
Extendible RDMA-based Remote Memory KV
Store with Dynamic Perfect Hashing Index

Zirui Liu∗, Xian Niu†, Wei Zhou‡, Yisen Hong∗, Zhouran Shi§, Tong Yang∗,
Yuchao Zhang†, Yuhan Wu∗, Yikai Zhao∗, Zhuochen Fan¶∗, Bin Cui∗

∗Peking University, China †Beijing University of Posts and Telecommunications, China
‡University of Southern California, USA §HKUST, Hong Kong SAR, China ¶Pengcheng Laboratory, China

Abstract—Perfect hashing is a special hashing function that
maps each item to a unique location without collision, which
enables the creation of a KV store with small and constant
lookup time. Recent dynamic perfect hashing attains high load
factor by increasing associativity, which impacts bandwidth and
throughput. This paper proposes a novel dynamic perfect hashing
index without sacrificing associativity, and uses it to devise
an RDMA-based remote memory KV store called CuckooDuo.
CuckooDuo simultaneously achieves high load factor, fast speed,
minimal bandwidth, and efficient expansion without item move-
ment. We theoretically analyze the properties of CuckooDuo, and
implement it in an RDMA-network based testbed. The results
show CuckooDuo achieves 1.9∼17.6× smaller insertion latency
and 9.0∼18.5× smaller insertion bandwidth than prior works.

Index Terms—Perfect Hashing; KV Store; RDMA

I. INTRODUCTION

Perfect hashing is a special hashing index function that maps
each item to a unique location without collision [1], [2], which
enables the creation of a KV store with small and constant
lookup time [3], [4]. Typical hashing based key-value (KV)
stores consist of two parts: 1) A small hashing index storing
the mapping relationship between keys and slots, which is
typically kept in fast memory mediums like SRAM or caches
in local devices. 2) A large KV table with many slots storing
KV pairs, which is typically kept in slow memory mediums
like DDR or remote memory server.

Standard Dynamic Perfect Hashing (DPH) [1] supports
dynamic update at the cost of a low load factor (<15%).
Recent DPH variants [3], [5], [6] improve the load factor to
>90% by organizing the KV-slots into buckets. They map
each item to one bucket (with d slots) and ensure each
bucket is mapped by no more than d items. These solutions
improve the associativity (defined in § II-A) of standard perfect
hashing from 1 to d, and thus impact lookup bandwidth and
throughput. We aim at devising a dynamic perfect hashing
without sacrificing associativity, and using it to improve the
performance of remote memory KV store.

This paper proposes CuckooDuo, an extensive RDMA-
based remote memory KV store with a dynamic perfect hash-

Corresponding authors: Zhuochen Fan (fanzc@pku.edu.cn) and Tong Yang
(yangtong@pku.edu.cn).

Zirui Liu, Yisen Hong, Tong Yang, Yuhan Wu, Yikai Zhao, and Bin Cui
are with School of Computer Science, Peking University, Beijing, China

Xian Niu and Yuchao Zhang are with School of Computer Science (National
Pilot Software Engineering School), BUPT, Beijing, China

ing index. CuckooDuo has the following advantages: 1) High
load factor (>97%); 2) Fast speed (1.9∼17.6× smaller insert
latency than prior works); 3) Small bandwidth (9.0∼18.5×
smaller insert bandwidth than prior works); 4) Efficient expan-
sion without item movement (2× faster than prior solutions).
The key design of CuckooDuo is the synergistic use of two
interlinked cuckoo hash tables [7]. In slow memory (remote),
we deploy a cuckoo hash table, called CuckooVault, to store
KV pairs. In fast memory (local), we deploy another cuckoo
hash table of identical size, called CuckooIndex, to store the
fingerprints (hash values) of the inserted keys. Each fingerprint
in CuckooIndex corresponds one-to-one with a KV pair in
CuckooVault. To lookup a key, we check its candidate buckets
in CuckooIndex. If its fingerprint is found, we further retrieve
the KV pair from the corresponding slot in CuckooVault.
CuckooDuo addresses the following key challenges.
• Challenge 1: How to build an index with small and arbi-

trary sizes? It is challenging to design an index that is small
enough to fit into various fast memory. We propose a
Dual-Fingerprint design to significantly reduce fingerprint
collision, thereby reducing fingerprint length, improving load
factor, and saving space. The key idea is to change another
fingerprint hashing function for the items with fingerprint
collisions, and thus grant the colliding item a second chance
to be re-inserted. Additionally, the size of a cuckoo hash table
storing fingerprints (CuckooFilter [8]) can only be a power of
two, resulting in space inflation. We also propose techniques
to break this size limitation.
• Challenge 2: How to minimize insertion latency? The

kick-out process of traditional cuckoo hash requires multiple
sequential reads/writes to remote memory. With our one-
to-one design, we can directly find empty slot or kick-out
path by only checking local index. In this way, each insertion
can be completed in one round-trip-time (RTT) by directly
writing the incoming item to an empty slot, or worst-case two
RTTs by reading all items on the kick-out path and writing
them along with the incoming item into their new locations.
• Challenge 3: How to scale up table size? Unlike exist-

ing works expanding tables by moving items [9], [6], [3],
CuckooDuo expands its size by copying local index and
remote KV table. Afterwards, with the one-to-one relation-
ship between CuckooIndex and CuckooVault, we can delete
redundant items by only modifying local CuckooIndex, and

thus reduce one RTT to write remote memory, achieving 2×
smaller expansion time than RACE [9] and MapEmbed [3].
CuckooDuo also offers a 6.67× faster lazy-mode expansion,
and is compatible with extendible expansion [10].

In summary, this paper makes the following contributions.
• We propose CuckooDuo, a dynamic perfect hashing based

KV-store with high load factor, fast speed, minimal commu-
nication overhead, and efficient expansion.

• We theoretically analyze the properties of CuckooDuo, and
validate the theoretical results with experiments.

• We conduct experiments showing CuckooDuo outperforms
state-of-the-art (SOTA) remote memory KV-stores on both
time- and space- efficiency. All codes are open-sourced [11].

e
d=2

0 1 2 3

associativity=2

(a) Hashing Index
of CuckooHashing

Cuckoo

4 5

h(e)={2, 5}

Hash
Table

item e

Hashing
Index

e
0 1 2 3

associativity=1

Perfect

4 5

h(e)=5

item e

(b) Perfect Hashing
Index (with stash)

(c) Perfect Hashing
Index variants

e
0 1 2

associativity=d

MapEmbed

h(e)=2

item e

Fast
mem.

Slow
mem.

Stash
(optional)

Fig. 1: Illustration of different hashing indexes.

II. BACKGROUND AND RELATED WORK

A. Hashing Index and Perfect Hashing Index

Consider a set of items S. A hashing index f is a data struc-
ture (or function) that maps items in S to specific location(s)
in a table (called hash table). For an item e ∈ S, f(e) can be
a set of w candidate locations, meaning that e can be stored in
any one of these w locations. We define w as the associativity
of a hashing index. For example, as shown in Figure 1(a), the
hashing index of standard CuckooHashing [7] (described in
§ II-C) returns w = 2 locations for each item, and thus has an
associativity of two. For a hashing index with an associativity
of w, an item can be stored in any of the w candidate locations,
and thus lookup operation needs to access w items in the hash
table. The term “associativity” here has the same meaning as
in set-associative cache in computer architecture. In a w-way
set-associative cache, associativity w refers to the number of
cache lines within each set, meaning that an item can be stored
in any of the w locations (cache lines) within the cache.

A perfect hashing index is a specialized form of hashing
index (or function) that maps each item in S to a unique
location without collision with other items, which is illustrated
in Figure 1(b). A standard perfect hashing index has the asso-
ciativity of exact one. With perfect hashing index, the lookup
operation just need to access one item in hash table. This
property ensures constant lookup time and minimal bandwidth
overhead when the hash table is deployed on remote memory.
Note that perfect hashing index cannot identify non-existent

items. For e′ /∈ S, perfect hashing index returns an arbitrary
location in the hash table. Therefore, negative lookups still
need to access one item in the hash table.

There are two kinds of perfect hashing indexes. 1) Static
Perfect Hashing [12], [2], [13] that constructs perfect hashing

index for static set. 2) Dynamic Perfect Hashing (DPH) [1]
that supports dynamic update. Standard DPH first hashes
keys into multiple subtables and then finds a perfect hashing
function for each subtable. When hash collision happens in
a subtable, DPH reconstructs this subtable by finding another
perfect hashing function. To ensure small reconstruction time,
DPH requires the total load factor of the hash table to be low
(<15%). Load factor of a hash table is defined as the number
of inserted items divided by the total number of slots. Note
that the load factor here is a property of the hash table storing
items, rather than the property of the hashing index computing
item locations. It has been proven that the minimal space
usage of a perfect hashing index is log2(e)× α ≈ 1.44α bits
per item [14], where α is the load factor of the hash table.

To improve load factor, recent DPH variants [3], [5], [15],
[16] organize the slots in hash table into buckets, where each
bucket has d slots. As shown in Figure 1(c), given an item
e, their indexes return the location of a bucket, and e can be
stored in any one of the d slots in the bucket. Therefore, the
associativity of these schemes is d, and their lookup operations
need to access the d items in a bucket. Fortunately, the d items
are located in a contiguous memory block, accessing them
can be done with a single memory access, thus still achieving
constant lookup time. However, their bandwidth overhead is
d times larger than that of standard perfect hashing. Strictly
speaking, these approaches are not perfect hashing indexes.
This also explains why MapEmbed [3] (described later in
§ II-B) can achieve a smaller index size (as small as 0.5 bits
per item) than the theoretical minimum space (1.44 bits per
item) of perfect hashing index. We aim at devising a standard
perfect hashing index with the associativity of exact one. In
addition, we hope the index can identify and filter non-existent
items so as to accelerate insertion and negative lookup.
B. KV Stores in Fast-Slow Memory Architecture

This paper focuses on the KV stores in tired memory. In
such scenario, the large table storing KV pairs is kept in slow
memory. In fast memory, KV stores can build cache [17], [18],
index [19], [20], [21], [22], filter [23], or their combinations
[24], [25], [26] to accelerate accessing the slow memory.

