 )

)
= 0

]
.

In the above formulas, ≡ stands for equivalence. □

The data structure of the basic version has two parts: a Ran-

domized Admission Policy (RA) [15] as the top-𝐾 part and a CMM

sketch [37] as the count part. For an incoming item 𝑒 , 𝑒 will be

inserted into the RA and the CMM sketch independently. To find

top-𝐾 items, we query the RA and report the result. To query an

item 𝑒’s frequency, we query the CMM sketch and report the re-

sult. Notice that these two query processes are also independent.

Obviously, the basic version is double-anonymous and achieves

top-𝐾-fairness.

3.2 The Hot Panning Version

Keeping the characteristic of double-anonymity, the hot panning

version aims to pan the hot items, and only record them in the

top-𝐾 part to remove the redundancy compare to the first version.

We first use a top-𝐾 part to classify and record hot items, and then

use a count part to record the cold items. Because the top-𝐾 part

pans the hot items, only cold items will be inserted into the count

part, which makes the Hot panning version accurate.

Data Structure: As shown in Figure 2, the Double-Anonymous

sketch has two parts: a top-𝐾 part and a count part. The top-𝐾 part

is an array of buckets B[0, . . . ,𝑚−1]. Each item will be hashed into

a bucket usingℎ(.), a hash function that maps each item to [0,𝑚−1]
uniformly at random. Each bucket has 𝜆 cells. Each cell records the

information of one item: the item ID (key), the strategy frequency

(𝐶𝑠 ), and the real frequency (𝐶𝑟 ). The strategy frequency is a counter

used to decide whether this item should be evicted according to

different replacement strategies. It is often biased, i.e., overestimated

or underestimated. The real frequency is another counter used to

record the number of appearances of this item after it was inserted

into the top-𝑘 part. The count part is a CMM sketch [37], which

can provide an unbiased estimation and an overestimation value.

We detail CMM in Section 3.1.

Insertion: We first try inserting the incoming item into the top-𝐾

part. If the replacement strategy thinks the item is frequent, we

record it in the top-𝐾 part. Otherwise, we insert it into the count

part. Given an incoming item 𝑒 , we hash it into the bucket B[ℎ(𝑒)].
For any case, we first run the replacement strategy of the Double-

Anonymous sketch to find the top-𝐾 frequent items (we implement

four classic replacement strategies in Section 3.4 for case study).

Usually, the replacement strategy (e.g., SpaceSaving) will find the

top-𝐾 frequent items and keep their ID in the top-𝐾 part according

to their strategy frequency 𝐶𝑠 . To guarantee that the replacement

strategy works properly, the Double-Anonymous sketch rules that

the ID and the strategy frequency can only be changed by the

replacement strategy. In other words, the replacement strategy

works independently in the top-𝐾 part. Then we run the unbiased

operations of the Double-Anonymous sketch depend on different

cases to provide unbiased estimation for top-𝐾 items. The unbiased

operations are following this principle: if the incoming item 𝑒 is

in the top-𝐾 part at that time, we use the top-𝐾 part to record this

increment (it can avoid hot items inserting into the count part to

minimize the Double-Anonymous sketch’s error). Otherwise, we
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Figure 2: An running example of the Hot panning version of the Double-Anonymous sketch with RA Policy.

use the count part to record this increment. There are three cases

as follows.

Case 1: 𝑒 is in the bucket B[ℎ(𝑒)]. So we increment 𝑒.𝐶𝑟 by 1.

Case 2: 𝑒 is not in the bucket B[ℎ(𝑒)]. We insert 𝑒 into the count

part: we use 𝑑 other hash functions 𝑔1 (.) . . . 𝑔𝑑 (.) to map each item

to [0, 𝑀 − 1], and increment the 𝑑 counters A[𝑔1 (.) . . . 𝑔𝑑 (.)] by 1,

which are called the 𝑑 mapped counters.
Case 3: An item 𝑒𝑒𝑣𝑖𝑐𝑡 is evicted by the replacement strategy. We

increase the 𝑑 mapped counters in the count part by 𝑒𝑒𝑣𝑖𝑐𝑡 .𝐶𝑟 , i.e.,
the real frequency of 𝑒𝑒𝑣𝑖𝑐𝑡 before the eviction. This operation can

transfer the frequency of 𝑒𝑒𝑣𝑖𝑐𝑡 from the top-𝐾 part to the count

part. Therefore, we would not lose the frequency information of

𝑒𝑒𝑣𝑖𝑐𝑡 when it was evicted.

Query: To estimate a local top-𝐾 item 𝑒 , we need to query both the

top-𝐾 part and the count part. The count part, i.e., CMM sketch[37],

reports an overestimated value𝐶𝑜𝑣𝑒𝑟 and an unbiased value𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 .

We report three kinds of estimation:

• an unbiased estimation value
ˆ𝑓𝑖 = 𝐶𝑟 +𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

• an overestimation value 𝑓𝑖 = 𝐶𝑟 +𝐶𝑜𝑣𝑒𝑟
• an underestimated value 𝑓𝑖 = 𝐶𝑟

Notice that, if 𝑒.𝐶𝑜𝑣𝑒𝑟 = 0, 𝑓𝑖 will be equal to 𝑓𝑖 , which means

the estimation 𝑓𝑖 or 𝑓𝑖 has no error.

Finding Top-𝐾 Items: In this task, we query the strategy frequen-
cies of items in the top-𝐾 part and sort it in descending order. Then

we report the largest 𝐾 items as top-𝐾 items.

An running example: Figure 2 shows a running example of Hot

panning version of the Double-Anonymous sketch with Random-

ized Admission Policy. For each item recorded in the top-𝐾 part,

we record its item ID, strategy frequency (𝐶𝑠 ), and real frequency

(𝐶𝑟 ). Notice that the process of finding top-𝐾 and estimating fre-

quency are Double-Anonymous, i.e., information that may influence

their covariance is not shared between these two processes. In the

perspective of finding top-𝐾 , 1) To insert 𝑒1, it successes, so we

increment 𝑒1 .𝐶𝑠 by 1. 2) To insert 𝑒2, it evicts 𝑒4 successfully (ac-

cording to the Randomized Admission Policy, the chance of success

is
1

26
). Then we record 𝑒2 and make 𝑒2 .𝐶𝑠 = 26. 3) To insert 𝑒3, we

find an empty cell, so we just record 𝑒3 and make 𝑒3 .𝐶𝑠 = 1. In the

perspective of estimating frequency, 1) To insert 𝑒1, it successes, so

we increment 𝑒1 .𝐶𝑟 by 1. 2) To insert 𝑒2, it successes, so we make

𝑒2 .𝐶𝑟 to 1. At the same time, 𝑒4 is evicted, so we insert 𝑒4 × 20 into

the count part, i.e., the mapped counters in the CMM sketch are

increased by 20. 3) To insert 𝑒3, we find an empty cell, so we just

record 𝑒3 and make 𝑒3 .𝐶𝑟 = 1.

