
CodingSketch: A Hierarchical Sketch with Efficient
Encoding and Recursive Decoding

Qizhi Chen†, Yisen Hong†, Yihan Wu†, Tong Yang†, Bin Cui†

†National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University, Beijing, China

Abstract—Sketch is a probabilistic data structure widely used
in various fields due to its high accuracy under small memory.
Designing hierarchical data structures for real-world datasets
with high skewness is one of the main optimization directions
of Sketch. However, there is still a big accuracy gap between
the existing sketches and the optimum. To fill the gap, we
propose a new sketch called Coding Sketch. For the first time,
we used both hierarchical structure and nearly-lossless encoding-
and-decoding to compress frequent items, which significantly
improves the accuracy of frequent items. Besides, we propose
flagless pruning to remove the additional flag bits in traditional
hierarchical structure. Thus Coding Sketch can optimize the
frequency estimation of both frequent and infrequent items. Our
evaluation shows that our algorithm is 10 times more accurate
than the state-of-the-art under the same memory cost. All related
codes are open-sourced.1

Index Terms—data stream, sketches, decoding

I. INTRODUCTION

In many scenarios involving the processing of large-scale
data, such as databases, data mining, and network manage-
ment [11], [14], [18], [20], [27], [28], [40], [48], [58], the
handling of data streams is a common requirement. Sketch,
as an accurate, fast, and space-efficient probabilistic data
structure, finds extensive utility in various data stream tasks,
including frequency estimation [9], [16], [17], [23], finding
top-k frequent flows [33], [35], [41], [45], [51], [59], join size
estimation [5], [6], [15], [27], [38], and more [13], [19], [29]–
[31], [47], [56].

Classic sketches like Count-Min [CM] [17], Conservative
Update [CU] [23], and Count [9] efficiently manage data
streams within a compact memory space by utilizing shared
counters, albeit at the cost of determinism. These techniques
encounter special properties when dealing with real-world data
that often exhibits highly skewed distributions , most flows
are infrequent while only a few flows are frequent [7], [12],
[55], [56]. Classic sketches employ counters of uniform size,
which can lead to shortcomings. When the counter size is too
small, it can overflow due to the presence of a few frequent
flows. Conversely, allocating large-size counters for most
infrequent flows results in a wasteful use of memory resources.
Space efficiency is a paramount attribute of sketches, and
any form of memory wastage is unacceptable. Consequently,
optimizing sketches for highly skewed data distributions has

1https://github.com/CodingSketch/Coding-Sketch

emerged as a hot research direction in recent years. Based on
the structures, existing efforts in this area can be categorized
into two main classes: flat structure sketches [7], [53] and
hierarchical structure sketches [32], [49], [50], [55].

First, the flat structure sketches adapt the individual counter
structure to accommodate the frequency distribution. For in-
stance, Self-Adaptive Counters (SAC) [53] actively compress
counters when their values are large to use smaller counters
for recording the frequency of frequent flows. In the case
of Self-Adjusting Lean Streaming Analytics (SALSA) [7],
overflowing counters are merged with their neighbors. While
these methods are friendly to infrequent flows due to their
numerous small counters, they pose challenges for frequent
flows. They employ probabilistic increment (SAC) or merging
methods (SALSA) to approximate the frequency of frequent
flows.

Second, hierarchical structure sketches segregate frequent
and infrequent flows. Initially, all flows are assigned small
memory-sized counters, and during the insertion process,
counters for frequent flows overflow into a secondary structure.
Although existing hierarchical structure sketches have made
significant progress, they still have notable shortcomings. For
instance, both Pyramid Sketch [55] and Stingy Sketch [32]
employ binary trees as data structures. While tree structures
perform well in highly skewed distributions, they inevitably
lead to hash collisions in the upper layers, resulting in unac-
ceptable exponential errors for frequent streams.

In summary, existing methods all lead to additional errors
for frequent flows, including counter merging, probabilistic
increment, and upper-layer sharing leading to conflicts. While
this may have a minor impact on calculating average errors,
in many tasks, such as heavy hitter and heavy change, inaccu-
racies in the frequency estimation of frequent flows can result
in highly undesirable outcomes. Therefore, we hope to devise
a sketch that can provide more accurate estimates for frequent
flows while saving memory resources.

In this paper, we propose a new sketching framework
called Coding Sketch, which achieves an order of magni-
tude improvement in accuracy compared to the state-of-the-
art method while maintaining comparable insertion speed.
During the item insertion process, we employ an efficient
encoding algorithm to construct a hierarchical data structure.
Before addressing queries, we employ a recursive decoding

https://github.com/CodingSketch/Coding-Sketch

algorithm to transform the hierarchical structure into a flat
one. Leveraging these innovations, our algorithm is capable
of completely resolving high-level hash collisions, leading to
a significant improvement in accuracy. Next, we delve into the
two key techniques that underlie Coding Sketch.

The first key technique involves bottom-up encoding
and top-down decoding, which, when combined, effectively
address the hash collisions occurring in the upper lay-
ers—collisions that have hitherto constrained the accuracy of
existing hierarchical structure sketches. In tree structures [32],
[55], such collisions are inevitable because, upon overflow,
each counter merely points to its parent, with the parent node
aggregating the values of multiple children. Consequently,
during queries, child nodes cannot differentiate errors from
their siblings in the parent node. Coding Sketch, however,
employs multiple locations to encode overflow values. As
long as one of these locations remains free from collisions,
the decoding algorithm can accurately retrieve the overflow
value of the counter. We rigorously prove in Section § III
that, given a counter count surpassing a certain lower bound,
the decoding algorithm can recover all overflows with high
probability. To elaborate, when inserting items, we initiate the
process from the lowest layer of the data structure. Whenever
a counter overflows, it accumulates in multiple positions in
the upper layer, based on its location. These upper-layer
counters may store multiple overflowed sums, which can be
naturally encoded recursively into higher layers. This encoding
strategy effectively exploits the redundancy inherent in high-
level structures, enabling these sums to be re-separated into
overflow values during decoding. In contrast to encoding, the
decoding algorithm scans each layer recursively from top to
bottom. By constantly looking for the pure pointer we define,
we can finally get the true overflow value. We believe that the
cost of recursive scanning is acceptable, especially in practice,
where query and analysis tasks are often performed post-
insertion of all items. In such typical scenarios, data stream
processing requires the necessity of real-time insertion, but
real-time query support is not required, and ample resources
are available for executing the queries [4], [8], [22], [24], [27],
[33], [34], [36], [42], [43], [45], [49], [51], [52], [54], [57]. We
will discuss the reasonableness of this setup in related work
§ II.

The second key technique is the Flagless Pruning
(§ III-C). Following the integration of flagless pruning, Coding
Sketch no longer necessitates flag bits, resulting in substantial
space savings. Flag bits constitute a fundamental component of
existing hierarchical structure sketches. They are indispensable
for the counters in the lower layers to discern if they have
experienced overflow. However, we realize that setting flag bits
is an extravagant approach. In Coding Sketch, each counter
comprises a mere 2 to 4 bits. In such instances, flag bits
account for up to 1

3 of the total space consumption. Indeed,
this wastage is a contributing factor preventing some exist-
ing sketches from achieving finer layering. Flagless pruning
encompasses both explicit and implicit scenarios. In explicit
pruning, when a counter in the higher layer is found to be 0,

it guarantees that none of the lower-layer counters pointing
to it overflow. A counter that doesn’t overflow may yield a
false positive, implying that none of the higher-level counters
it points to are 0. Implicit flagless pruning, when combined
with the decoding algorithm, effectively addresses this issue.
Flagless pruning can save the space overhead of Coding Sketch
as a whole, making the frequency estimation of all flows more
accurate.

We hereby further propose two optimized versions of Cod-
ing Sketch. The first is the unbiased version (§ III-D2). After
changing the counter to signed and modifying the encoding
and decoding, we can extend Coding Sketch to the Count
sketch to get an unbiased frequency estimation algorithm. For
the second version, § III-D1, we introduce automatic memory
adjustment of each layer. In the absence of prior knowledge
of the data distribution, § III-D1 can optimize parameters to
acquire desirable performance automatically. All related codes
are open-sourced [2].
Key Contributions:

• We propose Coding Sketch, a new sketch framework with
encoding and decoding that solving the problem of high-
level hash collisions that hampers the existing hierarchical
structure sketches to be friendly to frequent flows.

• We design a series of optimization techniques to ensure
the high performance of Coding Sketch. Most importantly,
by excluding the reliance on flag bits, Coding Sketch can
achieve finer layering, ensuring high performances in both
frequent flows and infrequent flows.