We highlight three types of fast-slow memory architectures.
1) Client-Server: Besides popular server-based KV stores
like Redis [27] and Memcached [18], recent KV stores in
disaggregated memory [9], [28], [29] with a local compute
pool and a remote memory pool (without computation power)
also fall in this category. Designed for disaggregated memory,
RACE [9] builds an RDMA-friendly hash table in remote
memory achieving high load factor and fast lookups. 2) SRAM-
DRAM: This architecture is used by many works in networking
community to achieve network function virtualization [30],
[17], [31]. TEA [17] designs a variant of cuckoo hash table
and uses it to store KVs (flow-level information) in external
DRAM. It also uses a small cache in on-chip SRAM to store
recent flows. 3) DRAM-NVMM (non-volatile main memory):
A line of recent works uses indexes (storing key fingerprints
and location IDs) in DRAM to accelerate accessing the KVs
stored in NVMM [19], [20], [21], [32], [33]. However, their

TABLE I: High-level comparison between CuckooDuo and prior works (under the default setting in § V, where the bucket size of all methods is d = 8). The
best result(s) in each column is highlighted with yellow background. “BPI” refers to “bits per item”, “Filter” refers to the functionality of identifying and
filtering non-existent keys, “Expansion time” refers to the time of expanding a 30M KV table by 2× in active-mode (Figure 12).

Methods Index Properties Table Properties Lookup Properties Insert Properties Update Properties Delete Properties

BPI Filter Load
factor

Expansion
time (µs)

accessed items
(associativity) #RTTs Latency

(µs)
accessed

items #RTTs Latency
(µs)

accessed
items #RTTs Latency

(µs)
accessed

items #RTTs Latency
(µs)

CuckooDuo 13∼16 ✓ 99% 4.0 1 1 3.2 1∼6.7 1∼2.0 3.5∼6.9 2 2 6.2 1 1 3.2
MapEmbed 0.5∼4 × 91% 8.1 8 1 3.3 9∼124 2∼3.4 6.7∼30.1 9 2 6.5 9 2 6.5

RACE 0 × 94% 7.9 32 1 4.2 33 2 7.8 33 2 7.1 33 2 7.1
TEA 0 × 70% N/A 16 1 3.4 17 2∼12.7 6.7∼42.9 17 2 6.4 17 2 6.3

large indexes can cause high DRAM consumption, which is
infeasible for production environment [34]. MapEmbed [3]
proposes a small perfect hashing index theoretically fitting this
scenario. EEPH [5] proposes another small index very similar
to MapEmbed, and practically deploy it in a DRAM-NVMM
architecture. The experiments in this paper are conducted
in client-server architecture with RDMA networks. As a
general KV store framework, our CuckooDuo can also be
deployed in other fast-slow memory architectures. We assume
remote server has no computation power as in disaggregated
memory [29], [9]. Consider the scenario where remote server
has computation power. The excellent work Catfish [35],
[36] proposes to adaptively offload computation spent on
accessing/modifying remote data structures to local server and
RDMA-communication, thereby elegantly balancing the load
between remote CPU and network communication. Inspired
by Catfish, we could also batch some requests and send them
to remote CPU for processing, so as to reduce network load
and alleviate local CPU pressure. Recent RR-Compound [37]
proposes an excellent RDMA-fused gRPC framework, which
can also be applied in our setting for further speedup.

TABLE I provides a high-level comparison of CuckooDuo
with the three typical prior works above. Although the index
of CuckooDuo is larger than others, it provides the ability to
identify non-existent keys, which helps improving the speed of
insertion and negative lookup (§ III-B). Thanks to the perfect
hashing index, CuckooDuo minimizes access bandwidth (#
accessed items) and RTT to remote memory, and thus achieves
the smallest latency. In addition, CuckooDuo also achieves the
highest load factor and the smallest expansion time. We will
present the detailed results and analyses in § V.

C. Preliminary of CuckooHashing and CuckooFilter

CuckooHashing [7] is an efficient hashing table, which
consists of 2 tables B1 and B2. Any item e can be stored
in one of its two candidate buckets B1[h1(e)] or B2[h2(e)]
determined by two hash functions h1(·) and h2(·). To insert
an item, we first check whether it can be directly inserted
into one candidate bucket. If both candidate buckets are full,
CuckooHashing randomly kicks away an item in one candidate
bucket to make room, and the victim item is reinserted into its
another candidate bucket. This procedure repeats until every
item finds a bucket to settle down, or the maximum kick-out
limit L is reached. The load factor of CuckooHashing can be
improved by increasing the number of candidate buckets and
the number of slots in each bucket [38], [39]. Many subsequent
works have emerged to optimize the speed of CuckooHash-
ing [40], [41], [42], [43], [44], [45], [46]. There are many
works using CuckooHashing to build KV tables [47], [48],

[49], index [50], [40], or database systems [51], [52]. Mega-
KV [50], [53] elegantly implements a CuckooHashing table
(storing fingerprints and location IDs) on GPU, and uses it as
an index to accelerate KV stores. This work is complementary
to CuckooDuo. On the one hand, as CuckooIndex is essentially
a CuckooHashing table, it can also be implemented on GPU
following the design of Mega-KV to improve speed. On the
other hand, some designs of CuckooDuo could help reducing
the index size of Mega-KV. By using our one-to-one mapping
design, Mega-KV could avoid explicitly storing location IDs.
Mega-KV could also use our Dual-FP optimization to reduce
the length of the stored fingerprints (from 32-bit to <16-bit).

B1

B2

4 3

d=2

f=FP(e)=1
0
1
2
3

h1(e)=0

e

h2(e)
=hash(f)⊕h1(e)
=hash(1)⊕0
=1⊕0=1

(b) Minimum space cost per item to achieve
target false positive error rate of 𝜖 = 10!" (d=8)

(a) Example of CuckooFilter
(m=22 and d=2)

2 3

3

0
1
2
3

1

3⊕0
=3

kick
f’=3

Fig. 2: Example of CuckooFilter and comparison of its space
cost per item with our CuckooIndex.

CuckooFilter (CF) [8] is another excellent variant of Cuck-
ooHashing. It replaces the items in CuckooHashing with
fingerprints (hash values) to perform membership query. As
shown in Figure 2(a), a CF consists of 2 tables B1 and B2.
Each table has m buckets, each of which stores d fingerprints.
For an incoming item e, CF calculates hash functions to get its
fingerprint f = FP (e) and first candidate bucket index h1(e).
Then it uses the exclusive-OR (XOR) operation to compute the
second candidate bucket index h2(e) = hash(f)⊕h1(e). Dur-
ing the insertion process, if an existing item (with fingerprint
f ′ and current bucket index i) needs to be kicked away, CF
computes its alternate bucket index j by j = hash(f ′) ⊕ i.
Figure 2 shows an insertion example of CF. For incoming
item e, CF calculates hash functions to acquire its fingerprint
f = FP (e) = 1 and first candidate bucket index h1(e) = 0.
Then CF calculates its second candidate bucket index by
h2(e) = hash(f)⊕h1(e) = 1⊕0 = 1 (we assume hash(f) =
f for simplicity). Since both candidate buckets are full, CF
randomly kicks away a residing fingerprint f ′ = 3 in B1[0] to
make room for f . For fingerprint f ′, CF calculates its alternate
candidate bucket index by j = hash(f ′)⊕ i = 3⊕ 0 = 3, and
reinserts it into B2[3].

Compared to standard BloomFilter [54], CF not only sup-
ports deletions but also has better time- and space- efficiency
[8]. However, CF suffers a critical issue of space inflation,
which varies with the input scale. This is because that CF uses
XOR operation to compute alternate location, which requires

the number of buckets m in each table to be a power of two.
Otherwise, the XOR operation would result in an index landing
on a memory address outside of the allocated boundaries.
Consider a CF with d = 1. In the worst case, when the number
of input items is 216+1, CF still needs to set m=216, resulting
in a total of 2×m = 217 buckets, with 50% buckets being
wasted. Figure 2(b) further displays the minimum space cost
per item of CF (and our CuckooIndex) to achieve ϵ = 10−3

false positive error rates under different input scales. We
can see that CF has up to 2× space inflation. By contrast,
our CuckooIndex achieves constant and lower space cost
because it has no size constraint. There are many variants of
CuckooFilter. Adaptive CuckooFilter [55] optimizes the false
positive error. VacuumFilter [56] breaks size limitation but
cannot combine with the KV table. InfiniFilter [57] proposes
a method to expand filter size by any power of two.

TABLE II: Symbols frequently used in this paper.
Symbols Meaning

m Number of buckets in each bucket array of CuckooDuo
d Number of slots in each bucket of CuckooDuo
s Size of the stash of CuckooDuo
f Length of the fingerprint (in bit)
L Predefined maximum length of kick-out path
Bi The ith bucket array of CuckooVault (i = 1 or 2)
Ii The ith bucket array of CuckooIndex (i = 1 or 2)

hi(·) Hash function mapping key into bucket
FP (·) Hash function calculating the fingerprint of key
FPj(·) Fingerprint hashing function in Dual-Fingerprint optimization

dj Number of slots per bucket in I1 using FPj(·)

III. THE CUCKOODUO ALGORITHM

A. Data Structure
CuckooDuo consists of two interlinked cuckoo hash tables

(Figure 3): 1) A large KV table called CuckooVault storing
KV pairs (items). This table is deployed on slow remote
memory. It has two bucket arrays (B1 and B2) with m
buckets. Each bucket has d slots storing KV pairs. 2) A
small perfect hashing index called CuckooIndex storing
fingerprints (calculated with a hash function FP (·)) of inserted
keys. This table is deployed on fast local memory. It has two
bucket arrays I1 and I2 with the same size of B1 and B2.
Each fingerprint in CuckooIndex has a one-to-one correspon-
dence with a KV pair in CuckooVault. Each key is mapped
into two candidate buckets in CuckooIndex/CuckooVault with
two functions h1(·) and h2(·). To break the size constraint
of CuckooFilter [8], we use modular addition/subtraction to
replace XOR. For a key, the indexes of its two candidate
buckets are h1(key)=H(key)%m and h2(key)=(h1(key)
+hash(FP (key)))%m, where H(key) is a hash value. We
have h1(key)=(h2(key)−hash(FP (key)))%m. We deploy
CuckooIndex/CuckooVault on local/remote server, where lo-
cal server accesses remote memory with one-sided RDMA
READ/WRITE requests.

