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Abstract—Multi-set membership queries are fundamental op-
erations in data science. In this paper, we propose a new data
structure for multi-set membership queries, named coloring em-
bedder, which is fast, accurate, and memory efficient. The idea of
coloring embedder is to first map elements to a high-dimensional
space, which nearly eliminates hashing collisions, and then use a
dimensional reduction representation, similar to coloring a graph,
to save memory. Theoretical proofs and experimental results show
that the coloring embedder is effective in solving the problem
of multi-set membership queries. We also find that web cache
sharing is one of the typical application scenarios of the multi-set
membership queries and current methods based on Bloom filters
always send redundant queries. We apply coloring embedder to
web cache sharing by arranging our data structure on the on-
chip and off-chip memory and designing query, insertion and
deletion operations for this scenario. The experimental results
show that compared with the present method, our method can
reduce the queries sent by proxies while reaching equal hit rate
with the same size of on-chip memory. The source code of
coloring embedder has been released on Github.

I. INTRODUCTION

Multi-set membership queries aim to find which set an ele-
ment belongs to. A multi-set membership query is a fundamen-
tal operation in computer science. This type of query appears
in many applications, including indexing in data centers [40],
[52], distributed file system [5], database indexing [5], data
duplication [31], network packets processing [12], [46], [48],
and network traffic measurement [13], [44]. Before discussing
existing approaches to solving multi-set membership queries
and the novelty of our approach, we briefly provide a formal
definition and two example use cases.

A. Formal Definition

Given s sets S1, S2 . . .Ss with no intersection and an
element e from one of those sets, a multi-set membership
query returns the set which e belongs to. The formal definition
is as follow.
Multiset Membership Query: U is the universe of elements,
i.e., U = {e1, e2, ...ei..., em}, where ei can be a string, an
integer, an IP address, etc. U is partitioned into s disjoint sets
S1, S2, ..., Ss, such that ∀i, j, Si ∩ Sj = ∅, and S1 ∪ S2 ∪
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... ∪ Ss = U . The membership of e can be represented by a
function f : U 7→ {1, 2, ..., s}, such that f(e) = i if e ∈ Si,
where i is also defined as the set ID of e. For any element
e ∈ U , the multi-set membership query is to retrieve its set
ID, denoted as f̂(e), which is the result produced by the query
and may differ from f(e).

Our goal is to design an algorithm for multi-set membership
queries, which encodes f into a data structure D, and answer
queries based on D. If the answer f̂(e) for querying e is not
equal to f(e), we say this query incurs an error. In practice,
a few errors are typically acceptable, especially in big data
scenarios.

B. Example Use Cases and Performance Metrics

To illustrate the use of multi-set membership queries, we
provide two typical use cases:
Use Case 1: Distributed caching. A classic distributed caching
approach is the Summary Cache [22]. There are multiple
proxy caches, and each proxy keeps a compact summary of
the cache content of every other proxy cache. When a cache
miss occurs, the cache first checks all the summaries to see
if the request might be a hit in other caches, and then sends
the query message to those proxies whose summaries show
positive results. This is a typical multi-set membership query
problem. Due to the importance of distributed caching, recent
work [49], [51] still aims to optimize its performance.
Use Case 2: MAC table query. In data centers, switches need
to determine the outgoing port for each incoming packet.
Switches query the MAC table to find the output port infor-
mation, which can be seen as a multi-set membership query.
Each MAC table entry includes a key (MAC address) and a
value (port). A typical MAC table [2] contains around ten
thousand entries and tens of ports. However, switches often
have limited memory, making it challenging to support queries
at high line-rates [48]. Existing solutions [36], [48] sacrifice
query accuracy, which means that a query may lead to a wrong
answer (error). In the case of MAC tables, such errors are
acceptable, but may incur high time penalties.

The key metrics of multi-set membership queries are query
speed, error rate, and memory usage. High query speed is crit-
ical to achieve a high throughput of query requests [39]. Low
error rate is highly desirable because the penalties for errors
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may be high. Small memory usage is also important, because
processor caches are typically small, and data structures should
be small enough to fit into cache to achieve fast access speeds
[27]. Prior work has often focused on improving one or two of
these three metrics. The objective of our paper is to optimize
all three metrics at the same time.

C. Prior Art and Limitations

In general, there are two types of solutions for multi-set
membership query: hash-table-based solutions and Bloom-
filter-based solutions.

Using a hash table is a straightforward solution for the
multi-set membership query problem. We use elements as
keys and the set identifiers as values. We then can build a
hash table based on these key-value pairs. Hash-table-based
solutions are accurate but not memory-efficient. Traditional
hash-table-based solutions [33] achieve O(1) query speed at
the cost of large memory usage. However, if the memory is
limited, the query time will become unbounded due to hash
collisions.

Solutions using perfect hashing [10], [15] sacrifice insertion
speed for query speed and have bounded query time. However,
they do not support fast dynamic updates. Cuckoo hashing [34]
and cuckoo filter [21] can achieve high query speed, but it uses
memory to store the fingerprint of keys. The memory usage
may be large when a high accuracy is desired.

A Bloom filter [8] is a compact data structure for mem-
bership query problem. Bloom filters can achieve fast and
constant query speed using very small memory at the cost of
sacrificing query accuracy. A large body of work [13], [32],
[43], [45] uses Bloom filters for the multi-set membership
query problem. However, that work suffers from a relatively
high error rate because of hashing collisions. When an element
fully overlaps with another elements in a Bloom filter, a false
positive happens.

None of the above solutions excels in all three key metrics
that are relevant for multi-set membership queries, i.e., fast
query speed, low error rate, and low memory use.

D. Proposed Approach

In this paper, we propose a novel data structure, named
the coloring embedder, which can achieve fast query speed,
almost no error, and low memory usage at the same time.

Similar to hash-table-based solutions and Bloom-filter-based
solutions, our coloring embedder is also based on hashing.

Before introducing our solution, let us consider the follow-
ing scenario: Given m elements, assume they are randomly
mapped to n = cm buckets. (In this paper, a bucket means
a unit of memory that can store exactly one element.) An
element cannot be represented by its bucket if two or more
different elements are mapped to this bucket, and we call
such case a collision. Clearly, many collisions will occur when
c = 1. To reduce the number of collisions to a practical level,
c (and the necessary memory) has to be very large.

The approach of the coloring embedder is to allow a very
small number of collisions with limited memory overhead.
There are two challenges to design such a data structure: one
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Fig. 1: Example of hyper-mapping and coloring embedding.

is how to map the elements to eliminate collisions, and the
other is how to use small amounts of memory to store the
mapping results. To handle the above challenges, we propose
two key techniques: The first one is hyper-mapping and the
second one is coloring embedding.

We first map all elements to a high-dimensional space
to almost eliminate hashing collisions. Then we perform
dimensionality reduction to map the high-dimension space to
a low-dimension space.

We use graph terminology to explain our algorithm. Sup-
pose there are m elements, we first map them to an empty
graph with cm nodes and (cm/2)2 edge slots, where c is
recommended to be 2.2 according to our experimental results.
(See Section VI-B) Each element is mapped to an edge slot to
build an edge and the set ID is recorded on the edge. Then, we
embed the graph with (cm/2)2 edge slots into a node vector
with cm nodes, while keeping the recorded set identifiers of
all elements accurate.

We propose to use the colors of the nodes to represent the
type of the edges, namely coloring embedding.

