
CocoSketch: High-Performance Sketch-based Measurement
over Arbitrary Partial KeyQuery

Yinda Zhang
1,3
, Zaoxing Liu

2
, Ruixin Wang

1
, Tong Yang

1
, Jizhou Li

1
,

Ruijie Miao
1
, Peng Liu

1
, Ruwen Zhang

1
, Junchen Jiang

3

1
Peking University,

2
Boston University,

3
University of Chicago

ABSTRACT
Sketch-based measurement has emerged as a promising alterna-

tive to the traditional sampling-based network measurement ap-

proaches due to its high accuracy and resource efficiency. While

there have been various designs around sketches, they focus onmea-

suring one particular flow key, and it is infeasible to support many

keys based on these sketches. In this work, we take a significant step

towards supporting arbitrary partial key queries, where we only
need to specify a full range of possible flow keys that are of interest

before measurement starts, and in query time, we can extract the

information of any key in that range. We design CocoSketch, which
casts arbitrary partial key queries to the subset sum estimation

problem and makes the theoretical tools for subset sum estima-

tion practical. To realize desirable resource-accuracy tradeoffs in

software and hardware platforms, we propose two techniques: (1)

stochastic variance minimization to significantly reduce per-packet

update delay, and (2) removing circular dependencies in the per-

packet update logic to make the implementation hardware-friendly.

We implement CocoSketch on four popular platforms (CPU, Open

vSwitch, P4, and FPGA) and show that compared to baselines that

use traditional single-key sketches, CocoSketch improves average

packet processing throughput by 27.2× and accuracy by 10.4×when

measuring six flow keys.

CCS CONCEPTS
• Networks → Network monitoring; Network measurement;

KEYWORDS
Sketch; Arbitrary Partial Key Query; P4; FPGA

ACM Reference Format:
Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie

Miao, Peng Liu, Ruwen Zhang, Junchen Jiang. 2021. CocoSketch: High-

Performance Sketch-based Measurement over Arbitrary Partial Key Query.

In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–28, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3452296.3472892

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472892

1 INTRODUCTION
Network monitoring and measurement have been critical to various

network management tasks, such as traffic engineering [1–7], ac-

counting [8–12], load balancing [13–16], flow scheduling [17–19],

and anomaly detection [20–22]. These tasks often require timely

and accurate estimates of the network flow metrics, e.g., heavy hit-

ters [23–26], flow size distribution [27], or heavy changes [28, 29].

In response, recent efforts have demonstrated that sketching algo-

rithms (sketches) can estimate these metrics with high fidelity at a

high throughput using only small amounts of resources [30, 31].

At a high level, existing sketch-based designs commonly focus

on estimating statistics defined over a single flow key. A flow key

can be a specific header field (e.g., SrcIP, DstIP), a combination of

fields (e.g., 5-tuple), or a subset of bits in a field (e.g., any prefix in

SrcIP). For instance, flow scheduling needs to track heavy hitters

defined on the 5-tuple [17], while SYN flood detection needs to

count distinct SrcIPs [32].

While recent efforts on single-key sketches havemade significant

progress [30, 33–38], it is impractical to use these sketches to mea-

sure multiple flow keys simultaneously. First, existing sketches [33,

39, 40] keep one independent sketch for each key, making it hard

to scale to even a handful of keys given the limited compute/mem-

ory resources in commercial switches [31, 41] (as shown in §2.3).

Second, they require operators to pre-define the set of flow keys

before the measurement starts. However, in many use cases, such as

network diagnosis and security, it might be difficult to enumerate

a few keys that must be measured ahead of time [21, 42–48]. For

instance, DDoS detection may track large flows defined on tens of

flow keys, including SrcIP/DstIP, the 5-tuple, and arbitrary prefixes

of them [21]. On a Tofino switch (e.g., 48 ALUs) [49], a Count-Min

sketch for each key requires eight ALUs, making it infeasible to

run more than six sketches.

We define a new class of problem called arbitrary partial key
query, which “late binds” what keys a sketch should support. Specif-
ically, operators only need to pre-define a broad key range before-

hand (called the full key 𝑘𝐹), and during query time, they can still

query the flow size of any key that is a part of 𝑘𝐹 (called partial
key). For instance, if the full key 𝑘𝐹 is the 5-tuple, the system should

estimate the flow size of any partial keys of the 5-tuple, such as

SrcIP and any prefix of SrcIP.

An ideal system for arbitrary partial key queries should meet

three requirements: (1) fidelity (provable accuracy guarantee on any
partial keys), (2) resource efficiency (high throughput using minimal

memory), and (3) compatibility (on various software and hardware

platforms, e.g., Open vSwitch [50], PISA [49], and FPGA [51]).

Unfortunately, existing solutions that might support arbitrary

partial key queries fall short on at least one requirement, as sum-

marized in Table 1. R-HHH [39] reduces the overhead of updating

https://doi.org/10.1145/3452296.3472892
https://doi.org/10.1145/3452296.3472892
https://doi.org/10.1145/3452296.3472892

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

Solutions Fidelity Resource Compatibility

Sketch per key (R-HHH) ✓
Full-key sketch (§2.3) ✓ ✓
Unbiased SpaceSaving ✓ ✓
CocoSketch (ours) ✓ ✓ ✓

Table 1: Our work v.s. prior solutions.

multiple sketches (one for each partial key) by selectively updating

only 𝑂 (1) sketches per packet, but this technique will significantly
increase the memory usage needed to achieve the same error bound.

For instance, to find the hierarchical heavy hitters of SrcIP (i.e., 32
prefixes), it will use 32 single-key sketches and 32MB total memory

space (each sketch needs 1MB memory space to achieve a 95% F1

Score [52]), which already exceeds the 9MB memory available on

Xilinx Alveo U280 FPGA [51]. Alternatively, we can use a single-

key sketch to measure full-key flow sizes and recover partial-key

flow sizes by aggregating full-key flows. However, prior work [53]

has shown that this approach might have large estimation errors,

which also corroborates our empirical evaluation (§7.5).

In this work, we present CocoSketch (Cornucopia Sketch), a
sketch-based flow measurement system that supports arbitrary

partial key queries. In contrast to the baselines that maintain mul-

tiple single-key sketches, CocoSketch achieves provable accuracy

guarantees for arbitrary partial key queries but drastically reduces

memory usage and update delay by maintaining only one sketch.

Moreover, CocoSketch can be efficiently implemented on both soft-

ware and hardware platforms.

CocoSketch shares the theoretical basis with Unbiased SpaceSav-

ing (USS) [53], a recent technique for subset sum estimation [54].

Given a set of items, each with a weight, the subset sum estima-

tion problem estimates the total weight of any subset of items. The

problem of arbitrary partial key queries can be cast as the subset

sum estimation problem: the size of a partial-key flow 𝑒 equals the

total size of a subset of full-key flows that match on the partial

key with 𝑒 . For instance, the size of a flow 𝑒 defined by the fields

of SrcIP and DstIP equals the total size of all 5-tuple flows that

share the SrcIP and DstIP with 𝑒 . The key idea behind USS is the

variance minimization technique, which minimizes the variance of

its subset-sum estimation. Unfortunately, the update delay of USS

grows proportionally with more flows recorded in the system (on a

scale of 10
4
), so a straightforward implementation would have low

throughput on CPUs (§7.5), and it cannot be supported by some

resource-constraint hardware [32].

The challenge of CocoSketch lies in how to practically apply the

theory of subset sum estimation to the partial key query problem.

We propose two main techniques. (a) Inspired by USS, we introduce

a technique called stochastic variance minimization. It harnesses
“power-of-𝑑 choices” to drastically reduce the per-packet update de-

lay while still maintaining a low total variance of size estimates on

all flows. Our analysis in §5 shows that, like USS, our size estimates

on any partial keys are unbiased and have bounded variances. (b)

Due to circular dependencies among the per-packet update opera-

tions, naively implementing stochastic variance minimization on

programmable switches can be infeasible (even when it runs on

FPGA, the throughput is low). To make it runnable on hardware

platforms, we further remove circular dependencies by parallelizing

the operations of stochastic variance minimization in a way that

incurs only minor increases in estimation errors. §7.5 empirically

shows that the F1 Scores drop by less than 10% after removing the

circular dependencies.

We implement CocoSketch prototypes on representative soft-

ware (e.g., CPU and Open vSwitch (OVS)) and hardware platforms

(e.g., programmable ASIC and FPGA). Our evaluation shows that

to handle multiple partial keys under three measurement tasks

(heavy hitter detection, heavy changes, and hierarchical heavy

hitters (HHHs)), CocoSketch achieves 27.2× higher packet pro-

cessing throughput than baselines such as UnivMon [33], Elastic

Sketch [30], R-HHH [39], and USS [53], while reducing estimation

error by 10.4× (and almost 40k× in HHHs).

2 BACKGROUND AND MOTIVATION
In this section, we beginwith the background on single-key sketches

and contrast them with the new problem of arbitrary partial key

queries. Then we discuss the potential applications of arbitrary

partial key queries and elaborate why existing solutions fall short.

2.1 Sketches for Network Measurement
Sketching algorithms (sketches) process data streams to estimate

various statistics in an online fashion. Compared to traditional

sampling-based techniques [55–58], sketches [24, 25, 29, 30, 33–

35, 59] are particularly attractive for network measurement because

of their provable and tunable accuracy-memory tradeoffs, allowing

sketches to fit in network devices with diverse resource constraints.

Sketches for network measurement have mainly followed a

single-key paradigm: each packet is identified as a <key, value>
pair to be inserted into the sketch, where the key is a flow identifier

defined by one combination of packet-header fields selected by the

operator before the measurement starts, and the value is the packet

count or the byte count of this flow. For instance, operators can

set up a heavy-hitter sketch that extracts each packet’s 5-tuple

instance as the key and the packet size/count as the value to update

the sketch. Periodically, the sketch will report the 5-tuple instances

with the largest flow sizes. In network measurement, single-key

sketches are widely used to count distinct flows [32, 60] and detect

heavy hitters [29, 59], significant changes of traffic patterns [28, 61],

and anomalies (e.g., entropy estimation) [62–64], among others.

Recent efforts [30, 31] have also improved the fidelity, resource

efficiency, or hardware compatibility of single-key sketches.

2.2 Arbitrary Partial Key Problem
In contrast to the single-key paradigm, we define a new class of

problems called arbitrary partial key query, which supports queries

on multiple keys without the need to pre-define which keys to

measure. Instead, operators only need to specify a full key that

incorporates all partial keys that might be queried in the future. We

formally define the problem as follows.

Definition 1 (Partial Key). A key 𝑘𝑃 is a partial key of key 𝑘𝐹
(denoted by 𝑘𝑃 ≺ 𝑘𝐹), if there is a mapping 𝑔(·) : 𝑘𝐹 → 𝑘𝑃 , and for
any flow 𝑒 ∈ 𝑘𝑃 defined on key𝑘𝑃 , we have 𝑓 (𝑒) =

∑
𝑒′∈𝑘𝐹 ,𝑔 (𝑒′)=𝑒 𝑓 (𝑒

′),
where 𝑓 (𝑒) is a statistic (e.g., size) of flow 𝑒 .

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

For example, the size of a flow 𝑒 of a partial key (e.g., (56.49.82.∗))
equals the sum of the size of full-key flows {𝑒 ′ |𝑔(𝑒 ′) = 𝑒} (e.g.,
{(56.49.82.0), ..., (56.49.82.255)}). Note that a partial key can be

any subset of fields in a full key, e.g., (SrcIP, DstIP) is a partial key
of the 5-tuple full key.