B. Basic Operations and Discussions
We temporarily assume that there are no fingerprint colli-

sions. We will discuss how to handle fingerprint collisions and
propose an optimization to reduce collisions in § III-C.
Insertion (pseudocode in supplementary materials [58]):
Consider inserting item e=⟨key, value⟩. We assume key does

CuckooVault

CuckooIndex

0011
0000

0000
1111

WRITE
<key1,value1>

Fast

Slow

(a) Example of directly inserting

h1(key1) h2(key1)

0001

FP(key1)=0001key1

(b) Example of BFS

0011
0001

READ key1

FP(key2)
=1101

key2

h1(key2) h2(key2) h2(key3) h2(key1)

key3 key1

1010 1100 0000
0101 0011 11111101

Full 0001
Kick

1 2 WRITE key1 and key2

Fig. 3: Insertion examples (m = 3, d = 2, L = 1).
not exist in CuckooVault. In practice, we should first judge
whether key has been inserted (if so, we update its value),
which will be discussed later. The key idea is to use BFS
to find the shortest kick-out path in local CuckooIndex, and
then either directly WRITE e into an empty slot (1 RTT), or
simultaneously READ all items on the kick-out path and then
WRITE them along with e to their new locations (2 RTT).

We first calculate h1(key) = H(key)%m and h2(key) =
(h1(key) + hash(FP (key)))%m to locate candidate buck-
ets I1[h1(key)] and I2[h2(key)] in CuckooIndex. We check
whether there is an empty slot in I1[h1(key)] or I2[h2(key)].
If so, we insert the item into this slot by writing FP (key)
into the slot in CuckooIndex, WRITE e into the corresponding
slot in CuckooVault, and return insertion success.

If both candidate buckets are full, we start the Breadth-
First-Search (BFS) process to find the shortest kick-out path.
We initialize an empty queue Q and push all fingerprints in
I1[h1(key)] and I2[h2(key)] into it. Then we repeatedly pop
fingerprints from the front of Q until the kick-out path length
reaches predefined threshold L. For each popped fingerprint f ,
we check whether it can be inserted into its alternate candidate
bucket. Specifically, we first calculate the index of its alternate
candidate bucket. For example, if f is stored in the first
bucket array, we calculate h2(f) = (h1(f) + hash(f))%m,
where h1(f) is the index of the current bucket of f . Then we
check the alternate candidate bucket I2[h2(f)]. 1) If I2[h2(f)]
has an empty slot, our BFS has found one of the shortest
kick-out path. Then we perform the insertion operation on
CuckooVault by first reading all items on the kick-out path
(with one batch of READ requests), and then writing these
items (including e) into their destination slots (with another
batch of WRITE requests). We finally update the fingerprints
in CuckooIndex to ensure its one-to-one mapping relationship
with CuckooVault, and return insertion success. 2) If I2[h2(f)]
is also full, we continue BFS. Specifically, we push each
fingerprint f ′ in I2[h2(f)] and its corresponding kick-out path
(if path length is smaller than the predefined maximum kick-
out length L) into the tail of Q. This procedure repeats until
Q is empty, when we return insertion failure.
Examples (Figure 3): We assume hash(FP) = FP . We pro-
vide example of insert failure in supplementary materials [58].

1) As shown in Figure 3(a), to insert e1 = ⟨key1, value1⟩,
we first locate its two candidate buckets. As there is an empty
slot in I1[h1(key1)], we directly insert the item into this slot
by writing FP (key1) into one slot in CuckooIndex and writing

e1 into the corresponding slot in CuckooVault.
2) As shown in Figure 3(b), both candidate buckets of e2 are

full, so we start BFS by enqueuing all fingerprints in candidate
buckets. Then we dequeue the fingerprints one by one. For
the first dequeued fingerprint FP (key3)=0011, we calculate
h2(key3)=(h1(key3)+hash(FP (key3)))%m=(1+3)%3=1.
As the alternate bucket I2[1] is also full, we continue to de-
queue FP (key1)=0001 and calculate h2(key1)=(h1(key1)+
hash(FP (key1)))%m= (1+1)%3=2. As I2[2] is not full,
we have found the shortest kick-out path. We READ e1=
⟨key1,value1⟩ from CuckooVault, WRITE e1 and e2 into
their new locations, and finally update the fingerprints.
Lookup: To lookup a key, we check its two candidate
buckets I1[h1(key)] and I2[h2(key)]. If FP (key) exists in
I1[h1(key)] or I2[h2(key)], we send a RDMA READ request
to read the corresponding KV pair ⟨key′, value′⟩ from Cuck-
ooVault. If key matches key′, we return value′ as the lookup
result. Otherwise, if FP (key) is not found in the candidate
buckets or key ̸= key′, we return a lookup failure.
Deletion: To delete a key, we first lookup it as described
above. If the key exists in CuckooVault, we delete its finger-
print from CuckooIndex. Notice that we do not need to delete
its KV pair from CuckooVault, because once the fingerprint
of a key is removed from CuckooIndex, its KV pair in
CuckooVault will eventually be overwritten by other item.
Update: To update the value of a key, we first lookup it as
described above. If the key exists in CuckooVault, we send a
RDMA WRITE request to update its value in CuckooVault.
CuckooIndex as a perfect hashing index: Under current de-
sign, when looking up a key, CuckooIndex returns the location
of a unique slot in CuckooVault without collision. Therefore,
CuckooIndex satisfies the requirement of a perfect hashing
index described in § II-A. Note that the internal structure of
CuckooIndex (now using a double hashing approach) does not
affect its overall status as a perfect hashing index. We can
view the entire data structure of CuckooIndex as a function.
This function qualifies as a perfect hashing index as long as it
returns a unique location in the hash table (CuckooVault) for
each inserted key. Actually, the simplest perfect hashing index
could use a large hash table to store each key and its location
ID, which suffers large space overhead.
Working with a stash: Following previous works [49], [59],
[60], [61], [62], [63], we build a small stash in fast memory to
store the items (KV pairs) with insertion failures as shown in
Figure 1(b). This stash can be regarded a part of CuckooIndex.
When lookup a key, we first lookup it in the stash. If key is in
stash, we directly return its value, and otherwise, we lookup
its fingerprint in the candidate buckets. After using stash, for
each key, CuckooIndex still returns the location of a unique
slot in CuckooVault (key will be filtered out if it is in stash),
thus it still meets the requirement of perfect hashing index
(§ II-A). Indeed, a large stash would impact both the space
and speed of CuckooIndex. Fortunately, our results show that
a small stash with the size of 8∼32 is sufficient to improve
load factor (Figure 7(j)), and such a small stash does not affect
lookup speed (Figure 7(k)).

Multi-threading acceleration: We can use multi-threading to
accelerate CuckooDuo’s operations, which requires maintain-
ing consistency under concurrent access to remote memory.
Many existing concurrency control approaches, such as lock-
free or optimistic concurrency, incur retries upon access con-
tention, leading to extra RTTs [9], [64], [16]. For example,
RACE [9] ensures consistency by re-reading candidate buck-
ets. With the one-to-one mapping design, CuckooDuo can
perform concurrency control entirely in local CuckooIndex,
ensuring RDMA requests do not conflict with each other.
The key idea is to add Read/Write locks to the slots being
read or modified in CuckooIndex. We describe the detailed
design in supplementary materials [58]. With our lightweight
concurrency control approach, CuckooDuo achieves higher
throughput than prior works (Figure 10(g)-10(j)).
Latency analysis: 1) Lookup: As CuckooIndex is a perfect
hashing index, each lookup only reads one slot in remote
memory, thus achieving a latency of one RTT. Note that the
operations in local CuckooIndex (including double hashing
calculation, checking candidate buckets, checking stash, etc.)
can perform very fast, which accounts for only 3.8% total
lookup latency (Figure 7(f)). 2) Insertion: Under current one-
to-one mapping design, local CuckooIndex is aware of the
status of each slot in remote CuckooVault (including empty
slots). By checking the local CuckooIndex, we can directly
locate an empty slot in the candidate buckets, or find the kick-
out path using BFS. Therefore, under low load factor (<70%),
each insertion can be accomplished by directly WRITE the
incoming item into an empty slot, taking only one RTT. In the
worst case, each insertion first reads all items in kick-out path
(with one batch of RDMA READ requests), and then writes
these items and the incoming item into their new locations
(with one batch of RDMA WRITE requests), taking two RTTs.

We neglect the time taken by local BFS. Indeed, when
using large maximum kick-out path length L, BFS can be
time-consuming and become latency bottleneck. However, our
results show that a small kick-out path length L is sufficient
for CuckooDuo to achieve high load factor (Figure 7(d)), and
under such small L, the time spent on local device accounts for
only 5%∼10% total latency (Figure 7(e)). On the other hand,
BFS ensures to find the shortest kick-out path, minimizing
data movement and communication overhead. 3) Deletion:
Thanks to the one-to-one mapping design, deletion operation
only deletes fingerprint in local CuckooIndex without deleting
the actual item in remote memory, thus achieving one RTT
latency. 4) Update: Update operation takes two RTTs. How-
ever, when the fingerprint is sufficiently long such that the
false positive error can be ignored, upon finding a matched
fingerprint in CuckooIndex, we can directly update its value
in CuckooVault, thus reducing update latency to one RTT.
Identify non-existent keys: As discussed in § II-A, existing
perfect hashing indexes [3], [1] cannot identify non-existent
keys, and they return a random location for each non-existent
key. By contrast, CuckooIndex offers the functionality of
identifying and filtering out non-existent keys. For each non-
existent key, if its fingerprint FP (key) does not collide with

the fingerprints in its two candidate buckets, CuckooIndex
can report it as non-existent. Similar as CuckooFilter [8],
the upper bound of the probability of a false fingerprint
hit is ϵ = 1 −

(
1− 1/2f

)2d ≈ 2d/2f , where 1 − 1/2f

is the probability that FP (key) does not collide with one
stored f -bit fingerprint, and

(
1− 1/2f

)2d
is the probability

lower bound that FP (key) does not collide with all stored
fingerprint in the two candidate buckets (there are at most 2d
stored fingerprints in the two candidate buckets). We can see
that when using ⩾ 14-bit fingerprints, the false positive error
of CuckooIndex is < 10−3 (Figure 8(b)).