• We theoretically analyze the success rate of Coding Sketch
decoding, and give a strict lower bound on memory.

• We conduct simulation experiments on typical tasks of fre-
quency estimation and heavy-hitter estimation. The results
show that Coding Sketch outperforms the state-of-the-art
algorithm in accuracy and memory usage.

II. BACKGROUND AND RELATED WORK

In this section, we first commence by providing a foun-
dational understanding of frequency estimation in § II-A.
Following that, we introduce some existing sketch algorithms
in § II-B. Subsequently, we delve into some algorithms em-
ployed in other domains that utilize encoding and decoding
strategies akin to those in Coding Sketch in § II-C. Finally, we
illustrate the acceptability of decoding by presenting various
applications of sketches in § II-D.

A. Preliminaries
Data Stream: A data stream S is a sequence
{e1, e2, e3, ..., eN} (ei ∈ E) of N items arriving in
order, where E is the id set. These N items can have
duplicate items. Algorithms running on data streams must be
one-pass.
Frequency Estimation: Given a data stream S =
{e1, e2, e3, ..., eN}. We call the subset of items with the same
id in S a flow. To ask the frequency of a flow e is to ask how
often e occurs in S, f(e) =

∑
i I{e = ei}. An algorithm f̂

that supports frequency estimation means that f̂(e)(∀e ∈ E)

is an estimate of f(e). Note that e is not known until the entire
S is processed. So algorithm f̂ should support the estimation
of all flows in E during the process.
B. Related Sketches
Flat Structure Sketches: Self-adaptive Counters (SAC) [53]
and Self-Adjusting Lean Streaming Analytics (SALSA) [7]
are representatives of flat structure sketches. SAC employs
a floating-point-like encoding technique and updates with a
certain probability, but its probabilistic update method leads to
larger errors for frequent flows. SALSA is an enhancement of
another flat structure sketch known as the ABC sketch [25].
In SALSA, each counter starts with a small number of bits
and merges with adjacent counters upon overflow, resulting in
larger errors as overflows accumulate. SALSA also requires
flag bits into the process.
Hierarchical Structure Sketches: Pyramid [55] and Stingy
[32] are representatives of hierarchical structure sketches. Both
utilize tree-like structures for counters, which can introduce
errors due to counter sharing at higher layers. Moreover,
Pyramid is significantly affected by flag bits, with 3/4 of its
counter states becoming sentinels. Stingy employs unique op-
timizations with counter automata but does not fundamentally
eliminate flag bits. However, as hierarchical structures, they
maintain higher accuracy compared to classical sketches, even
when considering these errors.
Sketches Filtering Frequent Flows: Represented by Elastic
is a series of sketches that separate frequent and infrequent
items [51], [52], [54]. They divide the data structure into
heavy part and light part to store frequent and infrequent items
respectively. This is similar to the idea of our algorithm. The
essence of their algorithms lies in identifying frequent items to
support various tasks, such as Top-k detection. However, iden-
tifying these frequent items requires recording their IDs, which
means the memory overhead of these algorithms is related to
the length of the IDs. We compared the representative Elastic
Sketch alongside our algorithm in the experimental section,
where we specifically analyzed the differences in the properties
of these two types of algorithms.
C. Related Work of Encoding and Decoding
PR-Sketch [39]: The PR-Sketch decodes keys of streaming
data by establishing linear equations. But there are still errors
in the least squares solution it finds, and the rationale is
different from our decoding algorithm. It encodes the key
instead of the frequency, so it cannot build a hierarchical
structure to save space. And the goal of the PR-Sketch is high
cover proportion rather than frequency estimation. It cannot
be compared with our algorithm.
Bloomier Filter [10] and Invertible Bloom Lookup Tables
[26]: Their algorithm’s final proof method can be transformed
into the process of finding the 2-core of a random hypergraph
(e.g., see [21], [37]). In comparison to our algorithm, only
the mathematical transformation is similar, while the actual
tasks performed are entirely different. The Bloomier Filter
constructs a static table rather than being oriented towards data
stream scenarios. The Invertible Bloom Lookup Tables algo-
rithm stores hashes and equivalent additional information to

Table I: Symbols used in this paper.
Notation Meaning

e An item in the data stream
Li The ith layer of Coding Sketch

hi(e)
The ith hash function of item e, there are a total of d
hash functions that map the item to d different positions
in L0

wi The number of counters for the array in Li

Bi The number of bits per counter in Li

mxi
(mxi = 2Bi − 1) The maximum number that can be
recorded by the counter in Li

fi The flag bit array in Li

Ai The counter array in Li

Ãi
The counter array in Li after decoding, which contains
Ai and the overflowed part

Hij(k)
The jth hash function mapping a position k in Li into
a position in Li+1. There are 3 hash functions for each
layer i

Fi

An array of sets of pointer, where each set com-
prises all pointers pointing to this location, Fi[k] =
{k′, ∃jHi−1j(k

′) = k|∀k′∈Li−1
}

support restoration. In contrast, our algorithm is an optimiza-
tion of the Sketch algorithm, requiring no extra information; in
fact, it can even eliminate the need for the originally required
flag bits.
D. Related Work of Offline Query
SketchINT [49]: SketchINT represents a series of applications
in data stream monitoring and anomaly detection using sketch
algorithms [4], [22], [34], [42], [43], [49]. They emphasize
anomaly patterns in data rather than real-time querying. Tak-
ing SketchINT as an example, data is collected periodically,
followed by batch anomaly detection. Data collection occurs
at resource-constrained edge computing nodes, necessitating
efficient resource management. Data analysis, on the other
hand, takes place on resource-rich central servers, aligning
well with the nature of Coding Sketch.
Compass [27]: Compass represents a series of applications in
batch data processing using sketch algorithms [8], [24], [27],
[57]. In large-scale data processing, there is often a need to
first collect a substantial volume of data and then perform
batch analysis. In such scenarios, efficient data collection and
storage are often more critical than real-time querying.

III. THE CODING SKETCH ALGORITHM

In this section, we present the bottom-up encoding and
top-down decoding of Coding Sketch in §III-A and §III-B,
respectively. Building upon this foundation, we introduce the
final version of Coding Sketch in §III-C, which eliminates
the need for flag bits, conserves a significant amount of
memory, and supports deletion operations. Additionally, we
have devised several other versions of Coding Sketch to extend
its functionality, making full use of its remarkable extensibility.
These alternative versions will be individually introduced in
§III-D. Symbols used in this paper are listed in Table I.
A. The Fast and Efficient Encoding
Overview: When the frequency distribution exhibits high
skewness, the counter of the classic sketch record the fre-
quency of both frequent items and infrequent items. To ac-
commodate both cases, the counter size must be sufficient

to store the frequency of the frequent flows. However, this
approach results in significant memory wastage for counters
that exclusively store infrequent flows. To mitigate this ineffi-
ciency, we can employ counters with fewer bits. Nevertheless,
this choice may lead to overflow for frequent flows. To address
this issue, we store the overflowed portions of counter values
in a new hierarchical structure. Within this new layer, we can
recursively apply the aforementioned approach to conserve
memory until no overflows persist. This constitutes the funda-
mental principle underpinning memory-efficient hierarchical
structure sketch algorithms. Due to the recursive structure,
our attention is consistently directed toward only two adjacent
layers. Subsequently, we will refer to the lower of these two
layers as the ”current layer” and the higher one as the
”upper layer”. Coding Sketch maintains multiple pointers
between each layer, which seems simple, but this alone does
not achieve significant optimization. Only through carefully
designing the form of the pointers and the proportion of
the layers, coupled with the introduction of special decoding
techniques, does Coding Sketch achieve greater accuracy than
all existing technologies.

1) Data Structure:
As shown in Figure 1, the data structure of Coding Sketch

comprises multiple hierarchical layers, with the ith layer
featuring wi counters, each equipped with Bi bits. Except
for the topmost layer, each layer includes flag bits, matching
the length of wi, to record instances of counter overflow. The
number of layers in Coding Sketch and the bit size of counters
per layer are intricately interwoven and contingent upon the
underlying frequency distribution, as we will expound upon
in § V. We recommend setting the number of layers to 5,
which is usually fine enough for 32-bit counters. Within each
layer, every counter is endowed with 3 pointers pointing to 3
distinct positions in the upper layer. These 3 pointers are solely
contingent upon hash functions for the subscript of position
within current layer, independent of the id of the specific item.

