
ChameleMon: Shifting Measurement Attention as Network State
Changes

Kaicheng Yang
†
, Yuhan Wu

†
, Ruijie Miao

†
, Tong Yang

†
, Zirui Liu

†
, Zicang Xu

†

Rui Qiu
†
, Yikai Zhao

†
, Hanglong Lv

†
, Zhigang Ji

¶
, Gaogang Xie

§
†
National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University

¶
Huawei Technologies Co., Ltd.

§
CNIC CAS, UCAS

ABSTRACT
∗
Network measurement is critical to many network applications.

There are mainly two kinds of flow-level measurement tasks: 1)

packet accumulation tasks and 2) packet loss tasks. In practice, the

two kinds of tasks are often required at the same time, but existing

works seldom handle both. In this paper, we design ChameleMon

to support the two kinds of tasks simultaneously. The key design

of ChameleMon is to shift measurement attention as network state

changes, through two dimensions of dynamics: 1) dynamically

allocating memory between the two kinds of tasks; 2) dynamically

monitoring the flows of importance. To realize the key design,

we propose a key technique, leveraging Fermat’s little theorem to

devise a flexible data structure, namely FermatSketch. FermatSketch

is dividable, additive, and subtractive, supporting the two kinds of

tasks. We have implemented a ChameleMon prototype on a testbed

with a Fat-tree topology. We conduct extensive experiments and

the results show ChameleMon supports the two kinds of tasks

with low memory/bandwidth overhead, and more importantly, it

can automatically shift measurement attention as network state

changes.

CCS CONCEPTS
• Networks→ Data path algorithms; Network measurement;
Programmable networks; Network monitoring.

KEYWORDS
Sketch; Programmable Switch; Packet Loss; Measurement Attention

ACM Reference Format:
Kaicheng Yang

†
, YuhanWu

†
, Ruijie Miao

†
, Tong Yang

†
, Zirui Liu

†
, Zicang

Xu
†
, Rui Qiu

†
, Yikai Zhao

†
, Hanglong Lv

†
, Zhigang Ji

¶
, Gaogang Xie

§
.

2023. ChameleMon: Shifting Measurement Attention as Network
State Changes. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23),
September 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA,

23 pages. https://doi.org/10.1145/3603269.3604850

∗
Kaicheng Yang, Yuhan Wu, and Ruijie Miao contribute equally to this paper. Tong

Yang (yangtongemail@gmail.com) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3604850

1 INTRODUCTION
Network measurement provides critical statistics for various net-

work operations, such as traffic engineering [1, 2], congestion con-

trol [3], network accounting [4], anomaly detection [5–8], and

failure troubleshooting [9, 10]. In earlier years, sampling-based

solutions [11–14] were widely accepted thanks to their simplicity

and ease of use. Recently, sketch-based solutions [15–17] have at-

tracted much more attention than sampling-based ones, as they are

designed to approach the ultimate goal of network measurement

[18–20]: to support more tasks and achieve higher accuracy with

less memory. The emerging programmable switches that can pro-

cess packets at terabit line rate further make sketches practical for

production deployment, and designing novel sketches for flow-level

measurement capabilities on programmable switches has become a

hot topic [18–20].

There are mainly two kinds of flow-level measurement tasks.

The first kind is packet accumulation tasks that focus on flow sizes at

certain network nodes, including flow size estimation [21], heavy-

hitter detection [22], entropy estimation [23], etc.. The second kind

is packet loss tasks that focus on changes of flow sizes between

network nodes, among which the most representative one is packet

loss detection [24]. However, the two kinds of tasks are seldom

considered and supported simultaneously in one solution. One

reason behind is that the two kinds of tasks require very different

flow-level statistics.

However, in practice, the two kinds of tasks are often required

at the same time, and there are only limited resources for measure-

ment in programmable switches (e.g., O(10MB) SRAM and limited

accesses to the SRAM). Therefore, the first requirement for a prac-
tical measurement system is versatile to support the two kinds of

tasks with high accuracy using limited resources, where limited

resources refer to sub-linear space complexity.

Based on the first requirement, the second requirement is to pay

attention to different kinds of tasks for different network states.

When the network state is healthy and there are only few packet

losses in the network, the system should pay more attention (e.g.,
allocate more memory) to packet accumulation tasks. When the

network state is ill and there are lots of packet losses in the net-

work, the system should pay more attention to packet loss tasks

to help diagnose network faults, especially for those flows which

experience a great number of packet losses.

In summary, a practical measurement system should meet the

following requirements: [R1.1] versatility requirement: supporting
both packet loss tasks and packet accumulation tasks simultane-

ously; [R1.2] efficiency requirement: achieving high accuracy with

sub-linear space complexity; [R2] attention requirement: paying
attention to different kinds of tasks for different network states.

https://doi.org/10.1145/3603269.3604850
https://doi.org/10.1145/3603269.3604850

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

Existing solutions can be mainly classified into three categories

according to supported measurement tasks:

(1) Solutions for packet loss tasks: Typical solutions including Loss-

Radar [24] based on Invertible Bloom filter [25], Netseer [26]

andDapper [27] based on the advanced features of programmable

switches, andmore. These solutions are often carefully designed

to only obtain the exact difference set of flows/packets to mini-

mize measurement overhead, while packet accumulation tasks

require approximate sizes of all flows or simply large flows.

Therefore, these solutions can hardly be extended to packet

accumulation tasks and fail to meet [R1.1].
(2) Solutions for packet accumulation tasks: These solutions are usu-

ally based on sketches, including CM sketch [21], UnivMon [18],

ElasticSketch [15], HashPipe [22], and more. To efficiently main-

tain approximate flow sizes, these solutions choose to embrace

hash collisions and select the estimation with least collisions

to minimize error. For these solutions, due to their inherent

error caused by hash collisions, it is difficult to obtain the exact

difference set of flows/packets. Therefore, these solutions can

hardly be extended to packet loss tasks and fail to meet [R1.1].
(3) Solutions for both kinds of tasks: These solutions support both

kinds of tasks by recording exact IDs and sizes of all flows,

including FlowRadar [28], OmniMon [29], Counter Braids [30],

Marple [31] and more. However, recording exact IDs and sizes

of all flows requires at least memory/bandwidth overhead linear

with the number of flows. Therefore, these solutions fail to meet

[R1.2].
In summary, the first two categories of solutions cannot meet

[R1.1] due to their limited measurement capabilities, and the third

category of solutions cannot meet [R1.2] due to their linear space

complexities. A naive solution meeting both [R1.1] and [R1.2] is to
combine the first two categories of solutions: choosing one solution

in the corresponding category for each kind of tasks. However, such

a combination fails to achieve [R2] on programmable switches. The

reason behind is that the data structures and operations of differ-

ent categories of solutions usually differ significantly. For example,

LossRadar [24] records the IDs and existences of packets using

XOR operation and addition, while ElasticSketch [15] records the

IDs and sizes of flows using comparison, substitution, and addi-

tion. Therefore, solutions in different categories can only utilize

their resources allocated at compile time, which prohibits flexi-

ble allocation of memory resources between packet loss tasks and

packet accumulation tasks. Therefore, the naive solution cannot

pay attention to different kinds of tasks for different network states.

In this paper, we design ChameleMon, which meets all the above

requirements simultaneously. ChameleMon can support almost

all packet loss tasks and packet accumulation tasks. Compared to

the state-of-the-art solutions, for packet loss tasks, ChameleMon

reduces the memory overhead from proportional to the number of

all flows (FlowRadar) or lost packets (LossRadar), to proportional

to the number of flows experiencing packet losses, which we call

victim flows; for packet accumulation tasks, ChameleMon achieves

at least comparable accuracy. Our ChameleMon has a key design

and a key technique as follows.

The key design of ChameleMon is to shift measurement atten-

tion as network state changes, which is just like the process of the

chameleons changing their skin coloration, through two dimen-

sions of dynamics: 1) dynamically allocating memory between the

two kinds of tasks; 2) dynamically monitoring the flows of impor-

tance. First, ChameleMon monitors the network state and allocates

memory between the two kinds of tasks accordingly. When the

network state is healthy and only a few packet losses occur in the

network, ChameleMon pays most attention to and allocates most

of the memory for packet accumulation tasks. As the network state

degrades and packet losses increase, ChameleMon gradually shifts

measurement attention to and allocates more and more memory

for packet loss tasks to assist in diagnosing network faults. Second,

ChameleMon ranks the flows according to their importance, and

selects those of most importance to monitor. When the network

state is ill and there are too many victim flows, ChameleMon selects

those flows experiencing many packet losses (called heavy-losses,
HLs for short) to monitor, instead of monitoring all victim flows.

Overall, when the network state continuously degrades from the

healthy state to the ill state, ChameleMon runs as follows. 1) As the

number of victim flows increases, ChameleMon leverages the first

dimension of dynamic: gradually shifting measurement attention

to and allocating more and more memory for packet loss tasks;

2) When the victim flows are too many to monitor, ChameleMon

leverages the second dimension of dynamic: focusing measurement

attention on HLs while monitoring a small portion of other packet

losses (called light-losses, LLs for short) through sampling.

To realize the key design, ChameleMon incorporates a key tech-

nique, leveraging Fermat’s little theorem
1
to devise a flexible data

structure, namely FermatSketch. The data structure of FermatSketch

is made of many same units. FermatSketch is dividable, additive,

and subtractive, supporting packet loss detection and heavy-hitter

(HH for short) detection simultaneously. By dividing FermatSketch

into three parts to detect HLs, LLs, and HHs, ChameleMon can flexi-

bly move the division points to shift attention and allocate memory

between the two kinds of tasks as network state changes. For each

incoming packet, We further use a flow classifier (TowerSketch

[32]) to determine which of the three parts to insert. For packet

loss detection, owing to Fermat’s little theorem, FermatSketch only

requires memory proportional to the number of victim flows. Dif-

ferently, the state-of-the-art solutions require memory proportional

to the number of all flows (FlowRadar) or lost packets (LossRadar).

Thanks to the visibility to per-flow size provided by Towersketch,

ChameleMon can support five other widely-studied [15, 18, 32, 33]

packet accumulation tasks, including flow size estimation, heavy-

change detection, flow size distribution estimation, entropy esti-

mation, and cardinality estimation. We have fully implemented a

ChameleMon prototype on a testbed with a Fat-tree topology com-

posed of 10 Tofino switches and 8 end-hosts. We conduct extensive

experiments and the results show that ChameleMon supports both

kinds of tasks with low memory/bandwidth overhead, and more

importantly, it can automatically shift measurement attention as
network state changes at run-time without recompilation. We have

released all related source codes at Github [34].

Ethics: This work does not raise any ethical issue.

1
Fermat’s little theorem states that if 𝑝 is a prime, then for any integer 𝑎 that is

indivisible by 𝑝 , we have 𝑎𝑝−1 ≡ 1 mod 𝑝 .

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Step 1: Capture flow-level statistics
Sample

0 01 1 0 1 0 1 0 1
Step 2: Collect from edge

monitor

Step 3: Perform analysis Step 4: Shift attention

• Reallocate memory
• Adjust thresholds

UpStream

DownStream Edge

Analyzer

UpStreamDownStream

Collect

HL Encoder HH Encoder LL Encoder

Reconfigure data planePacket loss
Heavy-hittermonitor

collect
monitor monitor
collect

HL Encoder LL Encoder

Classifier

Heavy-change

Flow size est.
Entropy

Cardinality
Flow size dist.

Figure 1: Overview of ChameleMon.

2 OVERVIEW OF CHAMELEMON
ChameleMon monitors the network in four steps (Figure 1).

1) Capturing flow-level statistics on edge switches: To capture

desired flow-level statistics, ChameleMon deploys three sketches

on the data plane of each edge switch, including a flow classifier

(TowerSketch), an upstream flow encoder (our FermatSketch), and

a downstream flow encoder (our FermatSketch). To detect HHs,

HLs, and LLs, the upstream and downstream flow encoders are

divided into multiple parts: 1) the upstream flow encoder is divided

into an upstream HH encoder, an upstream HL encoder, and an

upstream LL encoder; 2) the downstream flow encoder is divided

into a downstream HL encoder and a downstream LL encoder. For

every packet with flow ID 𝑓 entering the network, according to

the size of flow 𝑓 , the flow classifier classifies flow 𝑓 into one

of three hierarchies: 1) HH candidate, 2) HL candidate, or 3) LL

candidate. The LL candidate is further classified into sampled LL

candidate or non-sampled LL candidate through sampling. Based

on the hierarchy of flow 𝑓 , the packet is then inserted into the

corresponding part of the upstream flow encoder and downstream

flow encoder when it enters and exits the network, respectively.

2) Collecting sketches from edge switches: A central controller

periodically collects sketches from each edge switch to support

persistent measurement. To avoid colliding with packet insertion

when collecting sketches, each edge switch divides the timeline

into consecutive fixed-length time intervals (called epochs), and
copies a group of sketches for rotation. Every time an epoch ends,

the central controller collects the group of sketches monitoring

this epoch, and the other group of sketches starts to monitor the

current epoch.

3) Performing network-wide analysis: Every epoch, the central

controller performs network-wide analysis of the collected sketches

to support seven measurement tasks. By analyzing the upstream

and downstream flow encoders, the central controller can support

packet loss detection. By analyzing the flow classifier and the up-

stream HH encoder, the central controller can support heavy-hitter

detection and five other packet accumulation tasks.

4) Shifting measurement attention as network state changes:
Every epoch, the central controller monitors the real-time network

state by analyzing the collected sketches. Then, the central con-

troller reconfigures the data plane of edge switches at run-time

according to the real-time network state, shifting measurement

attention through two dimensions of dynamics. In the first dimen-

sion, the central controller dynamically allocates memory between

packet loss tasks and packet accumulation tasks by reallocating

the memory of the upstream and downstream encoders between

their different parts. In the second dimension, the central controller

dynamically selects the most important flows (HH/HL/sampled LL

candidates) to monitor by adjusting the thresholds for flow classifi-

cation and the sample rate for sampling LL candidates.

3 CHAMELEMON DATA PLANE
The ChameleMon data plane consists of the flow classifier, the up-

stream flow encoder, and the downstream flow encoder deployed

on each edge switch. In this section, we detail the design of the

ChameleMon data plane. First, we propose the key technique of

ChameleMon, namely FermatSketch. Second, we detail each compo-

nent of the ChameleMon data plane in sequence.

3.1 The FermatSketch Algorithm
Rationale: Our primary goal is to detect packet losses with low

memory overhead. Existing solutions focus on either per-packet

loss (LossRadar [24]) or all-flow visibility (FlowRadar [28]), incur-

ring unacceptable memory overhead. To reduce overhead, we hope

to aggregate all the lost packets of the same flow to detect per-

flow packet losses. It is very challenging because existing solutions

commonly use XOR operation for high memory efficiency and

hardware-friendliness, but simply using XOR operation to aggre-

gate flow IDs of lost packets causes every two lost packets of the

same flow to cancel each other out. While invertible Bloom lookup

table (IBLT) [35] can overcome this challenge as IBLT uses addition

to aggregate flow IDs, such design requires computation over large

numbers, and thus complicates the implementation of IBLT on pro-

grammable switches. To address this challenge while maintaining

hardware-friendliness, we devise FermatSketch, which uses mod-

ular addition to aggregate flow IDs and leverages Fermat’s little

theorem to extract flow IDs.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

0 1 0 0
0 4 0 0

1 0 0 0
4 0 0 0

Modular
Addition

0 2 0 0
0 1 0 0

1 0 1 0
4 0 8 0

Packet with

Figure 2: An example of encoding/insertion.