To illustrate the principle of coloring embedding, we con-
sider a simple case with only two sets, set 0 and set 1. For
convenience, we name edges mapped by elements in set 0
as positive edges, and edges mapped by elements in set 1
as negative edges. The graph is colored according to two
coloring rules:

1) If there is a positive edge between any two nodes, those
two nodes should have different colors;
2) If there is a negative edge between any two nodes, they
should have the same color.

If all nodes can be colored according to the two rules, the
coloring embedding succeeds. Then, we can answer a multi-
set membership query with only the vector of node colors.
When an element in the sets is queried, we check the two
end-nodes of its mapped edge. If the two nodes have different
colors, the element is in set 0. Otherwise, it is in set 1.

For more than two sets, we do not directly encode the set
identifiers in pairs. Instead, we encode the set identifiers by
bits. If there are totally s sets, we can encode 0 to s − 1
with no more than dlog(s)e bits using binary coding. Each
bit can be represented by an edge, then the length of the set
ID is dlog(s)e bits. (See Section III-C) As mentioned above,
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one graph can encode two sets, so one graph can encode the
content of one bit. Therefore, we can create dlog(s)e graphs
and each graph encodes one bit of the binary representation
of a set ID. To achieve faster query speed and better load
balancing, we further propose an approach called shifting
coloring embedder, which uses only one graph. More details
are discussed in Section IV.

II. BACKGROUND AND RELATED WORK

In this section, we discuss related work for multi-set queries
and introduce properties of random graphs, which are relevant
to our proposed algorithm.

A. Exact-match Data Structures

Exact-match data structures that are based on hash tables
[33] have no error. However, they need to deal with hash
collisions and therefore store element keys in order to resolve
these conflicts. To reduce the hash collision rate to support fast
queries and updates, a large memory is needed. Perfect hashing
[7], [19] requires little memory redundancy, but cannot easily
support insertions.

Cuckoo hashing [34] and cuckoo filter [21] can achieve
high query speed. And [38] is an example of its application
scenario. Cuckoo hashing maps each element to two positions.
If both positions are occupied by other elements, the algorithm
expels one of those elements to make room for the new
element and inserts the expelled element to its other position.
but it needs to store the fingerprints of keys. When load factor
is high, a cuckoo hashing update could also fail.

B. Probabilistic Data Structures

Probabilistic data structures for multi-set query are com-
monly based on Bloom filters [8]. A Bloom filter is a compact
data structure to represent a set and supports approximate
membership query, i.e., answering whether an element belongs
to the set, but the answer may be wrong. A Bloom filter
consists of a bit array and k hash functions that map an element
to k bits in the array. To insert an element, k hash functions
are computed and all the mapped k bits are set to 1. To query
an element, the Bloom filter checks the k mapped bits and
returns true if and only if all of them are 1.

A straightforward method for multi-set queries is to use
multiple Bloom filters, each recording one set [48]. But this
method has low memory efficiency and slow query speed
because it needs to access multiple Bloom filters. Recent work
has aimed to reduce the number of Bloom filters by letting
each Bloom filter represent a part of the encoded set IDs,
such as Bloom Tree [47], Coded Bloom filter [13], Sparsely
coded filter [32]. Since the optimal length of a Bloom filter is
related to the number of elements, the memory usage of these
methods may be influenced by the distribution of set sizes,
even if the total number of elements is given.

There are also Bloom filter variances that record elements
of different sets in a single filter, such as the Combinatorial
Bloom filter [25], iSet [36], the Shifting Bloom filter [45], and
more [16]–[18], [44]. They share the advantage that they are
not influenced by the distribution of set sizes.

TABLE I: Notation used in this paper.

Symbol Description
m # edges or # elements
n # nodes or # buckets
e an element

n/m ratio n divided by m
s # sets

h(.) hash functions
S+ the 1st set of elements
S− the 2nd set of elements
m+ # elements in S+ or # positive edges
m− # elements in S− or # negative edges

Bloom filters are suitable for the scenario where the allowed
error rate is relatively high. If the allowed error rate is very
low (e.g., 10−4), Bloom filters need too much memory (e.g.,
19.13 bits per element using 13 hash functions) to reduce
the collision rate to meet this requirement. By contrast, our
algorithm has the property that if the memory is above a rather
small threshold (2.2 bits per element using 2 hash functions),
there are almost no errors at all (less than 10−4 for 105

elements). Thus, our algorithm is much more memory efficient
for low-error-rate scenarios.

C. Random Graph and Sharp Threshold

A random graph is generated by randomly connects m pairs
of nodes in an empty graph containing n nodes. Random
graphs have many elegant mathematical properties. A typical
one is the existence of sharp threshold [9], [50]. The sharp
threshold is also called phase transition phenomenon, which
means some properties may suddenly change when an inde-
pendent variable is changed. For example, it has been proved
that, cycles exist in a random graph with high probability
when m/n is larger than 1, and there are no cycles with high
probability when m/n is smaller than 1 [20]. Therefore, 1 is
the sharp threshold of the existence of cycles. We have found
that there also is a sharp threshold of memory for successful
construction of the coloring embedder. The construction will
succeed with high probability when the memory size is larger
than the threshold. And there is also a sharp threshold of the
load rate which influences the throughput of insertion. This
property can be used for choosing a proper initial memory
size for a coloring embedder.

III. THE COLORING EMBEDDER

In this section, we describe the design of the coloring
embedder in detail. We first describe the coloring embedder
for two-set queries and then present two variances for multi-set
query. Table I summarizes the notation used in this paper.

A. Operation of Two-Set Query

The key idea of the coloring embedder is to first map
all elements to a high dimensional space to avoid hashing
collisions and then perform dimensional reduction to embed
the high dimension space into a low dimension space. There
are two steps to construct a coloring embedder, hyper mapping
and coloring embedding, as illustrated in Figure 1.
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TABLE II: Color for each state of the bucket.

Bits (0, 0) (0, 1) (1, 0) (1, 1)
Color Red Green Blue Yellow

In the hyper mapping process, we first build an empty graph
with cm nodes, where m is the number of elements and c
is a constant. Then, we map each element to an edge slot
randomly using hash functions. Since there are about (cm/2)2

edge slots, collisions rarely happen. We record the set IDs on
the edges. For the two-set query, there are two sets: set 0 (S+)
and set 1 (S−), and thus there are two kinds of edges in the
graph. The edge with set ID 0 is named as positive edge, and
the edge with set ID 1 is named as negative edge.

In the coloring embedding process, we embed the graph
into a node vector by coloring the nodes in the graph. The
coloring rules are: 1) for each positive edge, the colors of its
two associated nodes should be different; 2) for each negative
edge, the colors of its two associated nodes should be the
same.

After all elements are mapped to the edges, we apply a RDG
coloring algorithm to this graph. We introduce the algorithm
later in Section III-B3. As our algorithm is randomized,
we refer to the success rate of coloring embedding as the
possibility of coloring the mentioned graph successfully using
our algorithm. It is obvious that the more colors are used in
our algorithm, the higher success rate it will reach and the
more memory is used. In addition, using an integer power of
2 as the number of colors brings convenience to encoding and
decoding because we can use adjacent bits to represent the
color and save and read the color by shifting operation. If we
use other digits such as 3, 5 or 6, we must use multiple to
save and division operations to read the color. To balance the
success rate of coloring embedding and memory usage, we
finally use four colors to color the graph. Four colors have
been proven enough according to the theoretical analysis in
Section V.