Figure 1: The Hierarchical Data Structure and Encoding
Algorithm.

2) Operations:
Encoding: The insertion process in Coding Sketch corre-
sponds to its encoding process, which is an online algorithm.

Upon the arrival of an item e, we encode it into the data
structure. Initially, we employ d hash functions to map it
to d positions in the layer 0 counters using hi(e). For each
subsequent layer, we perform recursive encoding following the
steps outlined in Algorithm 1. Whenever the insertion of any
counter leads to an overflow, we conduct new insertions at its
3 pointer positions in the higher layer while setting the flag
bit of the current position to 1. It is worth noting that the 0th

layer utilizes d hash functions, consistent with the parameters
of the classic sketch. However, the data structures of the upper
layers are uniformly set to 3, a constant recommended through
mathematical analysis in § IV-A.

Algorithm 1: Encoding of Coding Sketch in the ith

layer.
Input: Position p
Function Encode (p, i):
if Ai[p] < mxi then
Ai[p]← Ai[p] + 1
return

else
Ai[p]← 0
fi[p]← 1
for j in [0..3) do

h← Hij(p)
Encode(h, i+ 1)

return

Example: As shown in Figure 1, the item e is initially mapped
to d positions within the layer 0. In the upper layers, overflow
values are stored in 3 distinct locations using 3 hash functions.
Here, we illustrate the version that incorporates flag bits, where
each node comprises a 1-bit flag and a Bi-bit counter. During
the insertion process for each node, as illustrated in the figure,
we only clear the counter and encode 1 into the upper layer
when an overflow occurs. Importantly, we set the flag bit to 1
upon the first instance of overflow.
Online Query: The Coding Sketch excels in post-decoding es-
timations, yet it still facilitates straightforward online queries.
When seeking the frequency of an item e, we initially employ
hi(e) to locate the d positions within the layer 0. Following
a query approach akin to that of the Count-Min sketch,
our objective is to retrieve the minimum value among these
counters. However, it is important to note that some positions
may have experienced overflow (indicated by a flag bit of
1), necessitating the continuation of the query into the upper
layers. As shown in the Algorithm 2, querying the upper layers
mirrors the process in the layer 0, returning the minimum value
from the 3 positions and proceeding recursively in the event
of overflow.
B. The Recursive and Error-free Decoding
Overview: Our objective is to conserve memory by employing
fewer bits in the low-level counters while recording over-
flows through alternative methods. Nevertheless, if we merely
employ the aforementioned query algorithm without further
optimizations, the high-level counters may still exhibit errors

Algorithm 2: Query of Coding Sketch in the ith layer.
Input: Pos p
Output: Query result Qe

Function Query (p, i):
if fi[p] = 1 then

Qe ← +∞
for j in [0..3) do

h← Hij(p)
Qe ← min{Qe, Query(h, i+ 1)}

else
Qe ← 0

Qe ← Qe ×mxi +Ai[p]
return Qe

attributable to hashing. We view this method primarily as
a means of providing online guideline estimates. To attain
more accurate estimations, we introduce a technique for high-
probability decoding of the exact low-level overflow values
from the upper layers.
Top-down: To obtain overflow values free from errors, the
previously employed bottom-up querying method is no longer
applicable. As shown in Figure 2, we must engage in a top-
down decoding process, layer by layer. Upon completing the
decoding of each layer, we will obtain a frequency estimation
that encompasses both the original values and overflow values.
We designate the counters at layer i upon the completion of
decoding as Ãi. The key distinction lies in the fact thatAi con-
sists solely of original Li counters, each comprising only Bi

bits, with overflow values stored in higher layers Conversely,
at this juncture, we opt for the use of 32-bit counters for the
counters within Ãi, without additional emphasis on memory
conservation. This choice is informed by the fact that decoding
is a one-time operation conducted after the insertion of all
items, during which we perceive an abundance of resources to
facilitate the decoding process.
Pure Pointer: To provide a clearer explanation of the decoding
algorithm’s process, we first introduce an auxiliary definition:
pure pointer. Consider an extreme scenario where only one
counter overflows to the upper layer. In such cases, we can
directly retrieve the exact overflow value. The obstacle to
obtaining the precise value arises when multiple pointers,
positioned at different locations, point to the same upper layer
location. If one of the 3 pointers in an overflowed location
directs to a upper layer position without any other pointers
from current layer pointing to it, we refer to this pointer as
a pure pointer. As illustrated in Figure 2, a pure pointer
indicates that the position it targets contains the exact value
of the overflow at that location.
Decoding: In our pursuit of obtaining all precise overflow
values, we aim to identify a pure pointer for each counter.
The online query method referenced in Algorithm 2 lacks the
capability to ascertain the purity of a pointer. However, with
our current top-down decoding approach, we can locate all
pointers to each counter in the upper layer. More precisely, we

Figure 2: Example of the Decoding Algorithm.

maintain a set Fi[k] for each counter within the upper layer
Ai+ 1, where Fi[k] = {k′,∃jHi−1j(k

′) = k|∀k′∈Ai−1
}.

An illustrative example of F1 is depicted in Figure 2. In
current layer, the 1st and 2nd positions direct to the first
position of the upper layer. Consequently, F1[1] = {1, 2}.
When a particular k meets the criterion |Fi[k]| = 1, an
element within Fi[k] signifies a pure pointer. We assign the
counter of current layer corresponding to this pure pointer as
p̂, aware that it encompasses 3 pointers. Upon obtaining Ai[p̂],
we can eliminate p̂ from the Fi associated with the other 2
pointers. This deletion operation may yield a new Fi[k

′] with
a size of 1, thus unveiling a fresh pure pointer. By iterating
this procedure, we have devised Decoding Algorithm 3. It is
worth noting that this method can decode all overflow values
when the higher layer’s length surpasses a certain threshold
with high probability, as elaborated in § IV-A. In practical
implementation, we do not need to maintain the entire set Fi;
instead, it suffices to record the XOR sum of all elements
in Fi. This technique enables us to decode the entire data
structure within a time complexity of O(N), where N is the
number of counters.
C. Flagless Prune
Overview: We have additionally devised an algorithm named
flagless pruning, which achieves error-free decoding without
the need for flag bits. In order to obtain Fi during decoding,
each layer’s counter in the current data structure needs to
maintain an additional 1-bit flag. When each counter utilizes
3 bits, an additional 1 bit is required as a flag bit. This implies
that 25% of the memory is allocated for flag bits. There-
fore, eliminating the flag bits allows Coding Sketch to save
a substantial amount of memory, representing a significant
advancement. Moreover, the refined final version of Coding
Sketch, without the flag bits, can support deletion operations,
which were previously unsupported.
Prune: Now, without flag bits, we initially assume that all
counters in the current layer have overflowed. If decoding
succeeds, we can still obtain error-free values. However, based
on our specific mathematical analysis in § IV-B, this approach
requires even more memory overhead compared to using
flag bits. Therefore, we introduce the concept of flagless

Algorithm 3: Decoding in the ith layer.

Input: The decoding result of the upper layer Ãi+1

Output: The decoding result of this layerÃi

Function Decode ():
for k in [0..wi) do

for j in [0..3) do
h← Hij(k)
Fh ← Fh ∪ k

while find a pure pointer k do
Ãi[k]← +∞
for j in [0..3) do

h← Hij(k)
Fh ← Fh \ k
Ãi[k]← min{Ãi[k], Ãi+1[h]}

for j in [0..3) do
h← Hij(k)

Ãi+1[h]← Ãi+1[h]− Ãi[k]}

for k in [0..wi) do
if Ãi[k] never been decoded then

for j in [0..3) do
h← Hij(k)

Ãi[k]← min{Ãi[k], Ãi+1[h]}

for k in [0..wi) do
Ãi[k]← Ãi[k]×mxi +Ai[k]

return Ãi

pruning. Flagless pruning can be further categorized into
two types: explicit pruning and implicit pruning. These two
pruning techniques, when combined, allow us to identify all
non-overflowed counters in the current layer. This combined
approach achieves the same effect as using flag bits, as we did
previously. For counters that are equal to 0 in the upper layer
(Due to the top-down decoding approach, the upper layer at
this time are already decoded with true values equal to 0.),
the pointers in Fi also be considered pure pointers because
these pointers explicitly indicate that the counters did not
overflow. We refer to these as explicit pruning. By doing this,
we eliminate their influence on the other F sets. However,
explicit pruning cannot identify all positions with flag bits
actually set to 0, which means that even after this process,
many counters that did not actually overflow are still decoded
as overflowed counters. We can handle this by treating them
as if they had overflowed by 0 and attempting to decode this
value forcibly. This requires revisiting the process of searching
for pure pointers as in the previous decoding algorithm, which
is implicit pruning. Implicit pruning does not introduce new
operations; instead, after computing the new memory bound,
the existing decoding operations can additionally handle false
positive overflows that were not previously considered. We
refer to counters that have not actually overflowed but are
not identified by explicit pruning as false-positive counters.