We discuss the importance of the non-existent key iden-
tification functionality. 1) Accelerating illegal lookup (update
/ delete): Consider looking up a non-existent key. Existing
hashing indexes return a random location for key, and thus
still require reading one item key′ from slow memory and
comparing key with key′. By contrast, CuckooIndex can
directly identify and filter out key without accessing slow
memory. As discussed above, lookup time is dominated by the
communication RTT of accessing slow memory. Therefore,
CuckooDuo can significantly reduce the latency of negative
lookups (>20× as in Figure 10(f)). 2) Accelerating insertion:
Consider inserting an item e = ⟨key, value⟩. In practice, we
first need to check whether key has already been inserted. If
yes, we update its value; if not, we proceed with the standard
insertion process. Similarly, existing indexes require accessing
slow memory to determine whether key has been inserted. By
contrast, CuckooIndex can identify non-existent keys, allowing
the insertion process to be directly executed. This significantly
reduces the insertion latency of CuckooDuo by saving one
RTT to READ slow memory (∼2× as in Figure 10(a)).
Space overhead of CuckooIndex: We discuss the space
overhead of CuckooIndex and demonstrate that it only exceeds
the theoretical lower bound by about 2.5 bits per item (BPI).
As discussed above, CuckooIndex has ϵ ≈ 2d/2f false positive
error. Therefore, BPI of CuckooIndex is BPI = f/α =
(log2(1/ϵ) + log2(2d)) /α, where α is the load factor of
CuckooDuo. Recall that the theoretical space lower bound
of perfect hashing index is BPIP = 1.44α [14]. On the
other hand, the theoretical space lower bound of a filter is
BPIF = log2(1/ϵ) [65]. The space lower bound for a prefect
hashing index that also provides the functionality of filters is
BPI = BPIP+BPIF

1= 1.44α+log2(1/ϵ). We will see that
CuckooIndex with d = 8 can achieve nearly 100% load factor
(98.0% as in Figure 7(a)). When α ≈ 100%, CuckooIndex
with d = 8 has BPI ≈ log2(1/ϵ)+ log2(2×8) = log2(1/ϵ)+
4, which only exceeds the theoretical lower bound BPI =
1.44 + log2(1/ϵ) by about 2.5 BPI. Although exceeding the
theoretical optimum, CuckooIndex supports dynamic update
and deletion with O(1) time-complexity. By contrast, most
filters [65] and perfect hashing indexes [2], [66], [67] that

1BPI = BPIP + BPIF rather than BPI = max
{
BPIP , BPIF

}
because filter and perfect hashing index are independent with each other.
Prefect hashing index returns a random location for a non-existent key, which
provides no useful information for filters. Conversely, filter also provides no
information for perfect hashing.

approach the theoretical optimum can only be built on static
set, which limits their practicality. Actually, CuckooIndex has
the same structure as CuckooFilter [8], and thus has the same
space overhead (BPI ≈ log2(1/ϵ) + log2(2d)). However, the
original paper of CuckooFilter did not mention its potential
usage as an index. We believe that the additional log2(2d)
BPI space of CuckooFilter is underutilized. By exploring the
indexing functionality, CuckooIndex maximizes the value of
each bit in CuckooFilter and fully unlocks its potential.

We further discuss the performance of CuckooIndex under
different space overhead in Figure 8, showing that when
f ⩾ 14, the fingerprint collision rate is enough small for Cuck-
ooIndex to achieve high load factor and small insertion latency
and negative lookup latency. In our setting with 64-byte
keys/values and f = 16 bit fingerprints, the ratio of fast mem-
ory usage to slow memory usage is Mfast

Mslow
≈ 16

64×2×8 ≈ 0.016.
A recent RocksDB study from Meta reports that the average
key and value sizes are 27 bytes and 126 bytes [68], where
Mfast

Mslow
≈ 16

(27+126)×8 ≈ 0.013. Such a memory consumption
ratio can fit recent fast-slow tired memory systems [69].

CuckooVault

0001
1110
0010
0000

𝑘𝑒𝑦!

𝑭𝑷𝟏

𝑭𝑷𝟐

𝐹𝑃$ 𝑘𝑒𝑦$ = 1110

𝑘𝑒𝑦%
𝑘𝑒𝑦&

CuckooIndex
ℐ$[ℎ$(𝑘𝑒𝑦$)]

ℬ$[ℎ$(𝑘𝑒𝑦$)]

0001
1110
0010
0010

ℐ$[ℎ$(𝑘𝑒𝑦$)]

𝒌𝒆𝒚𝟏
𝑘𝑒𝑦!
𝑘𝑒𝑦%
𝑘𝑒𝑦&

ℬ$[ℎ$(𝑘𝑒𝑦$)]

𝐹𝑃& 𝑘𝑒𝑦$ = 0010

𝐹𝑃&(𝑘𝑒𝑦$)

𝑘𝑒𝑦$

Check FP2 to
avoid collision2

𝐹𝑃& 𝑘𝑒𝑦& = 1111
𝐹𝑃& 𝑘𝑒𝑦% = 0011
𝐹𝑃& 𝑘𝑒𝑦! = 0001

Read all keys
in this bucket 1

Re-arrange
the KVs3

Fig. 4: Example of dual-fingerprint optimization.

C. Handling Fingerprint Collision
In previous subsection, we assumed the fingerprints of

different keys would not collide, which is unrealistic. This
subsection describes how to handle fingerprint collision. We
will theoretically prove that our solution can effectively reduce
the number of collided items by d/2f in § IV.
Naive solution: A naive solution is to insert the items with
fingerprint collision into the stash. When inserting a new item
with key, we first check whether FP (key) exists in its two
candidate buckets. If so, we retrieve the corresponding key′

with the matched fingerprint from CuckooVault. If key′ ̸=
key, we confirm that the new item is undergoing a fingerprint
collision, and insert it into the stash. This solution ensures
each inserted item has only one matched fingerprint in its two
candidate buckets. To lookup a key, we first lookup it in the
stash, and then lookup its fingerprint in candidate buckets.
As discussed in § III-B, the stash should be small enough
so as not to impact the space and speed of CuckooIndex.
Unfortunately, our results show that, to achieve 90% load
factor, there are > 3000 collided items to be stored in the
stash (Figure 6(a)), which is unacceptable. We further propose
the Dual-Fingerprint optimization to reduce the probability of
fingerprint collision and thus reduce the stash size.
Dual-Fingerprint optimization: The key idea is to change an-
other fingerprint hashing function for the items with fingerprint
collisions, and thus grant colliding item a second chance to be

inserted. Only when collision cannot be resolved by changing
fingerprint do we insert the colliding item into stash.

As shown in Figure 4, we use two hash functions FP1(·)
and FP2(·) to calculate fingerprints. For each bucket in the
first array of CuckooIndex (I1), we divide its d slots into two
parts (d = d1 + d2). For the first d1 slots (called primary
slots), we use the first fingerprint hash function FP1(·). For
the remaining d2 slots (called backup slots), we use the
second fingerprint hash function FP2(·). The fingerprints in
the backup slots will not be enqueued during BFS. In Figure 4,
we have d1 = 3 and d2 = 1. We stipulate that when conducting
fingerprint comparisons in lookup operation, fingerprints in
the backup slots have higher priority. That is, to lookup a
key, if its fingerprints FP1(key) and FP2(key) are both in
I1[h1(key)], we consider fingerprint FP2(key) in the backup
slot to be valid, and proceed to retrieve the item from its
corresponding slot in CuckooVault. In insertion operation, we
prioritize placing incoming keys into primary slots. Only when
all primary slots in both candidate buckets are full do we
insert the key into a backup slot. If, during insertion, we
discover that a fingerprint of the incoming key already exists
in one candidate bucket, we READ all keys in this bucket. If
we ascertain that a fingerprint collision has occurred between
the incoming key and an existing key, we make adjustments
between the keys in primary slots and backup slots in an
attempt to resolve the conflict. For example, if the incoming
key has a FP1 fingerprint collision in one primary slot, we try
to move one of colliding keys to a backup slot. As backup slot
has higher priority, we must ensure that the keys in primary
slots do not have FP2 fingerprint collisions with the moved
key. The results show that fingerprint adjustments happen very
infrequently (Figure 7(i)), but can effectively reduce stash size
from >3000 to <32 (Figure 7(g)) and improve load factor
from 40% to 99% (Figure 7(h)).
Example (Figure 4): When inserting key1, we find its fin-
gerprint already exists in a primary slot in I1[h1(key1)]. We
READ all keys in I1[h1(key1)], and ascertain key1 has FP1

collision with key3. Then we attempt to resolve collision
by making fingerprint adjustment in I1[h1(key1)]. We try to
insert FP2(key1) into backup slot under the premise of the
keys in primary slots do not have FP2 collision with key1.
We calculate FP2(key2), FP2(key3), and FP2(key4) to make
sure they do not collide with FP2(key1). Finally, we WRITE
the moved items to their destinations.

D. Dynamic Expansion
Background: When the table is full, KV store needs to expand
its size to accommodate larger dataset. Most existing solutions
expand table by moving items [9], [6], [5]. When the table is
full, they create a new table of the same size, and move nearly
half items to the new table. In the implementation of RACE
[9], this requires the client to sequentially read each bucket
in remote old table, judge which table each item belongs to
(by computing a hash value), and move corresponding items
by deleting them from the old table and writing them into
the new table. Recent MapEmbed [3] proposes a lazy-mode

expansion method based on memory copy. When the table
is full, MapEmbed registers a large table with twice size
and copies the old table into it twice following some rules.
Afterwards, MapEmbed deletes redundant items when their
buckets are first accessed. Additionally, MapEmbed also offers
an active-mode expansion, which also requires moving items
and is nearly identical to RACE. Next, we first introduce the
basic method to expand one CuckooDuo, and then combine
our method with extendible expansion [10] to amortize full-
table expansion time into sub-table expansions and smooth
space utilization during insertion process.

CuckooVault

CuckooIndex

011
010 110

Copy

key1

Do not delete item

(a) Example of expanding a table by 3x

key2 key1 key2

0 1

Index

Vault

Sub-table
(CuckooDuo)

Directory

Expand

(b) Extendible expansion
with a directory

Copy (ours)
Item Moving (RACE)

Delete FP
011 011 011

010110010110010110
0 1 2 3 4 5

Copy

h1'(key2)=9%6=3

I1

B1

h1(key2)=9%2=1

Fig. 5: Illustration of dynamic expansion.
Basic expansion: The expansion of CuckooDuo is based on
memory copy, which supports any integer expansion ratio r.
To expand a CuckooDuo by r times, we first perform a copy
operation to copy each bucket array of CuckooIndex and Cuck-
ooVault by r− 1 times, and append the copied buckets to the
original array. For example, consider the first array in Cuck-
ooIndex I1[0], · · · , I1[m−1]. After memory copy, it becomes
I1[0], · · · , I1[r · m − 1] where I1[i], I1[m + i], · · · , I1[(r −
1) ·m+ i] (i ∈ {0, 1, · · · ,m− 1})) are identical. We modify
the two hash functions used for selecting candidate buckets
from h1(key) = H(key)%m and h2(key) = (h1(key) +
hash(FP (key)))%m to h′

1(key) = H(key)%(rm) and
h′
2(key) = (h1(key) + hash(FP (key)))%(rm). In this way,

after memory copy, each key still exists in its candidate
buckets because h′

1(key) = H(key)%(rm) ∈ {H(key)%m,
H(key)%m+m, · · · ,H(key)%m+ (r − 1)m}.

