
CuckooGraph: A Scalable and Space-Time Efficient
Data Structure for Large-Scale Dynamic Graphs

Zhuochen Fan∗†, Yalun Cai†, Zirui Liu†, Jiarui Guo†, Xin Fan‡, Tong Yang†, Bin Cui†
∗Pengcheng Laboratory, China †School of Computer Science, Peking University, China ‡Wuhan University, China

{fanzc,caiyalun,zirui.liu,ntguojiarui,yangtong,bin.cui}@pku.edu.cn, xin.fan@whu.edu.cn

Abstract—Graphs play an increasingly important role in var-
ious big data applications. However, existing graph data struc-
tures cannot simultaneously address the performance bottlenecks
caused by the dynamic updates, large scale, and high query
complexity of current graphs. This paper proposes a novel data
structure for large-scale dynamic graphs called CuckooGraph. It
does not require any prior knowledge of the upcoming graphs,
and can adaptively resize to the most memory-efficient form
while requiring few memory accesses for very fast graph data
processing. The key techniques of CuckooGraph include TRANS-
FORMATION and DENYLIST. TRANSFORMATION fully utilizes
the limited memory by designing related data structures that
allow flexible space transformations to smoothly expand/tighten
the required space depending on the number of incoming items.
DENYLIST efficiently handles item insertion failures and further
improves processing speed. Our experimental results show that
compared with the most competitive solution Spruce, Cuckoo-
Graph achieves about 33× higher insertion throughput while
requiring only about 68% of the memory space.

I. INTRODUCTION

A. Background and Motivation

Graphs can intuitively represent various relationships be-

tween entities and are widely used in various big data appli-

cations, such as user behavior analysis in social/e-commerce

networks [1]–[3], financial fraud detection in transactional sys-

tems [4]–[6], network security and monitoring in the Internet

[7]–[9], and even trajectory tracking of close contacts of the

COVID-19 epidemic [10], [11], etc. Correspondingly, graph

analytics systems also play an increasingly significant role,

responsible for storing, processing, and analyzing graph-like

data well.

As an essential part of graph analytics systems, graph

storage schemes are facing challenges introduced mainly by

the following properties of graph data: � Fast update: graphs

always arrive quickly and are constantly dynamic [12]–[14].

This requires the storage structure to be updated at high speed.

� Large data scale: graphs can even reach hundreds of millions

of edges [15]–[17]. This requires the storage structure to be

flexibly adapted to the data scale. � High query complexity:

graphs have complex topologies, and their node degrees are

often unevenly distributed and follow a power-law distribution

[18]–[20]. This means that graphs usually consist of mostly

low-degree nodes and a few high-degree nodes. Querying the

Co-first authors: Zhuochen Fan, Yalun Cai, and Zirui Liu. Corresponding
author: Tong Yang (yangtong@pku.edu.cn).

neighbors of high-degree nodes takes longer, while low-degree

nodes take less time. However, the former is more likely to be

queried and updated than the latter. This imbalance leads to

poor query performance and hinders further optimization. In

summary, an ideal graph storage scheme can achieve memory-

saving, fast processing speed, and good update and expansion

performance to deal with any unknown graphs.

Currently, most existing graph storage and database schemes

[21]–[41] use the following two as basic data structures:

adjacency list and compressed sparse row (CSR), but neither

of them directly supports large-scale dynamic graphs. The

most widely used adjacency list represents node connections

intuitively and is easy to edit (such as adding or removing

edges). However, due to its non-contiguous memory alloca-

tion and inefficiency in accessing non-neighbor edges, this

pointer-intensive data structure is prone to significant space-

time overhead as the graph size grows. The CSR provides a

more compact array-based representation that is more memory

efficient and suitable for fast traversal. However, the CSR is in-

herently static and struggles with updates for dynamic graphs,

as its update usually requires completely rebuilding the CSR

structure, which is computationally expensive and inefficient.

In order to accommodate large-scale dynamic graphs, the data

structures of many state-of-the-art graph storage schemes are

evolved from adjacency lists or CSRs. Unfortunately, they

cannot completely avoid the above-mentioned shortcomings

of the adjacency list or CSR itself, so that they cannot solve

the above ��� at the same time or have various limitations,

and there is still room for improvement. For example, Spruce

[36], the most competitive solution whose basic data structure

is based on adjacency lists, still needs to record many pointers.

B. Our Proposed Solution

In this paper, we propose a novel data structure for storing

large-scale dynamic graphs, namely CuckooGraph. It has

the following advantages: 1) It is memory-saving and can be

flexibly expanded or contracted according to actual operations;

2) It basically maintains the fastest running speed in a series

of graph analytics tasks; 3) It works for any graph of unknown

size without knowing any information about it in advance.

The design philosophy of CuckooGraph is as follows.

Instead of using the traditional adjacency list or CSR, we

choose a hash-array-based data structure to improve time and

space efficiency when handling large-scale dynamic graphs.

Specifically, we utilize a (large) cuckoo hash table (L-CHT)

[42] as the basic data structure with a finer-grained partitioning

of the space in each bucket. We assume that the edge 〈u, v〉 is

is mapped and will be stored in this bucket. Initially, part of

the bucket space is used to store node u, and the other part,

which is divided into an even number of small slots, is used

to store node(s) v. Then, L-CHT decides whether to perform

our TRANSFORMATION technique based on the degree (the

number of incoming v) of the u: 1) When the node degree

is small: this sparsity is more consistent with most graphs

in reality, then we sequentially store the incoming v into the

small slots. 2) When the node degree exceeds the specified

number of small slots: these small slots merged in pairs to

form several large slots with one of them deposited into the

first pointer to the first (small) cuckoo hash table (S-CHT)

that has just been activated, and all v is transferred into that

large-capacity S-CHT to accommodate more incoming v. 3)

When the node degree is even larger: S-CHT is incremented

with some regularity, to cope with the large increase of v; and

of course, it can also be decremented with some regularity to

handle v deletions. In short, our TRANSFORMATION smoothly

expands or shrinks the space through a series of spatial

transformations to adapt to the increase or decrease of v, while

ensuring that few accesses are required even in the worst case.

It greatly reduces the number of pointers and makes full use

of limited memory space while ensuring speed.

Although we seem to fully guarantee time and space effi-

ciency through the well-designed L/S-CHT, the shortcomings

of cuckoo hashing itself have not yet been addressed. As the

memory space becomes tight due to the increase in incoming

items, item replacement caused by hash collisions may occur

frequently and may cause insertion failures. On the one hand,

not handling insertion failures may result in CuckooGraph no

longer being error-free, which is unacceptable; on the other

hand, we can also address it by directly expanding Cuckoo-

Graph every time an insertion failure occurs, but this may

make it slower. Therefore, we further propose the DENYLIST

optimization, which aims to cooperate with the TRANSFOR-

MATION technique to efficiently accommodate those items that

fail to be inserted. Our ablation experiments have verified that

this optimization can improve insertion and query through-

put with almost no additional memory overhead. For more

details on CuckooGraph’s TRANSFORMATION technique and

DENYLIST optimization, please refer to § III-A1 and § III-A2,

respectively. Further, we also propose an extended version

of CuckooGraph for streaming scenarios to support duplicate

edges in § III-B.

The rest of this paper is organized as follows. We theoret-

ically prove that the time and memory cost of CuckooGraph

is desirable through mathematical analysis in § IV. We con-

duct extensive experiments on 7 large-scale graph datasets

with different characteristics to evaluate the performance of

CuckooGraph on basic tasks and graph analytics tasks. The

results clearly show that CuckooGraph has the fastest speed

and the lowest memory overhead on almost all tasks. Finally,

CuckooGraph is integrated into Redis and Neo4j databases as

use cases. See § V for more details. All relevant source code

is already open source on Github [43].