If two nodes are connected by both negative and positive
edges during constructing the graph, the collision error occurs.
We ignore the positive edge in this case, which lead to errors
in querying. When the constructed graph has collision errors,
we generally allow the errors to exist because the error rate
is always acceptably low. The detailed analysis can refer to
Section V.

B. Implementation of Two-Set Query

Here, we describe the data structure and the operations in
the coloring embedder, including construction, query, inser-
tion, deletion, and migration.

1) Data Structure: The coloring embedder consists of two
parts: a node array and an adjacency list. As shown in Figure 2,
these two parts can be stored separately because they are used
in different situations. Below, we describe each of them.
• Node Array: The node array is used to store the results

of the coloring embedding. A node array consists of n
buckets, and each bucket consists of two bits denoted by
b1 and b2. Each bit can be set to 0 or 1, so a bucket
has 4 states: (0,0), (0,1), (1,0), and (1,1), corresponding

0 1 0 0 1 0 0 1 0 0 1 0

bucket

Node Array

0 1 0 0 1 0 0 1 0 0 1 0

Adjacency 
List

header

n6 n3 n6 n5

n4 n3

linked
list

negative edge

positive edge

n1 n2 n3 n4 n5 n6

Fig. 2: Structure of the coloring embedder.

to four colors, red, green, blue, and yellow, respectively
(see Table II).
A bucket in the node array corresponds to a node in the
graph. We define coloring a bucket as setting the values
of the two bits in a bucket. For example, if we color a
bucket with green, it means setting its first bit to 0 and
its second bit to 1.

• Adjacency List: The adjacency list is used to store the
edges of the graph during the hyper-mapping process.
The list is composed of n linked lists, and the header of
each linked list corresponds to a bucket in the node array.
Let ni denote the ith bucket. If two nodes in the graph
are connected by an edge, the two corresponding buckets
in the node array are logically adjacent. The linked list
of the ith bucket stores the positions of all the buckets
that are logically adjacent to bucket ni. For each item in
the linked list, we use a flag bit to indicate whether the
edge is positive or negative.
In Figure 2, positive edges are represented by solid lines,
and negative edges are represented by dash lines. From
the adjacency list in Figure 2 we can see that n3 is
logically adjacent to n6 with a negative edge, and is
logically adjacent to n4 with a positive edge.

2) Operations: The operations in the coloring embedder
are construction, query, insertion, deletion, and migration.
Construction: Initially, there is a node array with n buckets
and a graph with n nodes and no edges. The ith bucket with
two bits corresponds to the ith node with four colors, and we
use ni to denote them both. For each element e in S+ and
S−, we compute two hash functions to map the element to two
nodes nh1(e), nh2(e), and we create an edge between these two
nodes. If the element is in set S+, the edge is a positive edge,
otherwise it is a negative edge. After all elements are inserted,
we color the graph to make all nodes obey the coloring rules
mentioned in Section I-D. Any coloring algorithm can be
used, and we present an algorithm named RDG in Section
III-B3. If the graph is colored successfully, we assign the
value of bucket ni with the color of node ni (1 6 i 6 n).
Otherwise, we change hash functions and repeat construction
until it succeeds. Simply, we can change the seeds of the hash
functions. When the memory size of the node array is larger
than 2.2 bits per element so that the number of nodes exceeds
the threshold, the construction will succeed in the first attempt
with high probability (See Section VI-B).
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Fig. 3: An example of construction.

Example (Figure 3): Set S+ has two elements, e1 and e2,
and set S− has one element, e3. First, every element is mapped
to the adjacency list and three logical edges are created. Two
of the them are positive and one is negative. The three edges
are showed in the corresponding graph below the coloring
embedder. Positive edges are represented by solid lines and
negative edges are represented by dash lines. Second, we color
the nodes. As shown in the graph on the right, n1 and n2, n3
and n5 are colored with different colors; n4 and n5 are colored
with the same color. Two colors are enough to color the graph.
After that, we set the values of the buckets in both the node
array and the adjacency list according to the color of the graph.
Query: The query process only involves the node array. When
querying an element e, we compute the two hash functions for
e and check the colors of the two mapped buckets nh1(x) and
nh2(x). If the colors of the buckets are different, e belongs to
S+. Otherwise, e belongs to S−.

Example (Figure 3): When querying element e1, we com-
pute hash functions and get two buckets n1 and n2 with values
(0,1) and (0,0), respectively. Since these two buckets have
different colors, the edge between them is a positive edge.
Thus we report that e1 belongs to S+.
Insertion: There are two steps to insert an element e. First,
we compute the two hash functions and map e to two buckets
nh1(x) and nh2(x). If e belongs to S+, we add a positive edge
between the two buckets in the adjacency list; if e belongs
to S−, we add a negative edge in the adjacency list. Second,
we perform the RDG updating algorithm to make all affected
buckets follow the coloring rules.

Example (Figure 4): A new element, e4, from S+ will be
inserted. First, we map e4 to two buckets and add a positive
edge between n2 and n3. Second, we find out that the colors
of bucket n2 and n3 are both red, while their colors should be
different according to the coloring rules. Therefore, we need
to perform the RDG updating algorithm. As a result, the color
of bucket n3 changes from red to blue.
Deletion: To delete an element e, we compute the two hash
functions to locate the buckets of e, and then remove the edge
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Fig. 4: An example of insertion.

between nh1(x) and nh2(x) from the adjacency list. That means
deleting nh1(x) from the linked list of nh2(x) and deleting
nh2(x) from the linked list of nh1(x). The node array does not
need to be modified at once.
Migration: Migration means an element e changes its mem-
bership from S+ to S− or vice versa. If e migrates from S+ to
S−, the edge between nh1(x) and nh2(x) changes from positive
to negative; if e migrates from S− to S+, the edge changes
from negative to positive. Then, the RDG update algorithm is
used to color other affected nodes.
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Fig. 5: An example of migration.

Example (Figure 5): Element e2 changes its membership
from S+ to S− and the edge between n3 and n5 needs to
be changed from positive to negative. As a result, we need
to change the colors of n3 and n5 to be the same. The RDG
update algorithm is performed, and the color of n3 changes
from blue to green. Other buckets are not affected in this case.

3) The RDG Coloring Algorithm: Here, we describe our
coloring algorithm in details. The coloring problem is a well-
known NP-complete problem [23] and no polynomial-time
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exact algorithm exists. Our coloring algorithm, called Recur-
sively Delete or Give up coloring (RDG), is an extension of
the k-core decomposition algorithm in [6]. It is a randomized
algorithm that gives an approximation solution and is fast and
accurate in practice.

Before going into the details of the algorithm, we introduce
a well-known term in graph theory, k-core [14], [26], [37]:
The k-core is the maximum subgraph in which the degree of
every node is equal or larger than k. Our RDG algorithm is
based on the observation that the graph can be quickly and
successfully colored with k colors if there is no k-core in the
graph.

For convenience, we use CSG to denote Connected Sub-
Graph. Our RDG coloring algorithm is divided into the
following steps:

1) For every pair of nodes directly connected by negative
edges, we merge those two nodes to a single node. One
new single node may be merged by more than 2 nodes.
Collision errors occur when the new single node contains
two nodes that have been connected by a positive edge.
We just ignore that positive edge in this algorithm. After
that, the graph only contains positive edges. A stack is
built to record deleted nodes.