Currently, the size of the upper layer is not only related to the
number of overflow counters but also to the presence of false-
positive counters. We will discuss this in the mathematical
analysis section (see § IV). This memory bound [46] is
exceptionally well-managed, and in fact, in our extensive
experiments, decoding never failed once the memory bound
was satisfied. However, we still provide a solution for potential
decoding failures, as shown in the pseudocode. We take the
minimum of three hash positions from the remaining Ãi+ 1,
which will be an overestimated value. It’s worth noting that
at this point, most of the values in Ãi+ 1 have already been
successfully decoded and subtracted, so the remaining values
will not have a significant error.
Example: Figure 3 illustrates an example of decoding using
flagless pruning. Initially, we assume that all counters in
current layer have overflowed, as indicated by the presence
of 3 pointers for each counter. The red pointers represent pure
pointers as defined earlier, pointing to positions with |Fi| = 1.
The blue pointers indicate pointers to counters with a value
of 0, which are explicitly pruned and decoded as 0. Next, we
need to remove the pointers to the decoded Ãi[k] and their
overflow effects. As shown in the lower part of Figure 3, new
pure pointers can be found among the remaining pointers.

Figure 3: Example of the Flagless Pruning.
Delete: The ability to perform item deletions is a significant
advantage of the Count-Min sketch. Existing hierarchical
structure sketches [7], [32], [50], [55], due to their reliance
on flag bits, do not support deletion operations. The only al-
gorithm proposed to support deletion operations, the Diamond
Sketch, uses an additional Sketch to record all deletions. The
fundamental issue is that when deleting an item, it is unclear
whether the flag bits should be correctly reset. Coding Sketch,
through flagless pruning, is the first hierarchical structure
sketch to overcome this problem.
D. More Further Optimizations

1) Adjust automatically:
In typical scenarios, leveraging prior knowledge of data

distributions allows us to tailor the memory configuration of
Coding Sketch accordingly. However, for situations devoid
of any prior knowledge, we also offer specialized optimized
versions of Coding Sketch capable of automatically adjusting
memory allocations to accommodate varying data distribu-
tions.
Expansion Mechanism: In § IV-A, we will delineate how
the lengths of upper layers are determined once the count

of overflowed counters is known. Counters that experience
overflow during the insertion process continue to accumulate.
Exceeding predetermined limits can potentially lead to the
failure of the final decoding operation, resulting in unac-
ceptably significant errors. Fortunately, the current number
of overflowed counters can be ascertained through the flag
bits. Adjustments can be made when approaching the limit.
Specifically, when the overflowed counters in the layer i are
on the verge of surpassing the allowed limit (still within the
current threshold), we execute a localized decoding operation
to obtain Ãi. Subsequently, we create a new layer i + 1,
doubling its length compared to the original. Guided by the
decoded Ãi, we re-insert the overflowed counters into the
new layer i and proceed to reconstruct the upper layers
incrementally. This method inevitably introduces some time
delay, but the overall average complexity of the algorithm is
still O(N).

2) Unbiased Version:
This variant of Coding Sketch can furnish unbiased estima-

tions for the frequency of each flow. The property of unbiased
estimation is required in certain specific tasks [5], [15], [33],
[44] such as join size estimation and second norm estimation.
The core concept aligns with techniques akin to Count Sketch.
Upon the arrival of an item, it is mapped to d counters within
layer 0 through d hash functions. What sets it apart from the
previous versions is the utilization of another hash function
to determine whether to insert +1 or −1. The insertion and
carry processes for each layer remain analogous to the prior
versions.
Ones-complement: All counters now employ signed numbers,
albeit utilizing ones-complement rather than two’s comple-
ment. This choice arises from the fact that counter overflows
are now classified into two scenarios: positive overflow and
negative overflow. Accordingly, we insert +1 or −1 upwards,
respectively. If two’s complement were employed, the max-
imum value for a negative number would exceed that of a
positive number by 1. In the event of a position experiencing
a negative overflow subsequent to a positive overflow, they
would cancel each other out at upper layers. However, in
reality, an additional 1 is introduced, resulting in an error.
Cleverly, the additional 0 state created by using the ones-
complement code is not wasted. We can distinguish whether a
counter has never been accessed or has been accessed but its
value has been offset to 0 by using +0 and −0. This way, we
can still employ the explicit pruning of the flagless version of
Coding Sketch without needing to record flag bits.

IV. MATHEMATICAL ANALYSIS

In this section, we begin by establishing the correlation be-
tween the required length in the flag-bit version and the lower-
level overflow counter, as detailed in § IV-A. Subsequently, we
derive a memory design approach for the flagless version in
§ IV-B based on this relationship.
A. Analysis of the length of the upper layer

Considering the counter Ai in the layer i, we denote the
number of overflowed counters among these wi counters as K

and the number of counters without overflows as L = wi−K.
Upon revisiting our algorithm, we observe that there will be
3 × K pointers inserted into the wi+1 counters in the layer
(i+ 1).

Theorem 1. The decoding process in the version with the
flag bit when wi+1 ⩾ 1.13×K can get all the Ai with a high
probability.

Our decoding algorithm can be reformulated as the process
of finding the 2-core of a random hypergraph (definition see
[21], [37]). A similar analytical approach can then be applied.
Specifically, within this framework, we treat the counters in
this layer and the higher layer as vertices in the hypergraph,
while our pointers represent hyperedges. Our decoding process
corresponds to the standard ”peeling process,” where we
continuously identify vertices with degree 1 and remove them.
However, in our work, the process of converting this hash
structure into a hypergraph makes certain assumptions that
are more lenient. There remains room for further optimization,
as demonstrated in a recent article presented at SODA 2021
[46]. This paper introduces a novel design of specialized
hash functions that enable a distinct transformation of the
problem, resulting in tighter bounds. Specifically, with 3 hash
functions, the new approach achieves successful decoding with
high probability as long as wi+1 ⩾ 1.13 ×K. For situations
involving a larger number of hash functions, corresponding
thresholds exist. However, taking into account the trade-off
between time complexity and performance, we recommend
employing 3 hash functions in Coding Sketch. Our designed
decoding algorithm ingeniously corresponds to the mathemat-
ical modeling in these articles, allowing us to apply their
derivations.

B. Analysis of the decoding without flag bit
Theorem 2. For the flagless version, we maintain the defini-
tions of K and L as the same as those in Theorem 1. To ensure
the error-free completion of the decoding algorithm with high
probability, the following conditions must be met:

wi+1 ⩾ 1.13(K +
√
4.6L) +

4
√
30.51K3 · L

We will present the proof in three steps: First, we analyze
the false positive probability similar to Bloom Filters. In
the second step, we introduce a random variable K̂, which
represents the number of counters that need to be decoded
when accounting for false positives. Finally, we provide an
appropriate bound using the Chernoff inequality.

Step 1: We insert 3×K pointers into the upper layer. Here,
we treat these 3 × K insertions as completely independent
events. For each counter in the upper layer, it is nonzero only
when none of the 3 × K pointers are directed towards it.
Therefore, based on the Bernoulli Inequality, for all positions
k in the upper layer, we have: P(A[k] = 0) = (1− 1

wi+1
)3K ,

P(A[k] ̸= 0) = 1− (1− 1
wi+1

)3K ⩽ 1− (1− 3K
wi+1

) = 3K
wi+1

Furthermore, for each non-overflow position in current
layer, there are 3 pointers. Only when all of these 3 pointers
point to non-zero values, do we incorrectly classify it as an

overflow counter. Since the position itself did not overflow,
we can consider these 3 pointers as new queries, independent
of the original 3 × K insertions. Consequently, we have:
P(false positives) = P(̸= 0)3 ⩽ (3K

wi+1
)3

In the subsequent derivations, we directly consider the
probability of false positives as an upper bound, i.e.,
(3K
wi+1

)3. We then introduce the indicator variable fpk ={
1 w · p · (3K

wi+1
)3

0 w · p · 1− (3K
wi+1

)3
to determine whether a false positive

occurs at a non-overflow position. Then, we get L entirely
independent random variables following the Bernoulli distri-
bution.

