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ABSTRACT
Membership (membership query/membership testing) is a funda-

mental problem across databases, networks and security. However,

previous research has primarily focused on either approximate

solutions, such as Bloom Filters, or exact methods, like perfect

hashing and dictionaries, without attempting to develop a an inte-

gral theory. In this paper, we propose a unified and complete theory,

namely chain rule, for general membership problems, which en-

compasses both approximate and exact membership as extreme

cases. Building upon the chain rule, we introduce a straightfor-

ward yet versatile algorithm framework, namely ChainedFilter, to

combine different elementary filters without losing information.

Our evaluation results demonstrate that ChainedFilter performs

well in many applications: (1) it requires only 26% additional space

over the theoretical lower bound for implicit static dictionary, (2)

it requires only 0.22 additional bit per item over the theoretical

lower bound for lossless data compression, (3) it reduces up to 31%

external memory access than raw Cuckoo Hashing, (4) it reduces

up to 36% P99 tail point query latency than Bloom Filter under the

same space cost in RocksDB database, and (5) it reduces up to 99.1%

filter space than original Learned Bloom Filter.

1 INTRODUCTION
Membership has been a fundamental problem for over fifty years,

playing a significant role in databases [1], networks [2] and security

[3]. For instance, LSM-Tree based storage engines employ Bloom

Filter [4–6] to accelerate K-V stores; Routers and switches leverage

Bloom Filter to classify, forward, and drop network packets [7–9];

Bitcoinminers use Invertable Bloom Lookup Tables (IBLT) to reduce

the amount of information for block propagation and reconciliation

[10–12].

Given a universe U and a subset S of 𝑛 items, membership
aims to determine whether an item 𝑥 ∈ U is in S. Specially, a mem-

bership algorithm must say “yes” if 𝑥 is in S and may produce a

small false positive rate 𝜖 if 𝑥 is not in S. In this paper, we further

define negative-positive ratio _ := |U\S|/|S|1 and divide mem-

bership problems into three categories (Figure 1): approximate
membership, where 𝜖 ≠ 0 and _ → +∞; exact membership,
where 𝜖 = 0 and _ < +∞; and general membership, where 𝜖 ≠ 0

and _ < +∞. According to our taxonomy, both approximate and the

exact memberships are the extreme cases of general membership.

But in history, the membership problems were not classified in this

manner. In 1978, [13] proposed separate space lower bounds for

approximate and exact memberships. Since the two expressions

∗
Co-corresponding authors.

1
The number of items not in S divide the number of items in S.

have significantly different forms, in the following decades, people

regarded the approximate and the exact memberships as two sepa-

rate research directions, but never tried to unify them to develop an

integral theory for general membership problems, until this work.

x
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Figure 1: Our taxonomy.

Build on [13],wedevelop a unified space lower bound𝑛𝑓 (𝜖, _)
for general membership problems, which encompasses the
prior theoretical results as extreme cases. Given a false posi-

tive rate 𝜖 and a negative-positive ratio _, we have the following

expression (where 𝐻 (·) denotes Shannon’s entropy, ignore 𝑜 (1)
terms):

𝑓 (𝜖, _) = 𝑓
(
𝜖′, _

)︸   ︷︷   ︸
First stage

+ 𝑓
(
𝜖/𝜖′, 𝜖′_

)︸         ︷︷         ︸
Second stage

,∀𝜖′ ∈ [𝜖, 1] (Chain rule);

𝑓 (0, _) = (_ + 1)𝐻
(

1

_+1

)
(Exact membership bound [13]).

Certainly, we can derive the arithmetic representation of 𝑓 by

setting 𝜖 in chain rule to zero
2
. However, we choose to retain the

recursive formula because it offers valuable insights: According
to the chain rule, any membership problem can be losslessly
factorized into two (or multiple) stages. The first stage involves
a coarse membership algorithm that may yield some false positive

items, while the second stage employs an accurate membership

algorithm to efficiently handle the remaining small percentage of

false positive items, especially when the negative-positive ratio is

very large. The chain rule reveals a non-trivial observation that the

factorization process incurs zero information loss. This observation

serves as inspiration for algorithm design and provides a solid

theoretical foundation for future research in the field of membership

problems.

2 𝑓 (𝜖, _) = 𝑛 (_ + 1)𝐻
(

1

_+1
)
− 𝑛 (𝜖_ + 1)𝐻

(
1

𝜖_+1
)
.
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Meanwhile, we acknowledge that the chain rule has certain limi-

tations. First, it does not fully support dynamic memberships since

it necessitates the identification of all false positive items before

constructing the second stage. Moreover, we discover that the loss-

less property no longer holds for dynamic memberships (Section
4.3.1). Second, our chain rule theory is based on the assumption

that all positive items are randomly selected from the universe,

which may not perfectly accommodate real-world scenarios where

item keys follow specific data distributions (Section 5.5).
• Paper Organization and Key Contributions.

(A, §2)We propose a space lower bound for general membership

problems and derive an elegant factorization theorem called chain

rule. This theorem allows us to divide any membership problem

into sub-problems without losing information.

(B, §4) Building upon the chain rule, we introduce the versatile

ChainedFilter framework, which enables the combination of multi-

stage membership algorithms, such as Bloomier Filters, to construct

more efficient algorithms. The framework is compatible with as-

sorted elementary filters, supports different combining operators

(e.g. AND and NAND), and can handle certain dynamic scenarios.

(C, §5) We evaluate the performance of ChainedFilter in data

compressing, classifying and filtering applications. Experimental

results show that although our utilization of chain rule in this

paper is simple and rudimentary, the ChainedFilter can significantly

outperform existing works: (1) it requires only 26% additional space

over the theoretical lower bound for implicit static dictionary, (2)

it requires only 0.22 additional bit per item over the theoretical

lower bound for lossless data compression, (3) it reduces up to

31% external memory access than raw Cuckoo Hashing [14], (4) it

reduces up to 36% P99 tail point query latency than Bloom Filter

under the same space cost in RocksDB database [15], and (5) it

reduces up to 99.1% filter space than original Learned Bloom Filter

[16–19]. We release our open source code on GitHub [20].

Chain rule︸        ︷︷        ︸
(A, §2) Theory

design
−−−−−−→ ChainedFilter︸             ︷︷             ︸

(B, §4) Algorithm

deploy
−−−−−−→ Applications︸            ︷︷            ︸

(C, §5) Implementation

2 CHAIN RULE THEORY
2.1 Definition and Notations

Given a universeU and arbitrary subset S ⊂ U, where |U| and
|S| are known, the membership problem is to determine whether a

queried item 𝑥 ∈ U is in S.
In this paper, we call a membership algorithm as a filter. This

definition is broader than what people commonly use
3
. A filter is an

indicator function F (·) : U ↦→ {0, 1} with one-sided error, which

means ∀𝑥 ∈ S (positive item), F (𝑥) = 1 has zero false negative;

for 𝑥 ∈ U\S (negative item), we allow a small false positive
rate 𝜖 ∈ [0, 1] s.t. F (𝑥) = 1. Moreover, we define _ := |U\S|/|S|
as the negative-positive ratio, and we denote the membership

problem as (𝜖, _). This definition encompasses both approximate

(𝜖 ≠ 0 and _ → +∞) and exact (𝜖 = 0 and _ < +∞) membership

problems as extreme cases. Unless specified otherwise, we assume

that a filter is designed to handle static membership problems. If a

membership filter also supports dynamic insertions of new items,

3
E.g., in prior arts, people often call an exact membership algorithm as a “dictionary”.

Symbol Description
U Universe (positive and negative items)

S The set of positive items

𝒮 The set of all possible sets of positive items (S)
𝑛 The number of positive items (|S|)
𝜖 False positive rate

_ Negative-positive ratio (|U\S|/|S|)
𝑥 An item

𝐶 Any constant greater than 1

𝑀 The number of buckets in one hash table

𝑟 |U|/(2𝑀)
𝑁 The number of SSTables in one level of LSM-Tree

𝜎 A mapping from 𝒮 toℱ

XF
⋃
S∈𝜎−1 (F) S

F (·) A specific filter

ℱ The set of all possible filters (F )
𝑛𝑓 (·, ·) Space lower bound for membership problems

𝑛𝑓 F (·, ·) Space cost of the membership filter F (·)
𝐻 (·) Shannon’s entropy

ℎ𝛼 (·) 𝛼-bit hash value of an item

𝑓𝛼 (·) 𝛼-bit fingerprint of an item

𝑇 [·] Hash table

BF/CF/EF Bloomier Filter, ChainedFilter, elementary filter

Table 1: Commonly used symbols.

we explicitly refer to it as a "dynamic filter." For quick reference, We

list all commonly used symbols in Table 14. We will define some

of these symbols in later sections.

2.2 Space Lower Bound
In this part, we present a unified and complete space lower bound

for general membership problems.