2) If all CSGs in the graph have been deleted, go to Step 5.
Otherwise, for each CSGi that is still not deleted, we
compare its number of nodes NCSGi with the predefined
threshold θ. If NCSGi

6 θ, go to Step 3; If NCSGi
> θ,

go to Step 4. Typically, we set θ to 16.
3) The incoming CSG is small, so we simply use a depth-

first method to color it. If the coloring succeeds, we delete
the CSG and return to Step 2. Otherwise, we report that
the graph cannot be colored with four colors and the
algorithm ends.

4) For the incoming CSG, if there is no node with degrees
less than 4, we report that there is a 4-core and the
algorithm terminates. Otherwise, we push all the nodes
with degrees less than 4 onto the stack and delete them
from the CSG. After that, we return to Step 2.

5) We pop all nodes from the stack and color them one by
one. The algorithm ends.

Proof of correctness: Here, we prove that if the algorithm
reaches the 5th step, the graph can be colored correctly. If
coloring a node n0 leads to conflicts in the the 5th step,
there must be more than 4 neighbors of n0 already colored.
However, when n0 is pushed onto the stack, it has less than
4 neighbors remaining in the graph. Therefore, when n0 is
popped, it also has less than 4 neighbors. As a result, we
can safely draw the conclusion that all nodes can be colored
successfully without conflicts.
Complexity Analysis: In our RDG algorithm, each node en-
ters the stack at most once. The time complexity of processing
each node is related to the number of edges the node has. Each
edge is connected to two nodes and is therefore processed
at most twice. Therefore, the overall time complexity of the
construction is O(n+m). According to Fig 9, our algorithm
has high possibility to color the graph successfully with at least
2.2 bits per element on average. Thus, the failure appears at
really low rate and hardly increases the time complexity. We

have to store all nodes and edges, along with a stack with
at most n elements for k-core decomposition, so the space
complexity is O(n+m).

4) RDG Update algorithm: Updating refers to inserting
an element into or deleting an element from S+ or S−. To
update the coloring embedder, we propose a method called
RDN (Recursively Delete Neighbor): When a node ni needs
to change its color, if there is no candidate color for it, we
involve all its neighbors into the modification. The node and
its neighbors make up a subgraph. We attempt to color that
subgraph using the RDG algorithm recursively. If the subgraph
cannot be expanded and cannot be colored, a 4-core is found
and the RDG updating algorithm fails.

C. Coloring Embedders for More Than Two Sets

To classify more than two sets, we propose two solutions:
The first is to apply a coding method and a fast-memory-access
scheme to organize multiple coloring embedders together; the
second is to use one large coloring embedder associated with
multiple groups of hash functions, which are generated by
shifting an original group of hash functions.

1) Coded Representation of Sets: A coded coloring embed-
der is implemented by multiple coloring embedders. Suppose
there are s sets, with IDs ranging from 1 to s. The IDs can be
converted to binary codes, with maximum length logdse. To
record the membership of an element, we can record each bit
of the set ID binary code with a coloring embedder. This task
can be handled by totally logdse coloring embedders. If the
ith bit is 1, the ith coloring embedder records the element with
a positive edge. Otherwise, the coloring embedder records the
element with a negative edge. The logdse coloring embedders
are together called the coded coloring embedder.

We use a fast-memory-access technique to optimize the
query speed of the coded coloring embedder. In the above
implementation, the number of memory accesses of a coded
coloring embedder is logdse times that of a single coloring
embedder, which slows down the query speed, insertion, and
deletion. To address this problem, we reorganize the layout
of the logdse embedders. All embedders are separated into
single bits and the corresponding bits are grouped together.
The ith bits of each embedder are grouped into a word, so
the binary code of one element can be fetched with only
two memory accesses. By using this technique, the coded
coloring embedder can work almost as fast as a single coloring
embedder.

2) The Shifting Coloring Embedder: The above coded
coloring classifier with fast-memory-access can represent more
than 2 sets and reduce the number of memory access to 2.
However, that approach uses many coloring classifiers and they
suffer from a potential load-balancing problem. To address
this issue, we propose the Shifting Coloring Embedder, which
shares ideas with Shifting Bloom filters [45].

Given s sets with set ID: 0, 1, 2, ..., s − 1, we build one
shifting coloring embedder. There is only one graph and log2 s
edges are inserted into the graph for each element. We use
an example in Figure 6 to show how the shifting coloring
embedder works. In this example, there are 8 sets, which
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Fig. 6: Shifting coloring embedder.

means s = 8 and log2 s = 3. We assign a code for each
set: the code of Si is i in the binary format. For example,
the code of S5 is 101. When inserting an element e which
belongs to set S5, we compute h1(e) and h2(e), and locate
2 log2 s = 6 buckets: nh1(e), nh1(e)+1, nh1(e)+2, and nh2(e),
nh2(e)+1, nh2(e)+2. Since e ∈ S5 and the code of S5 is 101
and the first bit of that code is 1 (which corresponds to a
positive edge), we create a positive edge between nh1(e) and
nh2(e). This edge implies that the colors of nh1(e) and nh2(e)

need to be different. Since the second bit of the code is 0, we
create a negative edge and the colors of nh1(e)+1 and nh2(e)+1

need to be the same. Accordingly, the colors of nh1(e)+2 and
nh2(e)+2 need to be different.

When log2 s is smaller than the length of a machine
word, we can answer multi-set query with only two memory
accesses. Also, there is no load-balancing problem because
there is only one data structure to hold all elements.

IV. COLORING EMBEDDER FOR WEB CACHE SHARING

We apply our algorithm to distributed caching at web scale.
We first restate the problem of distributed caching to focus
on web caches and explore the redundancy generated by the
Internet Cache Protocol (ICP) protocol. We discuss the main
idea and limitation of prior art, the Summary Cache [22]. We
then compare our approach to the performance of Summary
Cache.

A. Distributed Caching

Caching is used to reduce Internet bandwidth consumption
and to provide faster access speed to content. Moreover, using
multiple caches among web proxies on the same side of a link
has been shown to decrease network traffic effectively. The
Harvest project [11] first proposed the Internet Cache Protocol,
which allows a proxy to send queries to neighbors in search
of documents in their caches when local cache misses occur.

When a cache miss occurs at a proxy, ICP multicasts a
query message to all neighbor proxies in order to probe
for potential cache hits. Multicasting ensures a cache hit if
the document is cached by at least one of the neighbors.
However, multicast also incurs an overhead that increases with
the number of proxies. To reduce this overhead, there are
two types of queries that we can aim to avoid: queries to
proxies that do not cache the document (invalid queries) and
queries that return duplicate documents from multiple proxies
(unnecessary queries).

B. Web Cache Sharing with Summary Cache

To address the problem of distributed caching, the most
well-known related work is Summary Cache [22], which
reduces the query number by reducing invalid queries. The
main idea of Summary Cache is shown in Figure 7. Each proxy
maintains a compact summary each other proxy that tracks
the state of caches at the other nodes. In Summary Cache, the
summary consists of multiple on-chip Bloom filters to support
quick responses to queries and off-chip Counting Bloom filters
to support updates. For each document that incurs a cache
miss, a proxy searches all the on-chip Bloom filters and sends
a query to proxy i if the query on the ith Bloom filter yields
a hit.

Because of the properties of Bloom filters, the Summary
Cache has no false negatives and low false positive rate with
comparably low memory overhead. If a document is cached at
a neighbor proxy, the summary always report the identifier of
that neighbor proxy. When the summary reports an identifier
of a proxy, it is probable that the proxy caches that document.