Data structure (Figure 2): FermatSketch has 𝑑 equal-sized bucket

arraysB1, · · · ,B𝑑 , each of which consists of𝑚 buckets. Each bucket

array B𝑖 is associated with a pairwise-independent hash func-

tion ℎ𝑖 (·) that maps each incoming packet into one bucket (called

mapped bucket) in it. Each bucket B𝑖 [𝑗] contains two fields: 1) a

count field B𝑐
𝑖
[𝑗] recording the number of packets mapped into the

bucket; 2) an IDsum field B𝐼𝐷
𝑖
[𝑗] recording the result of the sum

of flow IDs of packets mapped into the bucket modulo a prime 𝑝 .

At initialization, we set all fields of all buckets in FermatSketch to

zero, and 𝑝 to a prime that must be larger than any available flow

ID 𝑓 and the size of any flow, so as to make use of Fermat’s little

theorem.

Encoding/Insertion operation (Figure 2): To encode an incom-

ing packet with flow ID 𝑓 , we first calculate the 𝑑 hash functions

to locate𝑑 mapped buckets:B1 [ℎ1 (𝑓)],B2 [ℎ2 (𝑓)], · · · ,B𝑑 [ℎ𝑑 (𝑓)].
For eachmapped bucketB𝑖 [ℎ𝑖 (𝑓)], we update it as follows. First, we
increment its count field B𝑐

𝑖
[ℎ𝑖 (𝑓)] by one. Second, we update its

IDsum field through modular addition: B𝐼𝐷
𝑖
[𝑓)] ← ((B𝐼𝐷

𝑖
[ℎ𝑖 (𝑓)]

+𝑓) mod 𝑝). The pseudo-code of encoding operation is shown in

Algorithm 1.

Decoding operation: The decoding operation, which can extract

exact flow IDs and flow sizes from FermatSketch, has two important

suboperations: 1) pure bucket verification that verifies whether a

bucket only records packets of a single flow (pure bucket); 2) single
flow extraction that extracts and deletes a single flow and its size

from all its mapped buckets. Next, we propose the workflow of

decoding operation and detail the two suboperations. The pseudo-

code of decoding operation is shown in Algorithm 2.

• Decoding workflow (Figure 3): decoding proceeds as follows.

1 Traverse FermatSketch and push all non-zero buckets to de-

coding queue.

2 Pop a bucket from queue.

3 For the popped bucket, we perform pure bucket verification

to verify whether it is a pure bucket. If not, we simply ignore the

bucket and go back to step 2 .

4 If so, we perform single flow extraction to extract and delete a

single flow and its size from the pure bucket as well as the other

mapped buckets of the single flow.

5 We insert the extracted single flow and its size into a hash

table, namely Flowset, which is used to record all the extracted flows
and their sizes. We regard all flows recorded in Flowset as the flows

previously encoded into FermatSketch.

6 Except the pure bucket, we push the other mapped non-zero

buckets of the extracted flow into queue.

Algorithm 1: Encoding/Insertion operation of FermatS-

ketch

Input: Flow ID 𝑓

1 for 𝑖 ∈ [1, 𝑑] do
2 𝑗 = ℎ𝑖 (𝑓);
3 B𝐼𝐷

𝑖
[𝑗] = (B𝐼𝐷

𝑖
[𝑗] + 𝑓) mod 𝑝;

4 B𝑐
𝑖
[𝑗] + +;

5 end

Algorithm 2: Decoding operation of FermatSketch

1 Function IsPure(𝑖, 𝑗):
2 𝑓 = (B𝐼𝐷

𝑖
[𝑗] × (B𝑐

𝑖
[𝑗]) (𝑝−2)) mod 𝑝;

3 return 𝑗 == ℎ𝑖 (𝑓);
4 Function Delete(B𝑖′ [𝑗 ′],B𝑖 [𝑗]):
5 B𝑐

𝑖′ [𝑗
′] = B𝑐

𝑖′ [𝑗
′] − B𝑐

𝑖
[𝑗];

6 B𝐼𝐷
𝑖′ [𝑗

′] = (B𝐼𝐷
𝑖′ [𝑗

′] − B𝐼𝐷
𝑖
[𝑗]) mod 𝑝;

7 Function Decode():
8 𝑄𝑢𝑒𝑢𝑒 is an empty queue;

9 𝐹𝑙𝑜𝑤𝑠𝑒𝑡 is an empty map;

10 for 𝑖 ∈ [1, 𝑑], 𝑗 ∈ [1,𝑤] do
11 if B𝑐

𝑖
[𝑗]! = 0 then

12 𝑄𝑢𝑒𝑢𝑒 .push(B𝑖 [𝑗]);
13 end
14 end
15 while !𝑄𝑢𝑒𝑢𝑒.empty() do
16 B𝑖 [𝑗] = 𝑄𝑢𝑒𝑢𝑒 .front();

17 𝑄𝑢𝑒𝑢𝑒 .pop();

18 if IsPure(𝑖, 𝑗) then
19 𝑓 ′ = (B𝐼𝐷

𝑖
[𝑗] × (B𝑐

𝑖
[𝑗]) (𝑝−2)) mod 𝑝;

20 𝐹𝑙𝑜𝑤𝑠𝑒𝑡 [𝑓 ′] = 𝐹𝑙𝑜𝑤𝑠𝑒𝑡 [𝑓 ′] + B𝑐
𝑖
[𝑗];

21 for 𝑖′ ∈ [1, 𝑑] do
22 Delete (B𝑖′ [ℎ𝑖′ (𝑓 ′)],B𝑖 [𝑗]);
23 if B𝑐

𝑖′ [ℎ𝑖′ (𝑓
′)]! = 0 then

24 𝑄𝑢𝑒𝑢𝑒 .push(B𝑖′ [ℎ𝑖′ (𝑓 ′)]);
25 end
26 end
27 end
28 end
29 return Flowset

7 Check whether the queue is empty. If so, the decoding stops.

Otherwise, go back to step 2 . After stopping, if there are still

non-zero buckets in FermatSketch, the decoding is considered as

failed. Otherwise, the decoding is considered as successful.

• Pure bucket verification: The pure bucket verification reports

whether one given bucket is pure (i.e., only records a single flow),

but it may misjudge a non-pure bucket as a pure one with a small

probability
1

𝑚 . Suppose a bucket 𝐵𝑖 [𝑗] only records a single flow

𝑓 ′, it should satisfy that (B𝑐
𝑖
[𝑗] × 𝑓 ′) mod 𝑝 = B𝐼𝐷

𝑖
[𝑗]. Lever-

aging Fermat’s little theorem, we can get that 𝑓 ′ = (B𝐼𝐷
𝑖
[𝑗] ×

(B𝑐
𝑖
[𝑗])𝑝−2) mod 𝑝 . Considering that bucket 𝐵𝑖 [𝑗] should be one

of the 𝑑 mapped buckets of flow 𝑓 ′, to verify whether 𝐵𝑖 [𝑗] is a
pure bucket, we propose a verification method namely rehashing
verification. First, we calculate the 𝑖𝑡ℎ hash function ℎ𝑖 (·) to locate

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0 2 0 0
0 1 0 0

1 0 1 0
4 0 8 0

Pure Bucket
Verification

1 0 1
= 1

Modular
Subtraction

0 1 0 0
0 8 0 0

0 0 1 0
0 0 8 0

v v

3

POP

6

PUSH

v

v
···

Single Flow
Extraction

Rehashing

CHECK: if non-zero bucket exists7

vInsert into
Flowset

Initialization: push all non-zero buckets1

4

5

2

Figure 3: An example of decoding.

the 𝑖𝑡ℎ mapped bucket of 𝑓 ′, i.e., we calculate ℎ𝑖 (𝑓 ′). Then we

check whether ℎ𝑖 (𝑓 ′) is equal to 𝑗 . If so, we consider B𝑖 [𝑗] as a
pure bucket recording flow 𝑓 ′ with size 𝐵𝑐

𝑖
[𝑗]. Note that the false

positive rate of pure bucket verification, i.e., the probability of mis-

judging a non-pure bucket as a pure one, is
1

𝑚 , which is calculated

as follows. For any non-pure bucket, we can calculate its flow ID,

which should be considered as a random value. The probability

that a random ID is hashed to the same bucket is
1

𝑚 . In this section,

we further discuss that such false positives can be automatically

eliminated during decoding, and prove they have little impact on

decoding success rate through mathematical analysis (Theorem

3.1).

• Single flow extraction: To extract/delete flow 𝑓 ′ from B𝑖 [𝑗] as
well as its other mapped buckets, first, we locate its other (𝑑 −
1) mapped buckets. Second, for each mapped bucket 𝐵𝑖′ [ℎ𝑖′ (𝑓 ′)],
we decrement its count field 𝐵𝑐

𝑖′ [ℎ𝑖′ (𝑓
′)] by 𝐵𝑐

𝑖
[𝑗], and update its

IDsum field to ((𝐵𝐼𝐷
𝑖′ [ℎ𝑖′ (𝑓

′)] −𝐵𝐼𝐷
𝑖
[𝑗]) mod 𝑝) throughmodular

subtraction.
Addition/Subtraction operations: Adding/Subtracting FermatS-

ketch 𝐹𝑆1 to/from FermatSketch 𝐹𝑆2. 𝐹𝑆1 and 𝐹𝑆2 must use the

same parameters including hash functions, number of arrays, num-

ber of buckets, and primes. For each bucket of 𝐹𝑆2, we update it as

follows. First, we locate the bucket of 𝐹𝑆1 that is in the same position

as it. Second, we add/subtract the count field of the located bucket

of 𝐹𝑆1 to/from its count field. Third, we modular add/subtract the

IDsum field of the located bucket of 𝐹𝑆1 to/from its IDsum field.

Space complexity: Suppose FermatSketch is large enough, and

then the pure bucket verification has negligible false positive rate.

The decoding operation is almost the same as that of IBLT [35],

which is exactly the procedure used to find the 2-core of a random

hypergraph [36, 37]. Therefore, the memory overhead of FermatS-

ketch is proportional to the number of inserted flows𝑀 , i.e.,𝛩 (𝑀).
FermatSketch also shares similar properties with IBLT: the number

of hash functions, i.e., the number of the bucket arrays 𝑑 , is rec-

ommended to set to 3 for the highest memory efficiency, that on

average 1.23 buckets can record a flow and its size.

Time complexity of decoding operation: Suppose FermatSketch

is large enough and the false positive rate in pure bucket verification

is negligible. In step 1 , we traverse FermatSketch and push all

non-zero buckets into the decoding queue. The number of these

buckets is at most𝑚𝑑 , and thus the time complexity of step 1 is

𝑂 (𝑚𝑑). In the rest steps, we process all the buckets pushed into the

queue, which consists of two parts: 1) the𝑚𝑑 buckets pushed into in

step 1 , and 2) the mapped buckets except the popped pure bucket

of each extracted flow. Considering that the number of extracted

flows is bounded by the number of buckets of FermatSketch, i.e.,
𝑚𝑑 , the number of buckets of the second part is𝑂 (𝑚𝑑2). Therefore,
the time complexity of the rest steps is𝑂 (𝑚𝑑2). Adding up the time

complexities of all steps, the time complexity of decoding operation

is 𝑂 (𝑚𝑑2).
Eliminating false positives during decoding: Due to hash col-

lisions, the rehashing verification will inevitably misjudge some

non-pure buckets as pure buckets with false positive rate
1

𝑚 . Such

misjudgement will lead to extraction of flows that are not inserted

into FermatSketch, and finally could hinder the decoding. From

another point of view, extracting a flow from such a misjudged non-

pure bucket, i.e., false positive, equals to inserting a fabricated flow

with a negative size into FermatSketch. The decoding operation

can automatically eliminate these false positives: in the decoding

procedure, these inserted fabricated flows could also be extracted

and deleted from FermatSketch, and then the impact caused by the

false positives disappears. We use Theorem 3.1 to show that when

𝑚𝑑 > 𝑐𝑑𝑀 + 𝜖 and 𝑀 (the number of inserted flows) is not too

small, the decoding only fails with an extremely small probability

𝑂 (1

𝑀𝑑−2), where 𝑐𝑑 refers to the minimum average number of buck-
ets required to record a flow and its size for a 𝑑-array FermatSketch.

Theorem 3.1. Suppose𝑚𝑑 > 𝑐𝑑𝑀 +𝜖 and𝑀 = 𝛺 (𝑑4𝑑𝑙𝑜𝑔𝑑 (𝑚𝑑)).
the decoding of FermatSketch fails with probability 𝑂 (1

𝑀𝑑−2), where
both 𝜖 and 𝑐𝑑 are small constants.

𝑐𝑑 =

(
𝑠𝑢𝑝

{
𝛼

���𝛼 ∈ (0, 1),∀𝑥 ∈ (0, 1), 1 − 𝑒−𝑑𝛼𝑥𝑑−1 })−1
For example, 𝑐3 = 1.23, 𝑐4 = 1.30, 𝑐5 = 1.43.

The detailed proof is presented in Appendix A.1.

Packet loss detection: To support packet loss detection, we can

deploy a group of FermatSketches on edge switches to encode the

packets entering the network, and another group of FermatSketches

to encode the packets exiting the network. Thanks to the additivity

and subtractivity of FermatSketch, for each group, we add up the

FermatSketches in it to obtain a cumulative FermatSketch encoding

all the packets entering or exiting the network. Then, we subtract

the cumulative FermatSketch encoding all the packets exiting the

network from the other one, and the FermatSketch after subtraction

just encodes all the victim flows in the network. Therefore, this

FermatSketch just requires memory proportional to the number

of victim flows for successful decoding. In other words, FermatS-

ketch can support packet loss detection with memory overhead

proportional to the number of victim flows.

[Optional] fingerprint verification: To reduce the false positive

rate of pure bucket verification, we propose an extra verification

method, namely fingerprint verification. Please refer to Appendix
A.2 for details.

3.2 Data Plane Components
As shown in Figure 1, every packet entering the network undergoes

the three components of the ChameleMon data plane in sequence:

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

1) the flow classifier, 2) the upstream flow encoder, and 3) the down-

stream flow encoder.

3.2.1 Flow Classifier.
Rationale: To detect HHs, HLs, and LLs, ChameleMon deploys the

flow classifier in the ingress of each edge switch, so as to classify

flows into different hierarchies. While it is easy to select HHs to

monitor according to flow sizes, it is not easy to select HLs to

monitor because we can hardly predict how many packets a flow

will lose. Our observation is that for each flow, the number of its lost

packets cannot exceed its size. Therefore, the sizes of HLs should

have a minimum value. ChameleMon selects flows whose sizes

exceed this value to monitor, so as to approximate the monitoring of

HLs. In summary, the flow classifier classifies flows purely according

to flow sizes. We choose TowerSketch [32], a simple, accurate, and

hardware-friendly sketch, as the flow classifier.

Data Structure: The flow classifier consists of 𝑙 equal-sized arrays.

The 𝑖𝑡ℎ array A𝑖 consists of 𝑤𝑖 𝛿𝑖 -bit counters, where 𝑤𝑖 × 𝛿𝑖
is a constant and 𝛿𝑖−1 < 𝛿𝑖 . Also, array A𝑖 is associated with a

pairwise-independent hash function 𝑠𝑖 (·). For each 𝛿𝑖 -bit counter,

its maximum value 2
𝛿𝑖 − 1 is used to represent the state that it is

overflowed, and thus be regarded as +∞.
Insertion: To insert a packet with flow ID 𝑓 , we first calculate the

𝑙 hash functions to locate 𝑙 counters: A1 [𝑠1 (𝑓)],A2 [𝑠2 (𝑓)], · · · ,
A𝑙 [𝑠𝑙 (𝑓)]. We call these counters the 𝑙 mapped counters. Then, for
each of the 𝑙 mapped counters, we increment it by one unless it is

overflowed.

Online query: To query the size of flow 𝑓 online, we simply report

the minimum value among the 𝑙 mapped counters.