Theorem 2.1. (Space Lower Bound) Ignore𝑜 (𝑛) terms. Let𝑛𝑓 (𝜖, _)
:= 𝑛 inf

F
F (𝜖, _) be the space lower bound for general membership

problem (𝜖, _), we have

𝑓 (𝜖, _) = (_ + 1)𝐻
(

1

_ + 1

)
− (𝜖_ + 1)𝐻

(
1

𝜖_ + 1

)
,

where 𝐻 (𝑝) := −𝑝 log𝑝 − (1 − 𝑝) log(1 − 𝑝) is Shannon’s entropy.

Proof. The key idea of this proof follows the technique of [13],

except we take both 𝜖 and _ into account. Given a membership

problem (𝜖, _), we analysis all possible mappings from input sets

to all possible filters, and use information theory to derive a lower

bound of the space cost.

Given the universeU and the negative-positive ratio _, we start

by defining the set𝒮 := {S ⊂ U : |S| = 𝑛} as the set of all possible
sets of positive items, and ℱ as the set of all filter instances. Given

any S ∈ 𝒮, we draw a filter instance F ∈ ℱ which has zero false

negative. We denote this drawing method as a mapping 𝑓 : 𝒮 ↦→ ℱ.

Note that more than one set in𝒮may map to a same filter F , so the
inverse mapping 𝜎−1 (F ) ⊂ 𝒮 may have more than one element.

4
Elementary filter (the last row of Table 1): When we combine several sub-filters to

form a larger one, each sub-filter is called an elementary filter.
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Actually, we have∑︁
F∈ℱ

|𝜎−1 (F )| = |𝒮| =
(
|U|
|U\S|

)
and |ℱ | ⩽ 2

𝑛𝑓 (𝜖,_) .

Since the filter F has zero false negative, so for every 𝑥 ∈ XF :=⋃
S∈𝜎−1 (F)

S, we have F (𝑥) = 1 (Figure 2).

F(possible) 𝜎𝜎S
example ①:|F| = 1
ϵ =(2 + 2 + 2 + 2 + 2 + 2) / 24
example ②:|F| = 2
ϵ =(1 + 1 + 2 + 1 + 2 + 2) / 24
example ③:|F| = 3
ϵ =(1 + 1 + 0 + 1 + 1 + 1) / 24

Examples:

x

Figure 2: Some examples when U = {1, 2, 3, 4} and |S| = 2

(i.e.𝒮 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}). All connec-
tions are possible (but maybe not unique) mappings. The
mapping should ensure that the filter has a zero false
negative rate. For instance, in example 2, 𝜎 maps the in-
put positive set S = {1, 2} (the first row on the left) to
the first green filter F s.t. XF = {1, 2, 3}. In other words,
F (1) = 1, F (2) = 1, F (3) = 1 (false positive), and F (4) = 0.

The next two formulae are the critical observations in our proof:

On the one hand, since the elements in 𝜎−1 (F ) are different from
each other, we have (

|XF |
|S|

)
⩾ |𝜎−1 (F )|;

On the other hand, for a specific S ∈ 𝜎−1 (F ) and for all 𝑥 ∈ U,

F (𝑥) = 1 incurs false positive iff 𝑥 ∈ 𝑋F\S. Therefore, the overall
false positive rate is

𝜖 =

∑
F∈ℱ

|𝜎−1 (F )| |XF\S ||U\S|∑
F∈ℱ

|𝜎−1 (F )|
.

Now let \ > 0, our main idea of the following proof is to divide

ℱ into two partsℱ1 := {F ∈ ℱ : |𝑋F\S| ⩾ \𝑛} andℱ2 := ℱ\ℱ1,

then bound their false positive rate respectively.

Consider themonotonically increasing function𝑔(𝑝) := exp{𝑛((𝑝+
1) ln(𝑝+1)−𝑝 ln𝑝)}(𝑝 > 0). To start with, we prove∀Y ∈ (0, 1), ∃𝑁0 >

0, 𝑠 .𝑡 .∀F ∈ ℱ1, when 𝑛 > 𝑁0, Y𝑔
−1 ( |𝜎−1 (F )|)𝑛 is uniformly less

than |𝑋F\S|. Initially, given Y < Y′ < 1, we can select 𝑁1 = (Y′ −
Y)−1 s.t. when𝑛 > 𝑁1,wehave Y𝑔

−1 ( |𝜎−1 (F )|)𝑛 < Y′𝑔−1 ( |𝜎−1 (F )|)𝑛
−1 < ⌊Y′𝑔−1 ( |𝜎−1 (F )|)𝑛⌋ . Next, according to Stirling’s formula

lim

𝑛→+∞
𝑛!
√
2𝜋𝑛

( 𝑒
𝑛

)𝑛
= 1,

we can select 𝑁0 > 𝑁1 which only relies on Y and \ , s.t. ∀𝑛 > 𝑁0,(⌊Y′𝑔−1 ( |𝜎−1 (F) | )𝑛⌋+|S |
|S |

)
< 2𝑔(Y′𝑔−1 ( |𝜎−1 (F )|)) < 𝑔(𝑔−1 ( |𝜎−1 (F )|))

= |𝜎−1 (F )| ⩽
( |XF |
|S |

)
⇒ Y𝑔−1 ( |𝜎−1 (F )|)𝑛 < ⌊Y′𝑔−1 ( |𝜎−1 (F )|)𝑛⌋ <

|𝑋F\S| holds for all F ∈ ℱ1.

Similarly, when 𝑛 → +∞, we have |𝜎−1 (F )| < 𝑔(2\ ) for all
F ∈ ℱ2. Therefore∑︁

F∈ℱ1

|𝜎−1 (F )| ⩾ |𝒮| − 𝑔(2\ ) |ℱ |.

To take a step further, consider ℎ(𝑝) := 𝑝𝑔−1 (𝑝) := 𝑥𝑝. Because

dℎ(𝑝)
d𝑝

= 𝑦 + 𝑝/
(
d𝑔−1 (𝑦)

d𝑦

)
= 𝑦 + 1

𝑛 ln(𝑦 + 1) − 𝑛 ln𝑦
increases as 𝑦 increases (so as 𝑝 = 𝑔−1 (𝑦) increases), we find ℎ

convex. According to Jensen’s inequality, we have

𝜖 ⩾

∑
F∈ℱ1

|𝜎−1 (F )| |XF\S ||U\S|∑
F∈ℱ

|𝜎−1 (F )|
⩾

∑
F∈ℱ1

|𝜎−1 (F )|Y𝑔−1 ( |𝜎−1 (F )|)𝑛

|𝒮|_𝑛

⩾
Y

|𝒮|_
©«

∑︁
F∈ℱ1

|𝜎−1 (F )|ª®¬𝑔−1
©«

∑
F∈ℱ1

|𝜎−1 (F )|

|ℱ1 |
ª®®¬

⩾
Y

_

(
1 − 𝑔(2\ ) |ℱ |

|𝒮|

)
𝑔−1

(
|𝒮|
|ℱ | − 𝑔(2\ )

)
.

Let Y → 1, \ → 0 and ignore 𝑜 (𝑛), we have

𝜖_ ⩾ 𝑔−1
(
|𝒮|
|ℱ |

)
⇒ 𝑔(𝜖_) ⩾ |𝒮||ℱ | ⩾

𝑔(_)
2
𝑛𝑓 (𝜖,_) .

Therefore

𝑓 (𝜖, _) ⩾ 1

𝑛
log

𝑔(_)
𝑔(𝜖_) = log

(
(_ + 1)_+1

__

)
− log

(
(𝜖_ + 1)𝜖_+1

(𝜖_)𝜖_

)
.

It’s easy to verify that 𝑓 (𝜖, _) ⩽ 1+𝑜 (1)
𝑛 (log𝑔(_) − log𝑔(𝜖_)) (con-

sider the example

( |XF |
|S |

)
= ( |𝒮|/|ℱ |) (1 + 𝑜 (1))). So

𝑓 (𝜖, _) = (_ + 1)𝐻
(

1

_ + 1

)
− (𝜖_ + 1)𝐻

(
1

𝜖_ + 1

)
is the space lower bound. □

Remark. Theorem 2.1 connects the approximate and the exact
membership query problems. When 𝜖 ≠ 0 and _ → +∞, 𝑓 (𝜖, +∞) =
log 1/𝜖 degenerates to the space lower bound of approximate mem-
berships. When 𝜖 = 0 and _ < +∞, 𝑓 (0, _) = (_ + 1)𝐻 (1/(_ + 1))
degenerates to the space lower bound of exact memberships [13].

2.3 Chain Rule
In this part, we delve deeper and derive our chain rule theory,

which is arithmetically equivalent to the space lower bound but

provides insights into the essence of membership problems. As a

preliminary, please note that in our context, the term “membership

problem” is different from the term “membership filter”. When

referring to an abstract “problem”, we focus on the theoretical

space lower bound. While when discussing a specific “filter”, we

focus on a practical algorithm that may not be space-optimal.