We describe the Summary Cache algorithm formally in
order to contrast its operation to web cache sharing based on
Coloring Embedder in the following subsection.
Summary Cache Algorithm: We number the n proxies from
0 to n−1 and regard (hashes of) document names as elements.
In each proxy, the summary table consists of n − 1 Bloom
filters, which indicate the elements in other sets. In addition,
n−1 Counting Bloom filters attached to the Bloom filters are
maintained to support delete operation. The Bloom filters are
stored in on-chip memory to keep query speed fast and the
Counting Bloom filters are stored in off-chip memory because
the update speed is less critical in this scenario.
Insertion: When an element e is cached at the ith proxy, the
other proxies insert e to the ith Bloom filter and Counting
Bloom filter as their inserting operations.
Query: For a query for element e, the proxy searches all n−1
Bloom filters and returns a set containing the hits. Identifier i
belongs to the set only if the query function of e returns true
on the ith Bloom filter.
Deletion: When an element e is removed from the cache, the
other proxies first delete e in their Counting Bloom filters. If
any counter decreases to 0, then the associated position of the
Bloom filter is also set to 0.

The Summary Cache can only reduce invalid queries but not
unnecessary queries. If the Summary Cache randomly selects
one proxy from the summary set and only queries this proxy
in search of the document, then cache miss may occur due to
the false positive rate of the Bloom filter. This false positive
rate increases linearly with the number of proxies. Thus, the
Summary Cache queries all proxies in the summary set (rather
than querying only one). As a result, unnecessary queries
cannot be avoided and invalid queries may occur occasionally.

C. Web Cache Sharing Based on Coloring Embedder

The Summary Cache has reduced the invalid queries to
a low level. Therefore, the unnecessary queries need more
concern. We need to cut down unnecessary queries and keep
the invalid queries at low level at the same time. Our key idea
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is that when a cache miss occurs, this proxy queries only one
neighbor proxy and that proxy caches the required document
almost every time. In this way, the invalid or unnecessary
queries can be reduced to the theoretical minimum.

Though multiple copies may be cached at different proxies
of one document, reporting one of them is reasonable and
feasible. Considering one miss for one query, we regard this
situation as a variant of multi-set query problem and apply
Coloring Embedder algorithm for more than two sets (In
Section III-C) to the scenario. Differently from the typical
multi-set query problem, an element may have several IDs
and any one of them is correct under this circumstance.

The main idea of our solution is shown as Figure 8. We
perform a similar idea as the Summary Cache on our algo-
rithm. It has two on-chip sections: a large Bloom filter and a
node array derived from the Coloring Embedder of the shifting
version, and two off-chip sections: a large Counting Bloom
filter and a linked list corresponding to them. Differently
from the Summary Cache, our Bloom filter records whether
a document is cached at any proxy of the proxy group. And
we only access the node array to attain a certain result when
the Bloom filter indicates that the document may be cached
among the proxies.

At the same time, the size of cache is constant, then the
number of documents in the cache is within limits, so the
Coloring Embedder will never suffer from being overwhelmed
if we initialize it with a proper size. The Coloring Embedder
can only record one ID for each element, so we record a
random ID that is correct.
Query: For an incoming element e, the proxy first queries
the Bloom filter to ensure that the element is cached, then
computes h1(e), h2(e) and locates in the node array, next
reads successive logdse buckets, finally returns the target ID
according to the comparison results.

We take querying element e1 and e2 as an example:
Assuming there are eight proxies, when querying e1, the
proxy first queries the Bloom filter and returns true. Then it
reads two groups of three successive buckets, (01, 00, 00)
and (11, 10, 00). Therefore, the ID of the target proxy is
110(2) = 6(10), and this proxy will send a query to the sixth
proxy for element e1. When querying e2, the Bloom filter
returns false. It indicates that other proxies do not cache e2
either, and this proxy will send a query to remote server
directly.
Insertion and Deletion: We maintain an array to record up-
date items and perform updates when it reaches the threshold.
If the cache is not full, then updates only consist of inserting
new items, we just perform insertion of the Coloring Embed-
der. If updates consist of deleting old items and inserting new
ones, we first delete some adjacency relations in the linked
list and the graph, then we add new edges into this structure,
finally we use RDG algorithm to color the graph and write
new result to the node array.

By querying in the Bloom filter, our algorithm can also
reduce invalid queries to a low level. At the same time, the
Coloring Embedder always gives only one but precise ID,
so the unnecessary queries hardly take place. As a result,
out algorithm creates fewer links and saves the network
bandwidth.

Though our algorithm computes hash function two more
times than the Summary Cache, our algorithm makes fewer
calls to fetch memory. For an incoming element e, our
algorithm only searches the Bloom filter once, then computes
the h1(e), h2(e) and reads successive logdne buckets, but the
Summary Cache searches all n−1 Bloom filters, which means
when querying an element, our algorithm can reduce calls to
fetch memory. In addition, the number of momery access times
increases for the Summary Cache as the number of proxies
increases, while it is a constant in our algorithm.

V. ANALYSIS

Two types of errors can occur in our algorithm, which
are collision error and color error. Next, we will calculate
the expectation of the number of collision errors and the
probability that no collision error happens. Then, we will
analyze the condition that no coloring error happens. We
suppose that there are n buckets in the node array of our data
structure, m+ elements in S+, and m− elements in S−.

A. Collision error

When two edges of different types overlap, a collision error
happens. The formal definition is as follow.

Collision error: Given a graph G, a negative connected
component is defined as two or more nodes connected by
only negative edges. For each negative connected component
N−, if there are two nodes n1, n2 ∈ N− which are directly
connected by a positive edge, a collision error happens.
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1) Simple Cases:
The analysis begins with the simplest case of collision error:

a positive edge overlaps with a negative edge. To discuss the
worst case, we suppose that there are m+ non-overlapped
positive edges and m− non-overlapped negative edges in the
graph. The probability that a negative edge collides with any
positive edge is m+/

(
n
2

)
= 2m+/[n(n − 1)]. To calculate

the upper bound [28]–[30] of the expectation of the number
of collision errors, we can directly sum up the probability of
collisions for all negative edges because they follow a binomial
distribution.

E(collision) 6
m+m−(

n
2

) =
2m+m−

n(n− 1)
(1)

Given a negative edge, the probability that it does not
collide with any positive edge is 1 − m+/

(
n
2

)
. Collisions

are independent events for each negative edge because we
suppose they do not overlap with each other, so we can apply
the multiplication principle to get the lower bound of the
probability that there is no collision error.

P (no collision) >

(
1− m+(

n
2

))m−

≈
(
1− 2m+

n2

)m−

=

(
1− 2m+

n2

) n2

2m+× 2m+

n2 m−

≈ e−
2m+m−

n2

(2)

2) General Cases:
In this section, we analyze a more complex situation of

collision error: two nodes are indirectly connected by a list of
continuous negative edges, and are at the same time directly
connected by a positive edge. For convenience, we name the
list of continuous negative edges as an equivalent negative
edge. To calculate the expectation of the number of collision
error, we need to count the number of equivalent negative
edges, which is denoted as m′−.

Our analysis begins with deriving the number of equivalent
negative edges formed by two negative edges between three
nodes. Given three nodes, the probability that two of them are
directly connected by a negative edge is 3

n × 2
nm
−. And the

probability that another pair of nodes is also directly connected
by a negative edge is 2

n × 1
n (m

−− 1). So the probability that
three nodes are connected by two negative edges is

12m−(m− − 1)

n4

For all the n nodes, the expectation of the number of equivalent
negative edges formed by three nodes is then calculated by the
following equation.

m′−(3) =
12(m−)2

n4

(
n

3

)
≈ 2(m−)2

n
(3)

The number of equivalent negative edges formed by four or
more nodes can be similarly derived. Given any v nodes, the
probability that they are connected by v− 1 negative edges is

v!