Packet processing: For a packet with flow ID 𝑓 entering the net-

work, the flow classifier processes it as follows. First, we insert it

into the flow classifier and query the size of flow 𝑓 . Then, with the

queried flow size, we classify flow 𝑓 into the corresponding hier-

archy according to two thresholds 𝑇ℎ and 𝑇𝑙 , where 𝑇ℎ is used for

selecting HH candidates, and𝑇𝑙 is used for selecting HL candidates.

In general, it satisfies that 𝑇𝑙 <= 𝑇ℎ . If the flow size is larger than

or equal to 𝑇ℎ , flow 𝑓 is classified as a HH candidate. If the flow

size is less than 𝑇𝑙 , flow 𝑓 is classified as a LL candidate. If the flow

size is between 𝑇𝑙 and 𝑇ℎ , flow 𝑓 is classified as a HL candidate.

The LL candidate is further classified into sampled LL candidate or

non-sample LL candidate through sampling.

3.2.2 Upstream Flow Encoder.
Rationale: To support packet loss detection, ChameleMon deploys

the upstream flow encoder in the ingress of each edge switch just

after the flow classifier, so as to encode the packets entering the

network. Therefore, the upstream flow encoder should contain two

FermatSketches to encode HL candidates and sampled LL candi-

dates individually. Here, for better monitoring of the network state,

ChameleMon monitors a portion of LLs to maintain an overview

of all victim flows. Besides, to support heavy-hitter detection, the

upstream flow encoder should contain a FermatSketch to encode

HH candidates. In summary, the upstream flow encoder should

consist of three FermatSketches.

Data structure: The upstream flow encoder is a 𝑑-array FermatS-

ketch divided into three 𝑑-array FermatSketches: 1) an upstream

HH encoder for encoding HH candidates; 2) an upstream HL en-

coder for encoding HL candidates; 3) an upstream LL encoder for

encoding sampled LL candidates. We denote the number of buckets

per array of the upstream flow encoder, HH encoder, HL encoder,

and LL encoder by𝑚𝑢𝑓 ,𝑚ℎℎ ,𝑚ℎ𝑙 , and𝑚𝑙𝑙 , respectively. Obviously,

it satisfies that𝑚𝑢𝑓 =𝑚ℎℎ +𝑚ℎ𝑙 +𝑚𝑙𝑙 .

Packet processing: For a packet with flow ID 𝑓 entering the net-

work, the upstream flow encoder processes it by encoding the

packet into one of the encoders corresponding to the hierarchy

of flow 𝑓 unless flow 𝑓 is a non-sampled LL candidate. Here, the

hierarchy of flow 𝑓 can be directly obtained because the upstream

flow encoder and the flow classifier are deployed on the same edge

switch.

3.2.3 Downstream Flow Encoder.
Rationale: To support packet loss detection, ChameleMon deploys

the downstream flow encoder in the egress of each edge switch, so

as to encode the packets exiting the network. As the downstream

flow encoder is not responsible for heavy-hitter detection, it should

consist of two FermatSketches to encodeHL candidates and sampled

LL candidates.

Data structure: The downstream flow encoder is a 𝑑-array Fer-

matSketch divided into two 𝑑-array FermatSketches: 1) a down-

stream HL encoder; 2) a downstream LL encoder. To support packet

loss detection, the number of buckets per array of the downstream

HL encoder and LL encoder must also be𝑚ℎ𝑙 and𝑚𝑙𝑙 , respectively,

so as to support addition and subtraction operations with the corre-

sponding upstream encoder. We denote the number of buckets per

array of the downstream flow encoder by𝑚𝑑𝑓 . In general, it satisfies

that𝑚𝑑𝑓 < 𝑚𝑢𝑓 , and therefore satisfies that𝑚𝑑𝑓 ⩾𝑚ℎ𝑙 +𝑚𝑙𝑙 .

Packet processing: For a packet with flow ID 𝑓 exiting the net-

work, the downstream flow encoder processes it by encoding the

packet into one of the encoders corresponding to the hierarchy of

flow 𝑓 unless flow 𝑓 is a non-sampled LL candidate. Here, packets

of HH candidates are also encoded into the downstreamHL encoder.

Different from the upstream flow encoder, the downstream flow

encoder cannot directly obtain the flow hierarchy from the flow

classifier, as a flow could enter and exit the network at different

edge switches. To address this issue, first, considering that there are

four flow hierarchies, we can use ⌈log(4)⌉ = 2 bits in the original

packet header to transmit this information. For example, for IPv4

protocol, we can use the unused bits in the type of service (ToS)

field. If there are not enough unused bits, second, we can transmit

the flow hierarchy in an INT-like [38] manner.

4 CHAMELEMON CONTROL PLANE
The ChameleMon control plane consists of a central controller, as

well as the control plane of each edge switch. In this section, we

detail the design of the ChameleMon control plane. We begin by lay-

ing out how the ChameleMon control plane collects sketches from

the ChameleMon data plane, then introduce how to support seven

measurement tasks with the collected sketches, and finally propose

how to shift measurement attention as network state changes.

4.1 Collection from Data Plane
The central controller needs to periodically collect sketches, i.e., the
flow classifier, the upstream flow encoder, and the downstream flow

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

encoder, from the ChameleMon data plane, so as to support persis-

tent measurement. However, the collection cannot be completed in

an instant, and thus inevitably collide with packet insertion if there

is only a group of sketches. Specifically, if the central controller

wants to collect sketches at time 𝑡 , it will inevitably collect some

counters inserted by packets after 𝑡 , which could result in decoding

failure of FermatSketch. To address this issue, ChameleMon takes

two steps: 1) timeline division and 2) clock synchronization. Next,
we just briefly cover the two steps. We detail the two steps in Ap-

pendix B, where we further analyze the appropriate time for the
central controller to collect sketches.

Timeline division: Each edge switch periodically flips a 1-bit

timestamp to divide the timeline into fixed-length time intervals

(called epochs) with interleaved 0/1 timestamp, and copies a group

of sketches for rotation. Each group of sketches corresponds to

a distinct timestamp value, and monitors the epochs with that

timestamp value.

Clock synchronization: The central controller also maintains a

1-bit periodically flipping timestamp, and periodically synchronizes

its clock with the control plane of each edge switch, so as to make

opportunities for collection.

Every time the locally maintained 1-bit timestamp flips, an epoch

ends, the central controller starts to collect the group of sketches

monitoring this epoch, and the other group of sketches starts to

monitor the current epoch.

4.2 Measurement Tasks
With the collected sketches, the central controller can support

packet loss detection and six packet accumulation tasks.

Packet loss detection: reporting each victim flow and the number

of its lost packets. The central controller can support packet loss

detection by analyzing the upstream and downstream flow encoders

collected from each edge switch. First, for each edge switch, we

decode the upstream HH encoder to obtain the HH Flowset, and

then reinsert each flow with its size in the HH Flowset into the

upstreamHL encoder. Second, we add up the upstream/downstream

HL/LL encoder of each edge switch through addition operation to

obtain the cumulative upstream/downstream HL/LL encoder. Third,

we subtract the cumulative downstream HL/LL encoder from the

cumulative upstream HL/LL encoder to obtain the delta HL/LL
encoder. Fourth, we decode the delta HL/LL encoder to obtain the

HL/LL Flowset. Finally, we report the flows in the HL Flowset as

HLs, and the flows in the LL Flowset but not in the HL Flowset as

LLs. For each of these flows, its estimated number of lost packets is

the sum of its size in the HL Flowset and the LL Flowset.

For each edge switch, the central controller can support the fol-

lowing six widely-studied [15, 18, 32, 33] packet accumulation tasks

by analyzing the flow classifier and upstream HH encoder collected

from it. Then, by synthesizing the results of each edge switch, the

central controller can easily support these tasks in a network-wide

manner. We detail these six tasks from the perspective of an edge

switch.

Heavy-hitter detection: reporting flows whose sizes exceed 𝛥ℎ .
First, we decode the upstreamHH encoder to obtain the HH Flowset,

which records flows with ID 𝑓𝑖 and size 𝑞𝑖 . For any flow 𝑓𝑗 in the

HH Flowset, if its estimated flow size Tℎ + 𝑞 𝑗 is larger than 𝛥ℎ , we

report it as a HH. Note that 𝑇ℎ is the threshold used for selecting

HH candidates.

Flow size estimation: reporting flow size of flow 𝑓𝑗 . Similarly, we

obtain the HH Flowset. If flow 𝑓𝑗 is in the HH Flowset, we report

its flow size as Tℎ + 𝑞 𝑗 . Otherwise, we report its flow size as query

result from the flow classifier.

Heavy-change detection: reporting flows whose sizes change

beyond 𝛥𝑐 in two adjacent epochs. Similarly, we obtain the HH

Flowset. For any flow 𝑓𝑗 in the HH Flowset of either epoch, we

estimate its flow size in the two epochs. If the difference between

the two estimated flow sizes is larger than 𝛥𝑐 , we report flow 𝑓𝑗 as

a heavy-change.

Cardinality estimation: reporting number of flows. We apply

linear-counting algorithm [39] to the counter array with most coun-

ters in the flow classifier for estimation.

Flow size distribution estimation: reporting distribution of flow

sizes. We apply MRAC algorithm [40] to each counter array in the

flow classifier. Array A𝑖 provides distribution of flow size in range

[2𝛿𝑖−1 − 1, 2𝛿𝑖 − 1). The remaining distribution of flow size in range

[2𝛿𝑖 − 1, +∞) is estimated from the flows larger than 2
𝛿𝑖 − 2 in the

HH Flowset.

Entropy estimation: reporting entropy of flow sizes. Based on the

estimated flow size distribution, we can easily compute the entropy

as follows: −∑ (
𝑛𝑖 · 𝑖

𝑁
log

𝑖
𝑁

)
, where 𝑛𝑖 is the number of flows of

size 𝑖 , and 𝑁 =
∑(𝑖 · 𝑛𝑖).

4.3 Shifting Measurement Attention
A practical measurement system should pay attention to different

kinds of tasks for different network states. When there are only rare

packet losses in network, the system should pay more attention

to and allocate more memory for packet accumulation tasks. In

contrast, when there are lots of packet losses in network, the system

should pay more attention to and allocate more memory for packet

loss detection to help diagnose network faults.

Aiming at this target, ChameleMon decides to shift measurement

attention as network changes at run-time without recompilation.

Every time all the sketches monitoring the previous epoch are

collected, ChameleMon takes two phases to shift measurement

attention. First, the central controller monitors the real-time net-

work state, including the number and flow size distribution of flows

and victim flows, by analyzing the collected sketches. Second, the

central controller reconfigures the ChameleMon data plane accord-

ing to the real-time network state while maintaining high memory
utilization. The central controller not only reallocates memory of

the upstream and downstream encoders between their different

parts, but also adjusts the thresholds for flow classification and the

sample rate for sampling LL candidates. To avoid interference with

the monitoring of the current epoch, the reconfiguration will not

function immediately, but in the next epoch.

For ChameleMon, the network state could be clearly classified

into two levels: 1) healthy network state that ChameleMon can

allocate sufficient memory to monitor all victim flows; 2) ill net-

work state that ChameleMon cannot allocate sufficient memory

to monitor all victim flows, and thus must select HLs to monitor.

For each level of network state, ChameleMon behaves similarly in

shifting measurement attention, and we detail how it behaves in

this section.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

4.3.1 Healthy Network State.
Suppose the previouslymonitored network state is healthy, and now

the central controller starts to shift measurement attention. Cur-

rently, the LL encoders are not allocated any memory as Chamele-

Mon can monitor all victim flows, and 𝑇𝑙 must be 1 as no flows

should be classified into LL candidates. The memory allocation

between the upstream HH encoder and the upstream HL encoder

is flexible.

Monitoring real-time network state: The monitoring proceeds

as follows. First, for each edge switch, the central controller esti-

mates the number of flows and flow size distribution
2
as described

above (§ 4.2). Second, for each edge switch, the central controller

obtains the number of HH candidates by decoding the upstreamHH

encoder. After all decoding stops, if the decoding of any upstream

HH encoder fails, the central controller stops the monitoring as the

decoding of the delta HL encoder requires reinserting the decoded

HH candidates into the upstream HL encoders. Third, the central

controller obtains the number of HLs (equals to victim flows for

healthy network state) by decoding the delta HL encoder as de-

scribed above (§ 4.2). If the decoding fails, the central controller

estimates the number of HLs by applying linear-counting algorithm

to any bucket array of the delta HL encoder.

Reconfiguring ChameleMon data plane: The core idea of re-
configuration is to first ensure the successful decoding of FermatS-

ketches for supporting packet loss detection and heavy-hitter de-

tection, while maintaining high memory utilization. The reconfigu-

ration proceeds as follows.

Step 1: We focus on the successful decoding of the upstream HH

encoders as they are decoded first. For each edge switch, if the

decoding of the upstream HH encoder fails, the central controller

turns up 𝑇ℎ according to the number of flows and flow size distri-

bution, controlling the expected load factor
3
of the upstream HH

encoder at around 70%
4
, so as to maintain high memory utilization.

After turning up𝑇ℎ , the central controller stops the reconfiguration

as the decoding of the delta HL encoder cannot proceed.

Step 2: We focus on the successful decoding and high memory

utilization of the delta HL encoder. If the decoding of the delta HL

encoder fails, according to the estimated number of HLs, the central

controller estimates the required memory for 70% load factor. If the

maximum memory that the HL encoders can be allocated to, i.e.,
all the memory of the downstream flow encoder, cannot cover the

required memory, the healthy network state transitions to the ill

network state. In this case, the central controller 1) reallocates the

memory inside the upstream and downstream flow encoders as the

fixed allocation described in the ill network state (§ 4.3.2), 2) sets
𝑇𝑙 to 𝑇ℎ , and 3) adjusts the sample rate for 70% load factor of the

delta LL encoder assuming that each HL will be a LL. Otherwise,

the central controller just expands the HL encoders to the required

2
The estimation of flow size distribution using the MRAC algorithm typically takes

several seconds to perform multiple iterations. Therefore, we recommend either 1)

monitoring the flow size distribution over time intervals longer than epoch length or

2) reducing the number of iterations to support more real-time monitoring.

3
Load factor refers to the ratio of the number of recorded flows to the number of

buckets of FermatSketch. FermatSketch achieves the highest memory efficiency when

𝑑 is set to 3, that on average 1.23 buckets can record a flow and its size. Thus, the

maximum load factor of FermatSketch is around 81.3% = 1

1.23
.

4
Here, we decide not to pursue the maximum load factor for two reasons: 1) the po-

tential increase of HH candidates in the current epoch and 2) the inevitable estimation

error in linear-counting.

memory. If the decoding of the delta HL encoder succeeds and

its load factor is lower than 60%, the central controller tries to

compress the HL encoders to approach 70% load factor for high

memory utilization. Here, we reserve the minimum memory for the

HL encoders to handle the potential small burst of victim flows.

Step 3:After all the memory reallocation, we focus on the successful

decoding and highmemory utilization of the upstreamHH encoders.

For each edge switch, with the number of HH candidates and the

memory of the upstream HH encoder, the central controller further

estimates the expected load factor of the upstream HH encoder. if

the expected load factor of the upstream HH encoder is lower than

60% or larger than 70%, the central controller turns down or up 𝑇ℎ
to approach 70% load factor.

4.3.2 Ill Network State.
Suppose the previously monitored network state is ill, and now the

central controller starts to shift measurement attention. Currently,

all the HH, HL and LL encoders are allocated fixed memory, and

𝑇𝑙 must be larger than 1 to select HL candidates. Specifically, the

upstream HH encoder is compressed to the minimum memory,

which is the memory difference between the upstream flow encoder

and the downstream flow encoder.