3.3 The Early Freezing Version

As time goes by, the count part’s variance will increase with the

increasing number of items inserted into the count part. We propose

using a freezing counter (𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔) to freeze the unbiased estima-

tion result in the count part (𝐶𝑠𝑘𝑒𝑡𝑐ℎ) for each frequent item as early

as possible, so that we can freeze the error of 𝐶𝑠𝑘𝑒𝑡𝑐ℎ and achieve

a more accurate estimation. Specially, we add a freezing counter

for every cell in the top-𝐾 part. Inserting a new incoming item

(i.e., an incoming item not in the top-𝐾 part before this insertion),

we make 𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 𝐶𝑠𝑘𝑒𝑡𝑐ℎ at that moment. Then the unbiased

estimation result of an item 𝑒 change into 𝑒.𝐶𝑟 +𝑒.𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 instead
of 𝑒.𝐶𝑟 +𝑒.𝐶𝑠𝑘𝑒𝑡𝑐ℎ . Because𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 is the earlier value of𝐶𝑠𝑘𝑒𝑡𝑐ℎ ,
the variance of the unbiased estimation result will be smaller.

3.4 Using Different Replacement Policies

The Double-Anonymous sketch can be applied by any top-𝐾

algorithm (replacement strategy). We pick four classic top-𝐾 strate-

gies: Randomized Replacement Strategy (RA) [15], Spacesaving (SS)

[16], Frequent (Freq) [31] and HeavyGuardian (HG) [3] as case

studies. For each strategy, we introduce how it works and how to

apply it in the Double-Anonymous sketch (different replacement

strategies only modify the insertion operation of the Top-𝐾 part

of the Double-Anonymous sketch). Given an incoming item 𝑒 , we

first hash it into B[ℎ(𝑒)]. Then the strategies work as follows.

RA Policy [15]: DS+RA (Double-Anonymous sketch with Ran-

domized Admission Policy) runs the Insertion operation of RA first.

Suppose the itemwhose strategy frequency is smallest in the bucket

is 𝑒𝑚𝑖𝑛 . If 𝑒 is in the bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in

the bucket, we evict 𝑒𝑚𝑖𝑛 with the probability of
1

𝑒𝑚𝑖𝑛 .𝐶𝑠+1 . If the
eviction successes, we record 𝑒 with its 𝐶𝑠 = 𝑒𝑚𝑖𝑛 .𝐶𝑠 + 1. To make

the estimation unbiased, DS+RA then runs the Insertion operation

of the Double-Anonymous sketch mentioned in Section 3.2.

SpaceSaving (SS) [16]: DS+SS (Double-Anonymous sketch with

SpaceSaving) runs the Insertion operation of SS first. Suppose the

item whose strategy frequency is smallest in the bucket is 𝑒𝑚𝑖𝑛 .

If 𝑒 is in the bucket, we just increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in

the bucket, we evict 𝑒𝑚𝑖𝑛 and record 𝑒 with its 𝐶𝑠 = 𝑒𝑚𝑖𝑛 .𝐶𝑠 + 1.
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SpaceSaving’s estimation is overestimated. To make it unbiased,

DS+SS then runs the Insertion operation of the Double-Anonymous

sketch mentioned in Section 3.2.

Frequent (Freq) [31]: DS+Freq (Double-Anonymous sketch with

Frequent) runs the Insertion operation of Freq first. If 𝑒 is in the

bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in the bucket, we decre-

ment the strategy frequency of every item in this bucket by 1. If

the strategy frequency of an item 𝑒𝑒𝑣𝑖𝑐𝑡 is decreased to 0, we evict

𝑒𝑒𝑣𝑖𝑐𝑡 and record 𝑒 with its 𝐶𝑠 = 1. Frequent’s estimation is under-

estimated. To make it unbiased, DS+Freq then runs the Insertion

operation of the Double-Anonymous sketch mentioned in Section

3.2.

HeavyGardian (HG) [3]: DS+HG (Double-Anonymous sketch

with HeavyGardian) runs the Insertion operation of HG first. Sup-

pose the item whose strategy frequency is smallest in the bucket

is 𝑒𝑚𝑖𝑛 . If 𝑒 is in the bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not

in the bucket, we decrement 𝑒𝑚𝑖𝑛 .𝐶𝑠 by 1 with a probability of

1.08−𝑒𝑚𝑖𝑛 .𝐶𝑠 . If 𝑒𝑚𝑖𝑛 .𝐶𝑠 is decreased to 0, we evict 𝑒𝑚𝑖𝑛 and insert

𝑒 with its 𝐶𝑠 = 1. HeavyGardian’s estimation is underestimated. To

make it unbiased, DS+HG then runs the Insertion operation of the

Double-Anonymous sketch mentioned in Section 3.2.

We further discuss the differences between these four replace-

ment policies based on the experimental results in Section 5, and

show that our algorithm is general. Specially, In Section 5.4, we

show the degree of top-𝐾-unfairness of these four replacement

policies, analyze how top-𝐾-unfairness affects their performance in

the task of finding global top-𝐾 items, and show that our Double-

Anonymous sketch can indeed make them top-𝐾-fair; In Section

5.5, we show a more comprehensive performance comparison of

Double-Anonymous sketch using different replacement policies.

4 MATHEMATICAL ANALYSIS

In this section, we analyze the behavior of our hot panning version
on a single data stream, and prove that it meets top-𝐾-fairness. We

then give some conclusions about the error of the algorithm. We

also discuss how to apply the proof process to the early freezing
version.

4.1 Preliminary

We then define the state 𝑠 (𝑘,𝑡 ) of the Double-Anonymous sketch

on data stream S𝑘 at time 𝑡 as 𝑠 (𝑘,𝑡 ) = {𝑠 (𝑘,1,𝑡 ) , · · · , 𝑠 (𝑘,𝑛𝑘 ,𝑡 ) },
where 𝑠 (𝑘,𝑖,𝑡 ) = ⟨𝑓𝑇 (𝑘,𝑖,𝑡 ) , 𝑓𝑆 (𝑘,𝑖,𝑡 ) ⟩. In general, let 𝑓𝑇 (𝑘,𝑖,𝑡 ) be the
frequency of item 𝑢 (𝑘,𝑖 ) recorded in the top-𝐾 part at time 𝑡 , and

let 𝑓𝑆 (𝑘,𝑖,𝑡 ) be the frequency of item 𝑖 recorded in the count part at

time 𝑡 . In particular, if item 𝑢 (𝑘,𝑖 ) is not recorded in the top-𝐾 part

at time 𝑗 , let 𝑓𝑇 (𝑘,𝑖,𝑡 ) = 0.