Main Experimental Results: 1) For basic tasks (§ V-D), the

insertion and query throughput of CuckooGraph is on average

32.66× and 133.62× faster than those of Spruce, respectively,

while its memory usage is on average 1.47× less than that of

Spruce (i.e., only 68.03% of its); 2) For graph analytics tasks

(§ V-E), the running time of CuckooGraph on 7 typical tasks

(Breadth-First Search, Single-Source Shortest Paths, Triangle

Counting, Connected Components, PageRank, Betweenness

Centrality, and Local Clustering Coefficient) is on average

0.73×, 168.45×, 21.33×, 1.07×, 1.03×, 16.17×, and 5.80×
faster than those of Spruce, respectively.

II. RELATED WORK

In this section, we introduce graph storage schemes whose

main contribution lies in data structure design and Cuckoo

Hash Table (CHT)—the most basic data structure of Cuckoo-

Graph, in § II-A and § II-C, respectively.

A. Existing Solutions

There are many existing works with the concept of dynamic

graph storage, only some of which focus on optimizing graph

updates (insertion, deletion, and attribute change, etc.) at the

algorithm level. Most of them have data structures based on

or improved on adjacency lists or CSRs. Of course, there are

also other or hybrid ones. We only select representatives to

introduce for the sake of space.

Adjacency list-based: GraphOne [29] uses a complementary

combination of adjacency lists and edge log lists. The adja-

cency list stores snapshots of old data, while the edge log

records the latest updates, which periodically transfers data

into the adjacency list in batches. LiveGraph [30] uses the

proposed Transactional Edge Log (TEL) and Vertex Blocks

(VB) to store edge information and nodes, respectively. In

TEL, edge insertions and updates are performed in the form

of log entries in a specified order. RisGraph [31] uses the

proposed indexed adjacency lists and sparse arrays. The

indexed adjacency list is a dynamic array including arrays

and edge indexes for continuous storage, while the sparse

array is used for updates to avoid unnecessary data access.

Sortledton [34] uses a customized adjacency list, including

the expandable adjacency index and adjacency set, to store the

mapping from nodes to edge sets and the neighbors of each

node, respectively. Wind-Bell Index (WBI) [35] consists of an

adjacency matrix and many adjacency lists, where each bucket

of the matrix is associated with an adjacency list through a

pointer. It selects the shortest hanging list through multiple

hashes to address the slow query caused by node degree

imbalance that is not considered in existing graph databases.

Spruce [36] consists of an edge-storage part and a node-

indexing part similar to the vEB tree. The edge-storage part

is based on the adjacency list and is used to store the edges

as well as attributes. The node-indexing part includes a hash

table and a bit vector. It is used to record node identifiers

and map nodes to their connected edges. Also, it divides the

TABLE I: Symbols used in this paper.

Notation Meaning
〈u, v〉 A distinct graph item

L-CHT The large cuckoo hash table

H1(.), H2(.) Two hash functions associated with L-CHT

S-CHT The small cuckoo hash table

h1(.), h2(.) Two hash functions associated with S-CHT(s)

n The length of 1st S-CHT

R The number of large slots in Part 2 of each cell

LR The loading rate

G The preset LR threshold for expansion

Λ The preset overall LR threshold for contraction

L-DL Denylist for L-CHT(s)

S-DL Denylist for S-CHT(s)

T Maximum number of loops in L/S-CHT

w Weight, or number of times 〈u, v〉 is repeated

8-byte identifier into 4, 2, 2, where 4 is stored in the hash

table to share the same hash address, and two 2s are stored

in the bit vector associated with the edge storage part. In this

way, Spruce achieves low memory consumption and efficient

dynamic operations, but it still needs to record quite a few

pointers to any graph.

CSR-based: To address the problem that CSR is not suitable

for dynamic graphs, PCSR [26] replaces the array storing

neighbors in CSR with the packed memory array (PMA)1

[44], which essentially maintains an implicit complete binary

search tree. To avoid frequent rebalance of PCSR, VCSR [33]

maintains PMA by reserving empty slots between nodes in

proportion to the current node degree. Teseo [45] mainly uses

PMAs as leaf nodes of improved B+ trees for graph updates,

but only supports undirected graphs. Each PMA is divided into

several expandable segments, and a hash table maps nodes to

locations within the segment.

Other-based: Terrace [13] decides which data structure to

use for storage based on the node degree: 1) Nodes with

few neighbors are stored in an sorted array; 2) Nodes with a

medium number of neighbors are stored in a PMA; 3) Nodes

with many neighbors are stored in a B+ tree. However, its

biggest drawback is that the number of nodes for the workload

must be known in advance.

B. Orthogonal Work

Recently, there are notable works such as VEND [46] that

aim to accelerate edge queries by filtering no-result edges,

which are orthogonal to graph storage/databases. Since most

node pairs in the real world have only no-edge connections,

VEND introduces a novel data structure for nodes to store

redundant neighbor information based on range and hash

solutions. We leave the possibility of applying VEND to

CuckooGraph as future work.

C. Cuckoo Hashing

Cuckoo Hashing (or Cuckoo Hash Table, CHT) [42] con-

tains two hash tables, each associated with a hash function.

1PMA is a dynamic array used to maintain an ordered collection of items.
It balances item insertion and deletion operations by interspersing empty slots
within the array to optimize access and modification performance.

Each newly inserted item is mapped to two candidate buckets

(one in each table), and one of the two buckets will be selected

to store it. If at least one of the two candidate buckets is empty,

CHT stores the item in an empty bucket. If both candidate

buckets are full, CHT randomly selects one of the stored items

to kick out, and the kicked out item will be re-inserted into its

another candidate bucket. This process is repeated until each

item finds a bucket to settle down, or reaches the maximum

kick-out threshold and has to exit, which means that there

is an item insertion failure. To query an item, CHT only

needs to directly check the two candidate buckets through two

hash functions. Therefore, CHT has a high loading rate and

O(1) query time complexity. However, in the worst case, item

insertions take a lot of time while still failing as described

above, especially when CHT has a high loading rate.

III. CUCKOOGRAPH DESIGN

In this section, we present the basic version of CuckooGraph

that does not support duplicate edges in § III-A and the ex-

tended version of CuckooGraph that supports duplicate edges

in § III-B, respectively. The symbols (including abbreviations)

frequently used in this paper are shown in Table I.

A. Basic Version

1) Foundation Stage (Transformable Data Structures):
As shown in Figure 1 (Foundation Stage), the basic data

structure of CuckooGraph consists of one (or more) large

cuckoo hash table(s) (denoted as L-CHT(s)) and many small

cuckoo hash tables (denoted as S-CHTs) associated with

it/them, all of which are specially designed.

L-CHT has two bucket arrays denoted as B1 and B2,

respectively, associated with two independent hash functions

H1(.) and H2(.), respectively2. Each bucket has d cells, each

of which is designed to have two parts: Part 1 and Part 2. For

any arriving graph item 〈u, v〉, assuming it is mapped to bucket

BH and deposited in the cell C, then: Part 1 of C is used to

store u, while Part 2 of C is directly used to store v or the

pointer(s) pointing to S-CHT which is used to actually store v.

In Foundation Stage (red box), Part 2 is designed as a structure

that can be flexibly transformed in a manner determined by

the number of v (denoted as l) corresponding to u in Part 1,

as shown below: � Part 2 is initialized to 2R small slots, i.e.,
up to 2R v can be recorded, to handle the situation where

l ≤ 2R; � When l > 2R, 2R small slots are merged in pairs

to form R large slots dedicated to storing R pointers usually

with more bytes, and 1st large slot is deposited with a pointer

that points to 1st S-CHT; Then, all the current v are stored

into this S-CHT of length3 n.

Next, we proceed to describe the transformation strategies

of S-CHT and L-CHT to efficiently cope with the increasing

l as follows: 1) If the growing l causes the loading rate (LR)

2The basic structure of S-CHT is no different from that of L-CHT, except
for the length and the association with two other independent hash functions
h1(.) and h2(.).

3We define the length of CHT as the number of buckets in the array with
more buckets.