Definition 2 (Arbitrary Partial Key Query). Given a full
key 𝑘𝐹 and a metric function 𝑓 , return the 𝑓 (𝑒) of any flow 𝑒 ∈ 𝑘𝑃
for any partial key 𝑘𝑃 ≺ 𝑘𝐹 .

In this paper, we assume that 𝑓 is a flow size function. The

problem of arbitrary partial key query enables a more flexible way

of querying flow statistics without specifying which keys to query

beforehand. We can first define the full key as the union of all keys

that might be needed and deploy one sketch of the full key, and in

query time, operators can recover the size of any partial key.

Use cases of arbitrary partial key query: The ability to answer

arbitrary partial key queries enables a broad spectrum of potential

use cases. In Trumpet [65], applications, such as guiding rule place-

ment [66], coflow scheduling [67], and multi-key rate limiting [68],

require estimation results over many different keys. For instance,

there are often thousands of rules in rule management [66], which

require measurement on different combinations of fields/prefixes

in the 5-tuple (i.e., tens to hundreds of different keys). Moreover,

in security and diagnosis scenarios [21, 42–48], it is often hard to

predict which keys are relevant to future security incidents unless

we exhaustively track all possible keys. For example, DDoS detec-

tion needs various metrics (e.g., heavy hitters, distinct flows) over

potentially many flow keys, including SrcIP/DstIP, the 5-tuple, and

any arbitrary prefixes of them [21].

2.3 Existing Solutions and Limitations
In this section, we show why existing single-key sketches are ill-

suited to arbitrary partial key queries, whereas the theory literature

offers a promising yet impractical approach.

One single-key sketch per key: One strawman to realize ar-

bitrary partial key queries is by creating one single-key sketch

(e.g., [33, 40]) for each possible partial key. This method does not

scale to many keys because deploying and updating many sketches

simultaneously can cause significant storage and update overheads.

Recent work R-HHH [39] can reduce the per-sketch operation over-

head on multiple sketches (by randomly selecting 𝑂 (1) sketches
to be updated per packet). While this sampling-based approach

improves the sketch throughput in software, it will significantly

increase resource usage to reach the same error bound or lower

the accuracy given the same amount of memory space [39]. In

hardware switches such as Barefoot Tofino [49], its resource usage

(summarized in Table 2) will grow linearly with more sketches, so

this approach cannot support more than a handful of keys.

Full-key sketch with post recovery: Alternatively, we can de-

ploy a single-key sketch for the full key and use the two following

ways to recover the size of a partial-key flow from the full-key flow

information, though neither is ideal. (i) One way is to recover the

size of each partial-key flow by querying and aggregating the sizes

of all possible full-key flows that belong to the partial-key flow,

but the number of such full-key flows can be prohibitively large:

e.g., with the 32-bit SrcIP as the partial key and the 104-bit 5-tuple

as the full key, one needs to query (2
104/232)=272 full-key flows

Resource Name Count-Min R-HHH

Hash Distribution Unit 20.83% 22.22%

Stateful ALU 16.67% 16.67%

Gateway 7.81% 8.33%

Map RAM 7.11% 7.11%

SRAM 4.27% 4.27%

Table 2: Resource usage breakdown of one single-key sketch
(same configuration as §7.1) on a Tofino switch. The resource
bottleneck is the hash distribution unit (in bold). A Tofino
switch cannot support more than four single-key sketches.

Theory Target

Single-key sketches minimize max𝑒

(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

Subset sum estimation minimize

∑
𝑒

(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

Table 3: In contrast to single-key sketches, subset sum esti-
mation optimizes a different accuracy objective that is more
suitable for arbitrary partial key queries. 𝑓 (𝑒) is the real size
of flow 𝑒. 𝑓 (𝑒) is the estimated size of flow 𝑒.

to estimate merely one partial-key flow. (ii) An alternative way is

that, instead of aggregating the estimates of all full-key flows, we

aggregate only the full-key flows that are explicitly logged in the

sketch. Prior analysis [53], however, suggests that aggregating such

a subset of flows can yield high estimation bias and variance, and

our evaluation in §7.5 indeed shows that it has higher estimation

errors on partial keys than on the full key.

Subset sum estimation: We advocate for a more promising ap-

proach – casting the arbitrary partial key query problem to the

subset sum estimation problem. As summarized in Table 3, unlike

single-key sketches that minimize the maximum estimation error

on individual keys, subset sum estimation offers an unbiased es-

timate on the sum of all (and any subset of) items with minimum

variance. It fits nicely with our goal since each partial-key flow size

equals the total size of a subset of full-key flows.

Unfortunately, existing work on subset sum estimation, notably

Unbiased SpaceSaving (USS) [53], is impractical for network mea-

surement. As will be elaborated in §3.2, USS performs𝑂 (𝑛) memory

accesses on every arriving packet, where 𝑛 is the number of flows

currently maintained in the system and can be on the scale of 10
4
.

Such prohibitive per-packet update overhead makes USS hard to

keep up with the line rate requirements on software platforms and

infeasible to run on some hardware platforms such as Barefoot

Tofino [49]. Without changing the algorithm, it might be hard to

speed it up with better implementation to achieve desirable per-

formance. §7.2 shows that when accelerated by a hash table and a

double linked list, USS still only achieves less than 1/3 the through-

put of a single-key sketch.

In summary, re-using single-key sketches is a fundamental mis-

match with the accuracy requirements of arbitrary partial key

queries, whereas USS fits the accuracy goal of arbitrary partial

key queries but falls short on system performance. The following

sections will provide more details of USS and how we make it

practical for hardware/software-based network measurements.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

Packet
!", 4

Step 1:
Hash each packet to

one bucket in each array

!%, 19

!(, 15

ℎ+(.)

ℎ/(.)

Stochastic
Variance Minimization

Step 2:
Update mapped buckets based on
stochastic variance minimization

update

update

Data Plane Control Plane

Step 3:
Build the table of full key 01
based on results in the sketch

Full Key Size
!+ 21

!3 11

!" 39

… ……
!5 15

Step 4:
Query arbitrary partial key 06

by aggregating full key 01

Partial Key Size
7+ = {!+, !"} 60

… ……
7= = {!3, !5} 26

Network Stream
Packet: (Full key, Size)

……

Figure 1: CocoSketch architecture.

3 OVERVIEW
We now give an overview of our solution, CocoSketch, and its two

key ideas: stochastic variance minimization (§3.2) and removal of

circular dependencies (§3.3).

3.1 Problem Scope
Requirements: CocoSketch has three design requirements:

• [R1] Accuracy guarantees over partial keys: CocoSketch should

provide accuracy guarantees for all partial key queries. This paper

focuses on the accuracy of flow size-related queries (e.g., heavy
hitter detection, heavy change detection).

• [R2] Compute and memory resource efficiency: CocoSketch

should achieve high throughput using small memory footprints,

on both software and hardware platforms.

• [R3] Compatibility with diverse platforms: CocoSketch should

work on both software (e.g., CPU and OVS [50]) and hardware

(e.g., FPGA [51] and reconfigurable ASIC [49]) platforms [69–73].

CocoSketch workflow: Before the measurement starts, the oper-

ator defines a full key 𝑘𝐹 , of which any key that might be queried

will be a partial key. 𝑘𝐹 can be a large range of packet header fields

such as 5-tuple or application-layer headers. Figure 1 shows the

workflow of CocoSketch. CocoSketch maintains a single sketch

with 𝑑 · 𝑙 buckets (where 𝑑 and 𝑙 are configurable parameters). On

each arriving packet, CocoSketch’s data plane updates the sketch

in two logical steps:

Step 1: Extract the full key value 𝑒 of the flow and use 𝑑 hash

functions to map 𝑒 to 𝑑 buckets, each from an array of 𝑙 buckets.

Step 2: Update the counters of the mapped buckets with the

packet size using stochastic varianceminimization (explained shortly).
At the end of each measurement window, CocoSketch’s control

plane will answer flow size queries defined on any partial key

𝑘𝑃 ≺ 𝑘𝐹 , with two logical steps:

Step 3: Based on the sketch maintained by the data plane, first

recover the size of each recorded full-key flow.

Step 4: Aggregate the sizes of only the recorded full-key flows

to infer the size of the flows defined by the queried partial key 𝑘𝑃 .
1

Next, we discuss the two technical ideas of CocoSketch. Figure 2

illustrates CocoSketch’s performance advantages over the baselines.

1
Note that this step would have had no accuracy guarantee, if the sketch were a full-key

sketch updated by the traditional single-key sketch algorithm (as discussed in §2.3).

CocoSketch

USS

T
hr

ou
gh

pu
t

Accuracy

Single-key Sketch

Figure 2: Accuracy-throughput analysis.

3.2 Stochastic Variance Minimization
Variance minimization in Unbiased SpaceSaving: Before de-

scribing our approach, we first explain how Unbiased SpaceSaving

(USS) [53] minimizes its variance of flow size estimates and why

it has a high update delay. For each incoming packet with full-key

flow 𝑒 and packet size 𝑤 , (1) if 𝑒 is already tracked in a bucket,

then USS increments the counter of 𝑒 in this bucket by𝑤 , so that

variance is not increased; (2) otherwise, USS scans all buckets to
find the min-sized bucket counter 𝐶𝑚𝑖𝑛 , increments it by 𝑤 , and

then replaces the flow key associated with the bucket with 𝑒 with

probability
𝑤

𝐶𝑚𝑖𝑛
. As the number of memory accesses per update is

the same as the number of buckets (on a scale of 10
4
), USS violates

[R2] and [R3]. How to reduce the update cost of USS while still

maintaining the high accuracy guarantees?

Reducing update delay: We propose Stochastic Variance Mini-
mization: for each packet whose flow is not currently tracked by

the sketch, CocoSketch finds the smallest bucket among the 𝑑 hash-

indexed buckets (instead of all buckets), increments the counter,

and replaces the flow in the same way as USS (see details in §4.1).

In other words, if 𝑑 is the total number of buckets, CocoSketch

would be equivalent to USS. However, CocoSketch sets 𝑑 to be

much smaller (e.g., 2 to 4) than the number of buckets (e.g., 104),
thus drastically reducing the update delay.

Now, the key question is why updating the bucket among only

𝑑 buckets (instead of all buckets) per packet still yields unbiased

size estimation with small variance?

Preserving estimation accuracy: The intuition is two-fold. Here,

we assume that the flow sizes follow a heavy-tailed distribution

(i.e., most flows have small sizes).

• First, for a large flow, the counter of the bucket where the flow

maps is a quite accurate estimate of its real flow size. This is

because, like in USS, its counter is mostly incremented by the

same large flow with a small chance of collision.

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Storage Resource
(e.g. SRAM, Map RAM)

Match-Action Pipeline

Computing Resource
(e.g. Stateful ALU, Gateway)

Figure 3: Reconfigurable Match-Action pipeline.

• Second, for small flows, our technique, like USS, spreads out

the small flows among the mapped buckets (like a “load bal-

ancing” process) to control the per-flow variance. Intuitively, by

always incrementing the minimum bucket among𝑑 stochastically

selected buckets, it enjoys the benefit of “power-of-𝑑 choices”.

Though these buckets’ values do not converge as fast as USS, the

maximum collisions in all buckets are still bounded with a high

probability, after a sufficiently large number of small flows arrive.