Given a data stream S𝑘 , let a sketching process R be a sequence

of states of the Double-Anonymous sketch at each time, i.e., R =

{𝑠 (𝑘,1) , 𝑠 (𝑘,2) , · · · , 𝑠 (𝑘,𝑚𝑘 ) }. The replacement policy P determines

the distribution of the sketching process, i.e., R ∼ P(S𝑘 ).

4.2 Proof of Top-𝐾-fairness

In this section, we prove that the Double-Anonymous sketch

achieves top-𝐾-fairness. We first give a lemma about the sketching

process.

Lemma 4.1. Given a data stream S𝑘 and a sketching process R =

{𝑠 (𝑘,1) , · · · , 𝑠 (𝑘,𝑚𝑘 ) }, for any item 𝑢 (𝑘,𝑖 ) and any time 𝑗 , there is

𝑓𝑇 (𝑘,𝑖,𝑡 ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ) = 𝑓(𝑘,𝑖,𝑡 ) . (2)

Proof. When time 𝑡 = 0, for any item 𝑢 (𝑘,𝑖 ) , there is

𝑓𝑇 (𝑘,𝑖,0) = 𝑓𝑆 (𝑘,𝑖,0) = 𝑓(𝑘,𝑖,𝑡 ) = 0,

so there is

𝑓𝑇 (𝑘,𝑖,0) + 𝑓𝑆 (𝑘,𝑖,0) = 𝑓(𝑘,𝑖,0) .
Suppose that Equation 2 holds for any item 𝑢 (𝑘,𝑖 ) and any time

𝑡 < 𝑡 ′. At time 𝑡 = 𝑡 ′, according to Section 3.2, if 𝑒 (𝑘,𝑡 ) = 𝑢 (𝑘,𝑖 ) , we

insert frequency

(
𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1) + 1

)
into the CMM sketch

of the count part, thus

𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓𝑆 (𝑘,𝑖,𝑡 ′−1) + 𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1) + 1

and

𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓(𝑘,𝑖,𝑡 ′−1) + 1 = 𝑓(𝑘,𝑖,𝑡 ′ ) ;

If 𝑒 (𝑘,𝑡 ) ≠ 𝑢 (𝑘,𝑖 ) , we insert frequency
(
𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1)

)
into

the CMM sketch of the count part, thus

𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓𝑆 (𝑘,𝑖,𝑡 ′−1) + 𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1)
and

𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓(𝑘,𝑖,𝑡 ′−1) = 𝑓(𝑘,𝑖,𝑡 ′ ) ;
Therefore, Equation 2 also holds for 𝑡 = 𝑡 ′, so it holds for any time

1 ⩽ 𝑡 ⩽ 𝑚𝑘 . □

Now we prove the following lemma holds for any replacement

policy P.

Lemma 4.2. Given a data stream S𝑘 . For any item 𝑢 (𝑘,𝑖 ) , let
𝑓𝑆 ′ (𝑘,𝑖,𝑡 ) be the estimate of 𝑓𝑆 (𝑘,𝑖,𝑡 ) given by the count part, and
let ˆ𝑓(𝑘,𝑖 ) = 𝑓𝑇 (𝑘,𝑖,𝑚) + 𝑓𝑆 ′ (𝑘,𝑖,𝑚) be the estimation of 𝑓(𝑘,𝑖 ) given by
the Double-Anonymous sketch. For any replacement policy P, any
sketching process R, there is

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
= 𝑓(𝑘,𝑖 ) .

Proof. According to Lemma 4.1, in the sketching process R,
𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) + 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) = 𝑓(𝑘,𝑖,𝑚𝑘 ) .

Since
ˆ𝑓(𝑘,𝑖 ) = 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) + 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) , and 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) is determined

by sketching process R, we only need to prove

𝐸

(
𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) | R

)
= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) ,

Recall that we use a CMM [37] sketch as the count part. Specifically,

assume that the count part uses 𝑑 counter arrays, each of which has

𝑤 counters and is associated with a hash function ℎ𝑙 (·). ℎ𝑙 (·) maps

each item 𝑢 (𝑘,𝑖 ) to one of the𝑤 counters uniformly at random.

We define some useful random variables. Let the indicator ran-

dom variable 𝐼 (𝑖, 𝑗,𝑙 ) indicates whether ℎ𝑙
(
𝑢 (𝑘,𝑖 )

)
and ℎ𝑙

(
𝑢 (𝑘,𝑗 )

)
are equal, thus we have

Pr

(
𝐼 (𝑖, 𝑗,𝑙 ) = 1

)
=

1

𝑤
.
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Let the random variable 𝑋 (𝑖,𝑙 ) be the value of the ℎ𝑙

(
𝑢 (𝑘,𝑖 )

)
-th

counter in the 𝑙-th array, thus we have

𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) =
1

𝑑
· ©­«

𝑑∑︁
𝑘=1

©­«𝑋 (𝑖,𝑙 ) −
1

𝑤 − 1

· ©­«
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) − 𝑋 (𝑖,𝑙 )
ª®¬ª®¬ª®¬ .

According to the rules of CMM, we have

𝑋 (𝑖,𝑙 ) = 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) +
𝑛𝑘∑︁

𝑗=1, 𝑗≠𝑖

(
𝐼 (𝑖, 𝑗,𝑙 ) · 𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
.

We can obtain the conditional expectation of 𝑋𝑖,𝑘 , i.e.,

𝐸

(
𝑋 (𝑖,𝑙 ) | R

)
= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) +

1

𝑤
· ©­«

𝑛𝑘∑︁
𝑗=1, 𝑗≠𝑖

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )
ª®¬ .

Using the linear property of expectation again, we have

𝐸

(
𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) | R

)
=
1

𝑑
·
(
𝑑∑︁
𝑘=1

(
𝑤

𝑤 − 1

· 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) −
1

𝑤 − 1

· 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 )
))

= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) .

□

Now we prove that the Double-Anonymous sketch achieves

both unbiasedness and Double-anonymity, thus achieving top-

𝐾-fairness.

Theorem 4.3 (unbiasedness). Given a data stream S𝑘 . For any
replacement policy P and any item 𝑢 (𝑘,𝑖 ) , there is

𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) .

Proof. According to Lemma 4.2 and using the law of total ex-

pectation, we have

𝐸

(
ˆ𝑓(𝑘,𝑖 ) = 1

)
=

∑︁
R
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
· Pr (R) = 𝑓(𝑘,𝑖 ) .

□

Theorem 4.4 (Double-anonymity). Given a data stream S𝑘 .
For any replacement policy P and any item 𝑢 (𝑘,𝑖 ) , let K𝑖 be an indi-
cator random variable indicating whether item 𝑢 (𝑘,𝑖 ) is selected as
top-𝐾 , there is

Cov
(
ˆ𝑓(𝑘,𝑖 ) ,K𝑖

)
= 0.