L-C
H
T

L-DL

S-DL

Fig. 1: Data structure and examples of CuckooGraph. For clarity, only one hash table per L/S-CHT is shown.

of the 1st S-CHT to reach the preset threshold G before the

current v arrives, we enable the 2nd pointer and store it in the

2nd large slot, as well as simultaneously enables the 2nd S-

CHT; 2) By analogy, when LR of the (R− 1)-th S-CHT also

reaches G, we continue to enable the R-th pointer and S-CHT

similarly. Here, we allocate the length of each newly enabled

S-CHT in a memory-efficient manner, which is specifically

related to the R value. We illustrate the transformation rule

of length with R = 3, when there are at most 3 S-CHTs, as

shown in Table II. When 0 → 1 and 1 → 2 occur, the 2nd

and 3rd S-CHTs with a length of 0.5n are enabled in turn;

When 2 → 3 occurs, the 1st, 2nd and 3rd S-CHTs are merged

at once into a new 1st S-CHT of length 2n on the 1st pointer,

and the new 2nd S-CHT with length n is enabled on the 2nd

pointer; and so on. In summary, different R values correspond

to different transformation rules, and such rules can also be

applied to L-CHT to better handle unpredictable large-scale

graphs.

Reverse Transformation: We introduce reverse transforma-

tion strategies for S-CHT and L-CHT to efficiently cope with

the decreasing l. Similar to the situation where l increases,

if the deletion of the current v happens to cause the overall

loading rate of the S-CHT chain4 to be lower than another

threshold Λ, then we delete/compress the S-CHT where the v
was originally located as follows: 1) If there are two or more

S-CHTs on the S-CHT chain, we delete the current S-CHT and

transfer the previously stored v on it to other S-CHTs; 2) If

there is only one S-CHT left on the S-CHT chain, we compress

the length of the S-CHT to half of the original length. The
above processing can be applied similarly to L-CHT.

2) Optimization Stage (Denylist):
There is one aspect of our design that has not been consid-

ered so far: the original CHT may suffer from item insertion

failures. A straightforward solution is to extend CuckooGraph

via the transformations described above whenever an insertion

4For convenience, we call all S-CHT(s) associated with the pointers
corresponding to each u a S-CHT chain.

TABLE II: An Example of Transformation Rule

LR > G the 1st S-CHT the 2nd S-CHT the 3rd S-CHT

0 n null null
1 n n/2 null
2 n n/2 n/2
3 2n n null
4 2n n n
5 4n 2n null
6 4n 2n 2n
7 8n 4n null

...

failure occurs. To address this issue more efficiently, we further

propose an optimization called DENYLIST (DL), as shown in

Figure 1 (Optimization Stage).

DL is actually a vector with a size limit. In CuckooGraph,

all S-CHT(s) and L-CHT(s) are each equipped with a DL,

denoted as S-DL and L-DL, respectively. However, S-DL and

L-DL are organized differently: 1) Each unit of S-DL records

a complete graph item, i.e., a 〈u, v〉 pair; 2) While L-DL’s

is consistent with that of each cell of L-CHT(s), so that even

if u is kicked out during item replacement, the associated S-

CHT(s) does not need to be copied/moved. S-DL and L-DL are

used to accommodate those that are ultimately unsuccessfully

inserted into S-CHT(s) and L-CHT(s), respectively. Let’s take

S-DL, which cooperates with S-CHT(s), as an example for a

more detailed explanation, as follows: 1) Initially, we assume

that v is attempted to be inserted into an arbitrary S-CHT; 2)

When the total number of kicked out exceeds the threshold T
and there is still an unsettled v′, the insertion fails, then v′ and

its corresponding u′ is placed in S-DL; 3) Each time it is the

S-CHT’s turn to expand, we insert those v′′ in S-DL whose

u′′ exactly match the u′′ present in the current S-CHT into the

new S-CHT. 4) Subsequently, S-DL continues to accommodate

all failed insertion items as usual.

3) Operations:
By introducing the operations of CuckooGraph below, we

aim to show how it can handle dynamically updated large-

scale graphs.

Insertion: The process of inserting a new graph item e =
〈u, v〉 mainly consists of three steps, as follows:

• Step 1: We first query whether e is already stored in

CuckooGraph through the Query operation below. If so,

e is no longer inserted; otherwise, proceed to Step 2.

• Step 2: By calculating hash functions, we map u to a bucket

BH of L-CHT and try to store it in one of the cells. There

are three cases here: � u is mapped to BH for the first time

and there is at least one empty cell in the bucket. Then, we

store u in Part 1 of an arbitrary empty cell, and store v in

Part 2. See § III-A1 for extensions of related data structures

that may be triggered by the arrival of v. � u is mapped

to BH for the first time but the bucket is full. Then, we

randomly kick out the resident u′ in one of the cells and

store u in it. The remaining operations are the same as �.

For this kicked-out u′, we just re-insert it. � If u has been

recorded in BH , we directly store v in Part 2.

• Step 3: For any u and v that were not successfully inserted

into Part 1 and Part 2 (in case of S-CHT), respectively,

we store the relevant information in L-DL and S-DL,

respectively.

Next, we illustrate the above insertion operations through

the examples in Figure 1. For convenience, we assume that

R = 3 and that there is only one bucket array for each L-

CHT and S-CHT, associated with hash functions H(.) and

h(.), respectively.

Example 1: For the new item 〈u2, v3〉, it is mapped to B[0].
There is one cell in B[0] that has already recorded u2, but

the small slots in Part 2 has recorded 2R v in total. Then, we

transfer all v to the 1st S-CHT by computing the hash function

h(.).
Example 2: For the new item 〈u9, v1〉, it is mapped to B[8]. u9

has been recorded in B[8], but LR of the 1st S-CHT exceeds

G. Then, we map the qualified v (v10 and v19) in S-DL and

v1 to the 2nd S-CHT with half the previous length.

Example 3: For the new item 〈u7, v9〉, it is mapped to B[m−
1]. Since B[m − 1] is already full, we randomly kick out an

unlucky u6 and stores u7 in Part 1 of the new empty cell, and

stores v9 in the 1st small slot of Part 2. Then, we try to map

u6 into another bucket. Suppose one u is not settled in the end

and it happens to be u6. We have to place it in L-DL, along

with the pointer associated with it.

Query: The process of querying a new graph item e = 〈u, v〉
mainly consists of two steps, as follows:

• Step 1: Query whether u is in L-CHT, otherwise check
whether it is in L-DL. Specifically, we first calculate hash

functions to locate a bucket BH that may record u, and

then traverse BH to determine whether u exists. If so, we

directly execute Step 2; otherwise, we further query L-DL:

if u is in L-BS, proceed to Step 2; otherwise, return null.

• Step 2: Query whether u has a corresponding v in Part 2. If

so, we directly report it; otherwise, we further query S-DL:

if v is in S-DL, report it; otherwise, return null.

Deletion: To delete a graph item, we first query it and then

delete it. For compression of related data structures that may

be caused by deleting this item, see Reverse Transformation
in § III-A1.

B. Extended Version

The base version of CuckooGraph can be easily extended

into a new version that efficiently supports storing duplicate

edges, as designed for streaming scenarios.

Data Structure: We only need to make a few customized

modifications based on the transformable data structure pro-

posed in Section III-A1. Specifically for S-CHT, each small

slot in Part 2 needs to change from storing only v to storing

both v and weight w. As more information is recorded, the

number of small slots changes from 2R to R accordingly, i.e.,
the space of two small slots is used to store 〈v, w〉.

Next, we describe the operations related to the weighted

version of CuckooGraph, focusing only on its differences from

the basic version for better intuition.

Insertion: The main difference from the basic version is that

when it is initially discovered that the item 〈u, v〉 already

exists, it changes from doing nothing to incrementing the

corresponding w by 1 (or other defined value, the same below)

and then returning.

Query: Report the item and return the value of w.

Deletion: We decrement the w of the item by 1 and delete

the item when the weight is reduced to 0.

IV. MATHEMATICAL ANALYSIS

In this section, we theoretically analyze the performance of

CuckooGraph (basic version). Specifically, we show its time

and memory complexity.

A. Time Cost of CuckooGraph

In this part, we assume that there is only insertion operation

in CuckooGraph. First, we show a theorem with respect to

multi-cell cuckoo hash tables. Then, we analyze the insertion

time complexity of CuckooGraph based on it. Finally, we

analyze the time cost of the expansion process.