Even if the workload is not heavy-tailed, our theoretical analysis

(§5.2 and §A.2) shows that CocoSketch can still achieve the same

accuracy guarantee as that of USS by adding more buckets to in-

crease the hash space and reduce collisions. In the worst case, we

need 𝑜

(
(1/𝛿)1/𝑑

)
times more space than USS, where 𝛿 is the prob-

ability that a given error threshold is violated. In practice, when

𝑑 = 2, 𝛿 = 0.01, only 1.6× more buckets are needed to achieve accu-

racy on par with USS. As a result, our evaluation §7.5 shows that

compared to USS, CocoSketch improves throughput by 100× with

only a marginal drop in accuracy (less than 3% drop in F1 Score).

3.3 Circular Dependency Removal
While stochastic varianceminimization allows CocoSketch to achieve

high performance in software platforms, it cannot be efficiently

implemented in hardware platforms due to inherent circular de-
pendencies in its update operations. We show this issue using the

Tofino architecture and propose an effective solution to address it.

Constraints in RMT switches: Figure 3 shows the pipeline archi-
tecture of a Tofino switch as an example of RMT (reconfigurable

match-action table) switches [74]. Each pipeline consists of multi-

ple stages, and importantly, each stage cannot access the memory

of any prior stages. Therefore, any sketch update algorithm must

follow a unidirectional workflow, i.e., data flow strictly from the

first stage to the last stage. Moreover, each pipeline has a limited

number (e.g., 12) of stages, and each stage has limited memory (e.g.,
SRAM and TCAM) and computing (e.g., ALU) resources. Thus, any
sketch algorithm must fit in a small memory space and perform a

small number of memory accesses per packet.

Circular dependencies and their removal: Unfortunately, sto-
chastic variance minimization introduces two forms of circular de-

pendency as illustrated in Figure 4, making it incompatible with the

unidirectional workflow in RMT switches. We design a hardware-

friendly algorithm (see details in §4.2) to remove these dependencies

for better performance and resource efficiency in hardware.

• First, we need to remove the circular dependency across buckets.

Recall that there are 𝑑 > 1 corresponding buckets per packet

update. The updates to these 𝑑 buckets depend on each other, i.e.,
whether a bucket needs an update depends on the key/value in

First bucket

Circular Dependency

Flow Key

Estimated Size

Remove Dependency

Second bucket

First bucket

Second bucket

Flow Key

Estimated Size

Flow Key

Estimated Size

Flow Key

Estimated Size

Dependency :

Figure 4: Removing circular dependency

each of the remaining buckets, causing a circular dependency.

To address this, we update each bucket independently and in

parallel. Instead of running one instance of stochastic variance

minimization on 𝑑 buckets, we run 𝑑 instances of stochastic vari-

ance minimization, each performed on only one bucket. Clearly,

stochastic varianceminimization on one bucketmay lead to larger

errors. To control the errors, we use the median value among the

𝑑 buckets as the final result.

• Second, we further remove the circular dependency between

the flow key and its estimated size within each bucket. This

dependency comes from the algorithmic design where (i) every

counter update depends on the key in the bucket (because the

counter should be incremented only if the recorded key matches

that of the arriving packet), but (ii) every key update depends

on the counter in the bucket (because the probability to replace

the key in the bucket depends on its estimated size). To address

this, we simplify the update logic, and put the flow key and the

estimated size into separate stages. Thus, the update process in

one bucket can be pipelined.

By eliminating the circular dependencies both across and within

buckets, CocoSketch can be implemented efficiently in hardware

(e.g., in FPGA, throughput is improved by 5× compared to a naive

implementation with circular dependencies). While removing the

circular dependencies might weaken the accuracy guarantee, our

evaluation in §7.5 demonstrates that the accuracy drop is not sig-

nificant (e.g., <10%). Besides RMT and FPGA, we expect that this

technique might apply to other pipelined hardware platforms.

4 DETAILED DESIGN
Next, we formally describe the update and query mechanisms of

CocoSketch, including the basic CocoSketch (§4.1) designed for CPU
and OVS to use stochastic variance minimization, and the hardware-
friendly CocoSketch (§4.2), which optimizes the basic CocoSketch

for hardware platforms like programmable ASIC and FPGA. We list

the frequently used symbols of this paper in Table 4.

4.1 Basic CocoSketch
Data structure: As shown in Figure 5, the sketch maintains 𝑑

arrays of 𝑙 (key, value) pairs. Each (key, value) pair (or called bucket)

records a particular full key and its estimated flow size (counter).

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

Symbol Description
𝑘𝐹 the full key

𝑘𝑃 the partial key

𝑒 the flow

𝑓 (𝑒) the real size of flow 𝑒

𝑓 (𝑒) the estimated size of flow 𝑒

𝑑 the number of arrays in CocoSketch

𝑙 the number of buckets in one array

ℎ𝑖 (.) the hash function corresponding to the 𝑖𝑡ℎ array

𝐵𝑖 [𝑗] the 𝑗𝑡ℎ bucket in the 𝑖𝑡ℎ array

𝐵𝑖 [𝑗] .𝐾 the key field (full key) in 𝐵𝑖 [𝑗]
𝐵𝑖 [𝑗] .𝑉 the value field (estimated size) in 𝐵𝑖 [𝑗]

Table 4: Symbols and notations.

Let 𝐵𝑖 [𝑗] (1 ⩽ 𝑖 ⩽ 𝑑 , 1 ⩽ 𝑗 ⩽ 𝑙) be the 𝑗𝑡ℎ bucket of the 𝑖𝑡ℎ array,

and 𝐵𝑖 [𝑗] .𝐾 and 𝐵𝑖 [𝑗] .𝑉 be its key and value. The 𝑑 arrays are

associated with 𝑑 independent hash functions ℎ1 (.), ..., ℎ𝑑 (.).
Basic CocoSketch insertion: We denote each incoming packet

as a pair of (𝑒,𝑤), where 𝑒 is a particular full key, and𝑤 is its incre-

ment size. To insert (𝑒,𝑤), we first map 𝑒 to 𝑑 buckets (each from

one of the 𝑑 arrays) and use stochastic variance minimization to

select which bucket to update. There are two cases: (1) if 𝑒 matches

the key in any of the 𝑑 buckets, increment the value of that bucket

by 𝑤 and return; (2) otherwise, find the bucket with the smallest

value (e.g., the bucket in the 𝑘𝑡ℎ array, 𝐵𝑘 [ℎ𝑘 (𝑒)]) and update it as

follows. We increase 𝐵𝑘 [ℎ𝑘 (𝑒)] .𝑉 by𝑤 . And then with probability

𝑤
𝐵𝑘 [ℎ𝑘 (𝑒)] .𝑉 , we replace 𝐵𝑘 [ℎ𝑘 (𝑒)] .𝐾 with 𝑒 . If multiple buckets

share the same smallest size value, randomly select one to update.

§5 will formally analyze the fidelity of stochastic variance mini-

mization over arbitrary partial keys. Note that for each incoming

packet, our insertion logic guarantees that it only updates the value

of only one bucket and the key of at most one bucket.

ℎ3(.)

ℎ+(.)

!(, 1

!(, 16

w. p.	
4

16

Packet

!(, 15 !%, 19

!5, 11 !3, 12

ℎ3(.)

ℎ+(.)

!", 4

Packet

+4

!", 16

+1

Figure 5: Insertion example in basic CocoSketch (with𝑑 = 2).

Example (Figure 5):We use 𝑑 = 2 as an example. To insert packet

(𝑒5, 1), we first use two hash functions to map it to two buckets with

content (𝑒5, 15) and (𝑒8, 11). Because 𝑒5 is already recorded in one

of the buckets, we simply increment the corresponding value by 1

(from 15 to 16). To insert packet (𝑒3, 4), we first map it to the two

buckets with content (𝑒6, 19) and (𝑒2, 12). Since 𝑒3 is not recorded
in either bucket, we identify the bucket with the smallest counter

(i.e., (𝑒2, 12)), increment the value by 4 (from 12 to 16), and finally,

with probability
𝑤

𝐵𝑘 [ℎ𝑘 (𝑒)] .𝑉 = 4

16
, we replace the key 𝑒2 with 𝑒3.

4.2 Hardware-friendly CocoSketch
We now extend the basic CocoSketch to optimize the resource effi-

ciency in hardware by removing circular dependencies in insertions.

ℎ+(.)

9 13

!=, 4

Packet

Value Part

Key Part

× √w. p.	
4

13

13 15

!E !+

The First Array

w. p.	
2

15

!+

ℎ+(.)

!+, 2

Packet

Figure 6: The insertion step in the hardware-friendly CocoS-
ketch. Here we only show the insertion to the first array; the
insertion process in each array is the same and independent.

Hardware-friendly insertion: The insertion step of each array is

independent of each other in hardware. The reason is that the archi-

tecture of network hardware (e.g., FPGA) is usually designed with

diverse logical parts running in parallel, and a hardware-friendly

algorithm design should leverage the parallelism to better utilize

the resources. For each packet, instead of proceeding stochastic vari-

ance minimization over 𝑑 buckets together, we update each bucket

independently, as if 𝑑 = 1 in stochastic variance minimization: we

always increment the value of the mapped bucket 𝐵𝑖 [ℎ𝑖 (𝑒)] by𝑤
and replace the key 𝐵𝑖 [ℎ𝑖 (𝑒)] .𝐾 with probability

𝑤
𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉 .

Example (Figure 6): We show an example where each packet

triggers an independent update on each of its mapped buckets (the

figure only shows the buckets in the first of 𝑑 arrays). Moreover, the

value part and the key part are updated sequentially: since 𝑑 = 1,

the value part is always updated and does not depend on the key

part.

4.3 Query for Arbitrary Partial Key
Query front-end: We provide a front-end to query arbitrary par-

tial key 𝑘𝑃 ≺ 𝑘𝐹 . We first build a table with two columns (Full
Key, Size) (i.e., a table of estimated size of each recorded flow), by

querying the sketch on the recorded full-key flows. In the hardware-

friendly CocoSketch, since one flow may appear in multiple arrays,

we will take the median estimated size in different arrays as its final

estimated size.

The following SQL statement is the interface to query the mea-

surement result of partial key 𝑘𝑃 , where 𝑔 is the mapping from a

full key to a partial key, as defined in Definition 1.

SELECT g(k_F), SUM(Size)
FROM table
GROUP BY g(k_F)

Examples of partial key query (Figure 7): Suppose that the full
key is (SrcIP, SrcPort), and we want to query the partial key SrcIP.

We first get the full key result (left). Then, we aggregate the result

based on the SrcIP fields to get the partial key result (right). There

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

are two full-key flows which share the SrcIP 19.98.10.26, so we

add up their sizes and get the estimated size 1041 (520 + 521) of

partial-key flow 19.98.10.26. In contrast, there is only one full-key

flow with SrcIP 34.52.73.17, so the estimated size for the partial-key

flow 34.52.73.17 is 856.

Full Key
Size

SrcIP SrcPort
19.98.10.26 80 521
34.52.73.13 80 305
19.98.10.26 80 520
34.52.73.17 118 856
34.52.73.13 123 463

Partial Key
Size

SrcIP
19.98.10.26 1041
34.52.73.13 768
34.52.73.17 856

Figure 7: Example queries on partial keys.

5 ANALYSIS
In this section, we provide mathematical analysis for CocoSketch.

Due to space constraints, we provide the interpretation of each

theorem but defer the detailed proofs to Appendix A.