Monitoring real-time network state: The monitoring proceeds

in a similar way to that of the healthy network state. In addition,

the central controller obtains the number of LLs by decoding the

delta LL encoder as described above (§ 4.2). If the decoding fails,

the central controller estimates the number of LLs by applying

linear-counting algorithm to the delta LL encoder, and then stops

the monitoring. If both decoding of the delta HL and LL encoders

succeeds, the central controller estimates the number and flow size

distribution of victim flows as follows. First, the central controller

samples the HLs with the same sampling method and rate as LLs.

Second, the central controller merges sampled HLs and sampled

LLs to obtain sampled victim flows. Third, the central controller

estimates the flow size distribution of victim flows through querying

the flow size of each sampled victim flow, and the number of victim

flows through dividing the number of sampled victim flows by

sample rate. If the decoding of the delta HL encoder fails, the central

controller regards the estimated flow size distribution of sampled

LLs, which is also estimated by querying flow sizes, as the flow size

distribution of victim flows.

Reconfiguring ChameleMon data plane: The core idea of re-
configuration is the same as that of the healthy network state. The

reconfiguration proceeds as follows.

Step 1: We focus on the successful decoding of the upstream HH

encoders, and the reconfiguration proceeds the same as the first step

of the healthy network state. In addition, we focus on the successful

decoding of the delta LL encoder. If the decoding of the delta LL

encoder fails, according to the estimated number of LLs, the central

controller adjusts the sample rate to make the delta LL encoder

approach 70% load factor, and then stops the reconfiguration.

Step 2:We focus on the successful decoding of the delta HL encoder.

If the decoding of the delta HL encoder fails, according to the

estimated flow size distribution of victim flows, assuming that each

victim flow larger than 𝑇𝑙 will be a HL, the central controller turns

up 𝑇𝑙 to make the delta HL encoder approach 70% load factor.

Step 3: we focus on the high memory utilization of the HL and LL

encoders. If both the decoding of the delta HL and LL encoders

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

succeeds, according to the estimated number of victim flows, the

central controller estimates the required memory for monitoring

all the victim flows with 70% load factor. If the downstream flow

encoder can cover the required memory, the ill network state transi-

tions to the healthy network state. In this case, the central controller

1) eliminates the LL encoders, 2) allocates the required memory

(at least the reserved minimum memory) to the HL encoders, and

3) sets 𝑇𝑙 to 1. If the downstream flow encoder cannot cover the

required memory, and the load factor of the delta HL encoder or

the delta LL encoder is lower than 60%, the central controller turns

up 𝑇𝑙 or the sample rate according to the estimated flow size distri-

bution of victim flows or the estimated number of LLs, respectively,

so as to approach 70% load factor.

Step 4:After all the memory reallocation, we focus on the successful

decoding and highmemory utilization of the upstreamHHencoders,

and the reconfiguration proceeds the same as the third step of the

healthy network state.

5 EVALUATION
We conduct various experiments on CPU platform and our testbed,

and focus on the following five key questions.

How much memory/time can ChameleMon save in packet
loss detection? (Figure 4-6) We implement FermatSketch and

its competitors in C++, and use CAIDA dataset [41] to evaluate

their memory and time overhead for packet loss detection on CPU

platform. Results show that FermatSketch can save memory in all

cases and time in most cases.

How accurately can ChameleMon support six packet accu-
mulation tasks? (Figure 11 in Appendix C)We implement the

combination of TowerSketch and FermatSketch and its competitors

in C++, and use CAIDA dataset to evaluate their accuracy for these

six tasks on CPU platform. Results show that the combination can

achieve at least comparable accuracy in all six tasks.

Can ChameleMon automatically shift measurement atten-
tion? (Figure 7-8) We generate workloads according to widely

used traffic distributions (e.g., DCTCP [42]) for evaluation. We use

the above workloads to evaluate ChameleMon by generating differ-

ent network states on our testbed. Results show that ChameleMon

can always automatically shift measurement attention as network

state changes at run-time, and maintains high memory utilization

in most cases.

How fast can ChameleMon shift measurement attention?
(Figure 9)We use the above workloads to evaluate ChameleMon

over a large time window, in which the network state changes

8 times. Results show that ChameleMon can shift measurement

attention within at most 3 epochs.

How fast can ChameleMon monitor the network? (Figure 20-
22 in Appendix F)We use the above workloads to evaluate various

factors that can affect the epoch length. Results show that Chamele-

Mon can monitor the network every 50ms on our testbed, using

only one CPU core and consuming only 320Mbps bandwidth. We

believe ChameleMon can easily scale to monitor a much larger

network in a faster manner.

5.1 Evaluation on Packet Loss Detection
Dataset:We use the anonymized IP traces collected in 2018 from

CAIDA [41] as dataset, and use the 32-bit source IP address as the

(a) Memory overhead. (b) Time overhead.

Figure 4: Memory/Time overhead vs. # victim flows.

(a) Memory overhead. (b) Time overhead.

Figure 5: Memory/Time overhead vs. packet loss rate.

flow ID. We use the first 100K flows containing 5.3M packets for

evaluation.

Setup:We set up a simulation with a simple topology consisting

of only a link on CPU platform. We compare FermatSketch with

FlowRadar [28] and LossRadar [24]. For FermatSketch, we set its

count field and ID field to 32bits, and the number of hash functions

to 3. For FlowRadar, we allocates 10% memory to the flow filter

and 90% memory to the counting table. For the flow filter, which is

actually a Bloom filter [43], we sets its number of hash functions to

10. For the counting table, we set its FlowXOR field, FlowCount field,

and PacketCount field to 32bits, and its number of hash functions

to 3. For LossRadar, we set its count field to 32bits, xorSum field to

48bits, and number of hash functions to 3. Here, the xorSum field

of LossRadar encodes a 32-bit flow ID as well as a 16-bit packet-

specific information that represents the order of a packet in a flow.

For each solution, we deploy it upstream and downstream of the

link to encode the packets entering and exiting the link.

Memory/Time overhead5 vs. number of victim flows (Figure
4): Experimental results show that the memory/time overhead of

FermatSketch is proportional to the number of victim flows. We

let the largest 10K flows pass through the link, among which a

part of flows are victim flows. The packet loss rate of victim flows

is set to 1%. As the number of victim flows increases, the mem-

ory/time overhead of FlowRadar remains unchanged, while that of

FermatSketch increases almost linearly. We find when the number

of victim flows exceeds 6000, the decoding time of FermatSketch

exceeds that of FlowRadar. This is because the decoding operation

of FermatSketch is more complex than FlowRadar. Compared to

FlowRadar/LossRadar, FermatSketch saves up to 15.9/23.2 times

memory and up to 3.0/4.6 times decoding time.

Memory/Time overhead vs. packet loss rate (Figure 5): Exper-
imental results show that the memory/time overhead of FermatS-

ketch is independent of the number of lost packets.We let the largest

10K flows pass through the link, among which the largest 100 flows

5
The memory overhead refers to the minimum memory required to achieve 99.9%

decoding success rate, and the time overhead refers to the corresponding decoding

time with the minimum memory.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

(a) Memory overhead. (b) Time overhead.

Figure 6: Memory/Time overhead vs. # flows.

are victim flows. As the packet loss rate of victim flows increases, the

memory/time overhead of FermatSketch and FlowRadar remains

unchanged, while that of LossRadar increases linearly. Compared

to FlowRadar/LossRadar, FermatSketch saves up to 276.1/6411.2

times memory and up to 64.5/1585.6 times decoding time.

Memory/Time overhead vs. number of flows (Figure 6): Ex-
perimental results show that the memory/time overhead of Fer-

matSketch is independent of the number of flows. We let a certain

number of flows pass through the link, among which the largest 100

flows are victim flows. The packet loss rate of victim flows is set to

1%. As the number of flows increases, the memory/time overhead

of FermatSketch and LossRadar remains unchanged, while that of

FlowRadar increases linearly. Compared to FlowRadar/LossRadar,

FermatSketch saves up to 1535.0/128.8 times memory and up to

821.3/23.7 times decoding time.

5.2 Evaluation on Testbed
Testbed setup: We have fully implemented a ChameleMon proto-

type on a testbed with a Fat-tree topology composed of 10 Tofino

switches and 8 servers, with 1400 lines of P4 [44] code and 2400 lines

of C/C++ code. Each server has 48 2.1GHz CPU cores, 256 GB RAM,

and a 40Gb Mellanox Connectx-3 Pro NIC. Switches and servers are

interconnected with 40Gb links. We deploy the ChameleMon data

plane on all four ToR/edge switches. An additional server linked

with a certain edge switch works as the central controller. For im-

plementation details of the ChameleMon data plane and control

plane, please refer to Appendix D.

Workloads:We generate workloads consisting of UDP flows ac-

cording to four widely used distribution: DCTCP [42], HADOOP

[45], VL2 [46] and CACHE [47]. We regard the distribution as

known input to ChameleMon. We use the 104-bit 5-tuple as the
flow ID. For each flow, We choose its source and destination IP

address uniformly, and therefore each server sends and receives al-

most the same number of flows. The packet sender and receiver are

integrated into a program written in DPDK [48]. To manually con-

trol packet losses, we let switches proactively drop packets whose

ECN fields are set to 1. In this way, we can flexibly specify any flow

as a victim flow and control its packet loss rate. To avoid packet

losses due to congestion, we set the size of every packet to 64 bytes

regardless of its original size, so as to significantly reduce the traffic

load in the network and eliminate congestion. Such operation does

not change the number of packets of each flow, and thus has no

impact on the behavior of ChameleMon.

Parameter settings: We set the epoch length to 50ms by default
6
.

For the flow classifier, we set it to consist of an 8-bit counter array

6
For some workloads that cannot run out in 50ms, we extend the epoch length

appropriately.

and a 16-bit counter array. We set the number of 8-bit counters𝑤1

to 32768 and the number of 16-bit counters 𝑤2 to 16384. For the

upstream flow encoder and downstream flow encoder, we set them

to consist of 3 bucket arrays for the highest memory efficiency. We

set the number of buckets per array of the upstream flow encoder

𝑚𝑢𝑓 to 4096, and that of the downstream flow encoder𝑚𝑑𝑓 to 3072.

For the healthy network state, we fix the minimum memory re-

served for HL encoders to a 3-array FermatSketch with 512 buckets

per array. For the ill network state, we fix the upstream HH, HL,

LL encoders to a 3-array FermatSketch with 1024, 2560, and 512

buckets per array, respectively. The resource usage of ChameleMon

is shown in Table 1. Please refer to Appendix D.1 for more details.

Table 1: Resources used by ChameleMon in Tofino.
Resource Usage Percentage
Exact Match Input xbar 353 22.98%

Ternary Match Input xbar 33 4.17%

VLIW Instructions 43 11.20%

Map RAM 102 17.71%

SRAM 130 13.54%

TCAM 8 2.78%

Hash Bits 809 16.21%

Stateful ALU 32 66.67%

First, on DCTCP workload, we evaluate whether ChameleMon

can automatically shift measurement attention for different network

states
7
. For experimental results on the other three workloads,

please refer to Appendix E.

Measurement attention vs. number of flows (Figure 7): Ex-
perimental results show that ChameleMon can automatically shift

measurement attention to packet loss detection while maintaining

high memory utilization, as the number of flows increases and the

number of victim flows increases. We vary the number of flows in

the network from 10K to 100K, and fix the ratio of victim flows to

10%. At first, the network state is healthy. As the number of flows

increases from 10K to 20K, ChameleMon can record all flows and

victim flows, and therefore sets both 𝑇ℎ and 𝑇𝑙 to 1. As the number

of flows increases from 30K to 70K, ChameleMon records all victim

flows by allocating more and more memory to HL encoders. How-

ever, ChameleMon cannot record all flows, and thus increases 𝑇ℎ
to decrease the number of HH candidates. As the number of flows

increases from 80K to 100K, ChameleMon cannot record all victim

flows, and thus the network state transitions to the ill network state.

ChameleMon allocates fixed memory to LL encoders, increases 𝑇𝑙 ,

and decreases the sample rate, so as to control the number of HLs

and sampled LLs. Meanwhile, ChameleMon keeps increasing 𝑇ℎ to

control the number of HH candidates. Throughout the experiment,

ChameleMon maintains high memory utilization. The sum of de-

coded flows (Figure 7(b)) always exceeds 8K unless ChameleMon

can record all flows and victim flows, representing a load factor

larger than 65% given that the upstream flow encoder has 12288

buckets. It is acceptable considering that the target load factor of

ChameleMon is 70% and maximum load factor is
1

1.23 = 81.3%.

Measurement attention vs. ratio of victim flows (Figure 8): Ex-
perimental results show that ChameleMon can automatically shift

measurement attention to packet loss detection while maintaining

7
For each data point of Figure 7-8, we collect it after ChameleMon successfully shifts

measurement attention and the configuration of the ChameleMon data plane is stable.

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 7: Measurement attention vs. number of flows. Figure 7(a) depicts the memory division of HH encoder (HHE), HL
encoder (HLE), and LL encoder (LLE) inside the upstream flow encoder. Figure 7(b) depicts the number of HH candidates of an
edge switch, the number of HLs in the network, and the number of sampled LLs in the network.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 8: Measurement attention vs. ratio of victim flows.

high memory utilization, as the ratio of victim flows increases and

the number of victim flows increases. We fix the number of flows

to 50K, and vary the ratio of victim flows from 2.5% to 25%. At first,

the network state is healthy. As the ratio of victim flows increases

from 2.5% to 12.5%, ChameleMon records all victim flows by allo-

cating more and more memory to HL encoders, and increases 𝑇ℎ
to decrease the number of HH candidates. As the ratio of victim

flows increases from 15% to 25%, ChameleMon cannot record all

victim flows, and thus the network state transitions to the ill net-

work state. ChameleMon allocates fixed memory to LL encoders,

increases𝑇𝑙 , and decreases the sample rate, so as to control the num-

ber of HLs and sampled LLs. Meanwhile, because the memory of

upstream HH encoder and the number of flows remain unchanged,

𝑇ℎ also remains unchanged. Throughout the experiment, Chamele-

Mon maintains high memory utilization. The sum of decoded flows

(Figure 8(b)) always exceeds 8K, representing a load factor larger

than 65%. It is acceptable considering that the target load factor of

ChameleMon is 70% and maximum load factor is 81.3%.

Second, on DCTCPworkload, we evaluate how fast can Chamele-

Mon shift measurement attention over a large time window, in

which the network state changes 8 times.

Measurement attention vs. epoch (Figure 9): Experimental

results show that ChameleMon can shift measurement attention

within at most 3 epochs. Figure 9 plots the shift of measurement at-

tention in a large time window consisting of 45 consecutive epochs.

We change the network state (either the number of flows or the vic-

tim flow ratio) every 5 epochs, and the detailed settings are shown

in the top sub-figure. Overall, the network state first degrades from

the healthy network state to the ill network state, and then im-

proves back to the healthy network state. For the eight changes,

ChameleMon shifts measurement attention within 1 (6->7), 2 (11-

>13), 3 (16->19), 2 (21->23), 2 (26->28), 1 (31->32), 1 (36->37), and 1

(41->42) epochs, respectively.

Figure 9: Measurement attention vs. epoch.
To evaluate how fast can ChameleMon monitor the network,

we evaluate various factors that could affect the setting of epoch

length: 1) the time and bandwidth required to collect sketches from

edge switches, 2) the time required to respond to different network

states, and 3) the time required to reconfigure the ChameleMon

data plane. We detail the corresponding experimental results in

Appendix F. In summary, we find that ChameleMon can monitor

the network every 50ms with only one CPU core while consuming

only 0.8% bandwidth of a 40Gb NIC. Thus, we believe ChameleMon

can easily scale to monitor a much larger network with a shorter

epoch length, requiring only one server as the central controller.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

6 RELATEDWORK
First, we discuss prior art for packet loss tasks and packet accumu-

lation tasks. Then, we discuss prior art for resource management

on switches.