Proof. Because sketching process R determines whether item

𝑢 (𝑘,𝑖 ) is selected as top-K, all R can be divided into two kinds:

R ∈ G0 makes K𝑖 = 0, and R ∈ G1 makes K𝑖 = 1. Therefore, we

expand 𝐸 ( ˆ𝑓(𝑘,𝑖 )K𝑖 ) as follows:

𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
=

∑︁
R∈G1

𝐸 ( ˆ𝑓(𝑘,𝑖 ) · K𝑖 |R) · Pr(R)

=
©­«

∑︁
R∈G1

Pr(R)ª®¬ · 𝑓(𝑘,𝑖 ) = 𝐸 (K𝑖 ) · 𝑓(𝑘,𝑖 ) .
Combined with unbiasedness, we have

Cov
(
ˆ𝑓(𝑘,𝑖 ) ,K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
− 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
𝐸 (K𝑖 ) = 0.

□

4.3 Error Bounds of Estimations

In this section, we give some theorems about the error bounds

of estimations. The item frequencies which are inserted into the

count part are 𝑓𝑆 (𝑘,1,𝑚𝑘 ) , · · · , 𝑓𝑆 (𝑘,𝑛𝑘 ,𝑚𝑘 ) . According to lemma 4.1,

they are less than or equal to 𝑓(𝑘,1,𝑚𝑘 ) , · · · , 𝑓(𝑘,𝑛𝑘 ,𝑚𝑘 ) , i.e., 𝑓(𝑘,1) ,
· · · , 𝑓(𝑘,𝑛𝑘 ) . Based on this insight, we give the following lemmas

and theorems, which show that the Double-Anonymous sketch has

tighter error bounds than the sketches of CMM [37] and CM [12].

Lemma 4.5. Given a data stream S𝑘 , for any replacement policy
P and any item 𝑢 (𝑘,𝑖 ) , let ˆ𝑓(𝑘,𝑖 ) be the unbiased estimation of 𝑓(𝑘,𝑖 )
given by the Double-Anonymous sketch, then we have

𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
⩽

1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

𝑓 2
𝑆 (𝑘,𝑗,𝑚𝑘 )

ª®¬ <
1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )
ª®¬ .

Where 𝑑 and𝑤 are parameters of the count part (CMM).

Proof. We first derive the upper bound of the conditional vari-

ance 𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
of a given item 𝑢 (𝑘,𝑖 ) in a given sketching pro-

cess R. Recalling the definition of
ˆ𝑓(𝑘,𝑖 ) and 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) , we have

ˆ𝑓(𝑘,𝑖 ) =

𝑓𝑇 (𝑘,𝑖,𝑚𝑘 )

+ 1
𝑑
· ©­«

𝑑∑︁
𝑘=1

©­«𝑋 (𝑖,𝑙 ) −
1

𝑤 − 1

· ©­«
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) − 𝑋 (𝑖,𝑙 )
ª®¬ª®¬ª®¬

.

(3)

Since 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) and 𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) are constants when then sketching

process R is determined, we have

𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
=𝐷

(
1

𝑑
·
(
𝑑∑︁
𝑘=1

𝑤

𝑤 − 1

· 𝑋 (𝑖,𝑙 )

)
| R

)
=
1

𝑑2
·
(
𝑑∑︁
𝑘=1

(( 𝑤

𝑤 − 1

)
2

· 𝐷
(
𝑋 (𝑖,𝑙 ) | R

)))
. (4)

By expanding 𝑋 (𝑖,𝑙 ) and considering the independence between

𝐼 (𝑖, 𝑗,𝑙 ) , we have

𝐷

(
𝑋 (𝑖,𝑙 ) | R

)
=
1

𝑤
·
(
1 − 1

𝑤

)
· ©­«

𝑛𝑘∑︁
𝑗=1, 𝑗≠𝑖

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2ª®¬

⩽
1

𝑤
·
(
1 − 1

𝑤

)
· ©­«

𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2ª®¬ . (5)

In other words

𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
⩽

1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2ª®¬ . (6)

Since we derive the unbiasedness and conditional unbiasedness of

the estimated frequency
ˆ𝑓(𝑘,𝑖 ) in Theorem 4.3 and Lemma 4.2, that

is

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) , (7)
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Figure 3: Sample variances and their theoretical upper

bounds.

by using the law of total expectation, we have

𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
=
∑︁
R
𝐸

((
ˆ𝑓(𝑘,𝑖 ) − 𝑓(𝑘,𝑖 )

)
2

| R
)
· Pr (R)

⩽
1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2ª®¬ .

According to Lemma 4.1, we have

1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2ª®¬ ⩽ 1

𝑑 · (𝑤 − 1) ·
©­«
𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )
ª®¬ . (8)

The left and right sides are the upper bounds of variance of the

Double-Anonymous sketch and the CMM sketch, respectively. □

Theorem 4.6. Given a data stream S𝑘 , for any replacement policy
P and any item 𝑢 (𝑘,𝑖 ) , let ˆ𝑓(𝑘,𝑖 ) be the unbiased estimation of 𝑓(𝑘,𝑖 )
given by the Double-Anonymous sketch, then we have

Pr

(��� ˆ𝑓(𝑘,𝑖 ) − 𝑓(𝑘,𝑖 )
��� ⩾ 𝜀) ⩽ 1

𝜀2 · 𝑑 · (𝑤 − 1)
· ©­«

𝑛𝑘∑︁
𝑗=1

𝑓 2
𝑆 (𝑘,𝑗,𝑚𝑘 )

ª®¬
<

1

𝜀2 · 𝑑 · (𝑤 − 1)
· ©­«

𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )
ª®¬ .

Theorem 4.7. Given a data stream S𝑘 , for any replacement policy
P and any item 𝑢 (𝑘,𝑖 ) , let 𝑓 (𝑘,𝑖 ) be the overestimation of 𝑓(𝑘,𝑖 ) given
by the Double-Anonymous sketch, then we have

Pr

(��� 𝑓 (𝑘,𝑖 ) − 𝑓(𝑘,𝑖 ) ��� ⩾ 𝜀) ⩽ ©­« 1

𝜀 ·𝑤 · ©­«
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )
ª®¬ª®¬
𝑑

<
©­« 1

𝜀 ·𝑤 · ©­«
𝑛𝑘∑︁
𝑗=1

𝑓(𝑘,𝑗 )
ª®¬ª®¬
𝑑

.

4.4 Analysis on Early Freezing

By using the early freezing optimization, the Double-Anonymous

sketch gives a more accurate item frequency estimation
˜𝑓(𝑘,𝑖 ) =

𝑓𝑇 (𝑘,𝑖,𝑚𝑘 )+𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) , where 𝑡𝑖 is the timewhen item𝑢 (𝑘,𝑖 ) is recorded
in the top-K part. In particular, 𝑡𝑖 = 𝑚𝑘 when item 𝑢 (𝑘,𝑖 ) is not
recorded. On the one hand, following the proof framework in

Section 4.2 and 4.3 and replacing 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) with 𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) , we can
still prove the top-𝐾-fairness and derive the error bound of the early

freezing version; On the other hand, according to Lemma 4.8 shown

below, we know that the variance of 𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) is smaller than that

of 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) in any sketching process R, so we have Theorem 4.9.