Theorem 1. Assume that a cuckoo hash table has m buckets,
each bucket has d cells, and there are n distinct items to
insert. Let dm = (1+ε)n. If d ≥ max

{
8, 15.8 ln 1

ε

}
, then the

expected time complexity for inserting an item is (1ε)
O(log d).

This theorem is based on the relevant proof in [47].

Since the LR is defined as n
dm , by setting ε = dm

n − 1 ≥
1
G − 1, the expected time cost for inserting an item can be

calculated as (G
1−G)O(log d). If we set T as the maximum

number of loops for L-CHT, then the worst-case insertion

time cost can be further written as O(T), or O(1) if T is

not very large. Here, we provide an experiment to verify the

above: We expand CuckooGraph starting from the minimum

length and insert all the edges of NotreDame Dataset into

it in sequence. It can be calculated that the average number

of insertions per item in L-CHT and S-CHT considering the

expansion is about 1.017 and 1.006, respectively, which is

much less than T (T = 250 in the experiments in § V).

TABLE III: Comparison of complexity between different solutions.

Algorithm
Amortized Time Complexity

Space Complexity
Insert Edge 〈u, v〉 Query Edge 〈u, v〉

LiveGraph [30] O(1) O(deg(v)) O(|E|)
Spruce [36] O

(|E|
|V |

)
O

(
log

|E|
|V |

)
O(|E|)

Sortledton [34] O(log |E|) O(log |E|) O(|E|)
WBI [35] O(1) O(

|E|
K2) O(K2 + |E|)

CuckooGraph (Ours) O(1) O(1) O(|E|)

Then, we analyze the amortized cost of inserting N edges

into CuckooGraph. We assume that two hash functions H1, H2

in L-CHT are the same modular hash functions. The insertion

time complexity of CuckooGraph can be summarized as

follows:

Theorem 2. Assume that the L/S-DL are never full during
insertion procedure and inserting an edge into L-CHT (not
triggering L-CHT expansion) costs 1 dollar, then the price of
inserting N edges into L-CHT will not exceed 3N dollars,
and its expectation will not exceed 2.25N dollars.

Proof. We first analyze the cost of merging and expansion:

Assume that the 1st, 2nd, 3rd L-CHT stores x, y, z distinct

u respectively. When merging L-CHT, we re-hash every u
and re-insert it into the merged L-CHT if its hash value does

not match its bucket index. The hash functions are the same

modular hash functions, and the size of the merged L-CHT is

2 times larger than 1st L-CHT, and 4 times larger than 2nd and

3rd L-CHT. Hence, the probability to re-insert every u is 1
2 in

1st L-CHT, and 3
4 in 2nd and 3rd L-CHT. In conclusion, the

price of merging operation will not exceed x+ y + z dollars,

and its expectation is 1
2x+ 3

4 (y + z) dollars.

Then, we assume that after inserting N edges, the 1st L-

CHT has 2kn cells, and it has n cells before insertion. Assume

that the 1st, 2nd, 3rd L-CHT stores xi, yi, zi distinct u before

i-th merging and expansion, then xi ≤ 2i−1Gn, yi, zi ≤
2i−2Gn. Hence, the total cost of merging and expansion will

not exceed

2Gn+ 4Gn+ 8Gn+ · · ·+ 2kGn = 2(2k − 1)Gn,

and its expectation is

5

4
Gn+

5

2
Gn+ · · ·+ 5 · 2k−3Gn =

5

4
(2k − 1)Gn.

If N ≤ 2Gn, then the insertion costs N dollars in total;

otherwise, the LR of L-CHT is smaller than G but greater

than 2
3G, hence N ≥ 2

3G · (2kn + 2k−1n) = 2kGn and the

total cost of merging and expansion will not exceed 2N . In

conclusion, the price of inserting N edges into L-CHT will

not exceed N + 2N = 3N dollars, and its expectation will

not exceed N + 5
4 ·N = 2.25N .

B. Memory Cost of CuckooGraph

In this part, we take both insertion and deletion operations

into consideration. We first define a stable state for L/S-CHT

and analyze its property. Then, we show the memory cost of

CuckooGraph under the stable state. We assume that Λ ≤ 2
3G

in this part.

Definition 3. We define a group of L/S-CHTs as stable, if its
overall loading rate (LR) is at least Λ.

The property of stable state is that, once a group of L/S-

CHTs is stable, then it will be stable with high probability.

Lemma 4. Assume that the number of graph items inserted
into the L/S-CHTs at time t are l and s, respectively. If a group
of L/S-CHTs is on stable state at time t, then it will always
stay on stable state if the number of items in this group of
L/S-CHTs is at least l and s.

Proof. Since a group of L/S-CHTs is on stable state, its LR
must be greater than Λ. Then, once its LR is greater than G,

then the hash table will expand 4
3 or 3

2 times to its original size.

And once its LR is less than Λ, the hash table will contract

if possible. As a result, if the number of items in this group

of L/S-CHTs is at least l and s, then the size of the L/S-

CHTs will not be smaller after time t. Therefore, its LR is

still greater than Λ after expansion.

Theorem 5. Assume that the L/S-DL are never full during
insertion procedure and the L/S-CHTs are all on stable state.
The upper bound of cells is |V |

Λ for L-CHT and |E|
Λ for all

S-CHT (not including the L/S-DL), where |V | denotes the
number of distinct nodes, and |E| denotes the number of
distinct edges.

Proof. We first analyze the number of cells in L-CHT: Since

there are |V | distinct nodes in the graph, they occupy at most

|V | cells in L-CHT. The lower bound of LR is Λ on stable

state, so L-CHT has at most
|V |
Λ cells.

Then, we analyze the number of cells in S-CHT: Assume

that V = {u1, · · · , u|V |}, and the number of edges starting

from ui is fi. Since all groups of S-CHTs are on stable state,

then the S-CHT for ui has at most fi
Λ cells. Hence, all S-CHT

occupy at most f1
Λ + · · ·+ f|V |

Λ ≤ |E|
Λ cells.

C. Discussions

In this part, we provide Table III to summarize the time and

space complexities of CuckooGraph and some state-of-the-art

schemes (i.e., competitors mentioned in § V). Here, K refers

to the length/width of the matrix, which is a parameter of WBI.

In summary, our CuckooGraph has an insertion and query time

complexity of O(1) when Theorem 1 holds and T is not very

large, while its space complexity is still O(|E|). The previous

analysis in § IV-B also proves that its space overhead is very

small.

V. EVALUATION

In this section, we evaluate the performance of Cuck-

ooGraph through extensive experiments, which are briefly

described as follows: 1) We introduce the experimental setup

in § V-A; 2) We evaluate how key parameters affect Cuck-

ooGraph in § V-B; 3) We verify the effect of DENYLIST

optimization through ablation experiments in § V-C; 4) We

evaluate the insertion, query, and deletion throughput as well

as memory usage of CuckooGraph and its competitors in

§ V-D; 5) We evaluate the running time of CuckooGraph and

its competitors on graph analytics tasks (BFS, SSSP, TC, CC,

PR, BC, LCC) in § V-E; 6) We deploy CuckooGraph on Redis

and Neo4j databases and evaluate the speed in § V-F and

§ V-G, respectively.

A. Experimental Setup
Platform: We conduct all the experiments on a 18-core CPU

server (36 threads, Intel(R) Core(TM) i9-10980XE CPU @

3.00GHz) with 128GB DRAM memory. It has 64KB L1 cache,

1MB L2 cache for each core, and 24.75MB L3 cache shared

by all cores.
Implementation: We implement CuckooGraph and the other

competitors with C++ and build them with g++ 7.5.0 and -

O3 option. The hash functions we use are 32-bit Bob Hash

(obtained from the open-source website [48]) with random

initial seeds. For CuckooGraph, we set R = 3, as well as

the ratio of the number of buckets in the two arrays of L/S-

CHT is 2:1, and whether the basic or extended version of

CuckooGraph is used depends on whether the dataset has

repeated edges.
Competitors: Since there are many related works on dynamic

graph storage, we rigorously select some of the SOTA ones

from recent years for experimental comparison: LiveGraph

[30], Sortledton [34], Wind-Bell Index (WBI) [35], and Spruce

[36].
Datasets: We use various graph datasets to comprehensively

evaluate the performance of CuckooGraph and its competitors,

and the details are shown in Table IV. 1) The CAIDA dataset

[49] is streams of anonymized IP traces collected by CAIDA.