Prior art for packet loss tasks: They can be classified into two

kinds of solutions. The first kind is algorithm-oriented solutions,

including LossRadar [24] based on Invertible Bloom filter (IBF) [25].

LossRadar can pinpoint the location of every lost packet and infer

the root causes of packet losses by deploying IBF to monitor every

link in the network. The second kind is system-oriented solutions,

including Netseer [26], PacketScope [49] and Dapper [27] that are

based on programmable switches. Among them, Netseer utilizes

the programmable data plane to detect both intra-switch and inter-

switch packet losses, associate packet losses with direct causes,

and batch lost packets to further reduce bandwidth overhead. Both

the above kinds of solutions are designed for only obtaining the

exact difference set of flows/packets. Therefore, they fail to meet

versatility requirement as they can hardly be extended to packet

accumulation tasks that require approximate flow sizes of all flows

or simply large flows.

Prior art for packet accumulation tasks: They can be classified

into two kinds of solutions. The first kind is sketches designed for

specific packet accumulation task, including HashPipe [22], R-HHH

[50], and more [51–54]. Among them, HashPipe designs a multi-

stage data structure and kicks out small flows through comparison.

The second kind is sketches that support many packet accumula-

tion tasks, including UnivMon [18], ElasticSketch [15], CocoSketch

[20], and more [4, 16, 17, 19, 21, 55, 56]. Among them, CocoSketch

proposes a key technique, namely stochastic variance minimization

technique, to provide unbiased estimation for arbitrary partial key.

Both the above kinds of solutions choose to embrace hash collisions

and provide approximate flow sizes for higher memory efficiency.

Therefore, they fail to meet versatility requirement as they can

hardly be extended to packet loss tasks that require exact difference

set of flows/packets.

Prior art for both kinds of tasks: These solutions record the IDs

and sizes of all flows in a zero-error manner. Typical solutions in-

clude FlowRadar [28], OmniMon [29], Counter Braids [30], Marple

[31], and more [57]. Among them, FlowRadar encodes the IDs and

sizes of all flows into a variant of IBLT [35] in switches, and then

executes well-designed decoding schemes to retrieve exact flow

IDs and sizes. Marple designs a query language for a wide range

of network measurement tasks, which relies on the programmable

key-value store in switch hardware. Marple requires an additional

backing store to handle evicted flows. These solutions fail to meet

efficiency requirement as they record the exact IDs and sizes of

all flows, incurring memory/bandwidth overhead linear with the

number of flows. Besides, INT-based solutions that carry desired

statistics in packet headers can potentially support both tasks given

packet-level visibility. Typical solutions include INT [38], PINT [58],

NetSight [9], and more [32, 59–62]. However, INT-based solutions

suffer from granularity-cost trade-off, and thus fail to meet either

versatility requirement or efficiency requirement.

Prior art for resourcemanagement:Due to the limited resources

in hardware such as programmable switches, many solutions focus

on resource management in measurement. Some solutions [63–

65] target at compile-time resource management. Among them,

HeteroSketch [65] optimizes network-wide measurement by auto-

matically optimizing the placement of sketches on heterogeneous

devices. These solutions differ from ChameleMon as ChameleMon

executes memory reallocation at run-time. Other solutions focus on

run-time resource management [31, 66–70]. Among them, FlyMon

[67] achieves run-time reconfiguration of measurement tasks and

resources. However, these solutions does not focus on the resource

management between packet loss tasks and packet accumulation

tasks, which is our main focus.

Here, we further discuss other prior art relevant to network

measurement.

Sampling-based solutions: These solutions collect desired sta-

tistics from a subset of network traffic through packet sampling,

including Csamp [14], NetFlow [12], sFlow [13], EverFlow [11], and

more [45, 71–78]. While sampling solutions significantly reduce the

bandwidth overhead through sampling, they cannot well handle

packet loss tasks as only sampled packets are measured, and thus

fail to meet versatility requirement.

Programmable-switch-assisted solutions: Besides packet loss
detection, some solutions leverage the advanced features and ca-

pabilities of programmable switches to monitor micro-bursts [79],

perform queue measurement [80–82], and more [83–86].

Host-based solutions: Due to the flexibility, abundant resources,

and high visibility to flow-level statistics of end-hosts, these so-

lutions are typically designed for inferring the existences, loca-

tions, and root causes of specific network events or network fail-

ures. Typical solutions either send tailored probes into the net-

work [10, 87–93] or analyze the performance of protocol stack

or other I/O [94–103]. Besides, some solutions further leverage

switches to perform measurement [104, 105] or record forwarding

paths [106, 107]. ChameleMon can complement these solutions

as ChameleMon provides flow-level statistics with high accuracy.

Take 007 [102] as an instance. Network operators can replace the

TCP monitoring agent that detects TCP retransmissions in 007 with

ChameleMon. After the replacement, 007 can monitor packet losses

of TCP flows as well as packet losses of flows of other protocols.

Such extra visibility can help 007 better locate the link failures.

7 CONCLUSION
In this paper, we present ChameleMon, which can automatically

shift measurement attention as network state changes at run-time.

To achieve this, ChameleMon designs FermatSketch to support both

packet loss tasks and packet accumulation tasks simultaneously.

We have fully implemented a ChameleMon prototype on a testbed

consisting of 10 Tofino switches and 8 end-hosts. Experimental

results on our testbed verify that 1) ChameleMon can achieve high

accuracy in packet loss detection and six packet accumulation tasks;

2) ChameleMon can monitor the network every 50ms and shift

measurement attention within at most 3 epochs as network state

changes.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their valuable

suggestions that helped improve the paper. This work is supported

by National Key R&D Program of China (No. 2022YFB2901504),

and National Natural Science Foundation of China (NSFC) (No.

U20A20179).

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte:

Fine grained traffic engineering for data centers. In Proceedings of the seventh
conference on emerging networking experiments and technologies, pages 1–12,
2011.

[2] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rex-

ford, and Fred True. Deriving traffic demands for operational ip networks:

Methodology and experience. IEEE/ACM Transactions On Networking, 9(3):265–
279, 2001.

[3] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc: High

precision congestion control. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 44–58. 2019.

[4] Cristian Estan and George Varghese. New directions in traffic measurement and

accounting: Focusing on the elephants, ignoring the mice. ACM Transactions on
Computer Systems (TOCS), 21(3):270–313, 2003.

[5] Ying Zhang. An adaptive flow counting method for anomaly detection in sdn.

In Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies, pages 25–30, 2013.

[6] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is

sampled data sufficient for anomaly detection? In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages 165–176, 2006.

[7] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a better

netflow. ACM SIGCOMM Computer Communication Review, 34(4):245–256, 2004.
[8] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow distributions

from sampled flow statistics. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
325–336, 2003.

[9] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. I know what your packet did last hop: Using packet histories

to troubleshoot networks. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 71–85, 2014.

[10] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,

Dongming Bi, and Dong Xiang. Netbouncer: Active device and link failure

localization in data center networks. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages 599–614, 2019.

[11] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,

Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry

in large datacenter networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 479–491, 2015.

[12] Benoit Claise, Ganesh Sadasivan, Vamsi Valluri, and Martin Djernaes. Cisco

systems netflow services export version 9. 2004.

[13] Peter Phaal, Sonia Panchen, and Neil McKee. Rfc3176: Inmon corporation’s

sflow: A method for monitoring traffic in switched and routed networks, 2001.

[14] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kom-

pella, and David G Andersen. csamp: A system for network-wide flow monitor-

ing. 2008.

[15] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 561–575, 2018.

[16] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based

monitoring in software switches. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 334–350. 2019.

[17] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: relieving user

burdens in approximate measurement with automated statistical inference. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 576–590, 2018.

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. One sketch to rule them all: Rethinking network flow monitoring

with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
101–114, 2016.

[19] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beau-

coup: Answering many network traffic queries, one memory update at a time.

In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication, pages 226–239, 2020.

[20] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao,

Peng Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: high-performance

sketch-based measurement over arbitrary partial key query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 207–222, 2021.

[21] GrahamCormode and ShanMuthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[22] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-

ishnan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane.

In Proceedings of the Symposium on SDN Research, pages 164–176, 2017.
[23] Yu Gu, Andrew McCallum, and Don Towsley. Detecting anomalies in network

traffic using maximum entropy estimation. In Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, pages 32–32, 2005.

[24] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast detection

of lost packets in data center networks. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies, pages
481–495, 2016.

[25] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. What’s

the difference?: efficient set reconciliation without prior context. ACM SIG-
COMM Computer Communication Review, 41(4):218–229, 2011.

[26] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong

Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. Flow event telemetry on

programmable data plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 76–89, 2020.

[27] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data plane

performance diagnosis of tcp. In Proceedings of the Symposium on SDN Research,
pages 61–74, 2017.

[28] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better

netflow for data centers. In 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), pages 311–324, 2016.

[29] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.

Omnimon: Re-architecting network telemetry with resource efficiency and full

accuracy. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 404–421, 2020.

[30] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul

Kabbani. Counter braids: a novel counter architecture for per-flowmeasurement.

ACM SIGMETRICS Performance Evaluation Review, 36(1):121–132, 2008.
[31] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.

Language-directed hardware design for network performance monitoring. In

Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, pages 85–98, 2017.

[32] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Tong

Zhao, Zhengyi Jia, Yongqiang Yang, et al. Sketchint: Empowering int with tow-

ersketch for per-flow per-switch measurement. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP), pages 1–12. IEEE, 2021.

[33] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and

Mun Choon Chan. Fcm-sketch: generic network measurements with data

plane support. In Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies, pages 78–92, 2020.

[34] Source code of ChameleMon. https://github.com/ChameleMoncode/

ChameleMon.

[35] Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup

tables. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 792–799. IEEE, 2011.

[36] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Monta-

nari, Rasmus Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via

xorsat. In International Colloquium on Automata, Languages, and Programming,
pages 213–225. Springer, 2010.

[37] MichaelMolloy. The pure literal rule threshold and cores in randomhypergraphs.

2004.

[38] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,

and Lawrence J Wobker. In-band network telemetry via programmable data-

planes. In SIGCOMM, 2015.

[39] Kyu-YoungWhang, Brad T Vander-Zanden, and HowardM Taylor. A linear-time

probabilistic counting algorithm for database applications. ACM Transactions
on Database Systems (TODS), 15(2):208–229, 1990.

[40] Abhishek Kumar, Minho Sung, Jun Xu, and JiaWang. Data streaming algorithms

for efficient and accurate estimation of flow size distribution. ACM SIGMETRICS
Performance Evaluation Review, 32(1):177–188, 2004.

[41] The CAIDA Anonymized Internet Traces. http://www.caida.org/data/

overview/.

[42] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data

center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 conference, pages
63–74, 2010.

[43] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[44] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.

P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[45] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

Inside the social network’s (datacenter) network. In Proceedings of the 2015 ACM

https://github.com/ChameleMoncode/ChameleMon
https://github.com/ChameleMoncode/ChameleMon
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

Conference on Special Interest Group on Data Communication, pages 123–137,
2015.

[46] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta

Sengupta. Vl2: A scalable and flexible data center network. In Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, pages 51–62, 2009.

[47] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international conference on Measurement and
Modeling of Computer Systems, pages 53–64, 2012.

[48] Data plane development kit. https://www.dpdk.org/.

[49] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford. Packetscope:

Monitoring the packet lifecycle inside a switch. In Proceedings of the Symposium
on SDN Research, pages 76–82, 2020.

[50] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and Erez Wais-

bard. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, pages
127–140, 2017.

[51] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters

in streams and sliding windows. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9. IEEE, 2016.

[52] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Efficient

measurement on programmable switches using probabilistic recirculation. In

2018 IEEE 26th International Conference on Network Protocols (ICNP), pages 313–
323. IEEE, 2018.

[53] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang

Chen, and Xiaoming Li. Heavykeeper: An accurate algorithm for finding top-𝑘

elephant flows. IEEE/ACM Transactions on Networking, 27(5):1845–1858, 2019.
[54] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible

sketches for efficient and accurate change detection over network data streams.

In Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 207–212, 2004.

[55] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and

Gong Zhang. Sketchvisor: Robust network measurement for software packet

processing. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 113–126, 2017.

[56] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent

items in data streams. In International Colloquium on Automata, Languages, and
Programming, pages 693–703. Springer, 2002.

[57] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei

Xu, and Gong Zhang. Toward {Nearly-Zero-Error} sketching via compres-

sive sensing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 1027–1044, 2021.

[58] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,

Minian Yu, and Michael Mitzenmacher. Pint: Probabilistic in-band network

telemetry. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 662–680, 2020.

[59] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian

Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al. {LightGuardian}: A {Full-
Visibility}, lightweight, in-band telemetry system using sketchlets. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21),
pages 991–1010, 2021.

[60] Siyuan Sheng, Qun Huang, and Patrick PC Lee. Deltaint: Toward general in-

band network telemetry with extremely low bandwidth overhead. In 2021 IEEE
29th International Conference on Network Protocols (ICNP), pages 1–11. IEEE,
2021.

[61] Tal Mizrahi, Gidi Navon, Giuseppe Fioccola, Mauro Cociglio, Mach Chen, and

Greg Mirsky. Am-pm: Efficient network telemetry using alternate marking.

IEEE Network, 33(4):155–161, 2019.
[62] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M

Smith. Scaling hardware accelerated network monitoring to concurrent and

dynamic queries with* flow. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 823–835, 2018.

[63] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,

and David Walker. Modular switch programming under resource constraints.

In USENIX NSDI, pages 1–15, 2022.
[64] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement

with opensketch. In 10th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13), pages 29–42, 2013.

[65] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. {HeteroSketch}: Coor-
dinating network-wide monitoring in heterogeneous and dynamic networks.

In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 719–741, 2022.

[66] Chris Misa, Walt O’Connor, Ramakrishnan Durairajan, Reza Rejaie, and Walter

Willinger. Dynamic scheduling of approximate telemetry queries. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22),
pages 701–717, 2022.

[67] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang,

Wanchun Dou, and Guihai Chen. Flymon: enabling on-the-fly task reconfigu-

ration for network measurement. In Proceedings of the ACM SIGCOMM 2022
Conference, pages 486–502, 2022.

[68] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford,

and Walter Willinger. Sonata: Query-driven streaming network telemetry. In

Proceedings of the 2018 conference of the ACM special interest group on data
communication, pages 357–371, 2018.

[69] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Dream:

dynamic resource allocation for software-defined measurement. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages 419–430, 2014.

[70] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Scream:

Sketch resource allocation for software-defined measurement. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies,
pages 1–13, 2015.

[71] Chris Hare. Simple network management protocol (snmp)., 2011.

[72] Nick G Duffield and Matthias Grossglauser. Trajectory sampling for direct

traffic observation. IEEE/ACM transactions on networking, 9(3):280–292, 2001.
[73] Vyas Sekar, Michael K Reiter, and Hui Zhang. Revisiting the case for a mini-

malist approach for network flow monitoring. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pages 328–341, 2010.

[74] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes Felter, and John Carter.

Opensample: A low-latency, sampling-based measurement platform for com-

modity sdn. In 2014 IEEE 34th International Conference on Distributed Computing
Systems, pages 228–237. IEEE, 2014.

[75] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mis-

love. A large-scale analysis of deployed traffic differentiation practices. In

Proceedings of the ACM Special Interest Group on Data Communication, pages
130–144. 2019.

[76] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,Wes Felter, Kanak Agarwal,

John Carter, and Rodrigo Fonseca. Planck: Millisecond-scale monitoring and

control for commodity networks. ACM SIGCOMM Computer Communication
Review, 44(4):407–418, 2014.