Lemma 4.8. Given a data stream S𝑘 and a sketching process R =

{𝑠 (𝑘,1) , · · · , 𝑠 (𝑘,𝑚) }, for any item 𝑢 (𝑘,𝑖 ) and any time 𝑗 , there is

𝑓𝑆 (𝑘,𝑖, 𝑗−1) ⩽ 𝑓𝑆 (𝑘,𝑖,𝑡 ) .

Theorem 4.9. Given a data stream S, for any replacement policy
P and any item 𝑢 (𝑘,𝑖 ) , we have

𝐷

(
˜𝑓(𝑘,𝑖 )

)
⩽ 𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
.

4.5 Experimental Verification

To verify the correctness of Lemma 4.5 and Theorem 4.9, we show

two kinds of variance bound. Lemma 4.5 provides a P-independent

loss bound, and an R-dependent tight bound. We use SpaceSaving

and Randomized Admission Policy as the strategy P, and vary the

length𝑤 of the count part. As shown in Figure 3, we plot the loose

upper bounds, the tight upper bounds, and the sample variances

of the hot panning version and the early freezing version. It can

be found that the bounds of variances are always greater than

the sample variances of the hot panning version, and then greater

than the sample variances of the early freezing version, which

verifies our theorems and shows the benefits of Early Freezing. It is

worth noting two points: 1) The tight bounds are extremely close to

the sample variances, which indicates our bounds are accurate. 2)

Panning hot items to reduce the redundancy is beneficial to reduce

variance, and the strategy of finding top-𝐾 frequent items more

accurately has a smaller variance.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

A. Implementation:We have implemented theDouble-Anonymous

sketch (DA sketch) and all other algorithms in C++. We apply four

replacement strategies to the DA sketch: Randomized Admission

Policy (RA) [15], SpaceSaving (SS) [16], Frequent (Freq) [31] and

HeavyGuardian (HG) [3]. We find in our experimental results that

applying Randomized Admission Policy yields the best results;

therefore, we mainly demonstrate the experimental results of DA

sketch + RA. We also compare our results with several state-of-the-

art top-𝐾 sketching algorithms: Frequent [31], SpaceSaving [16],

Unbiased SpaceSaving (USS) [5] and WavingSketch (Waving) [2].

All our experiments are repeatedly performed 10 times to ensure

statistical stability. Our source code is publicly available at Github

[51]. We conduct all our experiments on a machine with two 6-core

processors (12 threads, Intel Xeon CPU E5-2620 @2 GHz) and 64

GB DRAM memory.

B. Datasets: We use three real-world datasets and one synthetic

dataset for our experiments. The details of the datasets are shown

below: 1) IP Trace Dataset (CAIDA) [52]: The IP Trace Dataset

consists of streams of anonymous IP traces collected by CAIDA in

2016. Each item is identified by its 13-byte "5-Tuple". We use the first

20M items for our experiments. 2) Web Page Dataset [53]: The Web

page dataset is built from a collection of web pages downloaded

from the website. Each item is 4 bytes long. 3) Network Dataset

[54]: The network dataset consists of users’ posting history on
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Figure 4: Performance of finding local top-𝐾 items.

the StackExchange website. 4) Synthetic Dataset: We generated

datasets following the Zip-f distribution [55]. Each dataset contains

32M items, and each item is 4 bytes long. Here we use the generated

dataset with skewness=0.6.

C. Metrics:

1) Average Relative Error (ARE):
1

|𝛹 |
∑
𝑒𝑖 ∈𝛹

| 𝑓𝑖− ˆ𝑓𝑖 |
𝑓𝑖

, where 𝑓𝑖 is

the ground truth frequency of item 𝑒𝑖 , ˆ𝑓𝑖 is its estimated frequency,

and𝛹 is the query set.

2) F1 Score:
2∗𝐶𝑅∗𝑃𝑅
𝐶𝑅+𝑃𝑅 , where 𝑃𝑅 (Precision rate) represents the

proportion of the correctly selected items among all the selected

items, and𝐶𝑅 (Recall rate) represents the proportion of the correctly

selected items among all the real top-𝐾 items.

3) Throughput: The number of operations (insertions) in million

per second (Mops). It indicates the overall speed of insertion.

4) Zero Error Rate: The proportion of items selected by our sketch

whose estimated frequency is guaranteed to be exactly the same as

its ground truth frequency.

5) Relative Bias: This metric is used in section 5.4. For the local

sketch 𝑖 , the relative bias is defined

∑
𝑒𝑗 ∈𝛹

ˆ𝑓𝑗∑
𝑒𝑗 ∈𝛹 𝑓𝑗

, where𝛹 is the set of

items that local sketch 𝑖 returns as the local top-𝐾 items.

6) Recall onAggregation:
| | { ( ˆT𝑖∩T)∩ ˆT} | |

| | { ˆT𝑖∩T} | |
for local sketch 𝑖 , where

T denotes the set of global top-𝐾 items,
ˆT denotes the set of pre-

dicted global top-𝐾 items (after aggregation), and
ˆT𝑖 denotes the

selected local top-𝐾 items from sketch 𝑖 .

D. Common Settings: Let𝑀 denote the total amount of memory

allocated to the sketches,𝑀𝑡𝑜𝑝−𝐾 denote the amount of memory

allocated to the top-𝐾 part for the DA sketch, 𝐾 denote that we

query the top-𝐾 frequent items, and 𝜆 denotes the number of cells

in each bucket of the top-𝐾 part. For the DA sketch, we set 𝜆 = 8,

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.55 in order to maximize the overall performance. 5

For DA sketch, the size of count part’s buckets in the Hot Panning

version and the Early Freezing is set to be 2 bytes; while for the

basic version, the size of count part’s buckets is set to be 4 bytes. All

other parameters of the baseline top-𝐾 algorithms are set according

to the recommendations of their authors.

Settings for Figure 1(a) in Section 1.2: We perform the finding

local top-𝐾 tasks on CAIDA dataset for both USS and Waving, for

1000 times each. Memory size is set to be 100KB, and 𝐾 is set to

be 1000. After insertion, we calculate the total (signed) error for

both the selected Top-𝐾 items and items that are not selected. We

average the results over the 1000 times of experiments.