Each flow is identified by a five-tuple: source and destination

IP addresses, source and destination ports, protocol. The

source and destination IP addresses in the traces are used

as the start and end nodes of the graphs, respectively. 2)

The NotreDame dataset [50] is a web graph collected from

University of Notre Dame. Nodes represent web pages, and

directed edges represent hyperlinks between them. 3) The

StackOverflow dataset [51] is a collection of interactions on

the stack exchange website called Stack Overflow. Nodes

represent users and edges represent user interactions. 4) The

WikiTalk dataset [52] is a collection of user communications

obtained from English Wikipedia, and the nodes and edges re-

fer to the same as above. 5) The Weibo dataset [53] is captured

from Sina Weibo Open Platform APIs, and the definitions of

nodes and edges are similar to those of StackOverflow. 6)

We synthesize the DenseGraph dataset. 7) We synthesize the

SparseGraph dataset.

Metrics: We use the following key metrics.

• Throughput: It is defined as Million Operations Per Sec-

ond (Mops). We use Throughput to evaluate the average

insertion, query, and deletion speed.

• Memory Usage: It is defined as the memory used to store

a specified amount of edges.

• Running Time: It is defined as the time spent performing

the specified graph analytics tasks.

B. Experiments on Parameter Settings

In this subsection, we measure the effects of some key

parameters for CuckooGraph, namely, the number of cells per

bucket in L/S-CHT d, the preset LR threshold for expansion

G, and the maximum number of loops in L/S-CHT T. This

experiment evaluates the effects by: 1) We first batch inserting

edges in the CAIDA dataset into CuckooGraph and then batch

querying them from CuckooGraph, and measure the average

throughput separately; 2) We measure the memory usage by

continuously inserting edges.

Effects of d (Figure 2(a))-2(c): Our experimental results
show that the optimal values of d is 4 and 8. We find that

d = 8 and d = 4 enable the fastest insertion and query

throughput of CuckooGraph, respectively. Also, the memory

usage of CuckooGraph with d = 4 and d = 8 is the least and

second least, respectively. Considering that smaller d means

smaller LR, we set d = 8.

Effects of G (Figure 3(a))-3(c): Our experimental results
show that the overall performance is best when the value of
G is 0.9. We find that the insertion and query throughput of

CuckooGraph with G of 0.8, 0.85, and 0.9 are very close

to each other, and all are faster than the one at G of 0.95.

In addition, the larger G is, the smaller the memory usage

of CuckooGraph is. Thus, we set G = 0.9 after the above

considerations.

Effects of T (Figure 4(a))-4(c): The experimental results
show that CuckooGraph achieves most ideal performance
at T of 150 and 250. We find that CuckooGraph has the

fastest insertion and query throughput when T is 150 and

250, respectively. Meanwhile, different values of T make no

difference to the memory usage of CuckooGraph. Hence, we

set T = 250.

C. Ablation Experiments

In this subsection, we conduct ablation experiments to

evaluate the individual effects of DENYLIST (DL) optimization

on CuckooGraph performance to verify its effectiveness. Our

methodology is that every time an insertion failure occurs, we

expand the size of CuckooGraph to 1.5× its original size. We

use the CAIDA dataset and evaluate the effects in terms of

insertion and query throughput as well as memory usage.

Effects of DL (Figure 5): The experimental results show
that DL indeed further speeds up insertion and querying

TABLE IV: A brief analysis of the graph datasets used.
Graph Dataset Weighted? # Nodes # Edges # Edges (dedup) Avg. Deg. Max. Deg. Edge Density

CAIDA � 0.51M 27.12M 0.85M 1.66 17950 3.26× 10−6

NotreDame � 0.33M 1.50M 1.50M 4.60 10721 1.41× 10−5

StackOverflow � 2.60M 63.50M 36.23M 13.92 60406 5.35× 10−6

WikiTalk � 2.99M 24.98M 9.38M 3.14 146311 1.05× 10−6

Weibo � 58.66M 261.32M 261.32M 4.46 278491 7.60× 10−8

DenseGraph � 8K 57.59M 57.59M 7199.16 14537 0.90

SparseGraph � 5M 30M 30M 6 6 1.20× 10−6

3 9 15 21 27
9

10

11

12

13

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

d=4 d=8
d=16 d=32

(a) Insertion Throughput

3 9 15 21 27
9

12

15

18

21

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

d=4 d=8
d=16 d=32

(b) Query Throughput

0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

d=4 d=8
d=16 d=32

(c) Memory Usage

Fig. 2: Tuning experiments for parameter d.

3 9 15 21 27
10

11

12

13

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

G=0.8 G=0.85
G=0.9 G=0.95

(a) Insertion Throughput

3 9 15 21 27
13

14

15

16

17

18

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

G=0.8 G=0.85
G=0.9 G=0.95

(b) Query Throughput

0 0.2 0.4 0.6 0.8
0

10

20

30

40

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

G=0.8 G=0.85
G=0.9 G=0.95

(c) Memory Usage

Fig. 3: Tuning experiments for parameter G.

3 9 15 21 27
10

11

12

13

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

T=50 T=150
T=250 T=350

(a) Insertion Throughput

3 9 15 21 27
13

14

15

16

17

18

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

T=50 T=150
T=250 T=350

(b) Query Throughput

0 0.2 0.4 0.6 0.8
0

10

20

30

40

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

T=50 T=150
T=250 T=350

(c) Memory Usage

Fig. 4: Tuning experiments for parameter T .

with almost no additional memory overhead. We find that

the insertion and query throughput of CuckooGraph with

DL optimization is 1.11× and 1.12× faster than that of

CuckooGraph without DL optimization, respectively. Also,

the memory usage of CuckooGraph with DL optimization is

only about 4KB more than that of CuckooGraph without DL

optimization when all items are inserted.

D. Experiments on Throughput and Memory Usage

In this subsection, we evaluate the performance of Cuck-

ooGraph and its competitors in terms of insertion, query,

and deletion throughput and memory usage on various graph

datasets.

Methodology: 1) We insert all edges from the graph dataset

into an empty graph structure, and calculate the average

3 9 15 21 27
11

12

13

14

15

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

Ours (DL) Ours (DL-free)

(a) Insertion Throughput

3 9 15 21 27
14

15

16

17

18

19

20

T
hr
ou
gh
pu
t(
M
op
s)

Inserted Items (M)

Ours (DL) Ours (DL-free)

(b) Query Throughput

0 0.2 0.4 0.6 0.8
0

4

8

12

16

20

24

28

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

Ours (DL) Ours (DL-free)

(c) Memory Usage

Fig. 5: Ablation experiments: CuckooGraph with and without DL optimization.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-4
10-3
10-2
10-1
100
101

Th
ro
ug
hp
ut
(M
op
s)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 6: Insertion throughput on different datasets.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-3
10-2
10-1
100
101
102

Th
ro
ug
hp
ut
(M
op
s)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 7: Query throughput on different datasets.

insertion throughput; 2) We then query all edges from the

graph structure and calculate the average query throughput. 3)

We delete edges one by one and calculate the throughput of

the process after deletions. 4) We first de-duplicate the datasets

to obtain non-duplicated edges, and then insert them into each

scheme one by one. After each insertion, the physical memory

overhead at that moment is output.

Insertion throughput (Figure 6): The results show that, on

the seven datasets, the insertion throughput of CuckooGraph

is 72.17×, 32.66×, 8.60×, and 253.32× faster than that of

LiveGraph, Spruce, Sortledton, and WBI on average, respec-

tively.

Query throughput (Figure 7): The results show that, on

the seven datasets, the query throughput of CuckooGraph is

14.69×, 133.62×, 5.34×, and 287.48× faster than that of

LiveGraph, Spruce, Sortledton, and WBI on average, respec-

tively.