2

v−1∏
i=1

m− − i+ 1(
n
2

) <
2v−2(m−)v−1

nv−1(n− 1)v−1

The number of equivalent negative edges formed by v nodes
is the product of that value and

(
n
v

)
.

m′−(v) <
2v−2(m−)v−1

nv−1(n− 1)v−1

(
n

v

)
<

2v−2n(m−)v−1

(n− 1)v−1
(4)

From equation 4, we can find that the number of equivalent
negative edges is approximate to a geometric progression when
the value of v increases. We only show the case that n is larger
than 2m−. Other cases can be deduced similarly.

m′− =

min(n, m−−1)∑
i=3

m′−(i)

<

min(n, m−−1)∑
i=3

2i−2n(m−)i−1

(n− 1)i−1

<
2(m−)2n

(n− 1)(n− 2m− − 1)

≈ 2(m−)2

n− 2m−
, n > 2m−

(5)

To get the final result of the expectation of the number of
collisions and the probability that no collision happens, the
m− in the simplified equation 1 and 2 is replaced by m− +
m′−. n is required to be larger than 2m− in practice. The
reason is that if n is smaller than 2m−, the graph can hardly
be colored successfully.

E(collision) 6
2m+(m− +m′−)

n(n− 1)

≈ 2m+m−

n(n− 2m−)

(6)

P (no collision)>e−
2

n(n−1)
m+(m−+m′−)

≈ e−
2m+m−

n(n−2m−)

(7)

Let n/m ratio be the quotient of n divided by m.
According to equation 6 and 7, the expectation of the number
of collision errors and the probability that no collision error
happens are not influenced by the graph size when n/m
ratio is fixed. When n/m ratio is larger than 1.1, which
means each element uses more than 1.1 × 2 = 2.2 bits, the
expectation of the number of collision errors is less than 5 no
matter how many elements there are, and the probability that
no collision error happens is larger than 50%.

B. Color error

When the graph is dense, 4 colors may be not enough
to make all edges in the graph meet the coloring rule. For
example, suppose there are 5 nodes in the graph and each
pair of nodes is connected by a positive edge, then 5 different
colors are required to make all pairs of nodes have different
colors to meet the coloring rule. The formal definition of color
error is as follows.

Color error: The graph cannot be colored successfully with
four colors by the RDG coloring algorithm.
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In our RDG coloring algorithm, we give up coloring if we
find a 4-core in the graph. As a result, color error happens
when there is a 4-core. Theories about k-cores in random
graphs are established in [35].
1) If k > 3 and n is large, with high probability, there is a
giant k-core when m+ is larger than ckn/2 and there is no
k-core when m+ is smaller than ckn/2.

2) ck = k +
√
k log n0 +O(log n0).

According to [35], c4 is calculated to be 5.14. The
n/m ratio threshold for color error is equal to 2/c4. There-
fore, when there is no negative edge in our graph, the
n/m ratio threshold is 0.389. When there are negative edges,
our graph is not a random graph and thus the results in [35]
do not apply. From the perspective of coloring, negative edges
combine many nodes into a large single node because those
nodes must have the same color. The large single node has
many neighbors, and thus the subgraph containing that node
can be very dense, leading to a higher probability of the
emergence of a 4-core. As a result, n/m ratio threshold
becomes larger when the percentage of negative edges is
higher. In the worst case, when the negative edges account for
50% of all edges, the n/m ratio threshold is 1.10 according
to our experiments. In conclusion, we need no more than
1.10× 2 =2.20 bits per element to build a coloring embedder
to ensure that no color error happens.
3) The upper bound of probability of the 4-core.

We consider the probability of a 4-core when the nodes
that are connected by negative edges have been merged as
one. Given a subgraph with n0 nodes and n1 negative edges
before merging, suppose there are n2 nodes after merging.
Obviously, we have n2 > 4. If the new subgraph is a 4-core,
there are at least 2n2 positive edges in it and n1 negative edges
in the subgraph of these n0 nodes, where n0 = n1 + n2. The
number of edges in this subgraph is at least

2 · n1 + n2 > 4 + n1 + n2 = n0 + 4 (8)

So the probability of a 4-core which has n0 nodes in the
original graph Pn0

satisfies

Pn0
6

(
n

n0

)
·
(

m

n0 + 4

)
·


(
n0
2

)
(
n

2

)


n0+4

<
nn0

n0!
· mn0+4

(n0 + 4)!
· n

2n0+8
0

n2n0+8

<
mn0 · n2n0+8

0

(n0!)
2 · nn0+8

=
mn0 · n2n0+8

0(√
2πn0 ·

(
n0

e

)n0
)2 · nn0+8

=
e2n0 ·mn0 · n70
2π · nn0+8

<
1

2πne14
·
(
e2m

n

)n0+7

(9)

When n
m > e2

0.99 , the probability of 4-core P4−core satisfies

P4−core 6
n∑

n0=5

Pn0
<

1

2πne14
·
∞∑

n0=5

0.99n0

<
1

2πne14
· 1

1− 0.99
<

1

106n

(10)

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets:
We use three real datasets and generate plenty of synthetic

datasets for experiments. The statistics of the real datasets are
shown in Table III.
MACTable: This dataset is drawn from the MAC table file
in [2]. For each entry in the MAC table, we use the line
number as the key, and use the type field (static or dynamic)
to determine the set.
MachineLearning: This dataset is a dataset of binary classifi-
cation task from UCI machine learning repository [4]. We use
the training set to evaluate the performance of our algorithm.
For each entry in the training set, we use the line number as

the key, and the label as the class.
DBLP: This dataset is drawn from DBLP [1]. We use the key
attribute as our key. We use the records of articles as S+ and
the records of inproceedings as S−.

TABLE III: Statistics of the real datasets.

# items m+ m− S− ratio
MACTable 3664 3144 520 0.1419

MachineLearning 912969 472605 440364 0.4823
DBLP 823132 623212 199920 0.2429

Synthetic dataset: We generate random strings as keys of
elements in a dataset. A specific number of random unique
integers are taken from uniform distribution and divided into
two sets. Therefore, the ratio of S− can be adjusted by
changing the size of the corresponding set. We use synthetic
datasets because our data structure have to be examined
when the percentage of S− is continuously changing, while
real world datasets have fixed percentage of S−. We argue
that for data structures using hash functions, including the
coloring embedder, real datasets and synthetic datasets have
no difference. The experiments in the next section also prove
this fact. Therefore, we use the synthetic dataset for the
experiments on more than two sets (See in Section VI-C). We
can divide the random strings into 4, 8 or 16 sets for multi-set
experiments.
Datasets for web cache sharing: Since we are unable to
collect all original datasets used in Summary Cache as they
are too old, we use two datasets that are from the University of
California at Berkeley Dial-IP service [24], same as the UCB
dataset used in Summary Cache. We see HTTP requests in
both datasets as requests for certain documents from certain
users to perform simulation. For convenience, we call the two
datasets as UCB1 and UCB2. Table IV lists the details of the
two datasets. We add the size of all unique documents of both
datasets as the total size in the table.
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TABLE IV: Description of the datasets.