Settings for Figure 1(b) in Section 1.2: We conduct experiments

on the Synthetic Dataset. We generate the dataset so that the global

Top-1 item is always in the light stream.We set𝑁 = 100, 𝐾 = 50 and

range skewness from 0.1 to 0.4. We only allocate an extremely small

amount of memory for both USS and Ours+SS, such that they could

only store𝐾 = 50 local top-𝐾 candidates for each distributed sketch

(3.8KB for USS and 1.4KB for Ours+SS). In such an extremely small

amount of memory and high skewness, the estimated frequency

of the selected local top-𝐾 items in the heavy stream would even

be greater than the frequency of the global Top-1 item in the light

stream. Therefore, the global Top-1 may be ignored when skewness

is high.

5.2 Experiments on Local Top-𝐾

ApplicationDescription: We first conduct experiments on finding

local top-𝐾 items and compare the Double-Anonymous sketch

with prior art mentioned in 5.1. We use ARE, F1 Score, and Zero

Error rate for evaluation. We also compare the performance of our

three versions, i.e., the basic version, the Hot Panning Version, and

the Early Freezing Version, and show how hot panning and early

freezing improve the performance of our approach.

Experimental Settings: In this experiment, we use the CAIDA

dataset for our experiments. We set 𝐾 = 1000, and range the mem-

ory size from 100KB to 500KB for all sketches to see how different

sketches perform in different amounts of memory.

ARE (Figure 4(a)): Results show that our approach achieves much

more accurate unbiased frequency estimation thanks to the hot

panning and early freezing technique. When 𝑀 = 100KB, our

approach is around 500-1000 times more accurate than USS, SS, and

Frequent and around 50-100 times more accurate than Waving on

the CAIDA dataset.

F1 Score (Figure 4(b)): When applying RA to our approach, the

Double-Anonymous sketch achieves sufficiently high F1 Score

(≥ 95%) even when memory is extremely tight. This is because

for the Double-Anonymous sketch, local top-𝐾 items’ selection is

determined by only the replacement policy, and RA itself is accurate

in selecting local top-𝐾 items. In contrast, Frequent, USS, and SS

are much more inaccurate in finding top-𝐾 items. The discussion

will be further elaborated in section 5.3.

Zero Error Rate (Figure 4(c)): We demonstrate the proportion of

items of which we are confident that frequency estimation error

is guaranteed to be 0 (as denoted by zero error rate). We could

determine this because 𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 0 indicates that such item has

never been evicted from the Top-𝐾 part throughout the process. The
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Figure 5: Performance of finding global top-𝐾 items.

results show that our approach achieves a zero error rate greater

than 40% when memory is as tight as 100KB, and greater than 72%

when𝑀 = 500KB. The results suggest that for the majority of items,

our algorithm could tell with 100% confidence that their estimated

frequencies are perfectly accurate, which is useful in practice.

Comparison between the three versions (Figure 4(d)): We find

that both the hot panning and early freezing significantly improve

the accuracy of our unbiased frequency estimation. On average,

the final version — the early freezing version is approximately 66

times more accurate than the first version — the basic version and

approximately 10 times more accurate than the second version —

the hot panning version.

5.3 Experiments on Global Top-𝐾 with Same

Sizes across Different Data Streams

Application Description: In a distributed scenario, there are 𝑁

data streams S1, · · · ,S𝑁 . Data stream S𝑖 contains𝑚𝑖 items. Each

data stream is measured by a sketch on one machine. Memory sizes

of all the sketches on different data streams are set the same. We

denote S =
⋃𝑁
𝑖=1 S𝑖 . In different scenarios, the skewness of the

size distribution across different data streams could be small or

large. We set𝑚1 = 𝑟 ∗ |S|, and𝑚𝑖 = 1−𝑟
𝑁−1 |S|, 𝑖 ≥ 2, where 𝑟 ≥ 1

𝑁
represents the skewness of the size distribution across different data

streams. We denote S1 as a heavy stream, and other data streams

as light streams. In this subsection, we focus on the case when the

sizes of different data streams are the same, i.e., 𝑟 = 1

𝑁
.

Experimental settings: We use all the four datasets mentioned

in 5.1 for our experiments. There are in total 𝑁 = 10 data streams,

and we select 𝐾 = 1000 global top-𝐾 items. We allocate the same

amount of memory for each sketch on different machines, and the

total memory size for the 𝑁 = 10 sketches in total ranges from

100KB to 500KB.

ARE (Figure 5(a) - 5(d)): We find that our approach could achieve

much lower ARE than prior art. On CAIDA dataset, when 𝑀 =

100KB, ARE of our approach is 3 orders of magnitude times lower

than Frequent, USS, SS, and 70 times lower thanWaving.We observe

similar results on the other three datasets.

F1 Score (Figure 5(e) - 5(h)): Results show that in this scenario,

our approach could achieve a high F1 Score on both datasets even

when𝑀 is small. When𝑀 = 100KB, the F1 Score of our approach is

greater than 90% on both datasets, while the F1 Score of Frequent,

USS, and SS is lower than 60% on the Webpage dataset and lower

than 40% on the rest of the datasets. We also find that our approach

achieves a slightly better F1 Score than Waving .

Throughput (Table 1): Our approach achieves higher or compara-

ble throughput comparedwith prior art. Specifically, the throughput

of our approach is on average 3.19, 2.89 and 3.15 times higher than

Frequent, USS, and SS respectively over the four datasets, and is

comparable with Waving.

CAIDA Webpage Net Synthesis

Frequent (300KB) 5.3 6.2 4.5 5.1

USS (300KB) 5.4 6.9 5.3 5.7

SS (300KB) 5.9 6.4 4.8 4.7

Waving (300KB) 14.8 21.2 13.4 16.8

Ours + RA (300KB) 14.9 25.5 12.7 15.6

Table 1: Throughput (Mops) of finding top-𝐾 frequent

items.

Analysis: 1) Our approach is accurate in frequency estimation on

global top-𝐾 items even with extremely small memory. Prior works,

like Frequent, USS, and SS tend to provide highly underestimated or

overestimated frequency estimation, so their frequency estimation

tends to be significantly inaccurate. Waving sketch is also not as

accurate as our approach because when memory is tight, Waving

counters tend to be highly inaccurate. 2) F1 Score of our approach
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Figure 6: Performance and fairness for finding global top-𝐾 items comparing our approaches with baseline algorithms.

is mainly determined by the top-𝐾 replacement strategy, and when

applying Randomized Admission Policy (RA) replacement strategy

to our approach, the Double-Anonymous sketch could achieve a

high F1 Score on both the local top-𝐾 task and the global top-𝐾

task. F1 Score of Frequent, USS, and SS is significantly lower than

our approach since all of them use the Stream Summary [16] data

structure, which consumes more memory to store one item than

our approach, and those replacement strategies are not as accurate

as the RA replacement strategy. 3) Both our approach and Waving

sketch use bucket-array data structure, which is cache-friendly

and requires fewer memory access, resulting in higher insertion

throughput. For Frequent, USS, and SS, frequent pointer operations

would lead to cache misses, making the insertion much slower.