Step 2: In the decoding process of the flagless version,
explicit pruning considers all pointers directed to 0 as pure
pointers. Therefore, we only need to account for overflowed
and false-positive counters. We define the quantity of these
counters as K̂, which accounts for the implicit pruning
scenario as well. To ensure successful decoding, similar to
Theorem 1, we require wi+1 ⩾ 1.13× K̂.

But now K̂ is no longer a fixed value but a random variable.
Specifically, K̂ = K +

∑L
k=1 fpk. Let µ = E[K̂] = K +

L · (3K
wi+1

)3. The second half is a binomial distribution. So
according to Chernoff inequality, when we set λ =

√
4.6L ⩾√

ln(10000)
2 L we have P(

∑L
i=k fpk ⩾ µ + λ) ≤ e−

2λ2

L ≤
1

10000

This implies that we have K̂ ⩽ K +
√
4.6L+ L · (3K

wi+1
)3

with a high probability. An error rate of 1
10000 is considered ac-

ceptable, and in practical experiments, this bound is sufficient.
Moreover, the remaining part of the formula offers additional
room for scaling.

Step 3: The last step is to solve the inequality wi+1 ⩾
1.13 × (K +

√
4.6L + L · (3K

wi+1
)3). According to the above

derivation, we know that when this inequality is established,
there is a high probability of K̂ ⩽ K+

√
4.6L+L·(3K

wi+1
)3, so

that there is a high probability of wi+1 ⩾ 1.13× K̂, and then
error-free decoding is possible. We assume wi+1 = 1.13(K+√
4.6L) + c1 ·K 3

√
L ⩾ c1 ·K 3

√
L

(
3K

wi+1
)3 ⩽ (

3K

c1 · 3
√
L ·K

)3

= (
3

c1
3
√
L
)3 =

27

c31 · L
Substituting into the above inequality then we can get:

wi+1 = 1.13(K +
√
4.6L)+ c1 ·K 3

√
L ⩾ 1.13(K +

√
4.6L+

L · (3K
wi+1

)3)

c1 ·K
3
√
L ⩾ 1.13L · 27

c31 · L
=

1.13 · 27
c31

c1 ⩾ 4

√
30.51
3
√
L ·K

To sum up, the inequality always holds when c1 ⩾ 4

√
30.51
3√
L·K

.

So we can get Theorem 2 by substituting c1 = 4

√
30.51
3√
L·K

into

wi+1 = 1.13(K +
√
4.6L) + c1 ·K 3

√
L.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of Coding
Sketch across various tasks. We begin by detailing our experi-
mental setup in § V-A. Next, in § V-B, we delve into the hyper-
parameters suitable for Coding Sketch in the task of frequency
estimation. Lastly, we conduct comparisons between Coding
Sketch and state-of-the-art algorithms in terms of accuracy
and speed in § V-C and § V-C3. Lastly, in Section V-D, we
experiment with an unbiased version of Coding Sketch and
assess its performance in the task of join size estimation.

A. Experimental Setup
Implementation and Settings: We have implemented Coding
Sketch and all comparative algorithms in C++. Compilation
was carried out using g++ 7.5.0 (Ubuntu 7.5.0-6ubuntu2)
with the -O3 optimization option enabled. To ensure efficient
hashing, all algorithms make use of the widely adopted
MurmurHash [1] hash function. For the Stingy Sketch and
Pyramid Sketch algorithms, we have utilized the open-source
code provided by their original authors. For other algorithms,
they have been independently reproduced by the authors of this
paper. Additionally, the original Pyramid and Stingy papers
introduce auxiliary techniques like Hash Split and Prophet
Queue, which have broad applicability across various sketch
algorithms. To maintain fairness in performance comparisons,
we have deliberately refrained from incorporating these tech-
niques. Our experiments were conducted on a CPU server
equipped with an 18-core 4.2GHz Intel i9-10980XE processor.
This server is accompanied by 128GB of 3200MHz DDR4
memory and boasts a 24.75MB L3 cache.
Datasets: We employed two authentic datasets to simulate
real-world scenarios. Additionally, a synthetic dataset with
adjustable skewness was employed to assess algorithm per-
formance across diverse data distributions.
• CAIDA: CAIDA [3] contains 10 real IP tracking datasets
collected from high-speed monitors on backbone links. Each
item has 13 bytes IP address and 8 bytes time stamp. Each
dataset has a total of about 1.3 million items and 26 million
packets. In our experiments we only used a 1 million slice of
it.
• Campus: Campus is a dataset of 10 real IP tracking
data collected from gateways on our campus. Each dataset
has about 180,000 items and 2.4 million packages. In our
experiments, we only used a 1 million slice of it.
• Kosarak:The Kosarak dataset contains anonymized click-
stream data from a Hungarian online news portal. Experiments
indicate that this dataset also exhibits high skewness. We
extracted a segment of data with a length of 1 million for
our experiments.
• Synthetic: We generated datasets of length 1 million rep-
resenting the Zipf distribution. Zipf’s law is an experimental
law that observes this distribution in the frequency of web
page visits. When the parameter α of the Zipf distribution is
larger, the skewness of the dataset is higher. We tested different
α from 0 to 3.0 in our experiments to simulate different
skewness. In particular, we use the Zipf(α = 0.8) dataset to

simulate a dataset with high skewness. This parameter can lead
to a situation similar to real world datasets. In some cases, we
use Zipf(α = 0.3) to simulate lower skewness datasets in order
to demonstrate the generality of our algorithm.
Metrics: We measure the following metrics in our experi-
ments:
• Average Absolute Error (AAE): 1

|Ψ|
∑

e∈Ψ |f̂(e)− f(e)|,
f(·) and f̂(·) are real and estimated frequency respectively. Ψ
is the query set, usually the complete set E.
• Average Relative Error (ARE): 1

|Ψ|
∑

e∈Ψ |f̂(e) −
f(e)|/f(e), Ψ, f(·) and f̂(·) are the same as those defined
above.
• Throughput: We use million operations per second to
measure the speed of various algorithms.

B. Impact of Algorithm Parameters
In this section, we present an overview of various param-

eters utilized by Coding Sketch and conduct experiments to
elucidate the influence of select hyperparameters. The ability
to configure these hyperparameters is a contribution of Coding
Sketch. Pyramid and Stingy use a binary tree structure, which
is equivalent to wi = wi−1/2. In our algorithm, wi is set
through mathematical derivation. Both Pyramid and Stingy
default to all bi = 4, but we believe that a smaller bi
can achieve better accuracy, which requires a trade-off with
memory and time. We have conducted extensive experiments
to analyze these parameters, which are overlooked in existing
works, and have provided recommended settings.
• The Number of Hash Functions d: d denotes the number
of positions to which an item is inserted upon arrival, corre-
sponding to the creation of multiple counter arrays in classic
sketches. The impact of this parameter has been extensively
analyzed in existing literature. For our experiments, we default
to d = 3.
• The Total Number of Layers of Coding Sketch: A
greater number of layers enables finer hierarchical partition-
ing. However, an excessive number of layers can result in
numerous overflows, leading to slow encoding—a scenario
we aim to avoid. Although, as demonstrated in § IV-A, we
have proven that upper layers require only linear memory to
achieve successful decoding with high probability, the factor of
1.13 still implies that more layers demand increased memory.
Considering a balanced assessment of accuracy and speed,
we have opted for a 5-layer hierarchical data structure in our
experimental setup.
• Analysis of the Length of Each Layer: When the total
memory of the entire data structure and the number of bits
per counter are fixed, dividing these resources allows us to
determine the total number of counters. However, allocating
these counters across different layers presents a challenge and
requires the setting of a hyperparameter. In state-of-the-art
techniques like Pyramid and Stingy, this parameter is typically
determined by a fixed ratio, where the length of each higher
layer is a constant multiple of the layer below it. In a binary
tree structure, this constant is typically set to 1

2 . However, as
the frequency distribution varies, so does the probability and

quantity of overflows. This fixed allocation approach struggles
to accommodate varying data skewness. High skewness leads
to frequent conflicts in upper layers, while low skewness re-
sults in wasted memory in those layers. In Coding Sketch, the
lower bound for the length of a upper layer can be determined
based on the number of overflows in the current layer. Ideally,
if we knew the overflow quantities in advance, we could
optimize the allocation of layer lengths. Unfortunately, this
level of knowledge is often unattainable, leading to a few
scenarios: When the frequency distribution is unknown, we
can employ an automatic adjustment version as described in
§ III-D1. Alternatively, we can set this parameter assuming
a sufficiently high skewness, which essentially aligns with
the Pyramid and Stingy approaches. For datasets with known
distribution characteristics, we can estimate the corresponding
overflow counter quantities to adjust layer lengths accordingly.
The flexibility of Coding Sketch’s adaptable data structure
allows us to experimentally analyze the factors influencing the
actual number of overflow counters, as we will demonstrate
shortly.