5.1 Stochastic Variance Minimization
We first analyze how our main technique minimizes the variance.

Variance minimization for subset sum estimation: Let 𝑓 (𝑒)
be the real size of the full key flow 𝑒 , and 𝑓 (𝑒) be its estimated size.

As shown in §2.3, the target of subset sum estimation is

minimize

∑
𝑒

(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

(1)

Because USS processes one packet at a time, it minimizes the in-

crement on the sum of variance caused by each insertion, which is

shown as follows.

minimize

∑
𝑒

Δ
(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

(2)

Stochastic variance minimization for 𝑑 = 1: We first discuss

the simplest case when CocoSketch has only one array and one

associated hash function (𝑑 = 1). Suppose that the incoming packet

is (𝑒𝑖 ,𝑤), and it is mapped to the bucket whose recorded key and

value are 𝑒 𝑗 and 𝑓𝑗 . To optimize Eq. (2), we need to update the

mapped bucket to (𝑒 ′, 𝑓 ′) in a way that minimizes the increment

of variance for each insertion.

Theorem 1. The solution to optimize Eq. (2) is

(𝑒 ′, 𝑓 ′) =

(𝑒𝑖 , 𝑓𝑗 +𝑤), w.p.

𝑤

𝑓𝑗 +𝑤

(𝑒 𝑗 , 𝑓𝑗 +𝑤), w.p.
𝑓𝑗

𝑓𝑗 +𝑤
(3)

The proof is in Appendix A.1. Note that regardless of whether 𝑒𝑖
matches 𝑒 𝑗 , the value in the mapped bucket will always be incre-

mented to 𝑓𝑗 +𝑤 . Thus, the update of the value does not depend
on the key when 𝑑 = 1. Based on the Eq. (3), we can derive that

Theorem 2. The minimum increment of variance sum to update
the bucket (𝑒 𝑗 , 𝑓𝑗) is∑

𝑒

Δ
(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

=

{
2𝑤𝑓𝑗 , 𝑒𝑖 ≠ 𝑒 𝑗
0, 𝑒𝑖 = 𝑒 𝑗

(4)

Stochastic varianceminimization for𝑑 > 1: Second, we discuss
the general case of 𝑑 > 1. CocoSketch updates only one of the

mapped buckets. According to Eq. (4), we can derive the variance

increment if we will update the 𝑖𝑡ℎ mapped bucket, and then we can

compare their variance increment and choose one whose increment

is the least to update. If 𝑒𝑖 = 𝑒 𝑗 , the increment of variance is 0.

Therefore, we should first update the bucket recording the same flow

of full key. If 𝑒𝑖 ≠ 𝑒 𝑗 , the increment of variance is 2𝑤𝑓𝑗 . Therefore,

if there is no bucket recording the same flow, we should find the

bucket with the smallest value field and update it based on Eq. (3).

5.2 Error Bound
Next, we derive the estimation errors of CocoSketch. Let𝑀 = 𝑑 · 𝑙
be the number of buckets in CocoSketch, where 𝑑 is the number

of arrays and 𝑙 is the number of buckets in each array. We define

𝑅(𝑒) to be the relative error of 𝑒 , i.e., 𝑅(𝑒) =
���� 𝑓 (𝑒)−𝑓 (𝑒)𝑓 (𝑒)

����. Theorem 3

(see Appendix A.2 for the proof) shows the bound of 𝑅(𝑒) for the
hardware-friendly CocoSketch. Here, 𝑓 (𝑒) = ∑

𝑒𝑖≠𝑒 𝑓 (𝑒𝑖).

Theorem 3. Let 𝑙 = 3 · 𝜖−2 and 𝑑 = 𝑂 (log𝛿−1). For any flow 𝑒 of
arbitrary partial key 𝑘𝑃 ≺ 𝑘𝐹 ,

P

[
𝑅(𝑒) ⩾ 𝜖 ·

√
𝑓 (𝑒)
𝑓 (𝑒)

]
⩽ 𝛿 (5)

Interpretation: The same bound on relative errors holds for any

partial key, including the full key. On the other hand, Theorem 3

shows that the distribution of error 𝑅(𝑒) varies with 𝑑 and 𝑙 . For

instance, with a larger 𝑑 (i.e., a smaller 𝛿), the error will be bounded

(by 𝜖 ·
√
𝑓 (𝑒)/𝑓 (𝑒)) with a greater probability, which matches our

experiments in §7.5.

5.3 Recall Rate
Finally, we derive the recall rate (i.e., how likely a flow is recorded)

of the hardware-friendly CocoSketch (see Appendix A.3 for the

proof). Let 𝑍 (𝑒) be a 0-1 function, with 𝑍 (𝑒) = 1 if and only if flow

𝑒 is recorded in the CocoSketch.

Theorem 4. For any flow 𝑒 of full key 𝑘𝐹 ,

P [𝑍 (𝑒) = 1] ⩾ 1 −
(
1 + 𝑙 · 𝑓 (𝑒)

𝑓 (𝑒)

)−𝑑
(6)

Interpretation: According to this theorem, the lower bound of

the recall rate will increase as the flow size 𝑓 (𝑒) increases. In other

words, larger flows are more likely to be recorded. Moreover, the

lower bound will raise as𝑑 increases. To put the theorem in practice,

if we want to achieve a 99% recall rate on the heavy hitter that

constitutes at least 1% of the whole traffic, (i.e., 𝑓 (𝑒)/𝑓 (𝑒) = 1/99),
we can set 𝑑 = 2 and 𝑙 = 900 (i.e., in total, 1,800 buckets) in the

sketch.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

6 IMPLEMENTATION
We have implemented CocoSketch on four network platforms: x86

CPU, Open vSwitch (OVS) [50], Xilinx FPGA [51], and Barefoot

Tofino [49]. In this section, we describe the implementation of

hardware-friendly CocoSketch on FPGA and Barefoot Tofino and

defer the implementation of the basic CocoSketch on CPU and OVS

to Appendix B. We have open-sourced the artifact on GitHub [75].

6.1 FPGA Platform
FPGA background: FPGAs [51] are based on a matrix of config-

urable logic blocks (CLBs) connected via programmable intercon-

nects. The main resources of FPGA include Slice LUTs, Slice Regis-

ters, and Block RAM Tile. Slice LUTs are lookup tables, which are

used to implement combinational logic. Slice Registers are mainly

used as cache resources. Block RAM Tile is on-chip block storage,

which is the main storage resource.

FPGA implementation: We have implemented the hardware-

friendly version (§4.2) on a Xilinx Alveo U280 [51] with full pipelin-

ing. We divide our algorithm into four main parts: hash computa-

tion, accessing arrays of value, replacement probability calculation,

and accessing arrays of key. In FPGA, accessing one BRAM Tile in

FPGA needs two cycles while other operations such as hash com-

putation and probability calculation take one cycle. We pipeline

all the key/value memory accesses to improve the clock rate. To

replace the key in a bucket with some probability 𝑝 ∈ (0, 1], we
first generate a 32-bit random number 𝑟𝑎𝑛𝑑 , then replace the key

recorded only if 𝑟𝑎𝑛𝑑 × 1

𝑝 < 2
32
.

6.2 RMT Platform
P4 background: In RMT-based programmable switches [74], each

incoming packetwill undergo a packet header parser, several pipeline

stages, and a deparser. Each stage has a Match-Action Table, where

the corresponding actions are performed according to which entry

the packets match. Moreover, a small amount of physical resource

is allocated to each stage, including SRAM, TCAM, Map RAM, and

stateful ALUs. The Map RAM can be used to convert ordinary

SRAMs into counters/meters/registers, and the stateful ALUs are

used to execute arithmetic operations on the stateful memory.

P4 implementation:We have implemented a P4 prototype of the

hardware-friendly CocoSketch on the Tofino switch [49]. We find

that the difficulty of implementing the hardware-friendly CocoS-

ketch on the Tofino switch is the calculation of probability. Because

themultiplication operation between two variables is not supported,

we have to use a different way to calculate the probability. In P4, to

replace the key recorded with probability
1

𝑣𝑎𝑙𝑢𝑒
, we first generate

a 32-bit random number 𝑟𝑎𝑛𝑑 and then replace the key recorded

only if 𝑟𝑎𝑛𝑑 < 2
32

𝑣𝑎𝑙𝑢𝑒
. Note that the math unit provided by the

current Tofino switch only supports approximate division between

a constant and a variable. It does the approximate division based

on the highest 4 bits of the variable. Given the real replacement

probability 𝑝 = 1

𝑣𝑎𝑙𝑢𝑒
, the difference between the real probability

and the calculated probability is usually below 0.1𝑝 . For example, if

the real replacement probability is
1

17
= 5.9%, the difference will be

only 0.37%. Thus, the approximate division can still calculate the

probability with high accuracy.

7 EVALUATION
We conduct extensive experiments to compare CocoSketch with

the latest single-key sketches and USS, and demonstrate that:

• CocoSketch achieves significantly higher accuracy when estimat-

ing multiple flow keys using the same amount of memory.

• Basic CocoSketch tracks multiple flow keys without accuracy

degradation and is up to several orders of magnitude faster than

other single-key sketches.

• Hardware-friendly CocoSketch achieves line rate on Tofino switch

and FPGA with low resource usage.

7.1 Experimental Setup
Traces:Weuse two real-world traces in our experiments. (1)CAIDA:
The traces collected in the Equinix-Chicago monitor from CAIDA

in 2018 [76]. We use the trace with a monitoring interval of 60s,

which contains around 27M packets. (2) MAWI: The traffic traces

collected byMAWI [77].We use the trace with amonitoring interval

of 15min, which contains around 13M packets.

Metrics: We evaluate the following six performance metrics. The

resource numbers are reported in hardware deployments.

• Recall Rate (RR): The ratio of the number of correctly reported

flows to the number of correct flows.
2

• Precision Rate (PR): The ratio of the number of correctly reported

flows to the number of reported flows.

• F1 Score: F1 Score is 2·𝑅𝑅 ·𝑃𝑅
𝑅𝑅+𝑃𝑅 .

• Average Relative Error (ARE): 1

|Ψ |
∑
𝑒∈Ψ

|𝑓 (𝑒)−𝑓 (𝑒) |
𝑓 (𝑒) , where 𝑓 (𝑒)

is the real size, 𝑓 (𝑒) is the estimated size, and Ψ is the query set.

• Throughput: Million packets per second (Mpps). The throughput

numbers are the median value among 5 independent trials.

• 95
𝑡ℎ percentile CPU cycles: 95𝑡ℎ percentile CPU cycles of per-

packet processing.

Setting: By default, we set 𝑑 = 2 in CocoSketch, measure 6 differ-

ent partial keys (5-tuple, (SrcIP, DstIP) pair, (SrcIP, SrcPort) pair,

(DstIP, DstPort) pair, SrcIP, and DstIP) on the CAIDA traces, set the

threshold to be 10
−4

of the total size of traffic (e.g., a heavy hitter

is a flow whose size is larger than 10
−4

of the total size of traffic),

and set the total memory at 500KB. We report the average metrics

on these keys. For the CocoSketch and USS, we will use one sketch

with 500KB memory to measure the full key (5-tuple) and get the

result of other keys by aggregation. Other single-key algorithms

uses one sketch for each key, as in prior work [33, 39, 40].