To begin, let’s consider encoding𝑛 positive items and _𝑛 negative

items with a false positive rate of 𝜖1𝜖2. Intuitively, we can factorize

the problem into two stages: first, encoding all positive items and the

_𝑛 negative items with a false positive rate of 𝜖1, and then encoding

the positive items and the remaining _𝜖1𝑛 false positive items with

3
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a false positive rate of 𝜖2. It is evident that if we solve the two sub-

problems, we can address the primary problem. Hence, the two sub-

problems should not be easier than the primary problem. However,

since the positive items are encoded twice in separate stages, it

may seem that the two-stage factorization incurs additional space

overhead, and we might need to make careful trade-offs to avoid

accumulating inherent space costs caused by the factorization.

Surprisingly, Theorem 2.1 reveals that all our concerns and

worries are unnecessary. Because

𝑓 (𝜖1𝜖2, _) = (_ + 1)𝐻
(

1

_ + 1

)
− (𝜖1𝜖2_ + 1)𝐻

(
1

𝜖1𝜖2_ + 1

)
=

(
(_ + 1)𝐻

(
1

_ + 1

)
− (𝜖1_ + 1)𝐻

(
1

𝜖1_ + 1

))
+

(
(𝜖1_ + 1)𝐻

(
1

𝜖1_ + 1

)
− (𝜖1𝜖2_ + 1)𝐻

(
1

𝜖1𝜖2_ + 1

))
= 𝑓 (𝜖1, _) + 𝑓 (𝜖2, 𝜖1_),

we find the factorization is completely lossless (ignoring 𝑜 (1)
terms), whichmeans we can arbitrarily decompose anymembership

problem into an arbitrary number of sub-problems without incur-

ring any additional space cost. In other words, if all the elementary

filters used in the combination are space-optimal, the resulting com-

bined membership filter will also be space-optimal
5
. Instead, when

we combine imperfect membership filters to solve a membership

problem, the only source of space overhead stems from that the

filters cannot optimally solve the sub-problems. The factorization

process itself does not introduce any additional space overhead. In

later chapters, we will use Bloomier Filters as a straightforward

example to show how to appropriately factorize a membership

problem into sub-problems and enhance overall performance. But

before that, let us rewrite the expressions as 𝜖 = 𝜖1𝜖2 and 𝜖
′ = 𝜖1,

and present the conclusion in a recursive form:

Theorem 2.2. (Chain Rule Theory){
𝑓 (𝜖, _) = 𝑓 (𝜖′, _) + 𝑓 (𝜖/𝜖′, 𝜖′_),∀𝜖′ ∈ [𝜖, 1];
𝑓 (0, _) = (_ + 1)𝐻

(
1

_+1

)
.

It’s easy to verify that the above equation set is equivalent to the

space lower bound in Theorem 2.1 (you can check it by setting

𝜖 = 0), but this form is more elegant and may provide more insights.

3 BLOOMIER FILTER
In this section, we present two variants derived from the Bloomier

Filter [21, 22], which belong to approximate and exact membership

algorithms, respectively
6
. In Section 4, we combine these elemen-

tary filters by chain rule to construct ChainedFilter. The reason we

introduce Bloomier Filters as elementary filters is that they are easy

to describe and implement, but readers can also use other elemen-

tary filters to achieve special properties, like smaller filter space,

5
As an extreme example, when 𝜖2 = 1, the equation 𝑓 (𝜖1, _) = 𝑓 (𝜖1, _) + 𝑓 (1, 𝜖1_)
also holds because the second stage filter can always report true and thus does not

contribute to the space cost.

6
The approximate Bloomier Filter is also referred to as XOR filter [23] or binary

fuse filter [24]. For consistency, we use the term “Bloomier Filter” interchangeably

throughout this paper.

smaller construction space or supporting dynamic exclusions. We

discuss more related works in Section 6.
Overview. Bloomier Filter is a compact perfect hashing algo-

rithm that supports both approximate and exact membership query

by encoding item 𝑒’s fingerprint 𝑓𝛼 (𝑒) ∈ {0, 1}𝛼 into the hash table.

Specifically, to build an approximate membership algorithm, the

Bloomier Filter encodes an 𝛼-bit fingerprint 𝑓𝛼 (𝑒) = ℎ𝛼 (𝑒) for every
positive item; to build an exact membership algorithm, the Bloomier

Filter maps every item to a one-bit hash value ℎ1 (𝑒) ∈ {0, 1} and en-
codes 𝑓1 (𝑒) = ℎ1 (𝑒) (resp. 𝑓1 (𝑒) =∼ ℎ1 (𝑒)) for every positive (resp.

negative) item. The query result of an item 𝑒 depends on whether its

hash value matches the fingerprint in the hash table. For interested

readers, we present the detailed descriptions of Bloomier Filter in

the next three paragraphs. Skipping them and directly reading
the Remark does not affect the comprehension of this paper.

Algorithm. Suppose we already have the entire universe of all

|U| possible items
7
whose value are either zero or one. To construct

the hash table, we first initialize the hash table by all zero, mark

all items as “not matched” and let the variable 𝑜𝑟𝑑𝑒𝑟 = |U|. the
Bloomier Filter maps every not-matched item 𝑒 to 𝑗 different slots

𝑠𝑒[1.. 𝑗 ] . Then, it repeats the following operations (called the peeling
process) until all items are “matched”: (1) It selects a slot 𝑠 that

is mapped by only one item 𝑒0
8
; (2) It marks the insertion place

(ip) of 𝑒0 as 𝑠 (𝑒0) = 𝑠 , and the insertion order (io) of 𝑒0 as 𝑜𝑟𝑑𝑒𝑟 ;

(3) It marks 𝑒0 as “matched”, peels 𝑒0 and decreases 𝑜𝑟𝑑𝑒𝑟 by one.

Finally, it inserts items in 𝑜𝑟𝑑𝑒𝑟 : for items 𝑒 from 𝑜𝑟𝑑𝑒𝑟 = 1 to |U|,
it encodes (⊕ 𝑗

𝑖=1
𝑠𝑒
𝑖
) ⊕ 𝑓𝛼 (𝑒)(where ⊕ means XOR) into the slot 𝑠 (𝑒).

To query an item 𝑒 , the Bloomier Filter reports ⊕ 𝑗
𝑖=1

𝑠𝑒
𝑖
as the result.

Example. Suppose we have |U| = 3 items 𝑒1, 𝑒2 and 𝑒3. To

construct the hash table, the Bloomier Filter first maps 𝑒1 to 𝑖 = 3

slots 𝑠1, 𝑠2, 𝑠3; maps 𝑒2 to 𝑠1, 𝑠3, 𝑠4; and maps 𝑒3 to 𝑠2, 𝑠4, 𝑠5. Then the

filter (1) selects slot 𝑠5 which is only mapped by 𝑒3, marks 𝑒3 with

(ip = 5, io = 3) and peels 𝑒3; (2) selects 𝑠2 which is only mapped by

𝑒1, marks 𝑒1 with (ip = 2, io = 2) and peels 𝑒1; (3) selects 𝑠1 which

is only mapped by 𝑒2, marks 𝑒2 with (ip = 1, io = 1) and peels 𝑒2.

Finally, the filter (1) inserts 𝑠1 with 𝑠1 ⊕ 𝑠3 ⊕ 𝑠4 ⊕ 𝑓𝛼 (𝑒2) = 𝑓𝛼 (𝑒2) (io
= 1); (2) inserts 𝑠2 with 𝑠1 ⊕ 𝑠2 ⊕ 𝑠3 ⊕ 𝑓𝛼 (𝑒1) = 𝑓𝛼 (𝑒2) ⊕ 𝑓𝛼 (𝑒1) (io =
2); (3) inserts 𝑠5 with 𝑠2 ⊕ 𝑠4 ⊕ 𝑠5 ⊕ 𝑓𝛼 (𝑒3) = 𝑓𝛼 (𝑒2) ⊕ 𝑓𝛼 (𝑒1) ⊕ 𝑓𝛼 (𝑒3)
(io = 3). To query the items, the Bloomier Filter reports𝑄𝑢𝑒𝑟𝑦 (𝑒1) =
𝑠1⊕𝑠2⊕𝑠3 = (𝑓𝛼 (𝑒2)) ⊕ (𝑓𝛼 (𝑒2) ⊕ 𝑓𝛼 (𝑒1)) ⊕0 = 𝑓𝛼 (𝑒1), 𝑄𝑢𝑒𝑟𝑦 (𝑒2) =
𝑠1⊕𝑠3⊕𝑠4 = (𝑓𝛼 (𝑒2))⊕0⊕0 = 𝑓𝛼 (𝑒2), and 𝑄𝑢𝑒𝑟𝑦 (𝑒3) = 𝑠2⊕𝑠4⊕𝑠5 =
(𝑓𝛼 (𝑒2) ⊕ 𝑓𝛼 (𝑒1)) ⊕ 0 ⊕ (𝑓𝛼 (𝑒2) ⊕ 𝑓𝛼 (𝑒1) ⊕ 𝑓𝛼 (𝑒3)) = 𝑓𝛼 (𝑒3).