Deletion throughput (Figure 8): The results show that, on

the seven datasets, the deletion throughput of CuckooGraph is

85.47×, 3.63×, 5.01×, and 65.55× faster than that of Live-

Graph, Spruce, Sortledton, and WBI on average, respectively.

Analysis: 1) Thanks to the novel data structure of Cuck-

ooGraph, when inserting or querying an edge, even in the

worst case, only 6 buckets in L-CHT and S-CHT, as well

as two Denylists, are accessed. Since the size of the bucket

and Denylist is fixed, the upper limit on the number of

memory accesses is also fixed and small. Therefore, no matter

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-2
10-1
100
101
102

Th
ro
ug
hp
ut
(M
op
s)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 8: Deletion throughput on different datasets.

how the incoming dataset changes, CuckooGraph can achieve

fast insertion and query. In contrast, other competitors are

designed based on the adjacency list or its variants, so an

edge insertion/query operation often requires multiple memory

accesses and cannot adapt well to changes in the amount and

characteristics of the dataset. 2) For deletions, other schemes

simply delete the target when it is found, while CuckooGraph

may involve additional contraction operations.

Memory Usage (Figure 9(a)-9(g)): The results show that, on

the seven datasets, the memory usage of CuckooGraph when

all item insertions are completed is 5.92×, 1.47×, 4.89×, and

2.34× less than that of LiveGraph, Spruce, Sortledton, and

WBI on average, respectively.

Analysis: CuckooGraph is a customized design based on CHT,

so it does not need to store a large number of pointers like the

schemes based on adjacency lists, which significantly reduces

space overhead. In addition, since CHT has a high loading

rate, CuckooGraph achieves a high loading rate and minimizes

space waste.

E. Experiments on Graph Analytics Tasks

In this subsection, we evaluate the performance of Cuck-

ooGraph and its competitors in terms of running time on the

graph datasets in Table IV through the following typical graph

analytics tasks: Breadth-First Search (BFS), Single-Source

Shortest Paths (SSSP), Triangle Counting (TC), Connected

Components (CC), PageRank (PR), Betweenness Centrality

(BC), and Local Clustering Coefficient (LCC). Note that some

competitors did not complete the experiments within the given

time, so their results are not shown in the provided figures.

1) Breadth-First Search:
Methodology: We first insert all the edges of the entire dataset.

Then, we select a specific number of nodes with the largest

total degree (i.e., the sum of out-degree and in-degree, the

same below), and perform a BFS on these nodes, returning

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(a) CAIDA

0 0.3 0.6 0.9 1.2 1.5
0

20

40

60

80

100

120

140

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(b) NotreDame

0 6 12 18 24 30 36
0

400

800

1200

1600

2000

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(c) StackOverflow

0 1.5 3 4.5 6 7.5 9
0

200

400

600

800

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(d) WikiTalk

0 50 100 150 200 250
0

4000

8000

12000

16000

20000

24000

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(e) Weibo

0 8 16 24 32 40 48 56
0

400

800

1200

1600

2000

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(f) DenseGraph

0 5 10 15 20 25 30
0

400

800

1200

1600

2000

2400

M
em
or
y
U
sa
ge
(M
B
)

Inserted Items (M)

LiveGraph Spruce Sortledton
Ours WBI

(g) SparseGraph

Fig. 9: Memory usage on different datasets.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 10: Running time of BFS on different datasets.

each node and the number of nodes obtained in the order of

BFS traversal. Finally, we calculate the average time taken for

these BFS tasks.

Results (Figure 10): We find that, on the seven datasets (two

for WBI), the running time of CuckooGraph on BFS is 2.34×,

0.73×, 19.83×, and 504.81× faster than that of LiveGraph,

Spruce, Sortledton, and WBI on average, respectively.

Analysis: The most frequently used function of each scheme

in this task is its successor query function. The structure

of CuckooGraph is based on hash tables, so it has good

spatial locality. Therefore, during the process of querying and

traversing the hash tables, the algorithm can achieve excellent

spatial locality, which greatly increases the cache hit rate.

Most other adjacency list-based schemes need to store data in

different memory addresses and then use pointers to link them.

When querying for successors, the time and space locality is

poor and the cache hit rate is low, requiring frequent memory

access, which reduces query efficiency. It is worth noting that

WBI not only has the above shortcomings, but also needs to

access many other redundant edges when querying successors,

so it performs the worst. The advantage of Spruce may be

that its end nodes for finding neighbors can be approximately

regarded as being stored more continuously than the other 3.

2) Single-Source Shortest Paths:
Methodology: We first insert all the edges of the entire dataset.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-5
10-4
10-3
10-2
10-1
100
101
102
103

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 11: Running time of SSSP on different datasets.

Then, we select a specific number of nodes with the largest

total degree to extract subgraphs, and select the 10 nodes with

the largest total degree among these nodes. Note that this refers

to the 10 nodes with the largest total degree on the original

graphs, not on the subgraphs. After that, we use these 10 nodes

as sources to perform Dijkstra algorithm [54] 10 times and

calculate the average time.

Results (Figure 11): We find that, on the seven datasets (six

for Spruce & WBI), the running time of CuckooGraph on

SSSP is 43.64×, 168.45×, 1.62×, and 278.0× faster than

that of LiveGraph, Spruce, Sortledton, and WBI on average,

respectively.

Analysis: The most frequently used function of each scheme

in this task is edge query function. As described in the analysis

in § V-D, CuckooGraph has a huge advantage over other

adjacency list-based schemes in edge query, so CuckooGraph

achieves the best performance in the SSSP task.

3) Triangle Counting:
Methodology: TC means given a node, return the num-

ber of triangles in the graph that contain that node. First,

we perform successor queries to find all 2-hop succes-

sors of the node. Then, we enumerate all possible edges

〈2-hop successor, node〉 composed of the node’s 2-hop suc-

cessors and the node itself to perform edge queries. Finally,

the number of successful queries is the results of TC.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-7
10-5
10-3
10-1
101
103

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 12: Running time of TC on different datasets.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-4
10-3
10-2
10-1
100
101
102

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 13: Running time of CC on different datasets.

Results (Figure 12): We find that, on the seven datasets (five

for WBI), the running time of CuckooGraph on TC is 8.23×,

21.33×, 1.86×, and 3015.11× faster than that of LiveGraph,

Spruce, Sortledton, and WBI on average, respectively.

Analysis: The edge query and successor query functions are

the most frequently used functions in each scheme in this task.

As analyzed in § V-E1 and § V-E2, CuckooGraph can achieve

good performance in these two functions, so it also performs

very well in this task.

4) Connected Components:
Methodology: All edges for the entire dataset are inserted.

We first select a specific number of nodes with the largest

total degree to extract subgraphs, and then insert the subgraphs

into each scheme. Note that the above steps also apply to the
last 3 tasks. After that, we run the Tarjan algorithm [55] on

the subgraphs using each scheme and return the connected

components and their number.

Results (Figure 13): We find that, on the seven datasets, the

running time of CuckooGraph on CC is 2.11×, 1.07×, 9.91×,

and 39.7× faster than that of LiveGraph, Spruce, Sortledton,

and WBI on average, respectively.

Analysis: The most frequently used function of each scheme

in this task is its successor query function. As analyzed in

§ V-E1, CuckooGraph performs well in this function, so it has

an advantage over other schemes in this task.

5) PageRank:
Methodology: The initial steps are the same as those in

§ V-E4. Then, we use the successor query function of each

scheme to assist in constructing the matrix required to solve

the PageRank (PR), and iterate 100 times on the matrix to find

the PR of each node on the subgraphs.

Results (Figure 14): We find that, on the seven datasets, the

running time of CuckooGraph on PR is 2.16×, 1.03×, 2.62×,

and 2.87× faster than that of LiveGraph, Spruce, Sortledton,

and WBI on average, respectively.

Analysis: Each scheme in this task frequently uses the succes-

sor query function to construct the matrix required to calculate

PR. As analyzed in § V-E1, CuckooGraph performs well

in successor query, so it also shows advantages over other

schemes in this task.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-3

10-2

10-1

100

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 14: Running time of PR on different datasets.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-2
10-1
100
101
102
103

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 15: Running time of BC on different datasets.