[77] Pavlos Nikolopoulos, Christos Pappas, Katerina Argyraki, and Adrian Perrig.

Retroactive packet sampling for traffic receipts. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 3(1):1–39, 2019.

[78] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,

and Lihua Yuan. {dShark}: A general, easy to program and scalable framework

for analyzing in-network packet traces. In 16th USENIX Symposium onNetworked
Systems Design and Implementation (NSDI 19), pages 207–220, 2019.

[79] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo.

Burstradar: Practical real-time microburst monitoring for datacenter networks.

In Proceedings of the 9th Asia-Pacific Workshop on Systems, pages 1–8, 2018.
[80] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-

ich, Steven A Monetti, and Tzuu-Yi Wang. Fine-grained queue measurement in

the data plane. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 15–29, 2019.

[81] Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. Printqueue: perfor-

mance diagnosis via queue measurement in the data plane. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 516–529, 2022.

[82] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. Turboflow:

Information rich flow record generation on commodity switches. In Proceedings
of the Thirteenth EuroSys Conference, pages 1–16, 2018.

[83] Abir Laraba, Jérôme François, Shihabur Rahman Chowdhury, Isabelle Chrisment,

and Raouf Boutaba. Mitigating tcp protocol misuse with programmable data

planes. IEEE Transactions on Network and Service Management, 18(1):760–774,
2021.

[84] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana, Ang Chen, and TS Eu-

gene Ng. Closed-loop network performance monitoring and diagnosis with

{SpiderMon}. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 267–285, 2022.

[85] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. Fast in-network

gray failure detection for isps. In Proceedings of the ACM SIGCOMM 2022
Conference, pages 677–692, 2022.

[86] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,

Stefano Vissicchio, and Laurent Vanbever. Blink: Fast connectivity recovery

entirely in the data plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 161–176, 2019.

[87] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave

Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A large-

scale system for data center network latency measurement and analysis. In

Proceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication, pages 139–152, 2015.

[88] Amogh Dhamdhere, David D Clark, Alexander Gamero-Garrido, Matthew

Luckie, Ricky KP Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C

Snoeren, and Kc Claffy. Inferring persistent interdomain congestion. In Pro-
ceedings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication, pages 1–15, 2018.

https://www.dpdk.org/

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

[89] Aijay Adams, Petr Lapukhov, and J Hongyi Zeng. Netnorad: Troubleshooting

networks via end-to-end probing. Facebook White Paper, 2016.
[90] François Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong, Yves Dev-

ille, and Olivier Bonaventure. Scmon: Leveraging segment routing to improve

network monitoring. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[91] Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and Christophe

Diot. Netdiagnoser: Troubleshooting network unreachabilities using end-to-end

probes and routing data. In Proceedings of the 2007 ACM CoNEXT conference,
pages 1–12, 2007.

[92] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo, Chengchen Hu, and

Zongpeng Li. {deTector}: a topology-aware monitoring system for data center

networks. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages
55–68, 2017.

[93] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-

blum, and Amin Vahdat. {SIMON}: A simple and scalable method for sensing,

inference and measurement in data center networks. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 19), pages
549–564, 2019.

[94] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. Passive realtime

datacenter fault detection and localization. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 595–612, 2017.

[95] David R Choffnes, Fabián E Bustamante, and Zihui Ge. Crowdsourcing service-

level network event monitoring. In Proceedings of the ACM SIGCOMM 2010
Conference, pages 387–398, 2010.

[96] Radhika Niranjan Mysore, Ratul Mahajan, Amin Vahdat, and George Varghese.

Gestalt: Fast,{Unified} fault localization for networked systems. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages 255–267, 2014.

[97] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet:

Timely and precise triggers in data centers. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 129–143, 2016.

[98] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff Outhred.

Taking the blame game out of data centers operations with netpoirot. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference, pages 440–453, 2016.

[99] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Confluo: Distributed

monitoring and diagnosis stack for high-speed networks. In 16th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 19), pages
421–436, 2019.

[100] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno: Diagnosing performance

problems with temporal provenance. In 16th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 19), pages 395–420, 2019.

[101] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau

Loo. Quantitative network monitoring with netqre. In Proceedings of the
conference of the ACM special interest group on data communication, pages 99–
112, 2017.

[102] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu,

Jitu Padhye, Boon Thau Loo, and Geoff Outhred. 007: Democratically finding

the cause of packet drops. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pages 419–435, 2018.

[103] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh, and Minlan Yu. Microscope:

Queue-based performance diagnosis for network functions. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for computer
communication, pages 390–403, 2020.

[104] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,

and David Mazières. Millions of little minions: Using packets for low latency

network programming and visibility. ACM SIGCOMM Computer Communication
Review, 44(4):3–14, 2014.

[105] Xuemei Liu, Meral Shirazipour, Minlan Yu, and Ying Zhang. Mozart: Temporal

coordination of measurement. In Proceedings of the Symposium on SDN Research,
pages 1–12, 2016.

[106] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Simplifying datacenter

network debugging with {PathDump}. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 233–248, 2016.

[107] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network

monitoring and debugging with {SwitchPointer}. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 453–456,
2018.

[108] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei

Cui. Congestion control for cross-datacenter networks. In 2019 IEEE 27th
International Conference on Network Protocols (ICNP), pages 1–12. IEEE, 2019.

[109] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms for

estimating point queries in nlp. In Proceedings of the 2012 joint conference on
empirical methods in natural language processing and computational natural
language learning, pages 1093–1103, 2012.

[110] David L Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on communications, 39(10):1482–1493, 1991.

[111] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-

blum, and Amin Vahdat. Exploiting a natural network effect for scalable, fine-

grained clock synchronization. In 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), pages 81–94, 2018.

[112] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. Precise time-

synchronization in the data-plane using programmable switching asics. In

Proceedings of the 2019 ACM Symposium on SDN Research, pages 8–20, 2019.
[113] Barefoot p4 studio. ttps://www.barefootnetworks.com/products/brief-p4-

studio.

[114] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, and Peter Steenkiste.

Telemetry retrieval inaccuracy in programmable switches: Analysis and recom-

mendations. In Proceedings of the ACM SIGCOMM Symposium on SDN Research
(SOSR), pages 176–182, 2021.

ttps://www.barefootnetworks.com/products/brief-p4- studio
ttps://www.barefootnetworks.com/products/brief-p4- studio

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

APPENDIX
Appendices are supporting material that has not been peer-

reviewed.

A THE FERMATSKETCH ALGORITHM
A.1 Proof of Theorem A.1

Theorem A.1. Let FermatSketch consists of 𝑑 bucket arrays, each
of which consists of 𝑚 buckets. Let 𝑀 be the number of flows in-
serted into that FermatSketch. Suppose 𝑚𝑑 > 𝑐𝑑𝑀 + 𝜖 and 𝑀 =

𝛺 (𝑑4𝑑𝑙𝑜𝑔𝑑 (𝑚𝑑)). the decoding of FermatSketch fails with probabil-
ity 𝑂 (1

𝑀𝑑−2), where both 𝜖 and 𝑐𝑑 are small constants,

𝑐𝑑 =

(
𝑠𝑢𝑝

{
𝛼

���𝛼 ∈ (0, 1),∀𝑥 ∈ (0, 1), 1 − 𝑒−𝑑𝛼𝑥𝑑−1 })−1
For example, 𝑐3 = 1.23, 𝑐4 = 1.30, 𝑐5 = 1.43.

Proof. This is an analysis based on the theory of the 2-core in

random hypergraph [36, 37] and IBLT. Compared with 2-core or

IBLT, we only introduce a kind of additional error, which is the

false positives when we use pure bucket verification to verify the

pure buckets. The IBLT assumes there is no error when verifying

buckets because IBLT uses additional hashkeySum field that can be

long enough. The results of 2-core and IBLT show that the failure

probability without wrong verification is𝑂 (1

𝑀𝑑−2). Here we aim at

proving that the consequences of our false positives are negligible

when𝑀 is not too small.

In the decoding procedure, the pure bucket verification runs

at most 𝑂 (𝑀𝑑) times, and the false positive rate is 𝑂 (1𝑚) with
only rehashing verification. By Chernoff bound, when 𝑀 = 𝑂 (𝑚𝑑)
and 𝛿 = 𝑂 (1

𝑀𝑑−2), the number of false positives will not exceed

𝐹 = 𝑂 (𝑑3𝑙𝑜𝑔(𝑚𝑑)) in most cases (i.e., 1 − 𝑂 (𝛿)). A false positive

will incur a wrong flow ID with a wrong single flow deletion that

influences 𝑑 buckets. There is at most 𝐹𝑑 buckets can be influ-

enced, called poisoned buckets. The existing study [35] of poi-

soned bucket shows that a small number of poisoned buckets will

be automatically recovered, and the probability of failure due to

poisoned bucket is 𝑂 (
(
𝐹𝑑
𝑀

)𝑑
) = 𝑂 (𝑑

4𝑑 𝑙𝑜𝑔𝑑 (𝑚𝑑)
𝑀 (𝑑−1)

). When it satis-

fies that 𝑀 = 𝛺 (𝑑4𝑑𝑙𝑜𝑔𝑑 (𝑚𝑑)), the overall failure probability is

𝛿 = 𝑂 (1

𝑀𝑑−2). In practice, 𝑀 = 𝛺 (𝑑4𝑑𝑙𝑜𝑔𝑑 (𝑚𝑑)) is easy to meet

because 𝑀 is large and 𝑑 is a small constant. Here, we only use

rehashing verification for pure bucket verification. The theorem can

also be easily extended if we further use fingerprint verification. □

A.2 Fingerprint Verification
To reduce the false positive rate of pure bucket verification, we can

perform an extra verification method, namely fingerprint verifica-
tion, by extending the IDsum field in each bucket by 𝑤 bits and

using the extra𝑤 bits as a fingerprint. For each incoming packet

with flow ID 𝑓 , a new hash function ℎ𝑓 𝑝 (·) gives it a𝑤-bit finger-

print ℎ𝑓 𝑝 (𝑓) for checking whether a bucket is pure. For encoding
operation, instead of inserting flow ID 𝑓 , we insert an extended ID

concatenated by flow ID 𝑓 and fingerprintℎ𝑓 𝑝 (𝑓), and the extended
IDsum field stores the result of the sum of the extended IDs modulo

prime 𝑝 . Note that 𝑝 must be a prime larger than any available

extended ID. For decoding operation, obviously, we can still per-

form rehashing verification with the extended ID. Our fingerprint

(a) Same number of buckets per flow. (b) Same memory per flow.

Figure 10: Experiments on 8-bit fingerprints. We use the
anonymized IP traces collected in 2018 from CAIDA [41]
as dataset. We use the 32-bit source IP address as the flow
ID, and choose the first 10K flows for experiments. Here, fp
represents 8-bit fingerprint.

verification works as follows. Suppose a bucket is pure. First, we

reuse the the extended ID of the single flow calculated in rehashing

verification. Then, we divide the extended ID to get the flow ID and

its fingerprint. If the divided fingerprint equals to the fingerprint

of the divided flow ID, we consider the bucket passes fingerprint

verification. Only buckets pass both rehashing and fingerprint veri-

fication will be considered as pure. The false positive rate of only

fingerprint verification is obviously
1

2
𝑤 . Considering that rehashing

verification and fingerprint verification are independent, the false

positive rate of pure bucket verification could be reduced to
1

2
𝑤𝑚

with𝑤-bit fingerprint.

We conduct experiments to demonstrate the effect of 8-bit finger-

print on improving the decoding success rate. As shown in Figure

10(a), when the number of flows is 1K, with the same number of

buckets, 8-bit fingerprint can improve the decoding success rate

by at most 6.73%. However, when the number of flows is 10K, the

improvement falls to at most 2.26%. This is because as the number

of buckets increases,𝑚 increases, and the false positive rate of pure

bucket verification quickly drops, and thus further reducing the

false positive rate with fingerprint yields less improvement on the

decoding success rate. As shown in Figure 10(b), under the same

memory usage, 8-bit fingerprint actually reduces the decoding suc-

cess rate. This is because fingerprint consumes additional memory,

while this memory could be used as buckets to reduce the probabil-

ity of 2-core of the random hypergraph and improve the decoding

success rate. Figure 10(a)-(b) also demonstrate that the memory

overhead of FermatSketch is proportional to the number of inserted

flows.

In summary, for simplicity and accuracy, we recommend imple-

menting FermatSketch without fingerprints in most cases. Only if

there is some memory that can hardly be utilized due to hardware

constraints unless used as fingerprints, we recommend implement-

ing FermatSketch with fingerprints.

B COLLECTION FROM DATA PLANE
Timeline split: For each edge switch, we maintain a 1-bit times-

tamp in its ingress, which is periodically flipped by the switch

control plane, so as to split the timeline into consecutive fixed-

length epochs with interleaved 0/1 timestamp value. Further, we

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

copy an additional group of sketches in the switch data plane for ro-

tation. Each group of sketches corresponds to a distinct timestamp

value (0/1), and monitors the epochs with that timestamp value.

Specifically, at each edge switch, every packet entering the network

first obtains the current timestamp value, and then is inserted into

the flow classifier and upstream flow encoder corresponding to the

obtained timestamp value. When the packet exits the network, it is

also inserted into the downstream flow encoder corresponding to

the timestamp value it obtained when it entered the network. To

maintain the timestamp value during the packet transmission, we

can use one unused bit in the original packet header as discussed

above (§ 3.2.3).
Clock synchronization: Through maintaining a 1-bit timestamp

and copying a group of sketches, we successfully split the time-

line and insert packets of different epochs to their corresponding

groups of sketches, laying a solid foundation for subsequent collec-

tion. However, if the clocks of the control planes of edge switches

are out of synchronization to some extent, we still can not find

opportunities to collect the sketches without colliding with packet

insertion. Considering such an extreme situation. There are three

edge switches in a given network, and the transmission time be-

tween any two edge switches is the same. The time offset between

the control planes of two of the edge switches is exactly the size

of the epoch, i.e., at any time, the flipping timestamps of the two

edge switches are different (0<->1). There are continuous packets

entering the network at the above two edge switches, and exiting

the network at the third switch. As a result, both groups of sketches

of the third switch are continuously inserted, and thus can never be

collected. To address this issue, the central controller synchronizes

the clocks of the control planes of all edge switches with itself,

trying to keep only a group of sketches being inserted at any time,

so as to make opportunities to collect the other group.

Then, we further discuss the appropriate time for the central

controller to collect sketches.

Appropriate time for collection: The central controller also

maintains a 1-bit timestamp, trying to collect the group of sketches

monitoring the previous epoch after it ends. Before collection, the

central controller should ensure that all the packets in the previ-

ous epoch have been inserted into sketches or lost in the network,

so as to guarantee the correctness of measurement. First, we ana-

lyze an ideal situation, that the clock synchronization is zero-error.

For ingress sketches, i.e., the flow classifier and the upstream flow

encoder, as soon as the locally maintained 1-bit timestamp flips,

the central controller can collect the group of ingress sketches

monitoring the previous epoch from each edge switch, because all

the packets in that epoch have already been inserted into ingress

sketches. For egress sketches, i.e., the downstream flow encoder,

every time the locally maintained timestamp flips, the central con-

troller must first wait an additional period of time, so as to ensure

that all the packets in the previous epoch have either been lost in

the network, or passed through the network and been inserted into

egress sketches. Then, the central controller can collect the group

of egress sketches monitoring the previous epoch from each edge

switch. Obviously, the additional period of time should be longer

than the maximum time for packet transmission in the network.