5.4 Experiments on Top-𝐾-fairness with Highly

Skewed Data Streams’ Sizes

5.4.1 Experimental Setup

In this subsection, we focus on the case when the size distribu-

tion is highly skewed. We show why top-𝐾-fairness is important

in finding global top-𝐾 items in this scenario. We apply four re-

placement policies to the Double-Anonymous sketch and compare

our results with four biased algorithms: Frequent, SS, HG, and RA,

and two unbiased algorithms: USS, and Waving. F1 Score is used

to demonstrate the overall performance of those algorithms. Rela-

tive bias is used to directly demonstrate the top-𝐾-fairness of our

approach and the top-𝐾-unfairness of prior art. Considering the

global top-𝐾 aggregation: before that, sketch 𝑖 proposes several lo-

cal top-𝐾 candidates, and some of them are real global top-𝐾 items.

Among those real global top-𝐾 items proposed by sketch 𝑖 , only a

proportion of them survive and are selected as global top-𝐾 items.

Recall on aggregation, which refers to the proportion mentioned

above, is used to demonstrate the top-𝐾-fairness of the global top-𝐾
selector on aggregation. Specifically, we use this metric to answer

our questions: does the global top-𝐾 selector favors items from heavy
machines or from light machines, or is the global top-𝐾-fair so that it
selects global top-𝐾 items solely based only on their real frequency,
regardless of which local sketch it comes from.

Frequent SS HG RA USS Waving Ours

40KB 40KB 15KB 15KB 40KB 15KB 15KB

Table 2: Memory size configurations in Section 5.4

Experimental Settings: We set 𝑁 = 100, 𝐾 = 1000, and vary the

skewness 𝑟 from 0.01 to 0.5. In order to better demonstrate how

top-𝐾-fairness affects the performance and eliminate the effects

of selecting local top-𝐾 items itself on the performance of finding

global top-𝐾 items, we adjust the memory sizes for different algo-

rithms so that they could store exactly the same number of local

top-𝐾 candidates. The configurations on memory size are shown

in Table 2. We use the synthetic dataset with skewness=0.9, which

is relatively low in skewness, to better demonstrate the concept of

"top-𝐾-fairness" and illustrate our results.

5.4.2 Overall Performance & Top-𝐾-fairness

F1 Score (Figure 6(a) and 6(e)): Results show that when skewness

increases, our F1 Score degradation is much slower than all the

prior art. Specifically, when skewness 𝑟 = 0.5, Ours + Frequent

achieves F1 Score ≥ 73%, while Frequent itself only achieves F1

Score ≤ 48%; Ours + SS achieves F1 Score ≥ 72%, while SS itself

only achieves F1 Score ≤ 31%. Ours + RA achieves F1 Score ≥ 98%,

while RA itself only achieves F1 Score ≤ 83%. Ours + HG achieves

F1 Score ≥ 95%, while HG itself only achieves F1 Score ≤ 76%. F1

Score of Waving Sketch and USS is 62%, 30% respectively, which is

also significantly lower than that of our approach.
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Figure 7: Performance and fairness of weighted algorithms for finding global top-𝐾 items.

Relative Bias on Top-𝐾 items (Figure 6(b) and 6(f)): Results

show that SS, USS and Waving tend to provide overestimated fre-

quency. For these algorithms, items in heavy machines tend to be

overestimated much more than light machines, so the global top-𝐾

selector tends to favor items in heavy machines. Similarly, Frequent,

RA, and HG tend to provide underestimated frequency, and items

in heavy machines tend to be underestimated much more, so the

global top-𝐾 selector tends to favor items in light machines. More

detailed recall rates on aggregation are shown in Section 5.4.3.

Analysis: 1) One of the desired properties that top-𝐾-fairness

brings is that the F1 Score of top-𝐾-fair algorithms, like our Double-

Anonymous sketch, tends to be higher than top-𝐾-unfair algorithms.

For example, for SS and USS, local top-𝐾 candidates in heavy ma-

chines tend to be highly overestimated, so even if an item in heavy

machines is low in real frequency, its estimated frequency is still

high enough to be falsely selected as a global top-𝐾 item. With

items in heavy machines falsely selected as global top-𝐾 items and

items in light machines ignored, the F1 Scores of SS and USS be-

come unacceptably low when skewness is large. 2) The degree

of top-𝐾-unfairness of algorithms is often negatively related to

their F1 scores. Specifically, the top-𝐾-unfairness of SS, USS, and

Frequent is very significant, so their F1 scores are lower than other

algorithms. Although Waving, RA, and HG are also top-𝐾-unfair,

their top-𝐾-unfairness is relatively slight, so they have higher F1

scores. For top-𝐾-fair algorithms, the accuracy of the replacement

policy they use determines their performance, so Ours+RA and

Ours+HG have the highest F1 scores. 3) Our approach is generic:

we can make any top-𝐾 algorithm top-𝐾-fair simply by applying

the Double-Anonymous sketch to this top-𝐾 algorithm. Meanwhile,

the F1 Score is also much improved because our approach is top-𝐾-

fair in global top-𝐾 aggregation. Specifically, for top-𝐾 algorithms

Frequent and SS with significant top-𝐾-unfairness, our DA sketch

can improve their F1 scores by up to 25.5% and 42.5%; and for top-𝐾

algorithms RA and HG with slight top-𝐾-unfairness, our DA sketch

can still improve their F1 scores by 15.0% and 19.8%.

5.4.3 Recall on Aggregation

Recall on Aggregation (Figure 6(c) - 6(d) and 6(g) - 6(h)): For

light machines, we find that Recall on Aggregation of overesti-

mation algorithms, like SS, USS, and Waving, decreases fast as

𝑟 increases, while that of other algorithms keeps at a high level

(≥ 90%). Conversely, for heavy machines, Recall on Aggregation of

underestimation algorithms like Frequent, RA, and HG, decreases

as 𝑟 increases, while other algorithms remain ≥ 90%. It can be

concluded that for overestimation algorithms, it is more difficult

for items in light machines to survive the global aggregation and

be selected as global top-𝐾 items; for underestimation algorithms,

it is more difficult for items in heavy machines to be selected as

global top-𝐾 items.

Analysis: Top-𝐾-fairness is determined by the bias of frequency

estimation on top-𝐾 items. For overestimation sketches like SS,

USS, andWaving, many local top-𝐾 candidates from light machines

that are supposed to become global top-𝐾 items would actually

be evicted during aggregation (Recall on Aggregation on light ma-

chines tends to be small). It can be concluded that the global top-𝐾

selector favors items from heavy machines. Conversely, for un-

derestimation sketches like Frequent, RA, and HG, global top-𝐾

selector tends to favors items from light machines. We argue that

top-𝐾-unfair aggregation is unacceptable in many real-world ap-

plications since the global top-𝐾 selector should not be partial to

items from any machine.