6) Betweenness Centrality:
Methodology: The initial steps are the same as those in

§ V-E4. Then, we run the Brandes algorithm [56] on the

subgraphs using each scheme.

Results (Figure 15): We find that, on the seven datasets,

the running time of CuckooGraph on BC is 3.15×, 16.17×,

7.33×, and 5.23× faster than that of LiveGraph, Spruce,

Sortledton, and WBI on average, respectively.

Analysis: Similar to the analysis in § V-E4.
7) Local Clustering Coefficient:

Methodology: The initial steps are the same as those in

§ V-E4. Then, we pre-compute all neighbors of each node and

run the Local Clustering Coefficient (LCC) algorithm, which

is implemented in [57].

Results (Figure 16): We find that, on the seven datasets (six

for WBI), the running time of CuckooGraph on LCC is 2.06×,

5.80×, 3.94×, and 4.21× faster than that of LiveGraph,

Spruce, Sortledton, and WBI on average, respectively.

Analysis: Similar to the analysis in § V-E4.

F. Redis Implementation

Methodology: We utilize Redis Module [58] to register our

CuckooGraph module, adding the data structure of Cuckoo-

Graph to the original Redis. This allows Redis to store graphs

in addition to supporting the five original data structures.

Specifically, we implement Redis Module API (including

save_rdb, load_rdb, aof_rewrite and other inter-

faces) on top of CuckooGraph to support Redis persistence

operations. Meanwhile, we also provide extended commands

for CuckooGraph (including insert, del, query and

getneighbors). We compile our interface implementation

into a dynamic link library, and simply import CuckooGraph

library with --loadmodule when Redis starts.

CAIDA NotreDame StackOverflow WikiTalk Weibo DenseGraph SparseGraph
10-1
100
101
102
103

R
un
ni
ng
Ti
m
e
(s
)

Dataset

LiveGraph Spruce Sortledton Ours WBI

Fig. 16: Running time of LCC on different datasets.

Insertion Query Deletion
0

0.01

0.02

0.03

0.04

0.05

0.06
Th
ro
ug
hp
ut
(M
op
s)

Operation

CAIDA StackOverflow

Fig. 17: The throughput of CuckooGraph on Redis.

Setup: We conduct experiments on the CAIDA and Stack-

Overflow datasets to test the throughput performance of Cuck-

ooGraph on Redis.

Results & Analysis (Figure 17): The results show that the

insertion, query, and deletion throughput of CuckooGraph on

Redis is around 0.04 ∼ 0.05 Mops. There is some performance

loss compared to those of CuckooGraph on CPU, which is

mainly caused by the Redis system. We also run Redis bench-

mark on the server, and the peak throughput of native Redis

is only around 0.16 Mops. Considering that CuckooGraph

itself inevitably has overhead, its performance on Redis is

completely acceptable.

G. Neo4j Implementation

Methodology: If we want to store an edge 〈u, v〉 in Neo4j

[37], nodes u and v each maintain a adjacency list that stores

all the edges associated with that node, so the information

about 〈u, v〉 is stored in the adjacency lists of both u and

v. If we want to query an edge 〈u, v〉, we have to find the

adjacency list of u, and then traverse the list and compare

the edges one by one until we find 〈u, v〉. Obviously, it is

inefficient. Once the degree of u is high, querying edge 〈u, v〉
has to access a large number of unrelated other edges, causing

additional redundancy overhead. To speed up edge queries,

we introduce the CuckooGraph query interface to obtain an

edge without traversing the adjacency list of the node. Since

multiple edges (with the same u and v but not the same edge)

are allowed in Neo4j, the data structure of CuckooGraph needs

some adjustments for this. Compared to the weighted version

on the CPU, we change the weight field in each S-CHT small

slot from a counter that records the number of edges to a

linked list consisting of a series of edges with the same nodes

u and v. The linked list is as long as the number of edges

corresponding to 〈u, v〉 in that small slot. In this way, the

query interface of CuckooGraph returns an iterator, through

which the linked list can be traversed to obtain all the edges

between 〈u, v〉.
Setup: We deploy the above CuckooGraph on top of the

original Neo4j and evaluate the performance by running time,

as shown below. 1) For the insertion experiments, we insert the

first 1M edges from the CAIDA dataset into Neo4j. Whenever

an edge is inserted into Neo4j, we also need to insert that

edge into the CuckooGraph structure, which requires a little

extra time overhead. 2) For the query experiments, we first

deduplicate the 1M edges, and then query the CuckooGraph

Insertion Query
100

101

102

103

104

105

R
un
ni
ng
Ti
m
e
(s
)

Operation

Ours+Neo4j Neo4j

Fig. 18: Running time of Neo4j with and without Cuckoo-

Graph.

structure. For comparison, related operations on pure Neo4j

do not introduce CuckooGraph.
Results & Analysis (Figure 18): 1) Thanks to the good

performance of our data structure, our insertions are very fast

and require only a little extra overhead, so our insertion time

is almost the same as pure Neo4j. 2) Since the time cost of

CuckooGraph’s query to obtain the iterator of the linked list

is O(1), the query speed of the version with CuckooGraph is

very fast. It can be predicted that the query speed of Neo4j

with CuckooGraph will be improved more significantly as the

data scale increases. In pure Neo4j, many irrelevant/redundant

edges must be traversed, and this additional overhead time

is not O(1), which ultimately causes the query time of pure

Neo4j to be much slower than that with the assistance of

CuckooGraph.

VI. CONCLUSION

In this paper, we propose a novel data structure de-

signed for large-scale dynamic graphs, called CuckooGraph,

which includes two key techniques, TRANSFORMATION and

DENYLIST. Thanks to them, CuckooGraph can be flexibly

resized based on actual operations to achieve memory effi-

ciency while keeping few memory accesses to achieve fast

processing speed without any prior knowledge of the upcom-

ing graphs. Our mathematical analysis theoretically proves that

CuckooGraph is time and space efficient. Our experimental

results show that CuckooGraph significantly outperforms 4

state-of-the-art schemes. In particular, compared with Spruce,

CuckooGraph achieves 32.66× faster insertion throughput

while reducing memory space by about 32%, and 168.45×
less running time on the SSSP task. Finally, we integrate

CuckooGraph in Redis and Neo4j databases to extend its

practicality.
ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their insightful comments. This work was supported by the

National Natural Science Foundation of China (NSFC) (No.

62402012, 62372009), China Postdoctoral Science Foundation

(No. 2023TQ0010, GZC20230055, 2024M750102), research

grant No. SH-2024JK29, and High-Performance Computing

Platform of Peking University.

REFERENCES

[1] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu, “Most
influential community search over large social networks,” in ICDE, 2017,
pp. 871–882.

[2] Y. Matsunobu, S. Dong, and H. Lee, “Myrocks: Lsm-tree database
storage engine serving facebook’s social graph,” PVLDB, vol. 13, no. 12,
pp. 3217–3230, 2020.

[3] J. Zhang, C. Gao, D. Jin, and Y. Li, “Group-buying recommendation for
social e-commerce,” in ICDE, 2021, pp. 1536–1547.

[4] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou,
S. Yang, and Y. Qi, “A semi-supervised graph attentive network for
financial fraud detection,” in ICDM, 2019, pp. 598–607.

[5] J. Jiang, Y. Li, B. He, B. Hooi, J. Chen, and J. K. Z. Kang, “Spade:
a real-time fraud detection framework on evolving graphs,” PVLDB,
vol. 16, no. 3, pp. 461–469, 2022.

[6] X. Huang, Y. Yang, Y. Wang, C. Wang, Z. Zhang, J. Xu, L. Chen,
and M. Vazirgiannis, “Dgraph: A large-scale financial dataset for graph
anomaly detection,” NeurIPS, vol. 35, pp. 22 765–22 777, 2022.

[7] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh,
and G. Varghese, “Network monitoring using traffic dispersion graphs
(tdgs),” in IMC, 2007, pp. 315–320.

[8] T. Wang and L. Liu, “Privacy-aware mobile services over road net-
works,” PVLDB, vol. 2, no. 1, pp. 1042–1053, 2009.