(a) CAIDA (b) Zipf(α = 0.8)
Figure 4: Number of Overflow Counters vs. Memory.

Number of Overflow Counters vs. Memory (Figure 4):
In this experiment, we configured Bi(i = 0, ..., 4) =
(4, 3, 3, 2, 2) and fixed the memory size at 1MB. While this
memory size is considered insufficient for Coding Sketch, it
is instrumental for a more in-depth analysis. We simulated
scenarios involving data with varying degrees of skewness
using different Zipf datasets, where α ranged from 0.1 to
0.9. As α increases, we observe a corresponding increase in
the number of overflow counters at each layer. This trend
emerges due to the higher skewness of the dataset, resulting
in an augmented quantity of frequent flows. Consequently,
we witness more overflows, particularly in upper layers.
The number of overflow counters in L0 exhibits the most
rapid growth. This phenomenon arises from the heightened
sensitivity of lower-level counters to skewness fluctuations.
Conversely, when the dataset exhibits lower skewness, we
observe an absence of overflows beyond L1. This absence
arises because the frequencies of the most common flows in
the dataset fail to trigger overflows.

C. Experiments on Frequency Estimation
In this subsection, we show the experimental results of

Coding Sketch on the frequency estimation problem.
1) Accuracy vs. memory:

Experiment setting: We have conducted experiments using
the CAIDA dataset, Campus dataset, Kosarak dataset, Zipf0.3
dataset, and Zipf0.8 dataset, evaluating both the Coding Sketch

(a) AAE on CAIDA (b) ARE on CAIDA (c) AAE on Campus (d) ARE on Campus
Figure 5: Comparison of accuracy on two real datasets.

(a) AAE (b) ARE
Figure 6: Comparison of accuracy on Kosarak

and its flagless variant. We compare the accuracy perfor-
mance(AAE and ARE) with other sketches including Stingy,
Pyramid,Count-Min, SAC, Elastic.
Real datasets (Figure 5): We conducted experiments evalu-
ating the AAE (Average Absolute Error) and ARE (Average
Relative Error) on the CAIDA, Campus and Kosarak real
datasets. To facilitate a more detailed observation of differ-
ences, logarithmic plots were employed. The accuracy of all
algorithms generally improves with increased available mem-
ory. CM (Count-Min) serves as a benchmark classic sketch,
and all optimized sketches consistently outperform CM. As
an example of flat structure sketches, SAC demonstrates an
approximate 10-fold improvement over CM. SALSA lies in
the intermediate zone between two kind of structure sketches,
whereas Stingy represents the latest advancement in hierarchi-
cal structure sketches. Unlike other Sketches that do not record
IDs, the core idea of Elastic is to identify frequent elements
and separately record their IDs and more accurate occurrence
counts. When there is enough memory to identify all frequent
elements, Elastic can perform very well, such as with 7MB
in the CAIDA dataset and 8MB in the Campus dataset.
Below this memory threshold, the performance is average, but
upon reaching this memory level, Elastic suddenly improves.
However, increasing memory beyond a certain point does not
further enhance Elastic’s performance, as seen with more than
12MB in the CAIDA dataset and more than 10MB in the
Campus dataset. This is because the frequent elements are
already accurately identified, but filtering frequent elements
always introduces errors. This type of error depends on the
filtering algorithm, and increasing memory does not contribute
significantly to reducing it. In contrast, other Sketches that do
not record IDs do not have this type of error. It is noteworthy
that Coding Sketch consistently exhibits superior accuracy
compared to all existing algorithms. For comparative purposes,
we have retained the experimental results of the version of
Coding Sketch with flag bits. As expected, the experiments

clearly indicate that the version of Coding Sketch with flagless
pruning consistently outperforms its counterpart with flag.
From Figure 5, it becomes evident that when utilizing 16MB
of memory, Coding Sketch achieves a substantial reduction in
AAE compared to the Flag version, Stingy, and Count-Min
by factors of 2.25, 24.5, and 589, respectively. In terms of
ARE, Coding Sketch achieves reductions of 1.5, 14.25, and
396 when compared to the Flag version, Stingy, and Count-
Min, respectively. It is important to highlight that Coding
Sketch demonstrates superior optimization in AAE compared
to ARE because the ARE expression implies that the errors of
frequent flows are calculated to a lesser extent. Coding Sketch
effectively mitigates high-level collisions within hierarchical
data structures, resulting in more accurate estimations of
frequent flows. Consequently, Coding Sketch excels in AAE,
which underscores the rationale for testing both AAE and
ARE. In the Campus dataset experiments, when memory
exceeds 12MB, Coding Sketch exhibits some fluctuations. This
behavior arises from the fact that errors have already reached
very low levels. It is worth noting that similar fluctuations
are observed in CM errors when plotting them at 8 times the
memory, illustrating that such fluctuations are not exclusive
to Coding Sketch but are inherent to the data and memory
constraints.

Synthetic datasets (Figure 7): We have selected α = 0.3
and α = 0.8 from the Zipf distribution datasets to serve as
representatives of synthetic datasets. In the synthetic datasets,
the overall performance trends of each algorithm align consis-
tently with those observed in real datasets. Notably, even after
conducting 50 repetitions of the experiment, both SALSA and
SAC continue to exhibit fluctuations in their performance. Of
particular interest is an anomalous peak observed in SALSA’s
performance at the 13MB memory mark. Upon further inves-
tigation, we have identified that during this interval, SALSA
experiences multiple collisions among frequent flows. As a
result, a counter undergoes repeated mergers, leading to a
substantial increase in error. Additionally, the insertion speed
of SALSA during this period significantly diminishes, as
each arrival of these frequent flows necessitates accessing
this particular counter. It’s noteworthy that the same situation
occurs when α = 0.3 and α = 0.8, as the IDs of frequent
flows in the Zipf generation remain constant. In the case of
α = 0.3, the dataset exhibits lower skewness, resulting in a
performance decline across all algorithms. Elastic essentially
does not perform better than Stingy Sketch, except on the

(a) AAE on Zipf(α = 0.3) (b) ARE on Zipf(α = 0.3) (c) AAE on Zipf(α = 0.8) (d) ARE on Zipf(α = 0.8)
Figure 7: Comparison of accuracy on two Synthetic datasets.

(a) AAE (b) ARE
Figure 8: Comparison of accuracy on Skewness.

Zip0.8 dataset, which has higher skewness, where it surpasses
Stingy. This is because it separately records the frequencies
of frequent flows more accurately. This characteristic is also
displayed in the subsequent frequent flows query tasks, and
we consider this to be reasonable. Coding Sketch consistently
ranks as the top-performing algorithm in this scenario.
Summary and analysis: We have observed that Coding
Sketch outperforms other algorithms across both real and
synthetic datasets. As evident from Figure 5 and Figure 7,
when employing Coding Sketch with a memory capacity ex-
ceeding 4MB, its AAE and ARE exhibit significant reductions,
approaching approximately 2 times, 10 times, and 100 times
lower values than those of the Flag version, Stingy, and Count-
Min, respectively.

2) Accuracy vs. Skewness:
Experiment setting: We conducted experiments utilizing the
Zipf datasets (α=0,...,3.0) with Coding Sketch and its flagless
variant. For both versions of the Coding Sketch, we configured
Bi(i = 0, ..., 4) = (4, 3, 3, 2, 2). We compare their accuracy
performance (AAE and ARE) with other sketches, includ-
ing Stingy, Pyramid, Count-Min, Elastic and SAC. SALSA’s
performance decreases to an unacceptable level when the
skewness of the dataset is high, therefore, we did not include
it in this experiment.

(a) CAIDA (b) Zipf(α = 0.8)
Figure 9: Insert Throughput.

Analysis (Figure 8): The experimental results reveal that the
accuracy of all algorithms increases as α escalates. Remark-
ably, even a venerable sketch like CM, which does not account
for skewness, demonstrates this trend. This phenomenon is

attributed to the fact that when the dataset size remains
constant, greater skewness in the Zipf distribution leads to
fewer distinct flows. Nonetheless, it is noteworthy that the
optimized sketches exhibit an even more rapid enhancement in
performance. Among these, Coding Sketch consistently attains
the best accuracy.