5.4.4 Other Baseline Algorithms

Comparison algorithms: In this section, we compare two other

baseline algorithms designed for skewed data streams: algorithms

based on global sampling and algorithms based on weighting. For

sampling algorithms, we use the same sampling rate for each data

stream to sample items and send them to the global top-𝐾 selector.

On the global top-𝐾 selector, we use sketch data structures or di-

rectly use deterministic data structures (e.g., maps) to find global

top-𝐾 items in the sampled data stream. For weighted algorithms,

we maintain sketch data structures of different sizes on different

machines according to the number of items contained in the data

stream. Specifically, if the data stream on the heavy machine con-

tains 10 times as many items as that on the light machine, the sketch

size on the heavy machine is set to be 10 times as large as that on

the light machine.

DA sketch v.s. weighted algorithms (Figure 7): We compare

weighted USS, weightedWaving, and weighted Ours+RA. As shown

in Figure 7(b), for weighted USS and weighted Waving, their over-

estimation on heavy machines is reduced, but their overestimation

on light machines is significantly increased. This is due to the non-

linear relationship between their overestimation and the size of

the data stream. However, as shown in Figures 7(a), 7(c), and 7(d),

weighting can indeed improve the performance of USS and Waving,
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Figure 8: Experiments on different parameter settings (𝜆 and
𝑀𝑡𝑜𝑝−𝐾
𝑀

) of Double-Anonymous Sketch.

especially when the distribution is particularly skewed. Specifi-

cally, when 𝑟 = 0.5, the F1 score of weighted USS is 57.9%, that of

weighted Waving is 96.4%, and that of weighted Ours+RA is 99.0%.

DA sketch v.s. sampling algorithms (Table 3): We compare with

the sampling algorithms using different sampling rates and different

global data structures on global top-𝐾 selectors. The experimental

results show that higher sampling rate means higher accuracy, but

the performance of the sampling algorithm using 0.1 sampling

rate and precise global data structure is still inferior to Ours+RA.

Furthermore, using a sampling algorithm with a rate of 𝑝 = 0.1,

in total all machines need to transmit 8MB of data to the global

top-𝐾 selector; using a sampling algorithm with a rate of 𝑝 = 0.02,

all machines need to transmit 1.6MB of data. By contrast, using

Ours+RA, all machines only need to transmit 100 × 15𝐾𝐵 = 1.5𝑀𝐵

of data.

Algorithms F1 Score ARE

Sampling (𝑝 = 0.02) + Precise 85.8% 0.1234

Sampling (𝑝 = 0.1) + Precise 94.3% 0.0576

Sampling (𝑝 = 0.02) + RA 68.3% 0.1367

Sampling (𝑝 = 0.1) + RA 73.4% 0.0958

Ours + RA (𝑟 = 0.5) 98.0% 0.0069

Table 3: Comparisons between the sampling approach and

our approach, where "precise" indicates that we use a deter-

ministic algorithm to precisely record every sampled item.

Analysis: For the two comparison algorithms, the sampling al-

gorithms are top-𝐾-fair, and the weighted algorithms can indeed

improve the performance. However, our algorithm still shows its

superiority over the two algorithms. In addition, there is another

artificial weighted algorithm: manually correct the overestimation

or underestimation of reported top-𝐾 items from different data

streams. However, as shown in Section 5.4.2, the overestimation

and underestimation of different algorithms are not consistent. On

the one hand, this algorithm is difficult to practice, and on the other

hand, it cannot achieve the exact top-𝐾-fairness.

5.5 Experiments on Parameter Settings

In order to find the optimal parameter settings for the Double-

Anonymous sketch, we conduct experiments on finding local top-𝐾

items and vary 𝜆 and
𝑀𝑡𝑜𝑝−𝐾
𝑀

to see how AAE, ARE, F1 Score and

Throughput change. We set𝑀 to be 100KB, 𝜆 to range from 1 to 64,

and

𝑀𝑡𝑜𝑝−𝐾
𝑀

to range from 0.05 to 0.95.

Varying 𝜆 (Figure 8(a)-8(b)): We find that, as 𝜆 increases from 1

to 64, ARE of Our+RA and Ours+SS first decreases when 𝜆 grows

from 1 to 8 by 6.8 times and 3.2 times respectively and then remains

steady. For Ours+HG and Ours+Freq, ARE keeps roughly steady.

However, as 𝜆 increases, the throughput of all Double-Anonymous

sketch applications drops severely: on average, throughput when

𝜆 = 64 is 2.3 times smaller than throughput when 𝜆 = 1. Therefore

in practice, we choose 𝜆 = 8 as the best setting.

Varying

𝑀𝑡𝑜𝑝−𝐾
𝑀

(Figure 8(c)-8(d)): We find that F1 scores grow

as

𝑀𝑡𝑜𝑝−𝐾
𝑀

increases, since F1 scores are only determined by the

top-𝐾 part. However, we find that when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≥ 0.55, growth

rate of F1 scores of all Double-Anonymous sketch applications

becomes slow if

𝑀𝑡𝑜𝑝−𝐾
𝑀

continues to increase. In addition, in this

experiment,𝑀 = 100KB is tight, and if𝑀 becomes larger, growth

of F1 scores contributed by

𝑀𝑡𝑜𝑝−𝐾
𝑀

will become more negligible.

Besides, Ours+HG and Ours+RA reach their respective minimal

ARE score when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≈ 0.55 (2.7 and 1.8 times smaller than

when

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.05 and 2.5 and 3.0 times smaller than when

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.95), while Ours+Freq and Ours+SS reach their minimal

ARE when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≈ 0.75. In practice, we choose

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.55 as

the default parameter setting.

Analysis: 1) Among the four replacement policies, Ours+RA and

Ours+HG often have higher performance than Ours+Freq and

Ours+SS. Specifically, Ours+RA has more advantages in F1 score,

while Ours+HG has more advantages in ARE. Considering that

Ours+RA has higher throughput, we recommend using Ours+RA in

practice. 2) However, although Ours+Freq and Ours+SS are slightly

inferior in accuracy, Freq and SS are famous for their formal and

comprehensive error theories and error bounds. Benefiting from

their theories, we suggest that Ours+Freq and Ours+SS should be

considered in scenarios where exact error guarantees are required.

6 CONCLUSION

In this paper, we propose the Double-Anonymous sketch, which

is the first work that achieves top-𝐾-fairness of global top-𝐾 . We

theoretically prove that the Double-Anonymous sketch achieves

both unbiasedness and double-anonymity, so as to achieve top-𝐾-

fairness. We conduct extensive experiments on three real and one

synthetic dataset. Our experimental results show that compared

with the state-of-the-art, our algorithm improves the accuracy 129

times.
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