Theory. The theory underlying the Bloomier Filter is highly

non-trivial [10]. The peeling process mentioned above is actually

equivalent to finding the 2-core of random hypergraph. If the num-

ber of potential slots is greater than 𝑐𝑁 , where 𝑐 is any constant

larger than

𝑐−1𝑗 :=

(
sup

{
𝛼 ∈ (0, 1) : ∀𝑥 ∈ (0, 1), 1 − 𝑒− 𝑗𝛼𝑥

𝑗−1
< 𝑥

})−1
,

the peeling process will succeed with high probability 1 − 𝑜 (1). We

denote 𝑐−1
𝑗

as the threshold which achieves its minimum value 1.23

when 𝑗 = 3. Recently, this result is optimized by [25] (2021) which

proposes a new distribution of hyperedges. The author selects 𝑗 slots

7
Bloomier Filter is a static algorithm and does not support dynamic scenarios.

8
If the algorithm cannot find such a slot, it reports construction fail and terminates.

But the theory later proves that the algorithm will succeed with high probability.
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uniformly at random from a range of |U|/(𝑧 + 1) slots, improving

the threshold close to 𝑐′−1
𝑗

, where 𝑐′−1
𝑗

can be arbitrarily close to 1

(e.g. 𝑐′−1
3
≈ 1.12, 𝑐′−1

4
≈ 1.05 when 𝑧 = 120). In Section 5, we set

𝑗 = 3, 𝑧 = 120, and 𝐶 = 1.13 to conduct experiments.

Remark. To conclude, the Bloomier Filter can derive space-efficient
approximate (𝐶𝑛 log 1/𝜖 bits) and exact (𝐶 |U| bits) membership fil-
ters, where𝐶 can be an arbitrary constant close to 1. Interestingly, the
two formulae have completely different forms, which seemingly leave
room for improvement. This simple observation inspires us to bridge
the gap between the two variants to obtain a better theoretical result.

4 CHAINEDFILTER
4.1 Key Insight

We use the exact membership ChainedFilter as an example to

illustrate our key insight. Now let’s recap the theoretical results

of the approximate and the exact variants of Bloomier Filters (BF)

shown in the Remark of Section 3:{
𝑓 𝐵𝐹 (𝜖, _) ⩽ 𝑓 𝐵𝐹 (𝜖, +∞) = 𝐶 log 1/𝜖 (Approximate);

𝑓 𝐵𝐹 (0, _) = 𝐶 (_ + 1) (Exact).

According to Theorem 2.2, we can losslessly factorize a mem-

bership problem (0, _) into two sub-problems (𝜖′, _) and (0, 𝜖′_), and
use Bloomier Filters as elementary filters to form ChainedFilter s.t.

𝑓𝐶𝐹 (0, _) = 𝑓 𝐵𝐹 (𝜖′, _) + 𝑓 𝐵𝐹 (0, 𝜖′_) ⩽ 𝐶 log 1/𝜖′ +𝐶 (𝜖′_ + 1).
Because 𝜖′ can be any value between 0 and 1, we can minimize

𝑓𝐶𝐹 (0, _) to 𝐶 log(2𝑒_ ln 2) by setting
9 𝜖′ = 1/(_ ln 2). Such an

intuitive technique amazinglymakes 𝑓𝐶𝐹 (0, _) less than 1.11𝑓 (0, _).

Algorithm 1: ChainedFilter for Exact Membership Query

Input: UniverseU and subset S, |U|/|S| = _ > 1/ln 2.
Output: A filter F : U ↦→ {0, 1} s.t. F (𝑒) = 1 iff 𝑒 ∈ 𝑆 .

1 Function Construct (U,S):
2 Set log 1/𝜖 = ⌊log _⌋ and the false positive set S′ = ∅.
3 Construct an approximate membership filter F1 s.t.{
F1 (𝑒) = 1, ∀𝑒 ∈ S;
P[F1 (𝑒) = 0] = 𝜖, ∀𝑒 ∈ U\S.

4 For all 𝑒 ∈ U\S satisfying F1 (𝑒) = 1 : Insert 𝑒 into S′ .

5 Construct an exact filter F2 s.t.
{
F2 (𝑒) = 1, ∀𝑒 ∈ S;
F2 (𝑒) = 0, ∀𝑒 ∈ S′ .

6 return F (·) := F1 (·) & F2 (·).

This exact membership example demonstrates the potential of

the chain rule. We summarize it in Algorithm 1 and Figure 3, and
show its experimental performance in Section 5.1. To construct

ChainedFilter, in step 1○, we first encode all the positive items into

a 𝐶𝑛 log(_ ln 2)-bit approximate Bloomier Filter with false positive

rate 𝜖 = 1/(_ ln 2) (Line 3). In step 2○, we query all negative and

collect the false positive ones into a set S′ (Line 4). In step 3○, we

encode all the positive as well as all the false positive items (i.e.

items in S′) into a 𝐶𝑛 log 2𝑒-bit Exact Bloomier Filter (Line 5). In

9
We assume

1

_ ln 2
< 1, otherwise it degenerates to the exact Bloomier Filter. For

convenience, we don’t round numbers here, but we’ll do it in practice.

this way, the overall space cost 𝑛𝑓𝐶𝐹 (0, _) is minimized. To query

an item, we query both of the two filters and report their AND value
as the result (Line 6).

𝒮𝒮 and𝒰𝒰\𝒮𝒮

x

construction begin

input 𝒮𝒮 and𝒰𝒰\𝒮𝒮

construct stage 1 (ℱ1)

query stage 1

construct stage 2 (ℱ2)

output ℱ = ℱ1 & ℱ2

end

𝒮𝒮 and 𝒮𝒮’ (𝒮𝒮’: false positive items)

input item 𝑒𝑒

ℱ1 & ℱ2 𝑒𝑒 = 1?

output false

end

yes

output true

no

positive and negative items

query begin

x

...

ℱ1

ℱ2

ℱ3

ℱ2

ℱ1

ℱ = ℱ0

elementary filters

①

②

③

① ② ③
step num.

insert
query

positive items (𝒮𝒮) negative items (𝒰𝒰\𝒮𝒮)

Figure 3: ChainedFilter shown in Section 4.1.

4.2 Generalization and Analysis
In this part, we (1) extend the exact (𝜖 = 0) ChainedFilter to a

general (𝜖 ≠ 0) ChainedFilter and show that the two-stage structure

is space-optimal, (2) extend Bloomier Filters to an arbitrary number

of elementary filters and reveal ChainedFilter’s limitation. Since
this part is only technically complex, skipping it does not
affect the comprehension of this paper.

4.2.1 ChainedFilter for general membership query. Since
the trivial theoretical bound

𝑓𝐶𝐹 (𝜖, _) ⩽ min

{
𝑓𝐶𝐹 (0, (1 − 𝜖)_), 𝑡 𝑓𝐶𝐹 (𝜖, _/𝑡)

}
(∀𝑡 > 1)

is too loose, we introduce additional inequalities to reduce error.

The key observation is that an𝐶 (𝛽 + 1)𝑛(𝛽 > 0)-bit Bloomier Filter

can also filter out some negative items that are not encoded in

the perfect hash table. Recall that in Section 3, we say a Bloomier

Filter encodes a one-bit fingerprint 𝑓1 (𝑒) = ℎ1 (𝑒) ∈ {0, 1} (resp.
∼ ℎ1 (𝑒)) for a positive (resp. negative) item. Now let’s consider two

strategies for generating ℎ1 (𝑒). (a) The first strategy is P[ℎ𝛼 (·) =
1] = 1/2, which means we flip a fair coin and record the face up

side (resp. face down side) as the fingerprint of a positive (resp.

negative) item. In this way, only 1/2 not-encoded negative items

are false positive items. (b) The second strategy is P[ℎ𝛼 (·) = 1] = 1,

which means we directly record 1 (resp. 0) as the fingerprint of

a positive (resp. negative) item. In this way, only 1/(𝛽 + 1) not-
encoded negative items are false positive items. These strategies

give rise to two additional inequalities (BF represents ChainedFilter.

When the equation “=” holds, the algorithm degenerates to one

single Bloomier Filter){
𝑓𝐶𝐹 (𝜖, _)/𝐶 ⩽ _ + 1 − 2𝜖_ (𝜖 ⩽ 2_/(_ + 1)) (𝑎);
𝑓𝐶𝐹 (𝜖, _)/𝐶 ⩽ (_ + 1)/(𝜖_ + 1) (𝜖 ⩽ 1/2) (𝑏) .
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Similar to the exact ChainedFilter (Algorithm 1), the generalized
algorithm also consists of one approximate Bloomier Filter and

one exact Bloomier Filter. The only difference is, the approximate

Bloomier Filter requires𝐶𝑛𝛼 = 𝐶𝑛(𝑓𝐶𝐹 (𝜖, _) − 𝛽 − 1) bits and has a
false positive rate of 1/2𝛼 , while the Exact Bloomier Filter requires

𝐶𝑛(𝛽 + 1) bits and has a false positive rate of min{1/2, 1/(𝛽 + 1)}.
Using the two inequalities and the chain rule, we can determine

the optimal parameter settings of 𝛼, 𝛽 and thus 𝑓𝐶𝐹 (𝜖, _). Because
the calculation process is a bit dry, we present the results directly

in Corollary 4.1 and Figure 4.