(a) query (b) decode+query
Figure 10: Query Throughput.

3) Experiments on Throughput:
Experiment setting: We assessed the throughput of Coding
Sketch and conducted a comparative analysis with other al-
gorithms using the CAIDA and Zipf(α = 0.8) datasets. In
the experiment, we inserted 1 million items and measured
the time required, repeating this process with a change in
the hash function’s seed and averaging the results over 10
iterations. While some techniques, such as hash separation and
the Prophet Queue, have been proposed for general application
in sketches like Stingy and Pyramid, we deliberately refrained
from employing any of these methods in our experiments
to maintain fairness. Consequently, the experimental results
at this stage reflect the baseline operational speeds of these
sketches.
Insert Throughput Analysis (Figure 9): As mentioned in
its paper, Elastic achieves a high throughput through certain
accelerations. CM, with its simple operations, is the second
fastest. Stingy exhibited a structural advantage with tree nodes
sharing similar physical locations, resulting in fewer memory
accesses and securing the third-fastest position. Coding Sketch
performed as the fourth fastest. The presence or absence of
flag bits did not introduce bottlenecks during insertion, and the
speed difference between the two versions remained minimal.
Although Coding Sketch features a more intricate encoding
compared to other algorithms, its insertion algorithm main-
tained efficiency without significant slowdown, consistently
outpacing SALSA and SAC. We consider this performance
to be highly commendable.
Query Throughput Analysis (Figure 10): Our algorithm’s
query efficiency is not high, as we previously assumed. Cod-
ing Sketch is suitable for scenarios where high accuracy is

required, and queries can be performed offline without the
need for speed. Figure 10(a) displays the query throughput
of all algorithms. Here, we did not include the time for
decoding operations but assumed queries after decoding is
completed. It can be seen that aside from the optimized Elastic
and the simplest CM, the query throughput is comparable.
Figure 10(b) includes the time for decoding operations, mean-
ing the calculation for other algorithms includes all query
times, while our algorithm includes one decoding time + all
query times. It can be seen that at this point, our algorithm’s
throughput is lower by a factor. The version without flag bits
performs even worse due to the longer decoding time required.

(a) CAIDA (b) Zipf(α = 0.8)
Figure 11: Flows with a frequency greater than 16

(a) CAIDA (b) Zipf(α = 0.8)
Figure 12: Top10000 flows

4) Queries on Frequent flows:
Experiment setting: In this experiment, we transitioned from
querying estimates for all flows to focusing exclusively on a
subset of frequent flows. The objective of this experiment is to
provide a more intuitive demonstration of how our algorithm
is particularly adept at handling frequent flows after effectively
addressing high-level conflicts. To highlight this more, we just
query AAE instead of ARE. We conducted queries under two
specific conditions. The first involved querying the 10, 000
flows with the highest actual frequencies, a common parameter
in Top-k query tasks. The second condition encompassed
querying all flows with a true frequency exceeding 16, a
more stringent criterion than the first. In our configuration,
where B0 = 4, this query included all flows necessitating
insertion into L1. The aim of this experiment was to evaluate
our algorithm’s capacity to estimate frequent flows accurately.
Analysis (Figure 11, 12): From Figure 11 and Figure 12,
it is evident that the relative ordering of all algorithms re-
mains unchanged. However, due to the smaller query set, all
algorithms exhibit some fluctuations. The peaks observed in
SALSA at 10MB and 13MB in the Zipf dataset are attributed
to conflicts among frequent flows, and as such, they persist
in this experiment. Comparatively, the relative positions of
Stingy and SALSA have not undergone significant alterations.

Nonetheless, their degree of optimization in this particular
test is not as pronounced as it is in a full-stream query
scenario. In this experiment, the difference in performance of
Coding Sketch with or without flag bits removal is minimal.
This is because, as long as there exist decoding algorithms,
it can be ensured that the probability of high-level errors
is exceptionally low. The impact of flagless pruning is to
conserve more memory across all flows.

(a) AAE (b) Variance
Figure 13: Join Size Estimation.

D. Experiments on Join Size Estimation

Experiment setting: We tested the task of join size esti-
mation on the CAIDA dataset, comparing the Fast-AGMS,
Join Sketch, and Coding Sketch with memory ranging from
256KB to 1MB. Since both methods yield unbiased frequency
estimates, the law of large numbers assures us that, after a
sufficient number of repetitions, they consistently obtain the
exact values. Therefore, in addition to AAE, we evaluated the
variance of their estimates, which serves as an indicator of
how quickly they converge to the precise value. This enables
a comparative analysis of the strengths and weaknesses of the
algorithms. The ground truth of the join size is extraordinarily
large, reaching the magnitude of 2×109. Consequently, while
the AAE values depicted in the graphs may appear substantial,
they represent relatively minor errors.
Analysis (Figure 13): Clearly, Coding Sketch and Join Sketch
always outperform Fast-AGMS. Furthermore, Coding Sketch
and Join Sketch are comparable. Their significant difference,
as mentioned in the related work section, is that Join Sketch
requires recording the IDs of frequent items. In this exper-
iment, the length of the IDs is 8 bits. If the IDs in actual
datasets are shorter, then Join Sketch would perform better;
otherwise, our algorithm would have the advantage.

VI. CONCLUSION
In this paper, we propose a sketch for a new type of

hierarchical structure called Coding Sketch. First, Coding
Sketch proposes an encoding and decoding algorithm to solve
hash collisions in the upper layer that have been limiting the
accuracy of existing hierarchical structure sketches. Second,
the decoding algorithm in Coding Sketch can add flagless
pruning and then the hierarchical structure no longer needs flag
bits. This technique saves a lot of space for more counters, so
Coding Sketch can obtain more accurate frequency estimates
for both frequent and infrequent items. Experiments prove that
Coding Sketch has an order of magnitude better accuracy than
the state-of-the-art algorithm. All of our code is open sourced
on Github [2].

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their help in improv-
ing this paper. This work is supported by National Key R&D
Program of China (No. 2022YFB2901504), and National Nat-
ural Science Foundation of China (NSFC) (No. U20A20179,
62372009).

REFERENCES

[1] Murmur hashing source code. https://github.com/aappleby/smhasher/
blob/master/src/MurmurHash3.cpp.

[2] Related source code. https://github.com/CodingSketch/Coding-Sketch.
[3] The CAIDA Anonymized Internet Traces. http://www.caida.org/data/

overview/.
[4] M. Ahmed, A. Naser Mahmood, and J. Hu. A survey of network

anomaly detection techniques. Journal of Network and Computer
Applications, 60:19–31, 2016.

[5] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join
and self-join sizes in limited storage. Journal of Computer and System
Sciences, 64(3):719–747, 2002.

[6] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and system
sciences, 58(1):137–147, 1999.

[7] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. SALSA:
self-adjusting lean streaming analytics. In ICDE, pages 864–875. IEEE,
2021.

[8] W. Cai, M. Balazinska, and D. Suciu. Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities. In Proceedings
of the 2019 International Conference on Management of Data, pages
18–35, 2019.

[9] M. Charikar, K. C. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In ICALP, pages 693–703, 2002.

[10] D. Charles and K. Chellapilla. Bloomier filters: A second look. In
Algorithms-ESA 2008: 16th Annual European Symposium, Karlsruhe,
Germany, September 15-17, 2008. Proceedings 16, pages 259–270.
Springer, 2008.

[11] M. Chiosa, T. B. Preußer, and G. Alonso. Skt: A one-pass multi-
sketch data analytics accelerator. Proceedings of the VLDB Endowment,
14(11):2369–2382, 2021.

[12] G. Cormode. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers, page 15, 2011.

[13] G. Cormode. Data summarization and distributed computation. In
Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, pages 167–168, 2018.

[14] G. Cormode and M. Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In Proceedings of the 31st
international conference on Very large data bases, pages 13–24, 2005.

[15] G. Cormode and M. Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In Proceedings of the 31st
international conference on Very large data bases, pages 13–24, 2005.

[16] G. Cormode, S. Maddock, and C. Maple. Frequency estimation un-
der local differential privacy. Proceedings of the VLDB Endowment,
14(11):2046–2058, 2021.

[17] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 2005.

[18] G. Cormode and S. Muthukrishnan. What’s new: Finding significant
differences in network data streams. IEEE/ACM Transactions on
Networking, 2005.

[19] Z. Dai, A. Desai, R. Heckel, and A. Shrivastava. Active sampling
count sketch (ascs) for online sparse estimation of a trillion scale
covariance matrix. In SIGMOD/PODS ’21: International Conference
on Management of Data, 2021.