After memory copy, there exist redundant items in buckets.
CuckooDuo also offers two expansion modes: active-mode
and lazy-mode. 1) In active-mode, CuckooDuo immediately
checks all buckets to remove the redundant items after memory
copy. For each bucket I1[j], we READ all keys stored in
B1[j], calculate hash function to judge whether each key
should be stored in I1[j] by checking whether h′

1(key) = j.
If not, we remove its fingerprint FP (key) from I1[j] in
CuckooIndex. Thanks to the one-to-one mapping relationship
between CuckooIndex and CuckooVault, CuckooDuo does not
need to delete the actual item in remote CuckooVault like
MapEmbed [3], thus achieving nearly 2× smaller expansion
time (Figure 12(a)-12(c)). 2) In lazy-mode, CuckooDuo marks
each bucket with a 1-bit indicator (stored in local memory)
after expansion. Afterwards, every time a marked bucket I1[j]
is first accessed, we incidentally READ and check all items in it
and clean the redundant items as described above. Lazy-mode
further reduces the expansion time by 6.67× (Figure 12(d)).

Example (Figure 5(a)): We use an example to illustrate the
process of expanding a CuckooDuo by r = 3 times. For clarity,
we consider only the first bucket array I1/B1 with m = 2.
The expansion operation works by copying I1/B1 by 2 times,
resulting in r · m = 6 buckets in each array. Afterwards, to
clean the redundant items in I1[1] in active-mode (or when
it is first accessed in lazy-mode), we READ all keys in it and
check whether each key should be stored here. For key2, since
h′
1(key2) = 9%6 = 3, its candidate bucket becomes I1[3], so

we delete its fingerprint from I1[1]. As described above, we
do not delete the actual item in remote CuckooVault, which
will eventually be overwritten by subsequent inserted items.
Extendible expansion: Prior work [10] developed extendible
expansion to amortize the time of full-table expansion to
multiple sub-table expansions, and also smooth space uti-
lization during the insertion process (Figure 12(f)). Recently,
extendible expansion is widely used by numerous works on
KV store [9], [5], [6]. As shown in Figure 5(b), extendible
expansion works by maintaining a directory, which indexes
each item into a sub-table. When a sub-table is full, it is split
into two by creating a new sub-table and moving nearly half
items in it to the new sub-table [9]. The expansion procedure
of CuckooDuo can also work in this extendible manner. As
shown in Figure 5(b), we use CuckooDuo to replace the sub-
table in extendible expansion, which consists of a CuckooIn-
dex and a CuckooVault. The directory along with all Cuck-
ooIndexes are stored in fast memory, and all CuckooVaults
are stored in slow memory. Every time a CuckooDuo (sub-
table) is full, we split it into two CuckooDuos by performing
the memory copy operation as described in basic expansion.
Afterwards, we can either immediately read all buckets to
clean redundant items (active-mode), or clean redundant items
incidentally when their buckets are accessed (lazy-mode). Due
to page limitation, we describe the specific details in our sup-
plementary materials [58]. Our results show that CuckooDuo
works well under extendible expansion, achieving higher space
utilization than RACE [9] (Figure 12(f)-12(g)).

(a) FP (f = 16)
(Thm IV.1)

(b) Dual-FP (f = 8)
(Thm IV.2)

(c) Dual-FP (f = 16)
(Thm IV.2)

(d) BFS (L = 1)
(Thm IV.3)

Fig. 6: Comparison of experimental and theoretical results.

IV. MATHEMATICAL ANALYSIS

We first analyze the probability of fingerprint collision
and theoretically demonstrate the effectiveness of our Dual-
Fingerprint optimization. Then we analyze the probability
of insertion failure. The detailed proofs are provided in our
supplementary materials [58]. We also validate our theoretical
results with experiments under the default setup in § V.
Analyses for fingerprint collision: We first derive the number
of fingerprint collisions in basic CuckooDuo in Theorem IV.1.

Then we derive the the number of unresolvable fingerprint col-
lision in CuckooDuo with Dual-Fingerprint in Theorem IV.2.
Our theoretical results show that Dual-Fingerprint optimiza-
tion effectively reduces the number of collided items by d/2f .

Theorem IV.1. Consider a basic CuckooDuo under the load
factor of α. Let Xα be the number of items failed to be
inserted into CuckooDuo due to fingerprint collisions. We have
E(Xα) ≈ 2md2α2/2f ⩽ 4md2α2/2f = O

(
md2α2

2f

)
.

Theorem IV.2. Consider a CuckooDuo with Dual-Fingerprint
optimization. Let X be the number of items failed to be
inserted into CuckooDuo due to fingerprint collisions. We have
E (X) ⩽ 4md(d+1)(d−1)

3·22f = O
(

md3

22f

)
.

Experimental analysis (Figure 6(a)-6(c)): Figure 6(a) shows
the number of items with fingerprint collision in basic Cuck-
ooDuo (Theorem IV.1). The theoretical results are highly
consistent with our experimental results, and there are thou-
sands of collided items in basic CuckooDuo, meaning that
basic CuckooDuo should use a large stash to hold these
items. Figure 6(b) and Figure 6(c) show the number of items
with unresolvable fingerprint collision in Dual-Fingerprint
CuckooDuo with f = 8 and f = 16 at 99% load factor. The
experimental results are always smaller than our theoretical
upper bounds. When f = 16, both the theoretical and
experimental number of collided items become smaller than
1, showing that the fingerprint collision rate is negligible.
Analyses for insertion failure: We derive the number of BFS
failures in Theorem IV.3 based on basic CuckooDuo. Our
conclusion can easily extend to Dual-Fingerprint CuckooDuo.

Theorem IV.3. Consider a basic CuckooDuo under the load
factor of α. Let Yα be the number of items failed to be
inserted into CuckooDuo due to BFS failure (i.e., the length
of kick-out path exceeds the predefined threshold L). We have

E (Yα) ≈ 2md
∫ α

0
β(r)2Σ

L
i=0di

1−β(r)2Σ
L
i=0

di
dr, where β(r) is the ratio of

full buckets under the load factor of r.

Experimental analysis (Figure 6(d)): Although we cannot
directly obtain the analytical solution of E(Yα) from Theo-
rem IV.3, we can give its numerical solution under a specific
setting by numerical simulation. Figure 6(d) shows the number
of items with BFS failure, where we set L = 1 to enhance the
failure chance to obtain clearer results. The theoretical results
are consistent with our experimental results, and the theoretical
and experimental results both remain 0 at <91% load factor.

V. EXPERIMENTAL RESULTS

Testbed, workloads, and setup: We run all experiments in
a testbed with two servers and one switch interconnected via
RDMA networks. More details can be found in supplementary
materials [58]. We use YCSB [70] to create request workloads
with 64-byte keys and 64-byte values. The KV-table has 30M
slots. We also conduct large-scale experiments with 1G table
size, and the results are in our supplementary materials [58].
We use YCSB to create a loading workload with 30M distinct

(a) Impact of bucket
size (d) on load factor

(d) Impact of BFS
kick-out path length (L)

(c) Impact of insertion
design on data movement

(g) Impact of Dual-FP
optimization on stash size

(b) Impact of insertion
design on load factor

(h) Impact of Dual-FP
optimization on load factor

(i) FP adjustment under
Dual-FP optimization

(e) Insert latency profiling
(local BFS + network comm.)

(j) Impact of stash size (s)
on load factor

(k) Impact of stash size (s)
on lookup latency

(f) Lookup LT profiling
(local + network)

Fig. 7: Impact of CuckooDuo’s parameters and design choices.

insert requests, which is used to load the KV-table to different
load factors. We create multiple 300K running workloads with
insert/lookup/update/delete (or hybrid) requests, which are
used for performance evaluation at different load factors. By
default, the lookup/update requests in the running workloads
follow default Zipfian distribution of θ = 0.99. The running
workloads contain only legal requests, meaning they will
not lookup/update/delete non-existent keys, nor insert existent
keys. Some experiments also use running workloads with
different ratios of illegal requests (Figure 11), or various
request modes and distributions (Table III). By default, we set
d = 8, f = 16, s = 32, L = 3, and enable Dual-Fingerprint
optimization (d1/d2 = 3/1).
A. Effect of Parameters and Ablation Studies
Impact of bucket size (d) (Figure 7(a)): We find larger bucket
goes with higher load factor. The load factor of CuckooDuo
is 90.0%/98.0%/99.7%/99.9% when d = 4/8/12/16. The
results validate that CuckooDuo should store multiple items
in one bucket to improve space utilization. We recommend
setting d = 8, as larger bucket offers negligible performance
gains, and could reduce speed and increase false positive error.
Impact of BFS-based insertion (Figure 7(b)-7(c)): We com-
pare the load factor and data movement of CuckooDuo with
our BFS-based insertion and traditional DFS-based insertion
(with maximum kick-out path length of 50). BFS-based/DFS-
based CuckooDuo has 98.0%/81.3% load factor, and 1.14/5.52
average data movement at the highest load factor. The results
validate that our BFS-based insertion design described in
§ III-B can significantly improve load factor and reduce
data movement compared to DFS-based insertion in standard
CuckooHashing [7]. This is because BFS-based insertion can
efficiently search for more feasible insertion solutions and
ensure to find the shortest kick-out path, and thus minimize
the chance of insertion failure and data movement.
Impact of BFS kick-out path length (L) (Figure 7(d)):
We evaluate the impact of BFS kick-out path length (L) on
load factor. When d = 8, CuckooDuo with L = 3 already
achieves 98.0% load factor. The results validate that a small
L is sufficient for our BFS to find feasible insertion solutions
and achieve high load factor. We recommend setting L = 3 to
avoid excessively long BFS search time.