Corollary 4.1. if we only combine two Bloomier Filters, the opti-
mal space cost and the corresponding parameters are

𝑓𝐶𝐹 (𝜖, _) := min

{
𝑓 (𝑎) (𝜖, _), 𝑓 (𝑏 ) (𝜖, _)

}
,

where 𝑓 (𝑎) (𝜖, _), 𝑓 (𝑏 ) (𝜖, _) are defined as follows:

(a) If _ >
1

ln 2

and _ <
1

2𝜖 ln 2
, then P[ℎ𝛼 (·) = 1] = 1/2,

𝛽 (𝑎) =
1

ln 2

− 2_𝜖 and 𝑓 (𝑎) (𝜖, _)/𝐶 = log(2𝑒_ ln 2) − 2_𝜖.

Otherwise 𝑓 (𝑎) (𝜖, _) degenerates to the space of approximate

(𝛽 = 0) or exact (𝛼 = 0) Bloomier Filters.

(b) If _ >
1

ln 2 − 𝜖 > 0, then P[ℎ𝛼 (·) = 1] = 1,

𝛽 (𝑏 ) =
1

ln 2

− 𝜖_

𝜖_ + 1 , and 𝑓 (𝑏 ) (𝜖, _)/𝐶 = log

2𝑒_ ln 2

𝜖_ + 1 −
𝜖_

𝜖_ + 1 .

Otherwise 𝑓 (𝑏 ) (𝜖, _) degenerates to the space of approximate

(𝛽 = 0) or exact (𝛼 = 0) Bloomier Filters.

Figure 4: Space cost when 𝐶 → 1. The multicolored sur-
face is the minimum space cost of a single Bloomier Filter.
When 𝜖 = 0 and _ = 16, it is 210% higher than the theoretical
lower bound, while the space overhead of ChainedFilter
(the blue surface) is only 8%.

4.2.2 Two filters can be optimal. It seems that only two stages is

too trivial. But interestingly, we prove that combining two Bloomier

Filters using operator “&” is space-optimal.

Theorem 4.1. (Optimality) Suppose we have a combined filter
F := &

𝑚
𝑖=1
F𝑖 , where F𝑖 are Bloomier Filters. Then we can prove that

(CF represents ChainedFilter)

𝑓 F (𝜖, _) ⩾ 𝑓𝐶𝐹 (𝜖, _).

Proof. We only consider inequality (𝑎), i.e. 𝑓 𝐵𝐹 (𝜖, _)/𝐶 = _ +
1 − 2𝜖_(𝜖 ⩽ 2_/(_ + 1)), where BF represents Bloomier Filter,

because the case for inequality (𝑏) is similar.

Let 𝜖 := 𝜖1𝜖2 ...𝜖𝑚 , according to the chain rule

𝑓 (𝜖, _) = 𝑓 (𝜖1, _) + 𝑓 (
𝜖

𝜖1
, 𝜖1_)

= 𝑓 (𝜖1, _) + 𝑓 (𝜖2, 𝜖1_) + 𝑓 (
𝜖

𝜖1𝜖2
, 𝜖1𝜖2_)

= 𝑓 (𝜖1, _) + 𝑓 (𝜖2, 𝜖1_) + 𝑓 (𝜖3, 𝜖1𝜖2_) + 𝑓 (
𝜖

𝜖1𝜖2𝜖3
, 𝜖1𝜖2𝜖3_)

= ...

= 𝑓 (𝜖1, _) + 𝑓 (𝜖2, 𝜖1_) + ... + 𝑓 (𝜖𝑚, 𝜖1𝜖2 ...𝜖𝑚−1_),
we have

min

F
𝑓 F (𝜖, _)/𝐶 =

𝜖1𝜖2 ...𝜖𝑚=𝜖

min

𝜖1,𝜖2,...,𝜖𝑚∈[0,1/2]

𝑚∑︁
𝑖=1

𝑓 𝐵𝐹 (𝜖𝑖 , 𝜖1𝜖2 ...𝜖𝑖−1_)/𝐶

=𝑚 + (1 − 2𝜖)_ − max

𝜖1,𝜖2,...,𝜖𝑚−1∈[0,1/2]
©«
𝑚−1∑︁
𝑖=1

𝑖∏
𝑗=1

𝜖 𝑗
ª®¬ _

=𝑚 + (1 − 2𝜖)_ −
(
1 − 1

2
𝑚−1

)
_ =

(
𝑚 + _

2
𝑚−1

)
− 2𝜖_.

When


𝑚 = ⌊log _⌋ + 1;
𝜖1 = ... = 𝜖𝑚−1 = 1/2;
𝜖𝑚 = 2

𝑚−1𝜖,

The formula achieves the minimum value

𝑓 F (𝜖, _) = ⌊log _⌋ + 1 + _

2
⌊log_⌋ − 2𝜖_ = 𝑓𝐶𝐹 (𝜖, _) .

So ChainedFilter is space-optimal. □

Remark. When 𝜖 = 0, the rounded space cost of ChainedFilter is

𝑓𝐶𝐹 (0, _) = 𝐶 (⌊log _⌋ + 1 + _

2
⌊log_⌋ ) < 1.11𝐶𝑓 (0, _) .

We will recap this result in Section 5.1 and 5.2.

4.2.3 Limitation of the operator “&”. When the elementary

filters are not limited to Bloomier Filters, the optimal combined

filter can be very complex. In fact, we may not even know how

many elementary filters we should use. However, we find that if we

continue to use the “&” operator to combine filters, we can derive

the tight space lower bound of the combined filter.

Theorem 4.2. (Limitation) Given arbitrary elementary filters
(EF) F𝑖 with a restriction of 𝑓 𝐸𝐹 (𝜖, _) and an arbitrary combined
filter F := &

𝑚
𝑖=1
F𝑖 . We define𝛹𝐸𝐹 (𝜖, _) : [0, 1] × R+ ↦→ R as any

function satisfying{
𝑓 (𝜖, _) ⩽ 𝛹𝐸𝐹 (𝜖, _) ⩽ 𝑓 𝐸𝐹 (𝜖, _) ∀𝜖 ∈ [0, 1],
𝛹𝐸𝐹 (𝜖1𝜖2, _) ⩽ 𝛹𝐸𝐹 (𝜖1, _) +𝛹𝐸𝐹 (𝜖2, 𝜖1_) ∀𝜖1, 𝜖2 ∈ [0, 1] .
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Then we have
inf 𝑓 F (𝜖, _) = sup𝛹𝐸𝐹 (𝜖, _) .

Proof. First, we assert that (1) inf 𝑓 F (𝜖, _) exists. This is be-
cause 𝑓 F (𝜖, _) exists (𝑓 F (𝜖, _) ⩽ 𝑓 𝐸𝐹 (𝜖, _)) and has an lower

bound 𝑓 (𝜖, _). (2) sup𝛹𝐸𝐹 (𝜖, _) exists. This is because 𝛹𝐸𝐹 (𝜖, _)
exists (𝛹𝐸𝐹 (𝜖, _) ⩾ 𝑓 (𝜖, _)) and has an upper bound 𝑓 𝐸𝐹 (𝜖, _).

Second, we prove that 𝑓 F (𝜖, _) ⩾ 𝛹𝐸𝐹 (𝜖, _) by mathematical

induction. When𝑚 = 1 (note that𝑚 is the number of elementary

filters), we observe 𝑓 F (𝜖, _) = 𝑓 𝐸𝐹 (𝜖, _) ⩾ 𝛹𝐸𝐹 (𝜖, _) . Assume that

when 𝑚 = 𝑚0 − 1 we have 𝑓 F (𝜖, _) ⩾ 𝛹𝐸𝐹 (𝜖, _). Then, when
𝑚 = 𝑚0, we can rewrite F as (&𝑚0−1

𝑖=1
F𝑖 )&F𝑚0

. W.l.o.g., we can

assume that &
𝑚0−1
𝑖=1

F𝑖 encodes _𝑛 negative items with false positive

rate 𝜖′, and F𝑚0
encodes _′𝑛(_′ ⩾ 𝜖′_) negative items with false

positive rate 𝜖′′ (𝜖′𝜖′′ ⩽ 𝜖). Thus

𝑓 F (𝜖, _) ⩾ 𝛹𝐸𝐹 (𝜖′, _) +𝛹𝐸𝐹 (𝜖′′, _′)

⩾ 𝛹𝐸𝐹 (𝜖′, _) +𝛹𝐸𝐹 (𝜖′′, 𝜖_)

⩾ 𝛹𝐸𝐹 (𝜖′𝜖′′, _) ⩾ 𝛹𝐸𝐹 (𝜖, _) .