Considering that the buffer sizes of DCN switches are at 10MB-level

[108], with 100Gb link speed, the queuing delay in a single switch

is at most 1ms in most cases. Therefore, for typical data center

networks that usually have at most five hops, setting the additional

time to 10ms can cope with most cases. However, in practice, the

clock synchronization can never be zero-error. Therefore, before

collecting both ingress and egress sketches, the central controller

needs to wait for another additional period of time, which should

be longer than the precision of synchronization, so as to guarantee

the correctness of measurement. In addition, the central controller

should end the collection some time before its 1-bit timestamp flips

again, which should also be longer than the precision of synchro-

nization, in case the packets in the next epoch are inserted into the

group of sketches being collected.

C EVALUATION ON PACKET
ACCUMULATION TASKS

Metrics:
• Average Relative Error (ARE): 1

|𝛺 |
∑

𝑓𝑖 ∈𝛺
|𝑣𝑖−�̂�𝑖 |

𝑣𝑖
, where 𝛺 is the

set including all flows, 𝑣𝑖 is the true size of flow 𝑓𝑖 , and 𝑣𝑖 is the

estimated size of flow 𝑓𝑖 .

• 𝐹1 Score: 2·𝑃𝑅 ·𝑅𝑅
𝑃𝑅+𝑅𝑅 , where 𝑃𝑅 (Precision Rate) refers to the ratio

of the number of the correctly reported instances to the number

of all reported instances, and 𝑅𝑅 (Recall Rate) refers to the ratio

of the number of the correctly reported instances to the number

of all correct instances.

• Relative Error (RE): |𝑇𝑟𝑢𝑒−𝐸𝑠𝑡 |
𝑇𝑟𝑢𝑒

, where 𝑇𝑟𝑢𝑒 and 𝐸𝑠𝑡 are the true

and estimated statistics, respectively.

• Weighted Mean Relative Error (WMRE) [55]:
∑𝑧

𝑖=1 |𝑛𝑖−𝑛𝑖 |∑𝑧
𝑖=1

(
𝑛𝑖+𝑛𝑖

2

) , where 𝑧
is the maximum flow size, 𝑛𝑖 and 𝑛𝑖 are the true and estimated

numbers of the flows of size 𝑖 , respectively.

Dataset:We also use the IP traces from CAIDA [41] as our dataset,

and use the 32-bit source IP address as the flow ID. We use four

traces for evaluation, each of which monitors the traffic in five

seconds. Each trace contains 63K flows and 2.3M packets on average.

We report the average accuracy that each algorithm achieves on

each CAIDA trace.

Setup: We compare the combination of TowerSketch and Fer-

matSketch (Tower+Fermat) with 9 algorithms: CM [21], CU[4],

CountHeap [56], UnivMon [18], ElasticSketch [15], FCM-sketch

[33], HashPipe [22], CocoSketch [20], and MRAC [40]. We do not

compare with FlowRadar because FlowRadar can hardly perform

successful decoding with the memory sizes we used for evalua-

tion (200KB-600KB). For heavy-hitter detection and heavy-change

detection, we set their thresholds 𝛥ℎ and 𝛥𝑐 to about 0.02% and

0.01% of the total packets, i.e., 500 and 250, respectively. We con-

figure Tower+Fermat and its competitors as follows. Overall, the

configurations of these competitors are recommended in literature.

• Tower+Fermat: For Tower, we set it to consist of an 8-bit counter

array and a 16-bit counter array. For Fermat, We set its count

field and ID field to 32bits, and allocate 2500 buckets to it for

99.9% decoding success rate.

we set the threshold 𝑇ℎ for identifying heavy-hitter candidates

to the heavy-change threshold 𝛥𝑐 , i.e., 250, for detecting most

heavy-hitters and heavy-changes.

• CM/CU/CountHeap: We use 3 hash functions as recommended in

[109]. We set the counter size to 32bits. For CountHeap, we addi-

tionally set its heap capacity to 4096 for heavy-hitter detection.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

(a) Heavy-hitter (b) Flow size

(c) Heavy-change. (d) Flow size distribution.

(e) Entropy. (f) Cardinality.

Figure 11: Accuracy comparison for six tasks.

• UnivMon: We use 14 levels and each level can record 1000 heavy

hitters.

• Elastic: We use the hardware version of Elastic. For the heavy

part, we use 4 stages and each stage has 3072 buckets. For the

light part, we use a one-layer CM with 8-bit counters.

• FCM: We use the top-𝑘 version of FCM. It is almost the same as

Elastic except the light part is substituted by a 16-ary FCMwhose

depth is set to 2.

• Hashpipe: We set the number of stages to 6.

• Coco: We use the hardware version of Coco that only uses one

hash function.

Heavy-hitter detection (Figure 11(a)): Experimental results show

that Tower+Fermat achieves comparable accuracy with HashPipe,

and higher accuracy than other algorithms.When using only 200KB

memory, the F1 score of Tower+Fermat is 99.8%, while that of Elastic

and FCM is lower than 99%.

Flow size estimation (Figure 11(b)): Experimental results show

that Tower+Fermat achieves comparable accuracy with FCM, and

higher accuracy than other algorithms. When using only 200KB

memory, the ARE of Tower+Fermat is 4.51 times, 3.19 times, 2.09

times, and 1.59 times smaller than that of CM, CU, Elastic, and FCM,

respectively.

Heavy-change detection (Figure 11(c)): Experimental results

show that the Tower+Fermat achieves higher accuracy than other

algorithms. Tower+Fermat achieves 99.6% F1 score when using only

400KB memory, while that of the other algorithms is below 99.0%.

Flow size distribution estimation (Figure 11(d)): Experimental

results show that Tower+Fermat achieves higher accuracy than

Elastic and FCM, and comparable accuracy with MRAC. When

Hash

Stages: #0 #1 #2-3 #4 #8-11

Time
Stamp

Flow
Classifier

Sampling
Blackbox
Network

Stages: #4-7

Downstream
Flow Encoder

Ingress Pipeline Egress Pipeline

Upstream
Flow Encoder

Figure 12: Implementation logic of ChameleMon.

using 600KB memory, the WMRE of Tower+Fermat is 0.039, 1.09

and 1.42 times smaller than that of Elastic and FCM, respectively.

Entropy estimation (Figure 11(e)): Experimental results show

that Tower+Fermat achieves higher accuracy than UnivMon, and

comparable accuracy with Elastic and FCM. When using 600KB

memory, the ARE of Tower+Fermat is 0.003, 3.3 times smaller than

that of UnivMon.

Cardinality estimation (Figure 11(f)): Experimental results show

that the Tower+Fermat achieves higher accuracy than other algo-

rithms. When using 600KB memory, the RE of Tower+Fermat is

0.0016, 13.125 times, 10.08 times, and 4.57 times smaller than that

of UnivMon, Elastic, and FCM, respectively.

D PROTOTYPE IMPLEMENTATION
In this section, we present the important details of ChameleMon

prototype. We lay out important implementation details of the

ChameleMon data plane and control plane in sequence.

D.1 Data Plane Implementation
We have fully implemented the ChameleMon data plane on the

switch data planes of four edge Tofino switches in P4 [44]. In this

section, we detail the implementation logic of data plane along the

workflow (Figure 12).

Hash: First, a packet with flow ID 𝑓 enters the network at an edge

switch. With its flow ID (5-tuple) as input, the packet is hashed

to multiple indexes through pairwise-independent hash functions

generated from different CRC polynomials, which are deployed at

stage 0 in ingress. These hash indexes are either used as base in-

dexes for locating the mapped counters/buckets in the subsequent

insertions, or used for sampling LL candidates, or used as finger-

prints for improving decoding success rate of FermatSketch. Note

that due to the limitation of Tofino switches, each hash index is

uniformly distributed on [0, 2
𝑡 − 1], where 𝑡 is an arbitrary positive

integer.

1-bit flipping timestamp: Second, the packet reads the current
1-bit flipping timestamp and from a match-action table, which

is deployed at stage 1 in ingress. The 1-bit timestamp is used to

indicate the corresponding group of sketches for the subsequent

insertions.

Flow classifier: Third, the packet is inserted into the flow classifier,

which is deployed at stage 2-3 in ingress. The flow classifier is

a TowerSketch consisting of an 8-bit counter array and a 16-bit

counter array. The 8-bit and 16-bit counter arrays consist of𝑤1 8-bit

and𝑤2 16-bit counters, respectively. Each counter array is built on

a register and accessed by a stateful arithmetic logic unit (SALU).

To save SALU resources, we simulate the two flow classifiers by

doubling the number of counters of the 8-bit and 16-bit counter

arrays instead of building additional registers. The left/right 𝑤1

8-bit and𝑤2 16-bit counters form the flow classifier corresponding

to timestamp 0/1, respectively. We use the base indexes calculated

by hash functions as the relative positions of the mapped counters

in the flow classifier, and add offsets corresponding to the 1-bit

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

srcPort[14:0] dstPort[15:0]

32-bit register

FingerPrint[19:0] Rest[10:0]

32-bit register

srcIP[30:0]

32-bit register 32-bit register

dstIP[30:0]

Rest[10:0] : srcIP[31] + dstIP[31] + srcPort[15] + protocol[7:0]

: 1-bit reserved bit

Figure 13: Division of the 5-tuple.

Algorithm 3: Simulated modular addition.

Input: An ID fragment 𝑓 , a counter 𝑟𝑒𝑔 for encoding the ID

fragment, and a prime 𝑝 .

1 𝑖𝑛𝑣 ← 𝑝 − 𝑓 ⊲ Get the additive inverse of 𝑓 in 𝑍𝑝
2 if 𝑟𝑒𝑔 + 𝑓 < 𝑝 then
3 𝑟𝑒𝑔← 𝑟𝑒𝑔 + 𝑓
4 else
5 𝑟𝑒𝑔← 𝑟𝑒𝑔 − 𝑖𝑛𝑣
6 end

timestamp to the base indexes, so as to locate the mapped counters.

Specifically, when the timestamp is 0, the offset is 0; when the

timestamp is 1, the offset is 𝑤1 for 8-bit counter array or 𝑤2 for

16-bit counter array. During insertion, the SALU adopts saturated

addition operation for each mapped counter, which can increment

the counter to its maximum value but never overflow it, and reports

the value recorded in the counter, so as to simulate the behavior of

TowerSketch. After insertion, we take the minimum value among

the reported values as the size of flow 𝑓 , and then input the flow

size to a match-action Table that uses range matching on the flow

size, so as to obtain the hierarchy of flow 𝑓 .

Sampling: Fourth, if flow 𝑓 is classified as a LL candidate, the

packet reads a value from a match-action table, which is deployed

at stage 4 in ingress. We then compare the read value with a 16-bit

value, which is calculated by a hash function with the 5-tuple of

the flow and a random seed as input. If the read value is equal to

or larger than the 16-bit value, flow 𝑓 is classified as a sampled LL

candidate. Otherwise, the flow is classified as a non-sampled LL

candidate. Obviously, to simulate a sample rate 𝑅, the value should

be set to ⌈65536 × 𝑅⌉.
FermatSketch: Before detailing the implementation of upstream

and downstream flow encoders, we present the implementation of

FermatSketch that they are based on. To encode the 104-bit flow

ID (5-tuple) of each packet, an ideal bucket in FermatSketch should

contain a 105-bit IDsum field and a 32-bit count field. However,

because each SALU can access up to a pair of 32-bit counters, the

IDsum field cannot be directly built in Tofino. To address this issue,

we divide the IDsum field into multiple counters. Rather than en-

coding complete flow IDs, each counter only encodes specific ID

fragments. Considering that a 32-bit counter can support at most

32-bit primes, and thus can encode at most 31-bit ID fragment, we

need four 32-bit counters to simulate the IDsum field. Specifically,

the division of the IDsum field is shown in Figure 13. The first three

32-bit counters encode the lower 31-bits of the source IP address,

the destination IP address, and the concatenation of the source

port and destination port, respectively. The last one 32-bit counter

encodes the rest 11-bit ID fragment (1-bit source IP address + 1-bit

destination IP address + 1-bit source port + 8-bit protocol), and the

other unused 20 bits are used to encode a fingerprint to improve

decoding success rate. In summary, each bucket of FermatSketch

consists of five 32-bit counters: four counters to encode the IDsum

field and the fingerprint field, and a counter to encode the count

field. Considering that there is no dependency between the five

counters in any bucket of FermatSketch, a bucket array of FermatS-

ketch can be built with five 32-bit counter arrays, each of which

is built on a register and accessed by a SALU. During insertion,

for any of the four counter arrays encoding the IDsum field and

fingerprint field, the SALU needs to insert the specific ID fragment

into its counter through modular addition. As shown in Algorithm

3, the SALU simulates the modular addition with logic consisting

of a conditional judgement and two branches. Such logic is natu-

rally supported by SALUs. For the other counter array encoding

the count field, the SALU simply increments its counter by one.

In this way, the SALUs simulate the behavior of FermatSketch. By

duplicating these five registers and SALUs 𝑑 times, we can easily

build a 𝑑-array FermatSketch. Note that we use registers consisting

of 32-bit counters, but not registers consisting of pairs of 32-bit

counters that can further save SALU resources, to simulate the

buckets of FermatSketch. This is because the logic used to simulate

the modular addition requires two 32-bit metadata (𝑓 and 𝑖𝑛𝑣) as

input, which is just the maximum number that a SALU can support.

However, encoding two ID fragments with a SALU requires four

32-bit metadata as input, which is beyond the capabilities of SALU.

Upstream flow encoder: Fifth, unless flow 𝑓 is a non-sampled

LL candidate, the packet is inserted into the upstream flow en-

coder, which is deployed at stage 8-11 in ingress. The upstream flow

encoder consists of three bucket arrays for the highest memory

efficiency. Each bucket array is built as described above, and con-

sists of𝑚𝑢𝑓 buckets. The left𝑚𝑙𝑙 buckets, the right𝑚ℎℎ buckets,

and the middle𝑚ℎ𝑙 buckets in each array form the upstream LL

encoder, HH encoder, and HL encoder, respectively. Similarly, we

simulate the two upstream flow encoders by doubling the number

of buckets in each array. Based on the hierarchy of flow 𝑓 , we can

easily determine the encoder that the packet should be inserted

into. We denote the number of buckets of a bucket array of that

encoder by𝑚′. Different from the flow classifier, the base indexes

calculate by hash functions cannot be directly used to locate the

relative positions of the mapped buckets in the encoder. This is

because a base index is uniformly distributed on [0,2
𝑡 − 1], while

𝑚′, which could be any of𝑚𝑙𝑙 ,𝑚ℎ𝑙 , and𝑚ℎℎ , may not be powers of

two, as they are required to vary for supporting dynamic memory

allocation. To address this issue, we decide to use the results of

base indexes modulo 𝑚′ as the relative positions of the mapped

buckets. To simulate modulo operation in data plane, we input the

hierarchy of flow 𝑓 and a base index ℎ𝑏 to a match-action table

that uses exact matching on flow hierarchy and range matching

on index. The table first determines 𝑚′ based on the input flow

hierarchy, then outputs the largest number that is divisible by𝑚′

and less than ℎ𝑏 , and finally subtracts that number from ℎ𝑏 . Ob-

viously, the result equals to ℎ𝑏 modulo𝑚′. In this way, we locate

the relative positions of the mapped buckets at the cost of TCAM

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

resources, and can finally locate the mapped buckets by adding

offsets corresponding to the 1-bit timestamp and the flow hierarchy

to the relative positions. Considering that the width of base index

is fixed at run-time, if its width is too long compared to the width

of𝑚′, the match-action table will need a lot of entries to support

range matching, and thus consumes lots of TCAM resources; if

its width is just a bit longer than the width of𝑚′, the uniformity

of the calculated relative positions will be quite poor, leading to

reduction of the decoding success rate of FermatSketch. To address

this issue, before we input the base index to the match-action table,

we bitwise-AND the base index with a mask to guarantee that the

value range of the index is between 4𝑚′ and 8𝑚′, so as to make

great trade-off between the uniformity of relative positions and the

consumption of TCAM resources. Note that due to the inherent fea-

tures of TCAM, when TCAM is used for range matching, different

value range would require different number of TCAM entries for

supporting modulo operation.