Insert latency profiling (Figure 7(e)): We conduct a profiling
analysis on the insert latency of CuckooDuo, breaking it down
into the time spent on local device (including BFS search,
fingerprint collision adjustment, hash computation, etc.) and
network communication. At 90% load factor, the time spent
on local device and network communication are 0.71µs and
6.98µs. Overall, local time accounts for only 5%∼10% total
latency. This is because CuckooDuo uses small L to ensure
BFS search time remains short, and as a result, the insert
latency is mainly dominated by the number of RTTs (∼3.2µs
per RTT) in network communication. The results validate that
our BFS-based insertion in § III-B can perform very fast and
will not become the latency bottleneck.
Lookup latency profiling (Figure 7(f)): We conduct a pro-
filing analysis on the lookup latency, breaking it down into
the time spent on local device (including hash computation,
finding fingerprint in candidate buckets, checking stash, etc.)
and network communication, which are about 0.13µs and
3.29µs respectively. Overall, local time accounts for only 3.8%
total latency. Similar as insert latency, lookup latency is also
dominated by network communication (∼3.2µs per RTT).
The results validate that the computation and lookup process
in our double hashing based local CuckooIndex can perform
very fast, and will not become the latency bottleneck.
Impact of Dual-Fingerprint optimization (Figure 7(g)-7(i)):
We compare the number of items in stash and the load
factor of CuckooDuo before and after applying the Dual-
FP optimization. As shown in Figure 7(g), without Dual-FP
optimization, the number of items in stash grows quadratically
with the input scale, which is consistent with Theorem IV.1.
After using Dual-FP optimization, the number of items in stash
drastically decreases and always remains below 32. As shown
in Figure 7(h), when fixing s = 32, the Dual-FP optimization
improves load factor from 40% to 98%. We also evaluate
the number of FP adjustment under Dual-FP optimization in
Figure 7(i), indicating that fingerprint adjustments do not occur
frequently, and thus will not lead to excessive data movement.
These results validate that the Dual-FP optimization described
in § III-C can effectively reduce fingerprint collisions, and thus
significantly improve load factor with minimal data movement.
Impact of stash size (s) (Figure 7(j)-7(k)): We evaluate the

(a) Load Factor (b) False positive
error rate

(c) Lookup LT (90%
non-existent key)

(d) Insert LT (100%
non-existent key)

Fig. 8: Impact of fingerprint length (f).

impact of stash size on load factor and lookup latency. As
shown in Figure 7(j), a small stash of s = 32 can already
improve the load factor from 90.1% to 97.1%. As shown in
Figure 7(k), lookup latency is not affected by stash size. This
is because our stash is small enough to fit in CPU cache,
allowing for very fast query speed. We recommend to set s =
32 because this small stash is sufficient for high load factor
and does not impact lookup speed. These results validate that
the stash mechanism described in § III-B-III-C can effectively
improve load factor without affecting speed.
Impact of fingerprint length (f) (Figure 8): We evaluate the
performance of CuckooDuo under different fingerprint length
(f). As shown in Figure 8(a), when f < 14, larger f goes
with higher load factor because of fewer fingerprint collisions.
When f ⩾ 14, load factor no longer increases with f because
of small fingerprint collision rate, and at this point, load factor
is limited by bucket size d. Figure 8(b) shows the relationship
between CuckooIndex’s false positive error and f , which is
consistent with the theoretical analysis in § III-B. Figure 8(c)
shows the lookup latency, where lookup set has 90% non-
existent keys. The lookup latency decreases with the increase
of f because of smaller error rate in filtering negative keys.
Figure 8(d) shows the insert latency, where all keys in the
insert set are non-existent keys. Similarly, the insert latency
also decreases with the increase of f . However, when f ⩾ 14,
the lookup/insert speed no longer significantly improves with
increasing f , as the error rate is already very low. These
results validate that our CuckooIndex can effectively identify
non-existent keys, thereby enhancing lookup/insert speed by
reducing unnecessary accesses to remote memory as described
in § III-B. We recommend setting f = 16 to simultaneously
attain high load factor and small filter error. Additionally, the
16-bit aligned memory addresses at this setting also allow for
hardware optimizations like SIMD [71].

B. Comparison with Prior Art
We compare CuckooDuo with three KV-stores: MapEmbed

[3], RACE [9], and TEA [17]. To ensure a fair comparison,
we implement these KV-stores in our testbed and use RDMA
doorbell batching [72] to maximize their performance at our
best. We set bucket size d = 8 for all solutions. We use a large
stash (s = 8192) for TEA to improve its load factor, and the
other solutions use a small stash s = 32. The other parameters
of the baseline solutions are set according to their papers.
Insert properties (Figure 9): As shown in Figure 9(a),
CuckooDuo has the highest load factor thanks to its BFS-
based insertion and Dual-FP optimization. When d = 8, the
load factor of CuckooDuo, MapEmbed, RACE, and TEA are
98.1%, 90.0%, 92.9%, and 69.2%. As shown in Figure 9(b),

(a) Load factor (b) # RTTs per insert
(latency)

(c) # Accessed Items
per insert (bandwidth)

Fig. 9: Comparison of insertion properties.

CuckooDuo has the fewest number of RTTs, which is 1 under
<70% load factor and at most 2. As described in § III-B,
this is because the one-to-one design ensures CuckooDuo can
find the location of empty slot or the slots on kick-out path
without accessing remote memory. Therefore, the insertion can
be accomplished with 1 RTT of directly WRITE the empty
slot (at low load factor), or worst-case 2 RTTs of READ
and WRITE the slots on the kick-out path. By contrast, other
solutions require at least 2 RTTs (one to READ bucket status
and another to WRITE). At high load factor, the number of
RTTs of MapEmbed and TEA increases due to more item
movement. As shown in Figure 9(c), CuckooDuo achieves
minimal item accessing, thus minimizing bandwidth overhead.
As describe above, CuckooDuo nearly does not need to read
items in remote memory under <70% load factor. By contrast,
other solutions need to read remote memory at the granularity
of entire buckets, and thus have large item accessing volume
determined by bucket size. Additionally, the item movement
procedure of MapEmbed and RACE at high load factor also
increases their item accessing. We also evaluate the number
of memory access and item movement during insertion, and
the results are shown in our supplementary materials [58].
Latency (Figure 10(a)-10(f)): 1) Insert latency (Fig-
ure 10(a)): The latency results are consistent with the RTT
results in Figure 9(b) (∼3.2µs per RTT), which again validates
insert latency is dominated by the number of RTTs in network
communication rather than local computation time. The insert
latency of CuckooDuo remains about 3.55µs under <70% load
factor, at least half of the others. At 90% load factor, the insert
latency of CuckooDuo grows to worst-case 6.98µs (2 RTTs),
while that of MapEmbed and RACE are 30.1µs and 7.85µs.
The latency improvement (1.9∼6.2×) is not proportional to
bandwidth improvement (9.0∼18.5× in Figure 9(c)) because
many accesses to remote memory can be executed concur-
rently. For example, prior works can access the d items in
a bucket with one memory access, thus requiring only one
RTT. Additionally, the RDMA batch mechanism used in our
implementation also further optimizes the speed of prior work.
2) Lookup latency (Figure 10(b)): Although all solutions take

1 RTT for lookup, CuckooDuo has smaller lookup latency
than others (0.10∼0.92µs) because of less bandwidth usage
(Table I). 3) Update latency (Figure 10(c)): Similarly, all
solutions take 2 RTTs for update. CuckooDuo has smaller
update latency than others (0.30∼0.91µs) because of less
bandwidth usage (Table I). 4) Delete latency (Figure 10(d)):
The delete latency of CuckooDuo is ∼3.2µs (1 RTT), at least
2× smaller than others. This is because under the one-to-

(g) Insert throughput
at 70% load factor

(h) Lookup throughput
at 70% load factor

(i) Update throughput
at 70% load factor

(j) Delete throughput
at 70% load factor

(a) Insert latency
vs. load factor

(b) Lookup latency
vs. load factor

(c) Update latency
vs. load factor

(d) Delete latency
vs. load factor

(e) Insert LT vs.
non-existent key ratio

(f) Lookup LT vs.
non-existent key ratio

(k) Insert latency in
bandwidth-limited setup

(l) Lookup latency in
bandwidth-limited setup

Fig. 10: Comparison of latency (LT) and throughput (TP) with prior solutions.

one mapping design, CuckooDuo can only delete fingerprint
in local CuckooIndex without deleting the actual item in
remote memory, thus reducing one WRITE RTT. 5) Latency
with illegal requests (Figure 10(e)-10(f)): We evaluate the
insert/lookup latency on running workloads containing illegal
requests at 70% load factor. As the ratio of non-existent keys
increases from 0% to 100%, the insert latency of all solutions
varies from their update latency to insert latency at 70% load
factor (Figure 10(e)). CuckooDuo always has the smallest
insert latency because both its update latency and insert latency
at 70% load factor are smaller than others (Figure 10(a)-10(c)).
As the ratio of non-existent keys increases from 0% to 100%,
the lookup latency of CuckooDuo drops from 3.41µs to 0.17µs
(Figure 10(f)), whereas that of the others remains unchanged.
This is because CuckooIndex can identify non-existent keys,
thus avoiding many unnecessary accesses to remote memory.
Throughput (Figure 10(g)-10(j)): We implement the multi-
threading version of CuckooDuo and the other works using
the RW-lock mechanism described in § III-B. The throughput
results are consistent with the latency results in Figure 10(a)-
10(d). As the number of threads increases by 2×, the speed
improves by 1.6∼1.8×. The reason for this disparity is the
concurrency control mechanism incurs extra overhead.
Latency in bandwidth-limited setting (Figure 10(k)-10(l)):
To better highlight the advantages of CuckooDuo, we con-
duct experiments in a bandwidth-limited setting with 10×
smaller NIC port bandwidth and 16× larger key/value length
compared to the default setting. Under this bandwidth-limited
setting, CuckooDuo demonstrates a more significant speed
improvement with 6.1∼17.6× smaller insert latency and
3.0∼9.8× smaller lookup latency than the other works. We
provide more details about the bandwidth-limited setting and
more experimental results in supplementary materials [58].
Performance under the same fast memory size (Figure 11):
As shown in Table I, the index structure of CuckooDuo
requires 13∼16 bits per item (BPI) of local memory. By
contrast, MapEmbed uses smaller index (0.5∼4 BPI). RACE
and TEA do not use index. To ensure a fair comparison,
we compare the performance of all works under the same

fast memory size. Following existing KV stores that prioritize
fast memory as a cache [18], [27], we add an 8-way set-
associative LRU cache to each candidate work. We ensure
that the total size of fast memory is 65MB for all works
by varying their cache sizes (Mfast