7.2 Accuracy
We compare the basic CocoSketch (“Ours” in the figures) with

other sketches in three tasks (Heavy Hitters, Heavy Changes, and

HHH) with the six partial keys described in §7.1. The baselines

include Count sketch [25] with a min-heap (C-Heap), Count-Min

sketch [24] with a min-heap (CM-Heap), SpaceSaving (SS) [23], the

software version of the Elastic sketch [30], UnivMon [33], and Un-

biased SpaceSaving (USS) [53]. In particular, we evaluate USS using

an optimized implementation whose update process is enhanced

by a hash table and a double-linked list. (Throughput of a naive

2
For example, when querying heavy hitters, correct flows are the real heavy hitters in

the traffic, and correctly reported flows are the real heavy hitters in the reported ones.

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

1 2 3 4 5 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Re
cal

l R
ate

N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(a) Recall Rate

1 2 3 4 5 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pr
eci

sio
n R

ate
N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(b) Precision Rate

1 2 3 4 5 60 . 0

0 . 1

0 . 2

0 . 3

0 . 4

AR
E

N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(c) ARE

Figure 8: Performance of heavy hitter detection under different numbers of partial keys.

2 0 0 3 0 0 4 0 0 5 0 0 6 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

M e m o r y (K B)

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(a) F1 Score

2 0 0 3 0 0 4 0 0 5 0 0 6 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

AR
E

M e m o r y (K B)

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(b) ARE

Figure 9: Performance of heavy hitter detection under dif-
ferent memory constraints.

USS implementation is <0.1 Mpps.) We use a hash table to check

whether a flow is already tracked in the sketch; and we maintain

a double-linked list to rank buckets by their counters so that the

minimal bucket can be found quickly. In contrast, CocoSketch does

not require extra memory for the hash table or double-linked list.

Heavy hitter detection with different numbers of keys (Fig-
ures 8(a) -8(c)): CocoSketch achieves the best overall accuracy.

Even if only one partial key is measured, CocoSketch performs

no worse than other algorithms. When the number of keys grows,

CocoSketch always maintains a higher accuracy than the baseline

algorithms. Both the recall rate and the precision rate of CocoS-

ketch are above 95% regardless of the number of tracked partial

keys. Compared to all baseline algorithms, the ARE of CocoSketch

is 9.59× better on average. The precision rate of USS is 64% lower

than that of CocoSketch. This is because USS’s auxiliary data struc-

tures (hash table + a variant of double-linked list) occupy up to 4×
memory space.

Heavy hitter detection under different memory configura-
tions (Figures 9(a) -9(b)): CocoSketch also achieves higher accu-

racy with smaller memory footprints when measuring the 6 keys.

With only 300KB memory, the F1 Score of CocoSketch is above

90%, while others are usually below 65%. The ARE of CocoSketch

1 2 3 4 5 60 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Re
cal

l R
ate

N u m b e r o f K e y s

 O u r s C - H e a p
 C M - H e a p E l a s t i c
 U n i v M o n

(a) Recall Rate

1 2 3 4 5 60 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Pr
eci

sio
n R

ate

N u m b e r o f K e y s

 O u r s C - H e a p
 C M - H e a p E l a s t i c
 U n i v M o n

(b) Precision Rate

Figure 10: Performance of heavy change detection under dif-
ferent numbers of partial keys.

is around 10.43× better than the baseline algorithms. Note that SS

is not shown in Figure 9(b) because its ARE is too large (> 0.4).

Heavy change detection with different number of keys (Fig-
ures 10(a) -10(b)): Similar to that of heavy hitter detection, with

an increasing number of keys, the CocoSketch maintains its high

fidelity, while the accuracy of other algorithms drops significantly.

Both the recall rate and the precision rate of CocoSketch are higher

than 95%, regardless of the number of tracked partial keys. When

measuring 6 keys, the recall rate of the CocoSketch is around 71%,

62%, 23%, and 70% higher than that of C-Heap, CM-Heap, Elastic

Sketch, and UnivMon, respectively.

1-d HHH detection with different memory (Figure 11): We

consider the source IP hierarchy in bit granularity (32 prefixes + 1

empty key) in 1-dHHHdetection.We compare the basic CocoSketch

with R-HHH [39] only, because the throughput of other baselines

is too low to measure these many keys. With only 500KB memory,

the F1 Score of CocoSketch is higher than 99.5%. For R-HHH, even

with 2.5MB memory, its F1 Score stays around 50%. The ARE of

CocoSketch is about 1902× smaller than that of R-HHH.

2-d HHH detection with different memory (Figure 12): We

consider source/destination IP hierarchies in bit granularity (33 ×
33 = 1089 keys) in 2-d HHH detection. With 5MB memory, the F1

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

M e m o r y (K B)

 O u r s R H H H

(a) F1 Score

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

AR
E

M e m o r y (K B)

 O u r s R H H H

(b) ARE

Figure 11: 1-d HHH with different memory constraints.

5 1 0 1 5 2 0 2 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

M e m o r y (M B)

 O u r s R H H H

(a) F1 Score

5 1 0 1 5 2 0 2 51 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2

AR
E

M e m o r y (M B)

 O u r s R H H H

(b) ARE

Figure 12: 2-d HHH with different memory constraints.

1 2 3 4 5 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(a) F1 Score on Heavy Hitter

1 2 3 4 5 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

N u m b e r o f K e y s

 O u r s C - H e a p
 C M - H e a p E l a s t i c
 U n i v M o n

(b) F1 Score on Heavy Change

Figure 13: Experiment results on the MAWI dataset.

Score of CocoSketch is higher than 99.8%. We use more than 5MB

memory for R-HHH in this experiment, since it cannot work with

smaller memory. Even with 25MB memory, its F1 Score is about

16%. The ARE of CocoSketch is about 39843× smaller than that of

R-HHH.

Experiments onMAWI traces (Figure 13(a)-13(b)):We also run

heavy hitters detection and heavy changes detection on MAWI

traces.We find that CocoSketch alsomaintains high accuracy.When

tracking more than two partial keys, CocoSketch achieves over 90%

F1 Score and is better than all baselines.

1 2 3 4 5 61 0 - 1

1 0 0

1 0 1

Th
rou

gh
pu

t (M
pp

s)

N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(a) Throughput in CPU

1 2 3 4 5 61 0 2

1 0 3

1 0 4

CP
U C

ycl
e

N u m b e r o f K e y s

 O u r s S S U S S
 C - H e a p C M - H e a p
 E l a s t i c U n i v M o n

(b) 95
𝑡ℎ

percentile CPU cycles

Figure 14: Processing speed in CPU platform.

7.3 Software Platforms
In this section, we will compare the throughput of the basic CocoS-

ketch (“Ours” in the figures) with other baseline algorithms.

Throughput in CPU (Figure 14(a)): Our memory configuration

in this experiment is the same as that in the heavy hitter detection

(§7.2). We compare single-thread packet processing throughput.

The throughput of both CocoSketch and USS are not affected by

the number of partial keys measured, while the throughput of other

algorithms decreases with the number of partial keys increases.

The throughput of CocoSketch is around 23.7 Mpps/core. When

measuring 6 partial keys, its throughput is around 27.2 times higher

than others.

95
𝑡ℎ percentile CPU cycle (Figure 14(b)): Similar to the through-

put in CPU, the CPU cycle of other algorithms increases with the

number of partial keys increasing. When measuring 6 partial keys,

the number of CPU 95
𝑡ℎ

percentile cycles of CocoSketch is around

18.6, 3.8, 29.2, and 3.0 times smaller than that of SS, Elastic Sketch,

UnivMon, and USS, respectively. Although the throughput of USS

is also not affected by the number of partial keys measured, its

throughput is lower because the auxiliary data structures (hash

table + a variant of double-linked list) still need many memory

accesses.

Throughput in OVS (Figure 15(a)):We find that the throughput

of the CocoSketch increases with the number of threads. With

two or more threads, CocoSketch reaches the speed limit of the

evaluated 40Gbps NIC. We observe that CocoSketch incurs a small

CPU overhead (< 1.8%).

7.4 Hardware Platforms
In this section, we compare the hardware-friendly CocoSketch

(Ours) with Elastic Sketch [78]. Elastic Sketch has multiple ver-

sions designed for different platforms [30], each has a different

performance. We configure the memory of evaluated sketches to

guarantee 90% F1 Scores in heavy hitters detection (via accuracy

experiments).

Throughput in FPGA platform (Figure 15(b)): We show the

throughput of both the hardware-friendly CocoSketch and basic

CocoSketch with 𝑑 = 2 on the FPGA platform, reported by Vi-

vado [79]. After removing the circular dependencies, hardware-

friendly CocoSketch achieves about 5 times higher throughput

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

1 2 3 40
2
4
6
8

1 0
1 2
1 4

Th
rou

gh
pu

t (M
pp

s)

N u m b e r o f T h r e a d s

 O V S w / o O u r s O V S w / O u r s

(a) Throughput in OVS Platform

0 . 2 5 0 . 5 1 20
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Th
rou

gh
pu

t (M
pp

s)
M e m o r y (M B)

 H a r d w a r e B a s i c

(b) Throughput in FPGA Platform

R e g i s t e r s L U T s B l o c k R A M1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

Re
sou

rce
 Us

age

 O u r s E l a s t i c 6 * E l a s t i c

(c) Resource Usage in FPGA Platform

S R A M M a p R A M A L U s1 0 - 2

1 0 - 1

1 0 0

Re
sou

rce
 Us

age

 O u r s E l a s t i c 4 * E l a s t i c

(d) Resource Usage in P4 Platform

Figure 15: Resource usage and throughput on different platforms

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 U S S0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

F1
 Sc

ore

(a) F1 Score

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 U S S0
5

1 0
1 5
2 0
2 5
3 0
3 5

Th
rou

gh
pu

t (M
pp

s)

(b) Throughput

Figure 16: Varying 𝑑’s in the basic CocoSketch.

than basic CocoSketch. With 2MB memory, the hardware-friendly

CocoSketch is expected to achieve 150 Mpps, while the basic CocoS-

ketch only reaches around 30 Mpps with a significantly lower clock

frequency. This is because too many operations are performed in

one stage in the basic CocoSketch.

Resource usage in FPGA platform (Figure 15(c)):We show the

ratio of the resources used by algorithms to the total on-chip re-

sources, which is reported by Vivado [79]. In the figure, “Elastic”

indicates the resources used by Elastic Sketch when measuring 1

partial key, and “6*Elastic” indicates the resources used by Elastic

Sketch when measuring 6 partial keys. CocoSketch uses fewer re-

sources than that of Elastic Sketch. When measuring 6 partial keys,

the slice registers that the CocoSketch needs are around 45 times

smaller than Elastic Sketch. On FPGA platform, the bottleneck of

multiple Elastic Sketches lies in the Block RAM Tile. When mea-

suring 6 partial keys, the Block RAM Tile usage in Elastic Sketch is

34%, while CocoSketch only needs 5.8%.

Resource usage in P4 platform (Figure 15(d)):We show the ra-

tio of the resources used by algorithms to the total resources of 12

stages in the Tofino switch. Due to the logic of the algorithm, it is

hard to utilize all resources in every stage, i.e., we cannot achieve
100% utilization. In the figure, “4*Elastic” indicates the resources

used by Elastic Sketch when measuring 4 keys. We should note

that a Tofino switch data plane can implement at most 4 Elastic

sketches at the same time due to the resource constraint. We find

that CocoSketch uses fewer resources than Elastic Sketch. When

measuring 6 partial keys, CocoSketch only needs 6.25% Stateful

2 6 2 7 2 80 . 9 5

0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

Cu
mu

lat
ive

 Pr
ob

ab
ilit

y

E r r o r

 d = 2 d = 3
 d = 4 U S S

(a) Basic CocoSketch

2 5 2 6 2 7 2 8 2 9 2 1 00 . 9 5
0 . 9 6
0 . 9 7
0 . 9 8
0 . 9 9
1 . 0 0

Cu
mu

lat
ive

 Pr
ob

ab
ilit

y

E r r o r

 d = 1 d = 2
 d = 3 d = 4

(b) Hardware-friendly CocoSketch

Figure 17: CDF of absolute error under different 𝑑 values.