Therefore, ∀𝑚 ∈ N+ we have

𝑓 F (𝜖, _) ⩾ 𝛹𝐸𝐹 (𝜖, _) ⇒ inf 𝑓 F (𝜖, _) ⩾ sup𝛹𝐸𝐹 (𝜖, _).

Finally, we assert that

inf 𝑓 F (𝜖1𝜖2, _) ⩽ inf 𝑓 F (𝜖1, _) + inf 𝑓 F (𝜖2, 𝜖1_)

⇒ inf 𝑓 F (𝜖, _) ⩽ sup𝛹𝐸𝐹 (𝜖, _) .

Therefore, we conclude that inf 𝑓 F (𝜖, _) = sup𝛹𝐸𝐹 (𝜖, _). □

Remark. Theorem 4.2 shows the limitation of the operator “&”:
if we solely use the “&” operator, the space cost of a combined filter
cannot be less than sup𝛹𝐸𝐹

𝜖,_
. However, if we utilize the chain rule with

other operators such as “& ∼”, then the situation may be different
(Section 4.3.2).

4.3 ChainedFilter is a Framework
In Section 4.1, we combine Bloomier Filters with operator “&”

to construct ChainedFilter. However, this design has two limita-

tions. First, Bloomier Filter only supports static membership query,

which means that any new item added may require a reconstruction

of the entire data structure. Second, although the Bloomier Filter

itself only requires𝑂 (𝑛) space, its construction process requires an

additional 𝛺 (𝑛 log𝑛) space (as the peeling process relies on a good

ordering). In this part, we present some extensions to ChainedFilter

that overcomes these shortcomings to some extent.

4.3.1 Replace elementary filters.
For the first limitation, we can replace the Bloomier Filter(s) with

other dynamic elementary filter(s) to support online updates. For

instance, we can replace the static second stage (exact) Bloomier

Filter with a dynamic filter such as Othello Hashing [26] or Col-

oring Embedder [27], at the expense of additional space
10
. With

10
These two algorithms map each item to an edge in a random hypergraph and then

color the nodes the same for positive items and different for negative items. Othello

Hashing / Coloring Embedder requires 2.33/2.2 bits per item (compared to𝐶 < 1.13

bits per item cost of Bloomier Filter) but support online updates.

the help of the dynamic “whitelist”, the new version of ChainedFil-

ter supports the exclusion of new negative items without causing

any false negative. Similarly, we can further replace the static first

stage (approximate) Bloomier Filter, which requires 𝐶 log 1/𝜖 bits
per item, with a dynamic filter such as a Bloom Filter [28], which

requires (log 1/𝜖)/ln 2 bits per item, or a Cuckoo Filter [14], which

requires 1.05(2+ log 1/𝜖) bits per item. In this way, the new version

of ChainedFilter supports not only the exclusion of new negative

items but also the inclusion (insertion) of new positive items with

a small false positive rate. These enhancements enable Chained-

Filter to be used in more dynamic scenarios where new items are

frequently added.

While we present some compensations, it is important to note

that ChainedFilter does not perfectly align with dynamic scenarios.

This is because we need to determine all false positive items before

we construct the second stage filter. At the theoretical level, we can

even prove that the chain rule does not hold for general dynamic

memberships. This is supported by prior work [29], which shows

that a dynamic exact membership problem only requires𝑛𝑓 ′ (0, _) =
(1 + 𝑜 (1))𝑛𝑓 (0, _) bits, and [30], which demonstrates that a dy-

namic approximate membership problem costs 𝑛𝑓 ′ (𝜖, +∞) = 𝑛𝐶 (𝜖)
𝑓 (𝜖, +∞) bits, where𝐶 (𝜖) > 1 depends solely on 𝜖 (This implies that

there exists a _ > 0 for which 𝑓 ′ (𝜖, _) > 𝑓 (𝜖, _)). So the inequality

𝑓 ′ (0, _) = 𝑓 (0, _) = 𝑓 (𝜖, _) + 𝑓 (0, 𝜖_) < 𝑓 ′ (𝜖, _) + 𝑓 ′ (0, 𝜖_)
serves as a counterexample to the chain rule (Theorem 2.2).

4.3.2 Replace the combining operator “&”.
For the second limitation, we can design a space-efficient (i.e.

𝑂 (𝑛𝑓 (0, _))) exact filter with no additional construction space based
on the chain rule.

Overview. Our key idea is to replace the combining operator

“&” (i.e. &
𝑚
𝑖=1
F𝑖 ) with “& ∼” and recursively define{

F (·) := F 0 (·);
F 𝑖 (·) := F𝑖+1 (·)& ∼ F 𝑖+1 (·),∀𝑖 ∈ N ( ∼ means NOT).

In this formula, every elementary filter F𝑖 (·) is a approximate filter

like Bloom Filter or Cuckoo Filter, and F𝑖+1 is the whitelist of F𝑖
(Figure 5). To construct the filter, in step 1○, we insert all positive

items into F1; in step 2○, we insert all false positive items of F1
into F2; in step 3○, we insert all false positive items of F2 into F3,
and so on. If we need an exact filter, this process iterates until no

false positive items are left. It’s easy to find that ChainedFilter has

no additional construction space, as all items can be placed on the

input tape of the Turing Machine model.

Analysis. Here we analysis the space cost of the new design

(denoted as 𝑛𝑓𝐶𝐹 (0, _) bits) and derive related parameter settings.

Theorem 4.3. (Space Cost) Suppose an approximate filter costs
𝐶′ log 1/𝜖 bits per item (𝐶′ = log 𝑒 = 1.44 for Bloom Filter), then

inf 𝑓𝐶𝐹 (0, _) = 𝐶′ log 4𝑒_.

Proof. Our proof is based on a simple observation: Exactly

classifying 𝑛 positive items and _𝑛 negative items is equivalent to

exactly classifying _ × 𝑛 positive items and _ × (1/_)𝑛 negative

items. Formally speaking, we have 𝑓 (0, _) = _𝑓 (0, 1/_). We use

the above formula to determine the parameter settings, and the

following proof is only technically complicated.

7
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input 𝒮𝒮 and𝒰𝒰\𝒮𝒮

construct stage 1 (ℱ1)
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construct stage 2 (ℱ2)

output ℱ = ℱ1 & ℱ2

end

𝒮𝒮 and 𝒮𝒮’ (𝒮𝒮’: false positive items)

input item 𝑒𝑒

ℱ1 & ℱ2 𝑒𝑒 = 1?

output false

end

yes
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no
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query begin

x

...

ℱ1
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ℱ3

ℱ2
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①

②
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Figure 5: The “& ∼” version shown in Section 4.3.2.

W.l.o.g. we let _ ⩾ 1. According to the chain rule

𝑓 (0, _) = 𝑓 (𝜖, _) + 𝑓 (0, 𝜖_) = 𝑓 (𝜖, _) + 𝜖_𝑓 (0, 1/(𝜖_)),

we have

inf 𝑓𝐶𝐹 (0, _)/𝐶′ = inf

𝜖<1

{
log

1

𝜖
+ 𝜖_𝑓𝐶𝐹 (0, 𝜖_)/𝐶′

}
= log _ + inf

𝜖<1

{
log

1

𝜖_
+ 𝜖_𝑓𝐶𝐹 (0, 𝜖_)/𝐶′

}
= log _ + inf

𝑥<_

{
log

1

𝑥
+ 𝑥 inf 𝑓𝐶𝐹 (0, 𝜖_)/𝐶′

}
= log _ + Constant.

Since inf 𝑓𝐶𝐹 (0, 𝜖_) is derivable, so the right hand side achieves

the minimum value when

d

d𝑥
(log 1

𝑥
+ 𝑥 inf 𝑓𝐶𝐹 (0, 𝜖_)/𝐶′) = 0

Therefore

{
𝜖_ = 𝑥 = 1;

inf 𝑓𝐶𝐹 (0, 𝜖_) = 𝐶′ log 4𝑒_.

Actually, according to L’Hôpital’s rule, if

𝑓𝐶𝐹 (0, 𝜖_) ≡ 𝐶′
(
log _ + log 1

𝛿
+ 𝛿 𝑓𝐶𝐹 (0, 𝜖_)

)
(𝛿 < 1), we have

𝑓𝐶𝐹 (0, 𝜖_) = 𝐶′
(
log _ + 1 + 𝛿

1 − 𝛿 log

1

𝛿

)
→ 𝐶′ log 4𝑒_(𝛿 → 1) .