Mslow
≈ 0.017). For example,

CuckooDuo uses a 60MB CuckooIndex and 5MB cache. This
setting of simultaneously using a cache and an index in fast
memory has been widely used by recent works [24], [25].
As shown in Figure 11(a), as the ratio of illegal lookups
(non-existent keys) increases, CuckooDuo’s lookup RTT drops
from 0.63 to nearly 0, while that of the other works increases
from 0.61 to 1. This is because CuckooIndex can identify and
filter out non-existent keys, whereas non-existent keys only
incur more cache misses for the other works. Figure 11(b)
shows CuckooDuo always has the smallest bandwidth thanks
to the perfect hashing property of CuckooIndex. Figure 11(c)
shows the lookup latency, which follows the same trend as the
RTT results in Figure 11(a). Even when there are no illegal
lookups, CuckooDuo still has slightly smaller latency because
of smaller bandwidth. In summary, with the same fast memory
size, CuckooDuo still achieves better lookup speed, especially
when there are many illegal lookup requests. We will present
more results on various hybrid workloads later. Although the
cache cannot improve insert/delete speed, we can see that it
indeed effectively reduces the lookup latency of CuckooDuo
(from 3.3µs in Figure 10(b) to 2.2µs). Thus, it is a promising
design for CuckooDuo to use both CuckooIndex and a small
cache in fast memory like prior KV stores [24], [25].

(c) Lookup latency(b) # accessed items
per lookup (bandwidth)

(a) Number of RTT
per lookup

Fig. 11: Performance under the same fast memory size.
Performance under more workloads (Table III): We con-
duct experiments on more workloads with various request
modes and distributions. We use YCSB to create running

(f) Load factor of basic expansion
vs. extendible expansion

(g) Load factor of CuckooDuo
vs. RACE (extendible-300)

(d) Expansion time of
CuckooDuo (lazy)

(e) Expansion time of
MapEmbed (lazy)

(a) Expansion time of
CuckooDuo (active)

(b) Expansion time of
RACE

(c) Expansion time of
MapEmbed (active)

Fig. 12: Dynamic expansion performance of CuckooDuo and comparison with existing expansion methods.

workloads with two request modes: YCSB-A (with 50%
lookups and 50% updates), and YCSB-D (with 95% lookups
and 5% inserts); and four request distributions: zipfian with
θ = 0.99 and θ = 0.90, uniform, and latest. We provide
the CDFs of these workloads in our supplementary materi-
als [58]. The results show CuckooDuo achieves consistently
smaller latency than others under various workloads. We
also evaluate the latency under the same fast memory size
(65MB) setting described above (Mfast

Mslow
≈ 0.017), where

CuckooDuo also achieves the smallest latency. The cache in
fast memory reduces the latency of all works under skewed
request distributions (zipfian, latest), with greater improvement
as the skewness increases. We also evaluate the performance
under hybrid workloads with different lookup/insert ratios, and
the results are presented in our supplementary materials [58].
TABLE III: Latency (µs) under different request modes and distributions at
50% load factor (“CD” refers to “CuckooDuo”, “ME” refers to “MapEmbed”).

Workload w/o cache w/ cache (fast/slow=0.017)
Mode Dist. CD ME RACE TEA CD ME RACE TEA

YCSB-A
L50% U50%

zipf-0.99 4.91 5.04 6.39 5.27 4.38 4.52 5.61 4.66
zipf-0.90 4.95 5.09 6.41 5.27 4.78 4.93 6.12 5.06
uniform 4.97 5.12 6.42 5.27 5.00 5.19 6.47 5.33

latest 4.85 4.98 6.38 5.23 4.06 4.18 5.15 4.33

YCSB-D
L95% I5%

zipf-0.99 3.42 3.74 5.07 3.89 2.35 2.62 3.39 2.66
zipf-0.90 3.41 3.76 5.08 3.89 3.06 3.36 4.40 3.43
uniform 3.46 3.77 5.09 3.92 3.50 3.89 5.14 3.98

latest 3.35 3.66 5.03 3.88 1.84 2.09 2.68 2.11

C. Performance of Dynamic Expansion

We evaluate the performance of CuckooDuo during expan-
sion and compare it with MapEmbed [3] and RACE [9]. We
organize the memory in remote server into many small chunks.
Rather than pre-allocating enough memory for future insertion
requests like RACE [9], we only allocate one small memory
chunk in the initialization stage to build a small table. This
is because in practice, we cannot predict the size of future
workloads, and pre-allocating excessively large memory can
lead to space waste. Every time an expansion is triggered, local
server establishes a TCP connection to notify remote server
of the expansion ratio. In response, remote server allocates an
appropriate number of memory chunks based on the expansion
ratio and performs corresponding expansion operations.
Expansion time (Figure 12(a)-12(e)): We break down the
expansion time (with 2× expansion ratio) into the follow-
ing components: the time spent on memory registration,
memory copying (CuckooDuo and MapEmbed-lazy), cleaning
redundant items (CuckooDuo), moving items (RACE and
MapEmbed-active), and other overhead (including local com-
putation time and communication time etc.). The active-mode
expansion of CuckooDuo takes 4s to expand a 30M table
(Figure 12(a)), which is about 2× faster than RACE (Fig-
ure 12(b)) and active-mode MapEmbed (Figure 12(c)). This

is because active-mode expansion time is dominated by the
time spent on accessing remote memory. CuckooDuo removes
redundant items by modifying only local CuckooIndex, and
thus only needs to READ remote memory. By contrast, RACE
and MapEmbed need to modify remote memory to move
items, and thus require sequential READ and WRITE to remote
memory. The lazy-mode expansion of CuckooDuo takes only
0.6s to expand a 30M table (Figure 12(d)), which is 6.67×
smaller than the active-mode. The expansion time of lazy-
mode CuckooDuo is 1.18× smaller than lazy-mode MapEm-
bed (Figure 12(e)), because CuckooDuo only copies the table
once, whereas MapEmbed requires two copies, thus needs 2×
memory registration and copy time. Finally, we notice that
the memory registration time is short (0.16s to register a 30M
KV table), accounting for only 1/4 of CuckooDuo’s lazy-mode
expansion time and 4% of its active-mode expansion time.
Space utilization (Figure 12(f)-12(g)): We evaluate the space
utilization of CuckooDuo (w/ and w/o extendible expansion)
and RACE (w/ extendible expansion) during insertion process.
In Figure 12(f), we compare CuckooDuo’s basic expansion
(with 2× expansion ratio) and extendible expansion (with 300
and 3000 sub-table sizes). The load factor fluctuates between
50% and 96%. For basic expansion, the load factor is halved
after each expansion. By contrast, using extendible expansion
with small sub-tables can smooth the load factor curve.
In Figure 12(g), we compare the extendible expansion of
CuckooDuo and RACE (with 300 sub-table size). During the
insertion process, CuckooDuo has higher space utilization than
RACE due to its higher single-table load factor (Figure 9(a)).

VI. CONCLUSION
This paper presents an extendible RDMA-based remote

memory KV store called CuckooDuo. The key design is to
build a dynamic perfect hashing index called CuckooIndex in
fast memory, and store the KVs in a cuckoo hash table called
CuckooVault in slow memory, which has one-to-one mapping
with CuckooIndex. We theoretically and empirically validate
our solution achieves high load factor, fast speed, and small
bandwidth. We hope our one-to-one mapping design and our
dual-fingerprint adjustment idea could inspire future KV stores
and and future fingerprint-based hashing indexes.
Acknowledgment. This work was supported by National
Key R&D Program of China (No. 2024YFB2906602), Na-
tional Natural Science Foundation of China (NSFC) (No.
U20A20179, 623B2005, 624B2005, 62402012, 62372009),
China Postdoctoral Science Foundation (No. 2023TQ0010,
GZC20230055, 2024M750102), research grant No. SH-
2024JK29, and High Performance Computing Platform of
Peking University.

REFERENCES

[1] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
Auf Der Heide, Hans Rohnert, and Robert E Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM Journal on Computing,
23(4):738–761, 1994.

[2] Giulio Ermanno Pibiri and Roberto Trani. Pthash: Revisiting fch
minimal perfect hashing. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 21), pages 1339–1348, 2021.

[3] Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han,
Tao Li, Ori Rottenstreich, and Tong Yang. Mapembed: Perfect hashing
with high load factor and fast update. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(SIGKDD 21), pages 1863–1872, 2021.

[4] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky.
Silt: A memory-efficient, high-performance key-value store. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP 11), pages 1–13, 2011.

[5] Qi Chen, Hao Hu, Cai Deng, Dingbang Liu, Shiyi Li, Bo Tang, Ting
Yao, and Wen Xia. Eeph: An efficient extendible perfect hashing for
hybrid pmem-dram. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE 23), pages 1366–1378. IEEE, 2023.

[6] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. Write-optimized dynamic hashing for persistent memory. In
17th USENIX Conference on File and Storage Technologies (FAST 19),
pages 31–44, 2019.

[7] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal
of Algorithms, 51(2):122–144, 2004.

[8] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzen-
macher. Cuckoo filter: Practically better than bloom. In Proceedings
of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies (CoNEXT 14), pages 75–88, 2014.

[9] Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
Yu Hua, James Cheng, Rongfeng He, and Huabing Yan. Race: one-
sided rdma-conscious extendible hashing. ACM Transactions on Storage
(TOS), 18(2):1–29, 2022.

[10] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H Raymond
Strong. Extendible hashing—a fast access method for dynamic files.
ACM Transactions on Database Systems (TODS), 4(3):315–344, 1979.

[11] Source codes of cuckooduo. https://github.com/CuckooDuo/CuckooDuo.
[12] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a

sparse table with 0 (1) worst case access time. Journal of the ACM
(JACM), 31(3):538–544, 1984.

[13] Cmph - c minimal perfect hashing library. http://cmph.sourceforge.net/.
[14] Michael L Fredman and János Komlós. On the size of separating systems

and families of perfect hash functions. SIAM Journal on Algebraic
Discrete Methods, 5(1):61–68, 1984.