ALUs and 6.25%Map RAM. On P4 platform, the bottleneck of de-

ploying multiple Elastic sketches lies in the Stateful ALUs. Elastic

Sketch needs 18.75% Stateful ALUs in measuring 1 partial key and

thus can measure up to 4 partial keys (75% Stateful ALUs and 30.56%

Map RAM) in the device.

7.5 Microbenchmark
In this section, we show the performance under different parameter

settings and different versions of CocoSketch.

Varying 𝑑 in the basic CocoSketch (Figures 16 -17(a)): We fix

the memory size at 500KB, and use the application of heavy hitters

detection to show the performance under different 𝑑 . We see that

as we decrease the value of 𝑑 from the maximum (the total number

of buckets), the F1 Score decreases only marginally: 95.3% (𝑑 = 2)

and 96.9% (𝑑 = 3). On the other hand, the throughput at 𝑑 = 2

is 23.7 Mpps and at 𝑑 = 3 is 17.5 Mpps, whereas when 𝑑 is the

total number of buckets, the throughput drops to below 0.1 Mpps.

Note that CocoSketch becomes USS, when 𝑑 is the total number of

buckets, so the figures use “USS” to denote CocoSketch with the

maximum 𝑑 value.

Varying𝑑 in thehardware-friendlyCocoSketch (Figure 17(b)):
Since in hardware platforms different arrays run independently and

in parallel, the value of 𝑑 in hardware-friendly CocoSketch will

not affect the throughput of CocoSketch. To show the performance

difference, we fix the memory size at 500KB and show the CDF of

error under different 𝑑 , i.e., for each distinct flow 𝑒 , we calculate

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

5 0 0 1 0 0 0 1 5 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

M e m o r y (K B)

 B a s i c F P G A P 4

(a) Different versions

O u r s 2 * E l a s t i c L o s s y F u l l0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

AR
E

 3 2 - b i t (F u l l k e y)
 2 4 - b i t (P a r t i a l k e y)

(b) Full-key sketch

Figure 18: (a) Different versions of CocoSketch, and (b) Co-
coSketch vs. full-key sketch baselines

its error | ˆ𝑓 (𝑒) − 𝑓 (𝑒) | and get the distribution of error. We find

that, with a larger 𝑑 , CocoSketch has a small error with a higher

probability, while its worst case is worse than others. Specifically,

we find that the probability that the error is smaller than 70 for

𝑑 = 1 is 95.1%, while it is 96.5% for 𝑑 = 3. However, the worst 0.1%

error for 𝑑 = 1 is 1873, while it is 2358 for 𝑑 = 3. Such results match

the error bound derived in Theorem 3.

Different versions of CocoSketch (Figures 18(a)):We evaluate

the heavy hitter detection task to compare the F1 Score of three

versions of the CocoSketch: the basic CocoSketch used in software

platforms, the hardware-friendly CocoSketch used in FPGA (with-

out approximation on probability calculation), and the hardware-

friendly CocoSketch used in P4 (with approximation on probability

calculation). We find that the basic CocoSketch performs better

than the hardware-friendly CocoSketch, though the accuracy gap

between them is less than 10%. With 1MB memory, the hardware-

friendly CocoSketch also achieves F1 Score higher than 90%. We

also observe that the accuracy gap between the hardware imple-

mentations in FPGA and P4 is smaller than 1%, which indicates that

our approximate division technique used in the P4 implementation

(§6.2) has negligible impact on the accuracy.

Comparison with full-key sketch (Figure 18(b)): To compare

CocoSketch to different strawman solutions shown in §2.3, we

measure two keys, SrcIP (full key) and its 24-bit prefix (partial

key), and show their ARE respectively. We fix the total memory at

6MB and calculate the ARE based on all distinct flows. CocoSketch

achieves high accuracy on the full key and partial keys, where

the ARE is smaller than 0.02. For “2*Elastic” (where we build one

Elastic Sketch for each key), the ARE of both full key and partial

key are around 0.3. For “Lossy” (where we recover the partial key

only based on the recorded flows in the heavy part), the ARE of

full key is around 0.14, while the ARE of partial key is around 0.94.

This is because the heavy part of single-key sketch loses too much

information to recover the partial key. For “Full” (where we recover

the partial key by querying all full keys in the corresponding set),

the ARE of full key is around 0.14, while the ARE of partial key

larger than 1. This is because, in the single-key sketches, the error

increases as they aggregate many full keys. Therefore, although

“Lossy” and “Full” achieve desirable accuracy on the full key, neither

achieves high accuracy on the arbitrary partial keys.

8 RELATEDWORK
Sketch-based telemetry: In addition to the efforts described in §2,
a number of techniques have been proposed to improve the fidelity,

generality, performance, etc., of sketches [30, 31, 33, 38, 59, 80]. For

example, UnivMon [33] introduces a general sketch to estimate

a range of traffic statistics. WavingSketch [38] extends the Count

Sketch [25] to find persistent items and super-spreaders. However,

these sketches still focus on single-key measurements. While these

sketch techniques are fundamentally limited in measuring arbitrary

partial keys, some of them may bring additional benefits to CocoS-

ketch, such as the sampling approach used in NitroSketch [31] can

further improve the throughput, and the merge technique used in

Elastic Sketch [30] can adapt to dynamic workloads with varying

bandwidths. We leave this for future work.

Telemetry resource management: To deploy multiple sketches

in a network, we need efficient resource management, and there are

some recent efforts in this space [40, 65, 81, 82]. For example, Trum-

pet [65] uses event triggers at end-hosts to detect some telemetry

events within high timeliness requirements. Their solutions address

a different set of telemetry events than arbitrary partial key queries,

which are orthogonal to our proposal. Furthermore, DREAM [81]

and SCREAM [40] dynamically allocate resources for different mea-

surement tasks to achieve a uniform accuracy target. Using their

solutions in the arbitrary partial key problem still requires a single

sketch per possible key, leading to the same resource inefficiency

described in §2.3.

Other measurement tasks over multiple flow keys: Recent
work BeauCoup [32] aims to support distinct counting queries over

multiple keys simultaneously. Essentially, they need to maintain a

separate data structure for each key, similar to single-key sketches.

Furthermore, they cannot recover the partial key information from

a full key. We leave the exploration of extending CocoSketch to

support distinct counting for future work.

9 CONCLUSIONS
Sketching algorithms are extensively studied in network measure-

ments. However, sketching over multiple flow keys is far from ideal

for serving as a viable solution for software and hardware network

platforms. In this paper, we present CocoSketch, a sketch-based

measurement approach that accurately answers arbitrary partial

key queries. Leveraging stochastic variance minimization, the data

plane algorithms in CocoSketch run at high speed regardless of

the number of partial keys measured, significantly outperforming

existing sketches in terms of CPU performance and memory ef-

ficiency. By further removing circular dependencies, CocoSketch

becomes hardware-friendly for programmable switches and FPGA.

Our experiments demonstrate the performance of CocoSketch by

comparing it with a variety of sketches under real-world traces.

We have open-sourced code of CocoSketch and other baseline algo-

rithms on GitHub [75].

Acknowledgments: We thank the anonymous reviewers and our

shepherd Kate Lin for their valuable suggestions. This work was

supported in part by National Natural Science Foundation of China

(NSFC) (No. U20A20179). Junchen Jiang is supported by a Google

Faculty Research Award. Tong Yang is the corresponding author.

Ethics: This work does not raise any ethical issues.

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: fine

grained traffic engineering for data centers. In Co-NEXT ’11. ACM, 2011.

[2] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,

and Lihua Yuan. dshark: A general, easy to program and scalable framework for

analyzing in-network packet traces. In NSDI 2019. USENIX Association, 2019.

[3] Anja Feldmann, Albert Greenberg, and et al. Deriving traffic demands for opera-

tional ip networks: Methodology and experience. In ACM SIGCOMM, 2000.

[4] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave

Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A large-scale

system for data center network latency measurement and analysis. In ACM
SIGCOMM Computer Communication Review. ACM, 2015.

[5] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,

and Amin Vahdat. Simon: A simple and scalable method for sensing, inference

and measurement in data center networks. In NSDI 2019, pages 549–564, 2019.
[6] Sam Burnett, Lily Chen, Douglas A Creager, Misha Efimov, Ilya Grigorik, Ben

Jones, Harsha V Madhyastha, Pavlos Papageorge, Brian Rogan, Charles Stahl,

et al. Network error logging: Client-side measurement of end-to-end web service

reliability. In NSDI 2020, pages 985–998, 2020.
[7] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic charac-

teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280, 2010.

[8] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet

Sharma, and Sujata Banerjee. Devoflow: scaling flow management for high-

performance networks. In ACM SIGCOMM 2011. ACM, 2011.

[9] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. Sonata: query-driven streaming network telemetry. In SIG-
COMM 2018. ACM, 2018.

[10] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kom-

pella, andDavid G. Andersen. csamp: A system for network-wide flowmonitoring.

In NSDI 2008. USENIX Association, 2008.

[11] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong

Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. Flow event telemetry on

programmable data plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, 2020.

[12] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,

Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry in

large datacenter networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, 2015.

[13] RuiMiao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, andMinlan Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap using switching asics. In

SIGCOMM 2017. ACM, 2017.

[14] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir

Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load balancing for large-

scale storage systems with distributed caching. In 17th USENIX Conference on
File and Storage Technologies, FAST 2019. USENIX Association, 2019.

[15] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, et al. Conga: Distributed congestion-aware

load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 503–514, 2014.

[16] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.

Let it flow: Resilient asymmetric load balancing with flowlet switching. In NSDI
17, 2017.

[17] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. Ap-

proximating fair queueing on reconfigurable switches. In NSDI 2018. USENIX
Association, 2018.

[18] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc: high

precision congestion control. In Proceedings of the ACM Special Interest Group on
Data Communication, pages 44–58. 2019.

[19] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,

and George Porter. Expanding across time to deliver bandwidth efficiency and

low latency. In NSDI 20, 2020.
[20] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca

Iannaccone, and Anukool Lakhina. Detection and identification of network

anomalies using sketch subspaces. In IMC 2006. ACM, 2006.

[21] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick G. Duffield, and Carsten Lund.

Online identification of hierarchical heavy hitters: algorithms, evaluation, and

applications. In IMC 2004. ACM, 2004.

[22] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization of

network-wide anomalies in traffic flows. In ACM IMC, 2004.
[23] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In Thomas Eiter and Leonid

Libkin, editors, ICDT 2005, Lecture Notes in Computer Science. Springer, 2005.

[24] Graham Cormode and S. Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. J. Algorithms, 2005.
[25] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent

items in data streams. Theor. Comput. Sci., 2004.
[26] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-wide heavy

hitter detection with commodity switches. In Proceedings of the Symposium on
SDN Research, pages 1–7, 2018.

[27] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. Data streaming

algorithms for efficient and accurate estimation of flow size distribution. In

SIGMETRICS 2004. ACM, 2004.

[28] Robert T. Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible

sketches for efficient and accurate change detection over network data streams.

In Alfio Lombardo and James F. Kurose, editors, IMC 2004. ACM, 2004.