We show our algorithm in Algorithm 2. □

Remark. In practice, we can set 𝛿 = 1/2, round up the space cost
of F1 to 𝐶′𝑛⌈log _/𝛿⌉ bits, and round up the space cost of F𝑖 (𝑖 ⩾ 2)
to 𝐶′𝑛2𝛿𝑖−1 log 1/𝛿 = 𝐶′𝑛22−𝑖 bits. The total space cost is no more
than 𝐶′𝑛 log 16_ bits and the expected query time is 𝑂 (1). To take a
step further, we can replace the last𝑂 (log𝑛 − log log𝑛) approximate
filters with one exact filter whose construction space is 𝑂 (𝑛), so that
we can reduce the number of filters from𝑂 (log𝑛) to𝑂 (log log𝑛). We
summarize the properties of the exact ChainedFilter using operator
“&” and “& ∼” in Table 2 (“/” means the additional space complexity
is no more than the filter space complexity).

Algorithm 2: Exact ChainedFilter (using operator “& ∼”)
Input: UniverseU and subset S, |U|/|S| = _ > 1.

Output: A filter F : U ↦→ {0, 1} s.t. F (𝑒) = 1 iff 𝑒 ∈ 𝑆 .
1 Function Construct (U,S):
2 Set ^ = _, 𝛿 ∈ (0, 1),S𝑇 = S,S𝐹 = U\S, 𝑖 = 1.

3 While S𝐹 ≠ ∅ :
4 Construct an approximate filter F𝑖 s.t.{

F𝑖 (𝑒) = 1, ∀𝑒 ∈ S𝑇 ;
P[F𝑖 (𝑒) = 0] ⩽ 𝛿/^, ∀𝑒 ∈ S𝐹 .

5 ^ ← 1/𝛿,S𝑇 ← S𝐹 ,S𝐹 ← {𝑒 ∈ S𝐹 : F𝑖 (𝑒) = 0}.
6 𝑖 ← 𝑖 + 1.
7 return F (·) := F 0 (·), where
F 𝑗 (·) := F𝑗+1 (·)& ∼ F 𝑗+1 (·),∀𝑗 ∈ [0..𝑖 − 2].

5 APPLICATIONS AND EVALUATION
• Experimental Setup: In this section, we implement Chained-

Filter and its variants in C++ and Python and equip them with

Murmur Hashing [31] to compute mapped addresses. We evaluate

their performance in terms of space usage, speed and accuracy in

several applications, including data compressing (Section 5.1, 5.2),
classifying (Section 5.3, 5.5), and filtering (Section 5.4). Note that
the universeU may not be the absolute universe. Instead, it can be

the set of frequently queried items (Section 5.4). Unless otherwise
stated, all item keys are 64-bit pre-generated random integers. All

experiments are conducted on a machine with 36 Intel
®

Core™

i9-10980XE CPU @ 3.00GHz (576KiB L1 d-cache, 576KiB L1 i-cache,

18MiB L2 cache, 24.8MiB L3 cache) and 128GB DRAM.

• Our evaluationmetrics (with units) are:
(a) Filter space (Mb): The size of the filter measured in million

bits (Mb). Additional construction space is not included.

(b) Average construct and query throughput (Mops): The
average number of operations per time, measured in million opera-

tions per second (Mops). Each experiment was repeated 10 times,

and the mean value was recorded to reduce error.

(c) Error rate: The ratio of the number of misclassified (both

false positive and false negative) items to the number of all items.

We use this metric in Section 5.3.
(d) Tail latency (`𝑠): The high percentile latency measured in `𝑠 .

For example, a P99 latency represents the time cost of an operation

which is longer than 99% time costs of all operations. We use this

metric in Section 5.4.
(e) False Positive Rate: The ratio of the false positive items to

the number of negative items. We use this metric in Section 5.5.

5.1 Static Dictionary
As a warmup, in this part, we use ChainedFilter ("&" version, Al-

gorithm 1) to compactly encode Boolean function 𝜑 : {0, 1, ..., |U|}
↦→ {0, 1} with static support.

5.1.1 Modeling. We regard all 𝑛 inputs which satisfy 𝜑 ( ®𝑋 ) = 1 as

positive items, and the other _𝑛 inputs as negative items. According

to the Remark of Theorem 4.1, the exact ChainedFilter requires

𝐶

1 + _

(
⌊log _⌋ + 1 + _

2
⌊log_⌋

)
|U| ⩽ 4𝐶

5 log 5 − 8𝐻 (
1

_ + 1 ) |U| bits,

8
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Properties “&” version “& ∼” version Approximate Exact
Lower bound

(𝜖 = 0) (Algorithm 1) (Algorithm 2) Bloomier Bloomier

Construction time 𝑂 ( |U|) 𝑂 ( |U| log log𝑛) 𝑂 (𝑛) 𝑂 ( |U|) Linear

Filter space (bits) ≈ 𝐶𝑛 log(2𝑒_ ln 2) ≈ 𝐶′𝑛 log 4𝑒_ 𝑂 (𝑛 log _𝑛) ≈ 𝐶 |U| 𝑛(log _ + (_ + 1) log(1 + 1/_))
Additional space 𝛺 (𝑛 log𝑛) / / 𝛺 ( |U| log |U|) /

Table 2: Summary of ChainedFilter variants

where𝐶 < 1.13 according to the Remark of Section 3. So we have

Corollary 5.1. When 𝐶 < 1.13, ChainedFilter takes at most
4𝐶/(5 log 5 − 8) = 26% space overhead to encode static dictionaries
with high probability 1 − 𝑜 (1).
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Figure 6: Filter space of the exact Bloomier Filter, Chained-
Filter, and the theoretical lower bound. The dotted lines
and the dashes represent theoretical and experimental re-
sults, respectively.We run each data point for 10 times with
different hash seeds. A colored dash indicates a successful
construction, while a grey dash indicates the construction
fails (you may want to enlarge this figure).

5.1.2 Experiments. We fix 𝑛 = 1 million and vary the parameter

_ from 2 to 16 to compare the filter space, construction throughput

and query throughput between ChainedFilter and exact Bloomier

Filter
11
. In Figure 6, we find that the experimental space costs

correspond well with our theory. Once the allocated space cost is

larger than a certain threshold, the filter build processes will succeed

with high probability. Specifically, when _ = 16, ChainedFilter

costs 64% less space than exact Bloomier Filter. In Figure 7 (a), we
discover that the construction throughput of exact Bloomier Filter

decreases as _ increases, whereas that of ChainedFilter increases

as _ increases. This is because although a larger _ leads to a worse

locality, the throughput bottle neck of ChainedFilter is from the

space cost of exact Bloomier Filter, which fluctuates between 2𝐶𝑛

(when _ = 2, 4, 8, 16) and 3𝐶𝑛. Therefore, the amortized throughput

of each item of ChainedFilter increases, and it even surges from the

case of _ = 2
𝑖 − 1 to the case of _ = 2

𝑖 (𝑖 = 2, 3, 4, ...). Specifically,
when _ = 16, the construction throughput of ChainedFilter is

407% higher than that of Exact Bloomier Filter. In Figure 7 (b),
we observe that the query throughput of ChainedFilter shows the

same phenomenon. This is because only the positive items and the

false positive items require the lookup of the second stage filter.

Specifically, when _ = 16, the query throughput of ChainedFilter is

103% higher than that of Exact Bloomier Filter.

11
When _ = 1, ChainedFilter exactly degenerates to exact Bloomier Filter.
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Figure 7: Average construction and query throughput.

5.2 Random Access Huffman Coding
In this part, we apply ChainedFilter to lossless data compression.

5.2.1 Background. In information theory, Huffman Coding [32]

is an optimal prefix coding technique for lossless data compression.

Given the possibility of occurrence of all kinds of symbols ®𝑝 :=

(𝑝1, 𝑝2, ...), the Huffman’s algorithm generates a variable-length

code table, namely Huffman Tree, which assigns an 𝑙𝑖−bit prefix
code for the 𝑖-th symbol. The literature shows that the average code

length 𝐿
Huff

:=
∑
𝑙𝑖𝑝𝑖 satisfies

𝐻 ( ®𝑝) ⩽ 𝐿
Huff

< 𝐻 ( ®𝑝) + 1, where 𝐻 ( ®𝑝) := −
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖 .

Although Huffman’s algorithm is optimal for separate symbols, it

has certain limitations: (1) Compression ratio. Unlike arithmetic

coding or ANS [33], 𝐿
Huff

may not approach the entropy𝐻 ( ®𝑝) arbi-
trarily. For example, if we have a string consisting of one character

‘a’ and 1023 character ‘b’. The Huffman’s algorithm will cost 1024

bits to encode them, but the least space cost is only 10 bits since

we can simply record the address of ‘a’. (2) Decoding order. The
Huffman’s algorithm does not support random memory access of

data. (3) Confidentiality. Attackers with prior knowledge of the

character’s frequency ®𝑝 can decipher the unencrypted Huffman

Tree. (4) Robustness. In Huffman Code, small interference (bit

flip or loss) may cause it to fail to recognize the starting position

of characters, resulting in decoding failure. Some alternative ap-

proaches can partially address these problems. For example, (1)
blocking some symbols can increase the compression ratio at the

expense of the Huffman Tree’s complexity; (2) Encoding the Huff-

man Code into a perfect hash table can support random access at

the expense of space overhead [34]; (3) Encryption and (4) error
correcting code may increase the confidentiality and robustness

at the expense of time and space overhead.