Downstream flow encoder: Sixth, unless flow 𝑓 is a non-sampled

LL candidate, the packet is inserted into the upstream flow encoder,

which is deployed at stage 4-7 in egress. The implementation of

downstream flow encoder is almost the same as that of upstream

flow encoder, except it omits the heavy-hitter encoder. Note that

the flow hierarchy and 1-bit timestamp are obtained from the edge

switch where the packet enters the network, and carried by record-

ing them in three bits of the ToS field of the IPv4 protocol.

Resources Usage: As shown in Table 1, under the parameter set-

tings in Section 5.2, the ChameleMon data plane consumes SALUs

most, achieving 66.7%. This is because the flow classifier, the up-

stream flow encoder, and the downstream flow encoder all need

SALUs to access memory. For resources other than SALUs, Chamele-

Mon consumes no more than 25%. Overall, the resource usage of

ChameleMon ismoderate. AlthoughChameleMon indeed consumes

a lot of SALUs, the consumption of SALUs will not increase when

we further enlarge the above sketches. With the advent of Tofino

2 switches and even Tofino 3 switches, we believe the resource

usage will be much more acceptable on these more advanced pro-

grammable switches.

D.2 Control Plane Implementation
Central controller: The central controller integrates three mod-

ules into a DPDK [48] program: 1) a packet receiver module respon-

sible for collecting sketches; 2) an analyzer module for decoding

sketches, monitoring real-time network state, and generating recon-

figuration packets for reconfiguring the ChameleMon data plane;

3) a packet sender module responsible for sending reconfiguration

packets to the control plane of each edge switch.

Switch control plane: The control plane of each edge switch runs

a C++ program to load the P4 program to the Tofino ASIC. Every

time the switch control plane receives a reconfiguration packet, it

first extracts the packet to obtain the reconfiguration. Then, based

on the reconfiguration, it generates corresponding table entries and

update them to the corresponding match-action tables in the data

plane to reconfigure the switch data plane. The time consumption in

this step is shown in Figure 22 in Appendix F. To avoid the updated

entries to interfere with the monitoring of the current epoch, those

corresponding match-action tables further use exact matching on

the 1-bit timestamp. Those newly updated entries match the 1-bit

timestamp in the next epoch, so as to function in the next epoch.

Epoch length: On our testbed, we set the epoch length to 50ms by

default, and the additional time for all traffic passing through the

network is set to 10ms (described in Appendix B).

Clock synchronization: On our testbed, we use the well-known

software time synchronization protocol NTP [110] to synchronize

the clocks between the control planes of edge switches and the

central controller. Every 10s, every edge switch synchronizes its

clockwith the central controller. The precision of synchronization is

around 0.3ms∼0.5ms, and thus NTP can already satisfy the precision

requirement for epochs of 50ms. We can also use more advanced

solutions [111, 112] for us-level or even ns-level precision.

Data plane collection: To collect sketches from data planes of

edge switches, a naive solution is to directly use the C++ control

plane APIs provided by the Tofino SDK [113]. Currently, the most

efficient strategy for this solution is to first use bulk DMA transfer

to read data plane counter arrays into control plane buffer, and then

read the counter arrays from control plane buffer [114]. However,

on our testbed, such strategy takes about 338ms to collect only

the upstream flow encoder, which seriously limits the setting of

epoch length, and thus degrades the accuracy and timeliness of

measurement. To address this issue, we fully exploit the capabil-

ities and features of programmable data plane, including SALUs,

mirror, and recirculate ports. Specifically, the switch control plane

just needs to send several tailored packets to data plane for collect-

ing sketches. The tailored packet is forwarded to the recirculate

port, so as to access the counters of each sketches in turn. Every

time a tailored packet accesses a counter, leveraging the SALU, it

reads the value and inserts the value into its payload. Every time

a tailored packet reaches the maximum transmission unit (MTU,

e.g., 1514 Bytes), the switch data plane forwards it to the central

controller, and mirrors a new truncated packet (e.g., 64 Bytes) to
read the remaining counters. In this way, collecting the upstream

flow encoder from the switch data plane only takes 0.44ms, which

is 775 times faster than the straightforward solution. To ensure that

the tailored packets will not be lost during the transmission, we

reserve idle ports in their forwarding paths. Overall, the central

controller takes 11.33ms to collect sketches from the data plane

each edge switch, which consists five parts: 1) every time the times-

tamp flips, the central controller first sleeps 1ms to eliminate the

impact caused by the error in clock synchronization, ensuring that

all the edge switches have started the current epoch; 2) the central

controller takes 2.68ms to collect the flow classifier; 3) the central

controller takes 0.44ms to collect the upstream flow encoder; 4) the

central controller sleeps 6.88ms to ensure that all the packets in

the previous epoch have passed through or lost in the network; 5)

the central controller takes 0.33ms to collect the downstream flow

encoder.

E EVALUATION ON DIFFERENTWORKLOADS
In this section, we show that on workloads other than DCTCP,

how ChameleMon shifts measurement attention with the change of

the number of flows or ratio of victim flows. For the measurement

attention under different number of flows, we vary the number of

flows in the network from 10K to 100K, and fix the ratio of victim

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

flows to 10%. For the measurement attention under different ratios

of victim flows, we vary the ratio of victim flows from 2.5% to 25%,

and fix the number of flows to 50K.

E.1 CACHEWorkload
Measurement attention vs. number of flows (Figure 14): As
the number of flows increases from 10K to 20K, ChameleMon can

record all flows and victim flows, and therefore sets both𝑇ℎ and𝑇𝑙 to

1. As the number of flows increases from 30K to 70K, ChameleMon

allocates more memory to HL encoders and raises 𝑇ℎ higher than

1. As the number of flows increases from 80K to 100K, the healthy

network state transitions to the ill network state. ChameleMon

allocates memory to LL encoders, increases 𝑇𝑙 and decreases the

sample rate, so as to control the number of HLs and sampled LLs.

Meanwhile, ChameleMon raises 𝑇ℎ to control the number of HH

candidates. The relatively low load factor when the number of

flows is between 80K and 100K is because of the high skewness of

CACHE workload: lower thresholds will lead to a huge increase

of the number of recorded flows, thus causing decoding failure. In

fact, when the number of flows is between 80K and 100K, the 𝑇ℎ
is set to 3, and the 𝑇𝑙 is set to 2. ChameleMon has tried its best to

select thresholds to maximizes the load factor.

Measurement attention vs. ratio of victim flows (Figure 15):
As the ratio of victim flows increases from 2.5% to 12.5%, Chamele-

Mon records all victim flows by allocating more and more memory

to HL encoders. 𝑇ℎ is not adjusted because of the high skewness

of CACHE workload: setting 𝑇ℎ to 2 already makes a fairly small

portion of flows as HH candidates, and lower 𝑇ℎ leads to decoding

failure. As the ratio of victim flows increases from 15% to 25%, the

healthy network state transitions to the ill network state. Chamele-

Mon allocates memory to LL encoders, increases 𝑇𝑙 to 2 and de-

creases the sample rate so as to control the number of HLs and

sampled LLs. Meanwhile, because the memory of upstream heavy-

hitter encoder and the number of flows remain unchanged, 𝑇ℎ also

remains unchanged. The reason why ChameleMon suffers low load

factor when the ratio of victim flows is between 15% to 25% is also

due to high skewness of CACHE workload. Both 𝑇ℎ and 𝑇𝑙 are

set to 2, and decrease of thresholds will lead to decoding failure.

ChameleMon has tried its best to select thresholds to maximize the

load factor.

E.2 VL2 Workload
Measurement attention vs. number of flows (Figure 16): As
the number of flows increases from 10K to 20K, ChameleMon can

record all flows and victim flows, and therefore sets both𝑇ℎ and𝑇𝑙 to

1. As the number of flows increases from 30K to 60K, ChameleMon

allocates more and more memory to HL encoders, and increases 𝑇ℎ
to decrease the number of HH candidates to avoid decoding failure.

As the number of flows increases from 70K to 100K, the healthy

network state transitions to the ill network state. ChameleMon

allocates memory to LL encoders, increases 𝑇𝑙 , and decreases the

sample rate, so as to to control the number of HLs and sampled LLs.

Meanwhile, ChameleMon keeps increasing 𝑇ℎ to control the num-

ber of HH candidates. Throughout the experiment, ChameleMon

maintains the load factor higher than 51%. The load factor is sightly

lower, and it is because the distribution of VL2 is highly skewed.

Decreasing the thresholds by 1 will lead to huge increase in the

number of recorded flows, and thus causing decoding failure.

Measurement attention vs. ratio of victim flows (Figure 17):
As the ratio of victim flows increases from 2.5% to 12.5%, Chamele-

Mon records all victim flows by allocating more and more memory

to HL encoders, and increases 𝑇ℎ to decrease the number of HH

candidates. As the ratio of victim flows increases from 15% to 25%,

ChameleMon cannot record all victim flows and thus the healthy

network state transitions to the ill network state. ChameleMon

allocates memory to LL encoders, increases 𝑇𝑙 , and decreases the

sample rate so as to control the number of HLs and sampled LLs.

Meanwhile, because the memory of upstream HH encoders and the

number of flows remain unchanged, 𝑇ℎ also remains unchanged.

Throughout the experiment, ChameleMonmaintains the load factor

higher than 53%. The load factor is sightly lower, and the reason is

the same as the former experiment of the the number of flow.

E.3 HADOOPWorkload
Measurement attention vs. number of flows (Figure 18): As
the number of flows increases from 10K to 20K, ChameleMon can

record all flows and victim flows, and therefore sets both𝑇ℎ and𝑇𝑙 to

1. As the number of flows increases from 30K to 60K, ChameleMon

allocates more and more memory to HL encoders, and increases 𝑇ℎ
to decrease the number of HH candidates to avoid decoding failure.

As the number of flows increases from 70K to 100K, the healthy

network state transitions to the ill network state. ChameleMon allo-

cates memory to LL encoders, increases𝑇𝑙 , and decreases the sample

rate to control the number of HLs and sampled LLs. Meanwhile,

ChameleMon keeps increasing 𝑇ℎ to control the number of HH

candidates. Throughout the experiment, ChameleMon maintains

the load factor higher than 47%. The load factor is sightly lower,

and it is because the distribution of HADOOP is highly skewed.

Decreasing the thresholds by 1 will lead to huge increase in the

number of recorded flows, and thus causing decoding failure.

Measurement attention vs. ratio of victim flows (Figure 19):
As the ratio of victim flows increases from 2.5% to 12.5%, Chamele-

Mon records all victim flows by allocating more and more memory

to HL encoders, and increases 𝑇ℎ to decrease the number of HH

candidates. As the ratio of victim flows increases from 15% to 25%,

ChameleMon cannot record all victim flows and thus transitions to

ill network state. ChameleMon allocates memory to LL encoders,

increase 𝑇𝑙 , and decreases sample rate, so as to control the num-

ber of HHs and HLs. Throughout the experiment, ChameleMon

maintains the load factor higher than 48%. The load factor is sightly

lower, and the reason is the same as the former experiment of the

the number of flows.

F EVALUATION ON TIME/BANDWIDTH
OVERHEAD

To evaluate how fast can ChameleMon monitor the network, we

evaluate various factors that could affect the setting of epoch length:

1) the time and bandwidth required to collect sketches from edge

switches, 2) the time required to respond to different network states,

and 3) the time required to reconfigure the ChameleMon data plane.

The central controller only uses one CPU core in evaluation.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Kaicheng Yang et al.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 14: Measurement attention vs. number of flows on CACHE workload.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 15: Measurement attention vs. ratio of victim flows on CACHE workload.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 16: Measurement attention vs. number of flows on VL2 workload.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 17: Measurement attention vs. ratio of victim flows on VL2 workload.

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 18: Measurement attention vs. number of flows on HADOOP workload.

Time/Bandwidth overhead for collection (Figure 21): Exper-
imental results show that ChameleMon consumes only a small

amount of time and bandwidth in collecting all the data structures

deployed on edge switches. ChameleMon takes a total of 11.33ms

to collect sketches (refer to Appendix D.2 for details). As for band-

width, when the epoch length is set to 50ms, the bandwidth over-

head for collection is 317Mbps, consuming only 0.8% bandwidth

for the central controller equipped with a 40Gb NIC.

ChameleMon: Shifting Measurement Attention as Network State Changes ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Memory division. (b) Number of decoded flows. (c) Threshold. (d) Sample rate.

Figure 19: Measurement attention vs. ratio of victim flows on HADOOP workload.

(a) Varying number of flows. (b) Varying ratio of victim flows.

Figure 20: Response time to different network states.

Figure 21: Bandwidth. Figure 22: Reconfiguration
time.

Response time to different network states (Figure 20): Ex-
perimental results show that ChameleMon can always respond

to different network states within 30ms. We count the response

time of ChameleMon to each network state previously appeared

in Figure 7-8, where the response time refers to the time interval

between the central controller finishing the collection of sketches

and the central controller generating the reconfiguration packet
8

for the ChameleMon data plane. Although the response time does

not seem to show a clear trend with the network state, it is mainly

determined by the number of HH candidates, because the central

controller needs to first extract them from the upstream HH en-

coders and then reinsert them to the upstream HL encoders. As

shown in Figure 20(b), as the ratio of victim flows increases, the

response time on all the four workloads decreases because the num-

ber of HH candidates decreases. The response time finally stabilizes

because the fixed memory allocation in the ill network state always

decodes a similar number of flows.

CDF of reconfiguration time (Figure 22): Experimental results

show that it takes 2∼7ms to reconfigure the ChameleMon data

plane. The central controller sends 10K reconfiguration packets

with random configuration of the ChameleMon data plane to each

edge switch, and we count the time for an edge switch to execute

8
The central controller sends the reconfiguration packets to edge switches to reconfig-

ure their data planes. Please refer to Appendix D.2 for details.

the reconfiguration. We find 60% of reconfigurations take less than

5ms. The difference in time consumption is mainly because differ-

ent reconfigurations require updating different numbers of TCAM

entries to the switch data plane for supporting dynamic memory

allocation (refer to Appendix D.1 for details).

Adding up the above all time consumption, we find that the over-

all time consumption is less than 50ms. This verifies that Chamele-

Mon can monitor the network every 50ms on our testbed. Con-

sidering that 1) the central controller only uses one CPU core in

experiments and 2) monitoring the network every 50ms only con-

sumes 0.8% bandwidth of a 40Gb NIC, we believe ChameleMon can

easily scale to monitor a much larger network with a shorter epoch

length, requiring only one server as the central controller.

	Abstract
	1 Introduction
	2 Overview of ChameleMon
	3 ChameleMon Data Plane
	3.1 The FermatSketch Algorithm
	3.2 Data Plane Components

	4 ChameleMon Control Plane
	4.1 Collection from Data Plane
	4.2 Measurement Tasks
	4.3 Shifting Measurement Attention

	5 Evaluation
	5.1 Evaluation on Packet Loss Detection
	5.2 Evaluation on Testbed

	6 Related Work
	7 Conclusion
	References
	A The FermatSketch Algorithm
	A.1 Proof of Theorem A.1
	A.2 Fingerprint Verification

	B Collection from Data Plane
	C Evaluation on Packet Accumulation Tasks
	D Prototype Implementation
	D.1 Data Plane Implementation
	D.2 Control Plane Implementation

	E Evaluation on Different Workloads
	E.1 CACHE Workload
	E.2 VL2 Workload
	E.3 HADOOP Workload

	F Evaluation on Time/Bandwidth Overhead