[29] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better

netflow for data centers. In NSDI 2016. USENIX Association, 2016.

[30] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. Elastic sketch: adaptive and fast network-wide

measurements. In SIGCOMM 2018. ACM, 2018.

[31] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. Nitrosketch: robust and general sketch-based

monitoring in software switches. In SIGCOMM 2019. ACM, 2019.

[32] Xiaoqi Chen, Shir Landau Feibish, Mark Braverman, and Jennifer Rexford. Beau-

coup: Answering many network traffic queries, one memory update at a time. In

SIGCOMM ’20. ACM, 2020.

[33] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. One sketch to rule them all: Rethinking network flow monitoring

with univmon. In SIGCOMM 2016. ACM, 2016.

[34] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketchlearn: relieving user

burdens in approximate measurement with automated statistical inference. In

SIGCOMM 2018. ACM, 2018.

[35] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and

Gong Zhang. Sketchvisor: Robust network measurement for software packet

processing. In SIGCOMM 2017. ACM, 2017.

[36] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and

Bin Cui. On-off sketch: A fast and accurate sketch on persistence. Proc. VLDB
Endow., 2021.

[37] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang, Yi Wang,

and Bin Cui. Sliding sketches: A framework using time zones for data stream

processing in sliding windows. In KDD ’20. ACM, 2020.

[38] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong

Zhang. Wavingsketch: An unbiased and generic sketch for finding top-k items

in data streams. In KDD ’20, pages 1574–1584. ACM, 2020.

[39] Ran Ben-Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez

Waisbard. Constant time updates in hierarchical heavy hitters. In SIGCOMM
2017. ACM, 2017.

[40] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. SCREAM:

sketch resource allocation for software-defined measurement. In CoNEXT 2015,
pages 14:1–14:13. ACM, 2015.

[41] Omid Alipourfard, Masoud Moshref, and Minlan Yu. Re-evaluating measurement

algorithms in software. In Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, 2015.

[42] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford-

Chen, and Nicholas Weaver. Inside the slammer worm. IEEE Secur. Priv., 2003.
[43] Vyas Sekar, Nick G Duffield, Oliver Spatscheck, Jacobus E van der Merwe, and

Hui Zhang. Lads: Large-scale automated ddos detection system. In USENIX
Annual Technical Conference, General Track, 2006.

[44] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu

Padhye, Boon Thau Loo, and Geoff Outhred. 007: Democratically finding the

cause of packet drops. In NSDI 18, 2018.
[45] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network

failures in data centers: measurement, analysis, and implications. In Proceedings
of the ACM SIGCOMM 2011 conference, pages 350–361, 2011.

[46] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. I know what your packet did last hop: Using packet histories to

troubleshoot networks. In NSDI 14, 2014.
[47] Philipp Richter, Ramakrishna Padmanabhan, Neil Spring, Arthur Berger, and

David Clark. Advancing the art of internet edge outage detection. In Proceedings
of the Internet Measurement Conference 2018, pages 350–363, 2018.

[48] Thomas Holterbach, Emile Aben, Cristel Pelsser, Randy Bush, and Laurent Van-

bever. Measurement vantage point selection using a similarity metric. In Pro-
ceedings of the Applied Networking Research Workshop, pages 1–3, 2017.

[49] Barefoot tofino: World’s fastest p4-programmable ethernet switch asics. https:

//barefootnetworks.com/products/brief-tofino/.

[50] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,

and Martín Casado. The design and implementation of open vswitch. In NSDI 15.
USENIX Association, 2015.

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

[51] Alveo u280 data center accelerator card. https://www.xilinx.com/products/

boards-and-kits/alveo/u280.html.

[52] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement

with opensketch. In Nick Feamster and Jeffrey C. Mogul, editors, NSDI 2013.
USENIX Association, 2013.

[53] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein,

editors, SIGMOD 2018. ACM, 2018.

[54] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for

estimation of arbitrary subset sums. J. ACM, 2007.

[55] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is

sampled data sufficient for anomaly detection? In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages 165–176, 2006.

[56] Inmon corporation’s sflow: A method for monitoring traffic in switched and

routed networks. https://tools.ietf.org/html/rfc3176.

[57] Pavlos Nikolopoulos, Christos Pappas, Katerina Argyraki, and Adrian Perrig.

Retroactive packet sampling for traffic receipts. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2019.

[58] Sajad Shirali-Shahreza and Yashar Ganjali. Flexam: flexible sampling extension

for monitoring and security applications in openflow. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.

[59] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-

nan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane. In

SOSR 2017. ACM, 2017.

[60] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting

active flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, 2003.

[61] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-

based change detection: methods, evaluation, and applications. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet measurement, 2003.

[62] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun (Jim) Xu, and Hui Zhang. Data

streaming algorithms for estimating entropy of network traffic. In SIGMETRICS
2006, pages 145–156. ACM, 2006.

[63] ArnoWagner and Bernhard Plattner. Entropy based worm and anomaly detection

in fast ip networks. In 14th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, 2005.

[64] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using

traffic feature distributions. In ACM SIGCOMM, 2005.

[65] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet:

Timely and precise triggers in data centers. In SIGCOMM 2016, pages 129–143.
ACM, 2016.

[66] Masoud Moshref, Minlan Yu, Abhishek B. Sharma, and Ramesh Govindan. Scal-

able rule management for data centers. In NSDI 2013, pages 157–170. USENIX
Association, 2013.

[67] Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling without prior

knowledge. In SIGCOMM 2015, pages 393–406. ACM, 2015.

[68] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-

huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai

Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin

Vahdat. Bwe: Flexible, hierarchical bandwidth allocation for WAN distributed

computing. In SIGCOMM 2015, pages 1–14. ACM, 2015.

[69] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin

Jin. Netlock: Fast, centralized lock management using programmable switches.

In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication, 2020.

[70] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.

Sketchlib: Enabling efficient sketch-based monitoring on programmable switches.

In NSDI, 2022.
[71] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon

Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A high-

performance switch-native approach for detecting and mitigating volumetric

ddos attacks with programmable switches. In USENIX Security, 2021.
[72] Mu He, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. Toward consis-

tent state management of adaptive programmable networks based on p4. In

Proceedings of the ACM SIGCOMM 2019 Workshop on Networking for Emerging
Applications and Technologies, pages 29–35, 2019.

[73] Vishal Shrivastav. Fast, scalable, and programmable packet scheduler in hardware.

In SIGCOMM 2019. ACM, 2019.

[74] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for sdn. ACM SIGCOMM
Computer Communication Review, 43(4):99–110, 2013.

[75] Source code related to CocoSketch. https://github.com/yindazhang/CocoSketch.

[76] The caida anonymized 2016 internet traces. http://www.caida.org/data/

overview/.

[77] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.

[78] Source code related to elastic sketch. https://github.com/BlockLiu/

ElasticSketchCode.

[79] Vivado design suite. https://www.xilinx.com/products/design-tools/vivado.html.

[80] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer

Rexford. Memory-efficient performance monitoring on programmable switches

with lean algorithms. SIAM APOCS, 2020.
[81] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. DREAM: dy-

namic resource allocation for software-defined measurement. In ACM SIGCOMM
2014, pages 419–430. ACM, 2014.

[82] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. Heterosketch: Coordinating

network-wide monitoring in heterogeneous and dynamic networks. In NSDI,
2022.

[83] Hash website. http://burtleburtle.net/bob/hash/evahash.html.

A PROOFS
A.1 Stochastic Variance Minimization
In this section, we prove Theorem 1 and 2 shown in §5.1.

Theorem 1. The solution to optimize Eq. (2) is

(𝑒 ′, 𝑓 ′) =

(𝑒𝑖 , 𝑓𝑗 +𝑤), w.p.

𝑤

𝑓𝑗 +𝑤

(𝑒 𝑗 , 𝑓𝑗 +𝑤), w.p.
𝑓𝑗

𝑓𝑗 +𝑤

Proof. Remind that the incoming packet is (𝑒𝑖 ,𝑤), and it is

mapped to the bucket recording key value pair (𝑒 𝑗 , 𝑓𝑗). Then we

should update the mapped bucket to (𝑒 ′, 𝑓 ′) to optimize Eq. (2).

Note that we only change the estimated size of full key 𝑒𝑖 and 𝑒 𝑗 ,

so the variance increments of all other full keys are 0. If a full key

is not recorded, its estimated size is 0. Otherwise, its estimated size

is the corresponding value in the bucket. Obviously, if 𝑒𝑖 = 𝑒 𝑗 , we

can directly update the mapped bucket to (𝑒 𝑗 , 𝑓𝑗 +𝑤), and there is

no increment of variance. If 𝑒𝑖 ≠ 𝑒 𝑗 , to keep unbiasedness, suppose

that we will set (𝑒 ′, 𝑓 ′) = (𝑒𝑖 ,𝑤/𝑝) with probability 𝑝 , and set

(𝑒 ′, 𝑓 ′) = (𝑒 𝑗 , 𝑓𝑗/(1 − 𝑝)) with probability 1 − 𝑝 . The increment of

variance is that∑
𝑒

Δ
(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

= 𝑝 ·
((
𝑤

𝑝
−𝑤

)
2

+ 𝑓 2𝑗

)
+ (1 − 𝑝) ·

(
𝑤2 +

(
𝑓𝑗

1 − 𝑝 − 𝑓𝑗
)
2

)
=
𝑤2

𝑝
−𝑤2 +

𝑓 2
𝑗

1 − 𝑝 − 𝑓 2𝑗

Then, we can get that we achieve theminimumwhen 𝑝 = 𝑤/(𝑓𝑗+𝑤).
Based on the formula of 𝑝 , we can get the result Eq. (3). □

Theorem 2. The minimum increment of variance sum to update
the bucket (𝑒 𝑗 , 𝑓𝑗) is∑

𝑒

Δ
(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

=

{
2𝑤𝑓𝑗 , 𝑒𝑖 ≠ 𝑒 𝑗
0, 𝑒𝑖 = 𝑒 𝑗

Proof. Based on the proof of Theorem 1, we can get that if

𝑒𝑖 = 𝑒 𝑗 , the variance increment is 0. If 𝑒𝑖 ≠ 𝑒 𝑗 ,∑
𝑒

Δ
(
𝑓 (𝑒) − 𝑓 (𝑒)

)
2

=
𝑤2

𝑝
−𝑤2 +

𝑓 2
𝑗

1 − 𝑝 − 𝑓 2𝑗

= 2𝑤𝑓𝑗

□

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://tools.ietf.org/html/rfc3176
https://github.com/yindazhang/CocoSketch
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
https://github.com/BlockLiu/ElasticSketchCode
https://github.com/BlockLiu/ElasticSketchCode
https://www.xilinx.com/products/design-tools/vivado.html
http://burtleburtle.net/bob/hash/evahash.html

CocoSketch: High-Performance Arbitrary Partial Key Measurement SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

A.2 Error Bound
In this section, we first prove the unbiasedness of both basic Co-

coSketch and hardware-friendly CocoSketch. Then, we prove the

error bound of Theorem 3 shown in §5.2.