Name Requests # Documents # Total size
UCB1 2408297 819809 6.4GB
UCB2 1569105 592224 4.58GB

2) The State-of-the-art Implementation:
To compare our data structure with the state-of-the-art, we

implement three Bloom filter based data structures used for
multi-set query. The first one is the Multiple Bloom filter [48].
The Multiple Bloom filter simply assembles the Bloom filters,
each one representing one of the sets. This model is called
MultiBF in short. The second data structure is the Coded
Bloom filter [13], denoted as CodedBF. It is a typical variance
of Bloom filter using multiple filters. It converts set IDs to
binary codes and stores the code in the Bloom filters. The
third one is the shifting Bloom filter [45], denoted as ShiftBF.
It is a typical variance of Bloom filter using a single filter.
ShiftBF uses the offset of bits to represent the set ID.

We also implement two data structures that need to store
the key or its fingerprint: a multi-way cuckoo filter [21] that
assembles cuckoo filters for each set, and a key-value hash
table with seperate chaining and load factor 1.

The source code of coloring embedder is released on Github
[3].

3) Running Environment:
We use general-purposed CPU to run all experiments,

because we do not have FPGA or ASIC environment. We
conduct all experiments on a standard off-the-shelf computer
equipped with two 18-core Intel(R) Core i9-10980XE CPUs
@3.00GHz and 128GB RAM running Ubuntu 20.04. For each
core, the L1 data cache is 32KB and the L2 cache is 1MB.

B. Experiments on Two Sets

In this section, we conduct experiments on two-set query,
which is the foundation of multi-set query. We use real
datasets and synthetic datasets to comprehensively evaluate
performance of hyper mapping and coloring embedding, and
measure the throughput of construction, query and insertion.

1) Coloring Embedding:
First, we show that there is a sharp threshold for successful

coloring embedding. Then, we test the condition of successful
coloring embedding when the percentage of S− varies.

Successful coloring rate vs. n/m ratio (Figure 9): The
experimental results show that there is a sharp threshold of
n/m ratio for the success rate of coloring embedding. In this
experiment, we test the success rate against the n/m ratio
on all three real datasets. For each real dataset, with the
same percentage of S−, we generate synthetic datasets of
different sizes, varies from 103 to 106. The results are shown
in Figure 9. As the n/m ratio increases, there is an almost-
zero success rate when the n/m ratio is below the threshold, a
similar surge when the n/m ratio is passing the threshold, and
an almost-one success rate when the n/m ratio is above the
threshold. The thresholds are 0.52, 1.07, and 0.66 for datasets
of MACTable, MachineLearning, and DBLP, respectively. The
threshold of synthetic datasets is the same with that of real

datasets [41], [42], [53]. The larger the datasets are, the sharper
the threshold is. The threshold for different real datasets are
different, because the percentage of S− is different. MACTable
dataset has the smallest n/m ratio threshold because it has
the smallest percentage of S−. There is no sharp threshold
for small datasets in Figure 9(b), because they have different
properties from large datasets.

Memory needed vs. Percentage of S− (Figure 10): The
experimental results show that the memory needed for coloring
embedding increases when the percentage of S− increases.
We measure the memory needed (bits per element) in the
condition that the successful coloring rate is above 99%.
The three real datasets are displayed as points in the figure,
while the synthetic datasets are displayed as a line. When
the percentages of S− is around 13%, the memory needed
is below 1 bit per element.

When the percentages of S− is around 50%, which is the
worst case of our algorithm, the memory needed is 2.2m bits,
where m is the number of elements. When the memory size
is larger than 2.2 bits per element, the graph is sparse enough
so that there is no 4-core and thus can be colored successfully
with 4 colors. 2.2 bits per element is always enough for all
kinds of datasets because when the percentages of S− is larger
than 50%, we can simply exchange S− with S+.

2) Hyper Mapping:

In this part, we evaluate the number and probability of
edge collisions during hyper mapping under different settings
of n/m ratio and the percentage of S−. We use synthetic
datasets with sizes from 103 to 106. By default, the percentage
of S− is 50%, and the n/m ratio is 1.1, which is the threshold
of successful coloring.

Number of collisions vs. n/m ratio (Figure 11(a)): The
experimental results show that the average number of colli-
sions decreases when the n/m ratio increases. Specifically,
when the n/m ratio is 1.4, the expectations of the number
of collisions of all datasets are 1. The number of collisions is
not influenced by dataset sizes when the n/m ratio is above
1.15. The experimental results fit well with the theory.

Probability of collisions vs. n/m ratio (Figure 11(b)): The
experimental results show that the probability that collisions
happen decreases when n/m ratio increases. The probability
that collisions happen is not influenced by the set size. When
the n/m ratio is 1.3, the probability that collision happens is
about 75%. And when the n/m ratio is 1.5, the probability
is 50%. The experimental results fit well with the theory.

Number of collisions vs. Percentage of S+ (Figure 11(c)):
The experimental results show that the number of collisions
decreases when percentage of S+ increases. In this experi-
ment, we change the percentage of S+ from 45% to 100%,
and fix the n/m ratio to 1.1. From Figure 11(c) we can see
that when S+ accounts for more than 50%, there are less than
2 collisions for datasets of all sizes. When there is no negative
edge, there is no collision. The experimental results fit well
with the theory.

Probability of collisions vs. Percentage of S+ (Figure
11(d)): The experimental results show that the probability
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Fig. 9: Successful coloring rate vs. n/m ratio.
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Fig. 10: Memory needed vs. percentage of S−.

that collisions happen decreases when percentage of S+
increases. The probability is almost not influenced by the size
of datasets. It decreases almost linearly from about 90% to
0% when percentage of S+ increases from 50% to 100%.
The experimental results fit well with the theory.
Throughput of insertion vs. Dataset size (Figure 12): The
experimental results show that the throughput of insertion
is high when the load rate is below a threshold. In this
experiment we first construct an empty coloring embedder
using 2.21 × 106 bits, and then insert 106 elements into it.
Figure 12(a) shows that when we insert less than 65% elements
into the coloring embedder, few nodes are affected by the RDG
updating algorithm. In contrast, when we insert more than 65%
elements, tens of thousand nodes need to be recolored. Figure
12(b) shows that the insertion speed decreases gradually when
we insert less than 65% elements, and drops sharply when
we insert more than 65% elements. The insertion speed is
still above 0.4 MOPS when 65% elements are already in the
coloring embedder. This means our algorithm supports fast
insertion when the load rate is less than 65% and promises
that it will not involve into a loop.

C. Experiments on Multi-sets

In this section, we compare shifting coloring embedder with
Bloom filters, cuckoo filters and hash table on multi-set query.
We use synthesis datasets to test the worst case of our coloring
embedder (each sets has the same size). First we fix the
number of sets to 16 and vary the dataset size from 103 to
106. Then we fix the set size to 106 and vary the number of
sets from 2 to 16. The sizes of data structures are adjusted to
assure that the number of errors is limited under 10 in each
experiment.

Throughput of query vs. Dataset size (Figure 13(a)): The
experimental results show that our shifting coloring embedder
has faster query speed compared with other approaches. The
number of sets is fixed to 16 while the size changes. The query
speed of the shifting coloring embedder is around 60 MOPS

when there are 103 elements. And its query speed drops to
40 MOPS when the number of elements increases to 106. The
query speed of Bloom filters is always less than 20 MOPS.
The query speed of cuckoo filter ranges from 14.4 MOPS to
30.1 MOPs. The query speed of hash table is as fast as color
embedder when the dataset is small, but its speed drops to
under 20 MOPS when the dataset is large as 106.