[20] A. Datta, Y. Izenov, B. Tsan, and F. Rusu. Simpli-squared: A very simple
yet unexpectedly powerful join ordering algorithm without cardinality
estimates. arXiv preprint arXiv:2111.00163, 2021.

[21] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh,
and M. Rink. Tight thresholds for cuckoo hashing via xorsat. In
International Colloquium on Automata, Languages, and Programming,
pages 213–225. Springer, 2010.

[22] Y. Du, H. Huang, Y.-E. Sun, S. Chen, and G. Gao. Self-adaptive
sampling for network traffic measurement. In IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, pages 1–10, 2021.

[23] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. ACM SIGMCOMM CCR, 2002.

[24] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Quicksand:
Quick summary and analysis of network data. Technical report,
Technical Report, Dec. 2001. citeseer. nj. nec. com/gilbert01quicksand.
html, 2001.

[25] J. Gong, T. Yang, Y. Zhou, D. Yang, S. Chen, B. Cui, and X. Li. ABC:
A practicable sketch framework for non-uniform multisets. In IEEE
BigData, pages 2380–2389. IEEE Computer Society, 2017.

[26] M. T. Goodrich and M. Mitzenmacher. Invertible bloom lookup tables.
In 2011 49th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 792–799. IEEE, 2011.

[27] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Compass: Online sketch-
based query optimization for in-memory databases. In Proceedings of
the 2021 International Conference on Management of Data, pages 804–
816, 2021.

[28] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Online sketch-based query
optimization. arXiv preprint arXiv:2102.02440, 2021.

[29] P. Jia, P. Wang, J. Zhao, S. Zhang, Y. Qi, M. Hu, C. Deng, and X. Guan.
Bidirectionally densifying LSH sketches with empty bins. In SIGMOD
Conference, pages 830–842. ACM, 2021.

[30] J. Jiang, F. Fu, T. Yang, and B. Cui. Sketchml: Accelerating distributed
machine learning with data sketches. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD), pages
1269–1284, 2018.

[31] A. Kipf, D. Vorona, J. Müller, T. Kipf, B. Radke, V. Leis, P. Boncz,
T. Neumann, and A. Kemper. Estimating cardinalities with deep
sketches. In Proceedings of the 2019 International Conference on
Management of Data, pages 1937–1940, 2019.

[32] H. Li, Q. Chen, Y. Zhang, T. Yang, and B. Cui. Stingy sketch: a sketch
framework for accurate and fast frequency estimation. Proceedings of
the VLDB Endowment, 15(7):1426–1438, 2022.

[33] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang.
Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams. In KDD, pages 1574–1584. ACM, 2020.

[34] C. Lou, Y.-E. Sun, H. Huang, Y. Du, S. Chen, G. Gao, and H. Xu. An
efficient adaptive denoising sketch for per-flow traffic measurement. In
2022 IEEE International Performance, Computing, and Communications
Conference (IPCCC), pages 161–168, 2022.

[35] A. Mandal, H. Jiang, A. Shrivastava, and V. Sarkar. Topkapi: parallel and
fast sketches for finding top-k frequent elements. Advances in Neural
Information Processing Systems, 31, 2018.

[36] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of
frequent and top-k elements in data streams. In ICDT, pages 398–412.
Springer, 2005.

[37] M. Molloy. The pure literal rule threshold and cores in random
hypergraphs. 2004.

[38] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire. Correlation
sketches for approximate join-correlation queries. In SIGMOD/PODS
’21: International Conference on Management of Data, 2021.

[39] S. Sheng, Q. Huang, S. Wang, and Y. Bao. Pr-sketch: monitoring per-key
aggregation of streaming data with nearly full accuracy. Proceedings of
the VLDB Endowment, 14(10):1783–1796, 2021.

[40] B. Shi, Z. Zhao, Y. Peng, F. Li, and J. M. Phillips. At-the-time and back-
in-time persistent sketches. In Proceedings of the 2021 International
Conference on Management of Data, pages 1623–1636, 2021.

[41] B. Shi, Z. Zhao, Y. Peng, F. Li, and J. M. Phillips. At-the-time and
back-in-time persistent sketches. In SIGMOD/PODS ’21: International
Conference on Management of Data, 2021.

[42] Y. Shi and M. Wen. Srouting: Towards a better flow size estimation
performance through routing and sketch configuration. In Proceedings
of the 50th International Conference on Parallel Processing, ICPP ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[43] X. Teng, Y.-R. Lin, and X. Wen. Anomaly detection in dynamic
networks using multi-view time-series hypersphere learning. In Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 827–836, 2017.

[44] D. Ting. Count-min: Optimal estimation and tight error bounds using
empirical error distributions. In SIGKDD, 2018.

[45] D. Ting. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on
Management of Data, 2018.

[46] S. Walzer. Peeling close to the orientability threshold–spatial coupling
in hashing-based data structures. In Proceedings of the 2021 ACM-SIAM

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/CodingSketch/Coding-Sketch
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/

Symposium on Discrete Algorithms (SODA), pages 2194–2211. SIAM,
2021.

[47] P. Wang, Y. Qi, Y. Zhang, Q. Zhai, C. Wang, J. C. S. Lui, and X. Guan.
A memory-efficient sketch method for estimating high similarities in
streaming sets. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD, 2019, pages
25–33. ACM, 2019.

[48] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang. Topicsketch: Real-time
bursty topic detection from twitter. TKDE, 2016.

[49] K. Yang, Y. Li, Z. Liu, T. Yang, Y. Zhou, J. He, T. Zhao, Z. Jia, Y. Yang,
et al. Sketchint: Empowering int with towersketch for per-flow per-
switch measurement. In 2021 IEEE 29th International Conference on
Network Protocols (ICNP), pages 1–12. IEEE, 2021.

[50] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li. Diamond
sketch: Accurate per-flow measurement for big streaming data. IEEE
Transactions on Parallel and Distributed Systems, 30(12):2650–2662,
2019.

[51] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li. Heavyguardian:
Separate and guard hot items in data streams. In KDD, pages 2584–
2593. ACM, 2018.

[52] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic sketch: adaptive and fast network-wide measurements.
In SIGCOMM, pages 561–575. ACM, 2018.

[53] T. Yang, J. Xu, X. Liu, P. Liu, L. Wang, J. Bi, and X. Li. A
generic technique for sketches to adapt to different counting ranges.
In INFOCOM, pages 2017–2025, 2019.

[54] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li.
Heavykeeper: An accurate algorithm for finding top-k elephant flows.
IEEE/ACM Trans. Netw., pages 1845–1858, 2019.

[55] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li. Pyramid sketch: a
sketch framework for frequency estimation of data streams. Proc. VLDB
Endow., 10(11):1442–1453, 2017.

[56] Y. Yang, Y. Zhang, W. Zhang, and Z. Huang. GB-KMV: an augmented
KMV sketch for approximate containment similarity search. In ICDE,
pages 458–469. IEEE, 2019.

[57] Y. Zhai, H. Xu, H. Wang, Z. Meng, and H. Huang. Joint routing
and sketch configuration in software-defined networking. IEEE/ACM
Transactions on Networking, 28(5):2092–2105, 2020.

[58] K. Zhao, J. X. Yu, H. Zhang, Q. Li, and Y. Rong. A learned sketch for
subgraph counting. In Proceedings of the 2021 International Conference
on Management of Data, pages 2142–2155, 2021.

[59] R. Zhu, B. Wang, X. Yang, B. Zheng, and G. Wang. Sap: Improving
continuous top-k queries over streaming data. IEEE Transactions on
Knowledge and Data Engineering, 29(6):1310–1328, 2017.

	Introduction
	Background and Related Work
	Preliminaries
	Related Sketches
	Related Work of Encoding and Decoding
	Related Work of Offline Query

	The Coding Sketch Algorithm
	The Fast and Efficient Encoding
	Data Structure
	Operations

	The Recursive and Error-free Decoding
	Flagless Prune
	More Further Optimizations
	Adjust automatically
	Unbiased Version

	Mathematical Analysis
	Analysis of the length of the upper layer
	Analysis of the decoding without flag bit

	Experimental Results
	Experimental Setup
	Impact of Algorithm Parameters
	Experiments on Frequency Estimation
	Accuracy vs. memory
	Accuracy vs. Skewness
	Experiments on Throughput
	Queries on Frequent flows

	Experiments on Join Size Estimation

	Conclusion
	References