Lemma 3. For any flow 𝑒 of any key 𝑘 ≺ 𝑘𝐹 , in the basic CocoS-
ketch,

E
[
𝑓 (𝑒)

]
= 𝑓 (𝑒)

Proof. We first prove that, for any flow 𝑒 of full key 𝑘𝐹 , in the

basic CocoSketch, E
[
𝑓 (𝑒)

]
= 𝑓 (𝑒). Let 𝑓 𝑡 (𝑒) be the estimated size

of 𝑒 before 𝑡𝑡ℎ insertion. Suppose that the incoming packet is (𝑒𝑖 ,𝑤)
for the 𝑡𝑡ℎ insertion. We prove the unbiasedness by showing that

the expected increment to 𝑓 𝑡 (𝑒) is𝑤 if 𝑒 = 𝑒𝑖 and 0 otherwise.

If 𝑒 = 𝑒𝑖 , there are two cases. Case 1: If 𝑒 is recorded, the estimated

size will be increased by 𝑤 . Case 2: If 𝑒 is not recorded, suppose
that the mapped bucket whose value is the smallest is in the 𝑘𝑡ℎ

array. The expected increment is

(𝐵𝑘 [ℎ𝑘 (𝑒)] .𝑉 +𝑤) · 𝑤

(𝐵𝑘 [ℎ𝑘 (𝑒)] .𝑉 +𝑤) = 𝑤

Therefore, the expected increment to 𝑓 𝑡 (𝑒) is𝑤 if 𝑒 = 𝑒𝑖 .

If 𝑒 ≠ 𝑒𝑖 , there are two cases. Case 1: If 𝑒 is recorded and the

corresponding bucket will be updated, the expected increment is(
𝑓 𝑡 (𝑒) +𝑤

)
· 𝑓 𝑡 (𝑒)(
𝑓 𝑡 (𝑒) +𝑤

) − 𝑓 𝑡 (𝑒) = 0

Case 2: Otherwise, the estimated size does not change. Therefore,

the expected increment to 𝑓 𝑡 (𝑒) is 0 if 𝑒 ≠ 𝑒𝑖 .
As a result, the basic CocoSketch achieves unbiasedness for the

full key. Then, for any flow 𝑒 of any key 𝑘 ≺ 𝑘𝐹 , we have

E
[
𝑓 (𝑒)

]
= E

∑

𝑘 (𝑎)=𝑒
𝑓 (𝑎)

 =
∑

𝑘 (𝑎)=𝑒
𝑓 (𝑎) = 𝑓 (𝑒)

□

Let �̂�𝑖 (𝑒) be the estimated size of flow 𝑒 in the 𝑖𝑡ℎ array of the

hardware-friendly CocoSketch.

Lemma 4. For any flow 𝑒 of any key 𝑘 ≺ 𝑘𝐹 , in the hardware-
friendly CocoSketch,

E
[
�̂�𝑖 (𝑒)

]
= 𝑓 (𝑒)

Proof. Note that in a bucket, the probability of occupying the

bucket is proportional to the size of each flow. Therefore, after the

insertion process,

P [𝐵𝑖 [ℎ𝑖 (𝑒)] .𝐾 = 𝑒] = 𝑓 (𝑒)
𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉

Based on the probability, we can get the expectation of the estimated

size in each array.

E
[
�̂�𝑖 (𝑒)

]
=

𝑓 (𝑒)
𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉

· 𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉 = 𝑓 (𝑒)

□

Lemma 5. For any flow 𝑒 of any key 𝑘 ≺ 𝑘𝐹 , in the hardware-
friendly CocoSketch,

Var

[
�̂�𝑖 (𝑒)

]
=
𝑓 (𝑒) · 𝑓 (𝑒)

𝑙

Proof. In the 𝑖𝑡ℎ array, let 𝐼𝑖, 𝑗 (𝑒) be 1 if 𝑘 (𝐵𝑖 [𝑗] .𝐾) = 𝑒 and 0

otherwise. We define

𝐶𝑖, 𝑗 (𝑒) =
∑

𝑘 (𝑎)=𝑒
ℎ𝑖 (𝑎)=𝑗

𝑓 (𝑎), 𝐶𝑖, 𝑗 (𝑒) = 𝐼𝑖, 𝑗 (𝑒) · 𝐵𝑖 [𝑗] .𝑉

We have

Var

[
𝐶𝑖, 𝑗 (𝑒)

]
= 𝐶𝑖, 𝑗 (𝑒) · E

[
𝐵𝑖 [𝑗] .𝑉 −𝐶𝑖, 𝑗 (𝑒)

]
= 𝐶𝑖, 𝑗 (𝑒) ·

𝑓 (𝑒)
𝑙

Cov

[
𝐶𝑖, 𝑗 (𝑒),𝐶𝑖,𝑘 (𝑒)

]
= 0, 𝑗 ≠ 𝑘

Then, we can get the variance for the 𝑖𝑡ℎ array is that

Var

[
�̂�𝑖 (𝑒)

]
= Var

𝑙∑
𝑗=1

𝐶𝑖, 𝑗 (𝑒)

=

𝑙∑
𝑗=1

𝐶𝑖, 𝑗 (𝑒) ·
𝑓 (𝑒)
𝑙

=
𝑓 (𝑒) · 𝑓 (𝑒)

𝑙
□

Theorem 3. Let 𝑙 = 3 · 𝜖−2 and 𝑑 = 𝑂 (log𝛿−1). For any flow 𝑒 of
arbitrary partial key 𝑘𝑃 ≺ 𝑘𝐹 ,

P

[
𝑅(𝑒) ⩾ 𝜖 ·

√
𝑓 (𝑒)
𝑓 (𝑒)

]
⩽ 𝛿

Proof. Let 𝑅𝑖 (𝑒) be the relative error of flow 𝑒 based on its

estimated size �̂�𝑖 (𝑒) in the 𝑖𝑡ℎ array of the hardware-friendly Co-

coSketch. According to the variance and Chebyshev’s inequality,

we have

P

[
𝑅𝑖 (𝑒) ⩾ 𝜖 ·

√
𝑓 (𝑒)
𝑓 (𝑒)

]
= P

[��� �̂�𝑖 (𝑒) − 𝑓 (𝑒)��� ⩾ 𝜖 · √𝑓 (𝑒) · 𝑓 (𝑒)]
⩽

Var

[
�̂�𝑖 (𝑒)

]
𝜖2 · 𝑓 (𝑒) · 𝑓 (𝑒)

= 𝜖−2 · 𝑙−1

By setting 𝑙 = 3 · 𝜖−2, we have

P

[
𝑅𝑖 (𝑒) ⩾ 𝜖 ·

√
𝑓 (𝑒)
𝑓 (𝑒)

]
⩽

1

3

Because the final estimated size is the median result, if the 𝑅(𝑒) ⩾
𝜖 ·

√
𝑓 (𝑒)/𝑓 (𝑒), at least 𝑑/2 𝑅𝑖 (𝑒) must be larger than 𝜖 ·

√
𝑓 (𝑒)/𝑓 (𝑒).

Based on the Chernoff’s inequality, setting𝑑 = 𝑂 (log𝛿−1) canmake

such probability reduce to 𝛿 . □

Let𝑀 = 𝑑 ·𝑙 . Then we analyze𝑀 needed for different𝑑 to achieve

given 𝜖 and 𝛿 . Based on the proof above, we have

𝛿 =

(
𝑑

𝜖2 ·𝑀

)𝑂 (𝑑)

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Y. Zhang et al.

If two configuration𝑀1,𝑑1 and𝑀2,𝑑2 achieve the same error bound,

we have

𝑀2 ≈
𝑑2 · 𝛿−

1

𝑑
2

𝑑1 · 𝛿−
1

𝑑
1

·𝑀1

We can get that, 𝑑 ≈ ln𝛿−1 can achieve the smallest𝑀 for given 𝛿 .

For other 𝑑 , we need around
𝑑 · (1/𝛿)1/𝑑
𝑒 ·ln(1/𝛿) times more memory, where

𝑒 is the Euler’s number.

A.3 Recall Rate
In this section, we prove Theorem 4 shown in §5.3.

Theorem 4. For any flow 𝑒 of full key 𝑘𝐹 ,

P [𝑍 (𝑒) = 1] ⩾ 1 −
(
1 + 𝑙 · 𝑓 (𝑒)

𝑓 (𝑒)

)−𝑑
Proof. In the 𝑖𝑡ℎ array, let 𝑍𝑖 (𝑒) be a 0-1 function. 𝑍𝑖 (𝑒) = 1

if and only if 𝑒 is recorded in the 𝑖𝑡ℎ array of the CocoSketch.

According to the Jensen’s inequality, we have

P [𝑍𝑖 (𝑒) = 1] =
∑
𝑚

P [𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉 =𝑚] 𝑓 (𝑒)
𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉

⩾
𝑓 (𝑒)

E [𝐵𝑖 [ℎ𝑖 (𝑒)] .𝑉]
=

𝑙 · 𝑓 (𝑒)
𝑓 (𝑒) + 𝑙 · 𝑓 (𝑒)

Because the hash functions are independent,

P [𝑍 (𝑒) = 1] = 1 −
𝑑∏
𝑖=1

(1 − P [𝑍𝑖 (𝑒) = 1])

⩾ 1 −
(
1 − 𝑙 · 𝑓 (𝑒)

𝑓 (𝑒) + 𝑙 · 𝑓 (𝑒)

)𝑑
= 1 −

(
1 + 𝑙 · 𝑓 (𝑒)

𝑓 (𝑒)

)−𝑑

□

B BASIC COCOSKETCH IMPLEMENTATION
CPU Implementation:We implement the basic CocoSketch (§4.1)

using C++. The hash functions are implemented using the 32-bit Bob

Hash [83] with different hash seeds. We implement and evaluate

them on a machine with one 4-core processor (8 threads, Intel(R)

Core(TM) i5-8259U CPU @ 2.30GHz) and 16 GB DRAM memory.

The processor has 64KB L1 cache, 256KB L2 cache for each core,

and 6MB L3 cache shared by all cores.

OVS Implementation:We implement CocoSketch on OVS v2.12.1

with DPDK 18.11.10. We use ring buffers as the shared memory to

connect the datapath in OVS and the measurement process of the

CocoSketch. When a packet enters the datapath, its packet header

will be written into ring buffers. The measurement process continu-

ously reads packet header information from ring buffers by polling.

Our testbed has two servers that are directly connected. One server

runs OVS, and another server generates high-speed TCP traffic

using pktgen-dpdk (version 3.7.2). Each server is equipped with a

Mellanox ConnectX-3 40G NIC, an Intel Core i5-8400@2.80GHz

CPU, and 16GB DRAM. To accelerate the process, we assign multi-

ple (e.g., 4) Rx queues for the DPDK receive port in OVS. Different

Rx queues are pinned to different cores and are polled by different

Poll Mode Driver threads.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Sketches for Network Measurement
	2.2 Arbitrary Partial Key Problem
	2.3 Existing Solutions and Limitations

	3 Overview
	3.1 Problem Scope
	3.2 Stochastic Variance Minimization
	3.3 Circular Dependency Removal

	4 Detailed Design
	4.1 Basic CocoSketch
	4.2 Hardware-friendly CocoSketch
	4.3 Query for Arbitrary Partial Key

	5 Analysis
	5.1 Stochastic Variance Minimization
	5.2 Error Bound
	5.3 Recall Rate

	6 Implementation
	6.1 FPGA Platform
	6.2 RMT Platform

	7 Evaluation
	7.1 Experimental Setup
	7.2 Accuracy
	7.3 Software Platforms
	7.4 Hardware Platforms
	7.5 Microbenchmark

	8 Related work
	9 Conclusions
	References
	A Proofs
	A.1 Stochastic Variance Minimization
	A.2 Error Bound
	A.3 Recall Rate

	B Basic CocoSketch Implementation