Memory vs. dataset size (Figure 13(b)): The experimental
results show that the shifting coloring embedder uses the least
memory for different dataset sizes. The number of sets is
fixed to 16 and the number of errors is limited under 10.
Bloom filters use more than 15 bits per element, and use more
when size of dataset increases, while color embedder uses
8.9 bits per element to implement high accuracy in queries.
Cuckoo filter uses more memory than MultiBF and ShiftBF
per element because the fingerprint of keys need to be stored.
And hash table with separate chaining use much more bits
because pointers are also stored besides keys.

Throughput of query vs. Number of sets (Figure 13(c)): The
experimental results show that the shifting coloring embedder
has the fastest query speed for different number of sets. We
change the number of sets from 2 to 16 and test query speed
on 106 elements. The query speed of color embedder varies
from 96.2 MOPS to 41.0 MOPS. And the query speed of all
other data structures is lower than 20 MOPS.

Memory vs. Number of sets (Figure 13(d)): The experimen-
tal results show that the shifting coloring embedder uses the
least memory when varying the number of sets. The dataset
size is fixed to 106 and number of errors is limited under 10.
When varying the number of sets from 2 to 16, CodedBF,
MultiBF, ShiftBF and our algorithm uses 13 to 56, 24 to 31,
24 to 31 and 2.2 to 8.9 bits per element memory, respectively.
Cuckoo filter uses more memory than MultiBF and ShiftBF,
and hash table uses 200 bits per element, because the two data
structures need to store extra information of keys, while bloom
filters and color embedder just use bit arrays.

D. Experiments on web cache simulation

1) Preprocessing: For both datasets, each item indicates
a request for a document from a client. We partition the
clients into several groups using hash functions according to
their IP addresses. We set the same number of proxies for
different methods, which is 8 by default, assuming that a
request from a client partitioned into a certain group will go
into the corresponding proxy of the group. We set the cache
size of each proxy as 10% of the total size and apply the least
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Fig. 11: Number and probability of edge collisions.
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Fig. 12: Insertion speed vs. Load rate.

recently used (LRU) algorithm to the caches. We filter out
those items with documents larger than 250KB in the original
records, since documents with such large size are not likely
to be cached in practice.

2) Metrics: When a request reaches a proxy, the proxy
will first check whether the requested document is stored
in its cache. If so, the proxy will return the document at
once. Otherwise, the proxy will check its summary, find out
candidate proxies, and send inter-proxy queries to the selected
proxies and receive returned copies of the document to report
to the client. According to the processes, we use two metrics
to measure the performance of the summary approaches.

Average Hit Rate: A request is marked as a hit if the
proxy returns the correct document without sending requests
to remote Web servers, otherwise it is marked as a miss if
the proxy cannot return the correct document after requesting
among the proxies and finally send requests to Web servers.
When a hit takes place, the document can either come from
the first local proxy or come from other proxies via inter-proxy
queries. The Average Hit rate is defined that the ratio of the
number of hit requests divided by the number of all request
documents. The Average Hit Rate is the most important metric
because a high hit ratio can reduce traffic to Web servers and
shorten the response time.

Average Request Rate: When a request from a client
reaches a proxy, the proxy may send some inter-proxy queries
to other proxies that might store the document indicated

by the summary algorithm. Since inter-proxy queries will
increase traffic, a low average inter-proxy query number while
maintaining the average hit rate on a high level is desired. We
define Average Request Rate as the total number of requests
sent to other proxies divided by the number of all request
documents.

3) Delay Threshold for Updating: During the simulation
of the cache querying, cache will be frequently replaced.
However, it will waste a lot of time and traffic if we update
the summaries of all proxies immediately once one cache
has been changed. At the same time, if the summary has
not been updated for a long time, it will cause many invalid
requests because the documents that summary indicates may
have been replaced, and new documents are not updated by
the summary either. We define the delay threshold as the
proportion of the cache that has been changed before the
changes of the cache are broadcast to other proxies and the
summaries are updated. The delay threshold is a trade off
between accuracy and updating cost, while the bandwidth cost
has a strong connection with the accuracy, so it is a balance
between bandwidth and updating indeed. In our experiments,
we simulate cache updating when the delay threshold is 1%,
2%, 5%, and 10%, just the same as the Summary Cache.
Average Request Rate vs. methods (Figure 14): The exper-
imental results show that our Coloring Embedder with Bloom
filter can decrease the average request rate obviously compare
with the Summary Cache. In this section, we evaluate the
average request rate of three methods on both datasets and the
number of proxies is 8 and 16. The “Summary Cache” refers to
method of multiple Bloom Filters, “Coloring Embedder” refers
to our original data structure and “Coloring with BF” refers
to the method of first filtering the requests by a Bloom Filter
before processing them on Coloring Embedder. In addition, the
on-chip memory usage for such three methods is the same for
fairness. According to the experimental results, we find that
the average request rate of the Summary Cache increases from
0.3 to 0.6 as the number of proxies is doubled, because more
proxies will cache redundant copies and the Summary Cache
queries all candidate proxies. As for our Coloring Embedder,
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Fig. 13: Performance on different dataset sizes and different numbers of sets
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Fig. 14: Average request rate of different methods.
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Fig. 15: Average hit rate.

the average request rate stays unchanged when scaling up the
proxies. In addition, after filtering by the Bloom filter, we can
avoid the request generated by obligation miss.

Average Hit Rate vs. methods (Figure 15): The experimental
results show that our Coloring Embedder (with or without
Bloom filter) can reach nearly the same hit rate as the
Summary Cache. In this section, we compare the average
hit rate of these methods. We also simulate the hit rate that
using only local cache at each proxy and sending no queries
to other proxies, and we call it “Baseline”. The “Baseline”
is drawn to state the significance of querying other proxies.
From the properties of the Bloom filter, we have known that
the Summary Cache reaches the highest hit rate regardless
of updating. Also, the slight difference may be caused by
the delay threshold or diverse updating sources selected.
Considering the above two experiments comprehensively, we
maintain the average hit rate and reduce the average request
rate by applying our algorithm.

Request or Hit Rate vs. Size of Bloom filter (Figure 16):
The experimental results show that using 8 bits on average is
the best choice to save memory and reduce the request rate.
In this section, we tend to find the best size of the Bloom
filter that is used for filtering the documents causing obligation
misses. We maintain a Bloom filter to judge a document is
cached at any one of the proxies, and update it using off-
chip Counting Bloom filter. BF-n means that we use n bits
on average for every unique document in the dataset. We also
increase the threshold to a very large value in order to observe
performances of Coloring Embedder with different sizes of
Bloom filter. According to the experimental results, we find
that using 8 bits on average reaches similarly performance
as using 16 bits, and better than using fewer bits. When the
threshold keeps increasing to a large value(greater than 0.1),
the performance would quickly deteriorate. However, in the
actual application scenario, the threshold will not reach such
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Fig. 16: Different size of Bloom filter.

a high level. The cache is expected to be updated with a small
threshold in practice, so as not to affect the query accuracy.

VII. CONCLUSION

In this paper, we propose a novel data structure named
coloring embedder. The coloring embedder is used for two-
set query, and a shifting model is designed for the coloring
embedder to support multi-set query. Experimental results
show that our coloring embedder can achieve less than 5 errors
and high success rate of construction on data sets containing
107 elements with only 2.2 log s bits per element memory in
the worst case, where s is the number of sets. In addition, our
coloring embedder achieves lower request rate with nearly the
same hit rate compared to the Summary Cache applying to the
web cache sharing. The source code of coloring embedder is
released on Github [3].
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