[9] M. Simeonovski, G. Pellegrino, C. Rossow, and M. Backes, “Who
controls the internet? analyzing global threats using property graph
traversals,” in WWW, 2017, pp. 647–656.

[10] Y. Ma, P. Gerard, Y. Tian, Z. Guo, and N. V. Chawla, “Hierarchical
spatio-temporal graph neural networks for pandemic forecasting,” in
CIKM, 2022, pp. 1481–1490.

[11] X. Zhu, X. Huang, L. Sun, and J. Liu, “A novel graph indexing
approach for uncovering potential covid-19 transmission clusters,” ACM
Transactions on Knowledge Discovery from Data, vol. 17, no. 2, pp.
1–24, 2023.

[12] J. Mondal and A. Deshpande, “Managing large dynamic graphs effi-
ciently,” in SIGMOD, 2012, pp. 145–156.

[13] P. Pandey, B. Wheatman, H. Xu, and A. Buluc, “Terrace: A hierarchical
graph container for skewed dynamic graphs,” in SIGMOD, 2021, pp.
1372–1385.

[14] J. Hou, Z. Zhao, Z. Wang, W. Lu, G. Jin, D. Wen, and X. Du, “Aeong: An
efficient built-in temporal support in graph databases,” PVLDB, vol. 17,
no. 6, pp. 1515–1527, 2024.

[15] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” PVLDB, vol. 3, no. 1-2, pp. 997–1008, 2010.

[16] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: an
efficient analysis platform for large graphs,” The VLDB Journal, vol. 21,
pp. 637–650, 2012.

[17] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity
of large graphs and surprising challenges of graph processing,” PVLDB,
vol. 11, no. 4, pp. 420–431, 2017.

[18] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, “Parallel subgraph
listing in a large-scale graph,” in SIGMOD, 2014, pp. 625–636.

[19] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, and J.-R. Wen, “Prsim:
Sublinear time simrank computation on large power-law graphs,” in
SIGMOD, 2019, pp. 1042–1059.

[20] J. Guo, B. Chen, K. Yang, T. Yang, Z. Liu, Q. Yin, S. Wang,
Y. Wu, X. Wang, B. Cui, T. Li, X. Peng, R. Chen, and G. Zhang,
“Hourglasssketch: An efficient and scalable framework for graph stream
summarization,” in ICDE, 2025.

[21] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in HPEC, 2012, pp.
1–5.

[22] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in PPoPP, 2013, pp. 135–146.

[23] L. Zou, M. T. Özsu, L. Chen, X. Shen, R. Huang, and D. Zhao, “gstore:
a graph-based sparql query engine,” The VLDB Journal, vol. 23, pp.
565–590, 2014.

[24] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and
G. Xie, “Sqlgraph: An efficient relational-based property graph store,”
in SIGMOD, 2015, pp. 1887–1901.

[25] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in ICDE,
2015, pp. 363–374.

[26] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic
graph representation,” in HPEC, 2018, pp. 1–7.

[27] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph streaming
using compressed purely-functional trees,” in PLDI, 2019, pp. 918–934.

[28] S. Firmli, V. Trigonakis, J.-P. Lozi, I. Psaroudakis, A. Weld, D. Chiadmi,
S. Hong, and H. Chafi, “Csr++: A fast, scalable, update-friendly graph
data structure,” in OPODIS, 2020.

[29] P. Kumar and H. H. Huang, “Graphone: A data store for real-time
analytics on evolving graphs,” ACM Transactions on Storage, vol. 15,
no. 4, pp. 1–40, 2020.

[30] X. Zhu, G. Feng, M. Serafini, X. Ma, J. Yu, L. Xie, A. Aboulnaga, and
W. Chen, “Livegraph: a transactional graph storage system with purely
sequential adjacency list scans,” PVLDB, vol. 13, no. 7, pp. 1020–1034,
2020.

[31] G. Feng, Z. Ma, D. Li, S. Chen, X. Zhu, W. Han, and W. Chen,
“Risgraph: A real-time streaming system for evolving graphs to support
sub-millisecond per-update analysis at millions ops/s,” in SIGMOD,
2021, pp. 513–527.

[32] A. Mhedhbi, P. Gupta, S. Khaliq, and S. Salihoglu, “A+ indexes: Tun-
able and space-efficient adjacency lists in graph database management
systems,” in ICDE, 2021, pp. 1464–1475.

[33] A. A. R. Islam, D. Dai, and D. Cheng, “Vcsr: Mutable csr graph format
using vertex-centric packed memory array,” in CCGrid, 2022, pp. 71–80.

[34] P. Fuchs, D. Margan, and J. Giceva, “Sortledton: a universal, transac-
tional graph data structure,” PVLDB, vol. 15, no. 6, pp. 1173–1186,
2022.

[35] R. Qiu, Y. Ming, Y. Hong, H. Li, and T. Yang, “Wind-bell index:
Towards ultra-fast edge query for graph databases,” in ICDE, 2023, pp.
2090–2098.

[36] J. Shi, B. Wang, and Y. Xu, “Spruce: a fast yet space-saving structure
for dynamic graph storage,” PACMMOD, vol. 2, no. 1, pp. 1–26, 2024.

[37] “Neo4j website.” [Online]. Available: https://neo4j.com/
[38] “OrientDB website.” [Online]. Available: http://orientdb.org/
[39] “ArangoDB website.” [Online]. Available: https://www.arangodb.com/
[40] “JanusGraph website.” [Online]. Available: https://janusgraph.org/
[41] “GraphDB website.” [Online]. Available: https://www.ontotext.com/

products/graphdb/
[42] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,

vol. 51, no. 2, pp. 122–144, 2004.
[43] “The source codes related to CuckooGraph.” [Online]. Available: https:

//github.com/pkufzc/CuckooGraph
[44] M. A. Bender and H. Hu, “An adaptive packed-memory array,” ACM

Transactions on Database Systems, vol. 32, no. 4, pp. 26–es, 2007.
[45] D. De Leo and P. Boncz, “Teseo and the analysis of structural dynamic

graphs,” PVLDB, vol. 14, no. 6, pp. 1053–1066, 2021.
[46] Y. Li, H. Zheng, L. Zou, X. Li, Z. Li, P. Xiao, Y. Tao, and Z. Qin,

“Vend: Vertex encoding for edge nonexistence determination,” in ICDE,
2023, pp. 328–340.

[47] M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictio-
naries with tightly packed constant size bins,” Theoretical Computer
Science, vol. 380, no. 1-2, pp. 47–68, 2007.

[48] “Hash website.” [Online]. Available: http://burtleburtle.net/bob/hash/
evahash.html

[49] “CAIDA Anonymized Internet Traces 2018 Dataset.” [Online]. Avail-
able: https://www.caida.org/catalog/datasets/overview/

[50] “Note Dame web graph.” [Online]. Available: http://snap.stanford.edu/
data/web-NotreDame.html

[51] “Stack Overflow temporal network.” [Online]. Available: http://snap.
stanford.edu/data/sx-stackoverflow.html

[52] “Wikipedia talk (en).” [Online]. Available: http://konect.cc/networks/
wiki talk en/

[53] R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI, vol. 29, no. 1, 2015.
[Online]. Available: https://networkrepository.com

[54] E. W. Dijkstra, A Note on Two Problems in Connexion with Graphs,
1st ed. ACM, 2022, pp. 287–290. [Online]. Available: https:
//doi.org/10.1145/3544585.3544600

[55] R. E. Tarjan and U. Vishkin, “An efficient parallel biconnectivity
algorithm,” SIAM Journal on Computing, vol. 14, no. 4, pp. 862–874,
1985.

[56] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[57] A. Iosup, A. Musaafir, A. Uta, A. P. Pérez, G. Szárnyas, H. Chafi, I. G.
Tănase, L. Nai, M. Anderson, M. Capotă et al., “The ldbc graphalytics
benchmark,” arXiv preprint arXiv:2011.15028, 2020.

[58] “Redis modules API.” [Online]. Available: https://redis.io/docs/latest/
develop/reference/modules/