[15] Pengfei Zuo, Yu Hua, and Jie Wu. Level hashing: A high-performance
and flexible-resizing persistent hashing index structure. ACM Transac-
tions on Storage (TOS), 15(2):1–30, 2019.

[16] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. Lock-free con-
current level hashing for persistent memory. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 799–812, 2020.

[17] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. Tea: Enabling state-intensive
network functions on programmable switches. In Proceedings of the
2020 Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM 20), pages 90–106, 2020.

[18] Memcached. https://memcached.org/.
[19] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. Viper: An

efficient hybrid pmem-dram key-value store. Proceedings of the VLDB
Endowment, 14(9):1544–1556, 2021.

[20] Jihang Liu, Shimin Chen, and Lujun Wang. Lb+ trees: Optimizing
persistent index performance on 3dxpoint memory. Proceedings of the
VLDB Endowment, 13(7):1078–1090, 2020.

[21] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: a hybrid
index key-value store for dram-nvm memory systems. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 349–362, 2017.

[22] An Qin, Mengbai Xiao, Jin Ma, Dai Tan, Rubao Lee, and Xiaodong
Zhang. Directload: A fast web-scale index system across large regional
centers. In 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE), pages 1790–1801. IEEE, 2019.

[23] Ruiyuan Li, Xiang He, Yingying Sun, Jun Jiang, You Shang, Guanyao
Li, and Chao Chen. Spatio-temporal keyword query processing based
on key-value stores. Data Science and Engineering, 2024.

[24] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized
distributed b+ tree index on disaggregated memory. In Proceedings of
the 2022 international conference on management of data, pages 1033–
1048, 2022.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. Farm: Fast remote memory. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages
401–414, 2014.

[26] Jian-Zhong Li. opengauss: An open-source database for the era of
artificial intelligence. Journal of Computer Science and Technology,
39(5):1005–1006, 2024.

[27] Redis. https://redis.io.
[28] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin

Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network
requirements for resource disaggregation. In 12th USENIX symposium
on operating systems design and implementation (OSDI 16), pages 249–
264, 2016.

[29] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng.
Rolex: A scalable rdma-oriented learned key-value store for disaggre-
gated memory systems. In 21st USENIX Conference on File and Storage
Technologies (FAST 23), pages 99–114, 2023.

[30] Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom
Barbette, Dejan Kostić, and Marco Chiesa. A high-speed stateful packet
processing approach for tbps programmable switches. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1237–1255, 2023.

[31] Danielle E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable
software network load balancer. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 523–
535, 2016.

[32] Zi-Wei Xiong, De-Jun Jiang, Jin Xiong, and Ren Ren. Dalea: A per-
sistent multi-level extendible hashing with improved tail performance.
Journal of Computer Science and Technology, 38(5):1051–1073, 2023.

[33] Ying Wang, Wen-Qing Jia, De-Jun Jiang, and Jin Xiong. A survey of
non-volatile main memory file systems. Journal of Computer Science
and Technology, 38(2):348–372, 2023.

[34] Miao Cai, Junru Shen, Yifan Yuan, Zhihao Qu, and Baoliu Ye. Bonsaikv:
Towards fast, scalable, and persistent key-value stores with tiered,
heterogeneous memory system. Proceedings of the VLDB Endowment,
17(4):726–739, 2023.

[35] Mengbai Xiao, Hao Wang, Liang Geng, Rubao Lee, and Xiaodong
Zhang. An rdma-enabled in-memory computing platform for r-tree on
clusters. ACM Transactions on Spatial Algorithms and Systems (TSAS),
8(2):1–26, 2022.

[36] Mengbai Xiao, Hao Wang, Liang Geng, Rubao Lee, and Xiaodong
Zhang. Catfish: Adaptive rdma-enabled r-tree for low latency and high
throughput. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pages 164–175. IEEE, 2019.

[37] Liang Geng, Hao Wang, Jingsong Meng, Dayi Fan, Sami Ben-
Romdhane, Hari Kadayam Pichumani, Vinay Phegade, and Xiaodong
Zhang. Rr-compound: Rdma-fused grpc for low latency and high
throughput with an easy interface. IEEE Transactions on Parallel and
Distributed Systems, 2024.

[38] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. Space
efficient hash tables with worst case constant access time. Theory of
Computing Systems, 38(2):229–248, 2005.

[39] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and
dictionaries with tightly packed constant size bins. Theoretical Computer
Science, 380(1-2):47–68, 2007.

[40] Yuanyuan Sun, Yu Hua, Song Jiang, Qiuyu Li, Shunde Cao, and Pengfei
Zuo. Smartcuckoo: A fast and cost-efficient hashing index scheme for
cloud storage systems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 553–565, 2017.

[41] Qiuyu Li, Yu Hua, Wenbo He, Dan Feng, Zhenhua Nie, and Yuanyuan
Sun. Necklace: An efficient cuckoo hashing scheme for cloud storage
services. In 2014 IEEE 22nd International Symposium of Quality of
Service (IWQoS 14), pages 153–158. IEEE, 2014.

[42] Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang, Pengfei Zuo, and Shunde
Cao. Mincounter: An efficient cuckoo hashing scheme for cloud storage
systems. In 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST 15), pages 1–7. IEEE, 2015.

https://github.com/CuckooDuo/CuckooDuo
http://cmph.sourceforge.net/
https://memcached.org/
https://redis.io

[43] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis of
random-walk cuckoo hashing. SIAM Journal on Computing, 40(2):291–
308, 2011.

[44] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger.
On the insertion time of cuckoo hashing. SIAM Journal on Computing,
42(6):2156–2181, 2013.

[45] Alan Frieze and Tony Johansson. On the insertion time of random
walk cuckoo hashing. Random Structures & Algorithms, 54(4):721–729,
2019.

[46] Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J
Freedman. Algorithmic improvements for fast concurrent cuckoo hash-
ing. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys 14), pages 1–14, 2014.

[47] Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact
and concurrent memcache with dumber caching and smarter hashing.
In 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 371–384, 2013.

[48] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G
Andersen. Scalable, high performance ethernet forwarding with cuck-
ooswitch. In Proceedings of the 9th ACM conference on Emerging
networking experiments and technologies, pages 97–108, 2013.

[49] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher.
Emoma: Exact match in one memory access. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 30(11):2120–2133, 2018.

[50] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong
Zhang. Mega-kv: A case for gpus to maximize the throughput of
in-memory key-value stores. Proceedings of the VLDB Endowment,
8(11):1226–1237, 2015.

[51] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The yin and yang of
processing data warehousing queries on gpu devices. Proceedings of
the VLDB Endowment, 6(10):817–828, 2013.

[52] Kai Zhang, Feng Chen, Xiaoning Ding, Yin Huai, Rubao Lee, Tian
Luo, Kaibo Wang, Yuan Yuan, and Xiaodong Zhang. Hetero-db:
next generation high-performance database systems by best utilizing
heterogeneous computing and storage resources. Journal of Computer
Science and Technology, 30(4):657–678, 2015.

[53] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Li, Xiaodong
Zhang, Bingsheng He, Jiayu Hu, and Bei Hua. A distributed in-memory
key-value store system on heterogeneous cpu–gpu cluster. The VLDB
Journal, 26:729–750, 2017.

[54] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[55] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego.
Adaptive cuckoo filters. ACM Journal of Experimental Algorithmics,
2020.

[56] Minmei Wang and Mingxun Zhou. Vacuum filters: more space-efficient
and faster replacement for bloom and cuckoo filters. Proceedings of the
VLDB Endowment (VLDB 19), 2019.

[57] Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh. Infinifil-
ter: Expanding filters to infinity and beyond. Proceedings of the ACM
on Management of Data (SIGMOD 23), 1(2):1–27, 2023.

[58] Supplementary materials of cuckooduo. https://github.com/CuckooDuo/
CuckooDuo/blob/main/CuckooDuo Supplementary.pdf.

[59] Dagang Li, Rong Du, Ziheng Liu, Tong Yang, and Bin Cui. Multi-copy
cuckoo hashing. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE 19), pages 1226–1237. IEEE, 2019.

[60] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit
and efficient hash families suffice for cuckoo hashing with a stash.
Algorithmica, 70(3):428–456, 2014.

[61] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hashing. In
24th USENIX Security Symposium, pages 515–530, 2015.

[62] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Privacy-preserving group data access via stateless
oblivious ram simulation. In Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms (SODA 12), pages 157–
167. SIAM, 2012.

[63] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM Journal on Computing,
39(4):1543–1561, 2010.

[64] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scal-
able hashing on persistent memory. arXiv preprint arXiv:2003.07302,
2020.

[65] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark
Wegman. Exact and approximate membership testers. In Proceedings
of the tenth annual ACM symposium on Theory of computing, pages
59–65, 1978.

[66] Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and
space-efficient minimal perfect hash functions. In Algorithms and Data
Structures: 10th International Workshop, WADS 2007, Halifax, Canada,
August 15-17, 2007. Proceedings 10, pages 139–150. Springer, 2007.

[67] Edward A Fox, Lenwood S Heath, Qi Fan Chen, and Amjad M
Daoud. Practical minimal perfect hash functions for large databases.
Communications of the ACM, 35(1):105–121, 1992.

[68] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Charac-
terizing, modeling, and benchmarking rocksdb key-value workloads at
facebook. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[69] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. Nomad: Non-exclusive memory tiering via transactional
page migration. In 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24), pages 19–35, 2024.

[70] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[71] Intel instructions. Available: https://software.intel.com/sites/
landingpage/IntrinsicsGuide/.

[72] Anuj Kalia, Michael Kaminsky, and David G Andersen. Design
guidelines for high performance rdma systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 437–450, 2016.

https://github.com/CuckooDuo/CuckooDuo/blob/main/CuckooDuo_Supplementary.pdf
https://github.com/CuckooDuo/CuckooDuo/blob/main/CuckooDuo_Supplementary.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

	Introduction
	Background and Related Work
	Hashing Index and Perfect Hashing Index
	KV Stores in Fast-Slow Memory Architecture
	Preliminary of CuckooHashing and CuckooFilter

	The CuckooDuo Algorithm
	Data Structure
	Basic Operations and Discussions
	Handling Fingerprint Collision
	Dynamic Expansion

	Mathematical Analysis
	Experimental Results
	Effect of Parameters and Ablation Studies
	Comparison with Prior Art
	Performance of Dynamic Expansion

	Conclusion
	References