5.2.2 Modeling. ChainedFilter ("&" version, Algorithm 1) can
overcome the four limitations simultaneously. Given the Huffman

9
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Tree based on the probability vector ®𝑝 , we encode every char-

acter’s address paired with its Huffman Code into ChainedFilter.

Specifically, for the 𝑖-th character in the data with Huffman Code

®𝑣 = (𝑣1, 𝑣2 ..., 𝑣𝑘 ) ∈ {0, 1}𝑘 , we encode (key = (𝑖, 𝑗), value = 𝑣 𝑗 ), 𝑗 ∈
[1..𝑘] into ChainedFilter. To query the 𝑖-th character, we can query

key = (𝑖, 1), (𝑖, 2) ... until the leaf node of the Huffman Tree.

For example, to compress a string "ab\0" with its Huffman Tree

(‘a’→00, ‘b’→ 01, ‘\0’→1), we can encode the negative items (1, 1),
(1, 2), (2, 1) and the positive items (2, 2), (3, 1) into ChainedFilter.

To query, say, the second character, we first query key = (2, 1) and
find that it is negative, and then query key= (2, 2) and find that it

is positive. Therefore, we know that the second character whose

Huffman Code is “01” is ‘b’.
Our algorithm has random access property, high confidentiality

(as long as the hash seed is secure), and high robustness. In The-
orem 5.1, we prove that ChainedFilter optimizes the worst-case

compression ratio performance as well.

Theorem 5.1. The average code length of our algorithm, denoted
as 𝐿ours, satisfies 𝐻 ( ®𝑝) < 𝐿ours < 𝐻 ( ®𝑝) + 0.22 with high probability
1 − 𝑜 (1).

Proof. We only prove the right inequality by mathematical

induction. For convenience, we define constant 𝐶0 := 0.22. First, if

the Huffman Tree has only two leaf nodes, according to theRemark
of Theorem 4.1, we have

𝐿ours ⩽
𝐶

1 + _

(
⌊log _⌋ + 1 + _

2
⌊log_⌋

)
⩽ 𝐻 (𝑝) +𝐶 + 2

3

− log 3 < 𝐻 (𝑝) +𝐶0 .

Consider there are two Huffman Trees that satisfy the above in-

equality. We combine them into a larger Huffman Tree with weights

𝑞 and (1 − 𝑞), respectively. Since the number of layers is increased

by one, we have

𝐿ours =
∑︁
𝑖

𝑞𝑝1𝑖 (𝑙1𝑖 + 1) +
∑︁
𝑖

(1 − 𝑞)𝑝2𝑖 (𝑙2𝑖 + 1)

⩽ 𝑞𝐻 ( ®𝑝1) + (1 − 𝑞)𝐻 ( ®𝑝2) + 1 +𝐶0

= −
∑︁
𝑖

𝑞𝑝1𝑖 log𝑞𝑝1𝑖 −
∑︁
𝑖

(1 − 𝑞)𝑝2𝑖 log(1 − 𝑞)𝑝2𝑖

+ 𝑞
∑︁
𝑖

log𝑞 + (1 − 𝑞)
∑︁
𝑖

log(1 − 𝑞) + 1 +𝐶0

= 𝐻 ( ®𝑝) − (𝐻 (𝑞) − 1) +𝐶0 < 𝐻 ( ®𝑝) +𝐶0 .

So 𝐿ours < 𝐻 ( ®𝑝) +𝐶0 holds for all Huffman Trees. □

Remark. Theorem 5.1 demonstrates that our algorithm has a
tighter upper bound (0.22 bit per item) on space overhead than the
standard Huffman’s algorithm (1 bit per item). This is particularly
advantageous when the data is highly skewed or sparse. However, one
drawback of ChainedFilter is its poor spacial locality, which limits
its throughput in hierarchical memory systems. To compensate this
drawback, we can enable the first and the second stage filters to share
the same mapped addresses, as suggested in [35]. The optimized ver-
sion uses a 𝐶𝑛⌈log _⌉-bit approximate Bloomier Filter (with less than
𝑛 false positive items) and a 2𝐶𝑛-bit exact Bloomier Filter, and every
(⌈log _⌉ + 2) bits are organized as a block. With this optimization,
each item has 𝑗 = 3 common mapped blocks shared by both of the first

and the second stages, making it possible to access its value within 𝑗

memory accesses.
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Figure 8: Filter space and query throughput of random
access Huffman coding algorithms.

5.2.3 Experiments. We synthesize eight datasets of stringswhose

characters’ occurrence obeys an exponential distribution with pa-

rameter𝜔 = 3, 4, ..., 10, respectively12. We fix the number of positive

items to 1 million, generate the Huffman Code for each string, and

encoding the Huffman Code using ChainedFilter and its optimized

version (Remark of Theorem 5.1). To provide a strawman solu-

tion, we encode the Huffman Code into an exact Bloomier Filter

and record its filter space and query throughput. For reference, we

also evaluate the performance of raw Huffman Coding, but present

its sequential decoding throughput rather than random decoding

throughput (because it does not support random access). The exper-

imental results are shown in Figure 8, we find that ChainedFilter

performs better as 𝜔 grows. When 𝜔 = 10, the basic and the op-

timized versions of ChainedFilter saves 48.3% and 39.2% of the

filter space compared to the strawman solution, while their query

throughput is only 15.5% and 1.17% slower.

5.3 Self-Adaptive Hashing
In this part, we use ChainedFilter to reduce the number of mem-

ory accesses required for Cuckoo Hashing [36].

5.3.1 Background. Serving as a hash predictor, ChainedFilter

reduces unnecessary memory accesses for multiple-choice hashing,

which take around 100𝑛𝑠 for DRAM and ≈ 150`𝑠 for NAND SSD.

Instead, it requires only a few fast (around 10 ns) in-cache lookups.

Based on "the power of two random choices" [37], Cuckoo Hash-

ing consists of two hash tables 𝑇1 [1..𝑀] and 𝑇2 [1..𝑀], allowing
an item 𝑒 to have two potential mapping locations 𝑇1 [h1 (𝑒)] and
𝑇2 [h2 (𝑒)]. Each item can only occupy one location at a time, but

can swap between the two if its prior location is taken. To insert

an item 𝑒 , we first attempt to place it into 𝑇1 [h1 (𝑒)]. If 𝑇1 [h1 (𝑒)] is
already occupied by another item 𝑒′, we evict 𝑒′ and reinsert it into
𝑇2 [h2 (𝑒′)]. We repeat this process until all items stabilize. If this is

impossible, we reconstruct the cuckoo hash table with a new hash

seed. The literature shows that the insertion failure probability is

𝑂 (1/𝑀) when the occupancy (load factor 𝑟 ) is less than 1/2 − Y.
However, to query an item, we often check both of the two hash

tables, which can result in significant latency penalties.

A well known solution to reduce the number of memory accesses

for Cuckoo Hashing is to use a pre-filter, such as a Bloom Filter [28]

12
For example, when𝜔 = 3, the dataset may have (expected) 1 character ‘a’, 3 character

‘b’, 9 character‘c’, and 27 character ‘d’, etc.
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or Counting Bloom Filter
13

[39], to predict the mapped locations

of each item. However, false predictions by the pre-filter can cause

additional memory accesses. To address this problem, EMOMA

[40] adds a 1(block):1(bucket) pre-Counting Block Bloom Filter

that corresponds to the first hash table, and locks certain items in

the second hash table to prevent movements that may cause false

positives. This creates an always-exact hash predictor that supports

line-rate processing (e.g. in programmable switches or FPGAs) at

the expense of complex insertion process and space overhead.
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Figure 9: The concept of the self-adaptive hashing.

5.3.2 Modeling. Instead of supporting absolute exact matches,

we use ChainedFilter ("& ∼" version, Algorithm 2) as a pre-filter
to predict the mapped locations with best effort. Our key idea is to

let false predictions train the predictor to reduce errors (Figure
9). Specifically, we regard items in the first hash table as negative

and those in the second hash table as positive. To query an item 𝑒 ,

we ask ChainedFilter for the predicted location. If the prediction

is incorrect, we adjust ChainedFilter by flipping the mapped bits

in F1, F2, F3, ... to 1 until ChainedFilter can accurately predict the

locations of 𝑒 . In the Remark of Theorem 4.3, we have proved
that the error rate will ultimately converge to zero as long as the

space cost of is greater than 𝐶′𝑛 (log _ − ((1 + 𝛿)/(1 − 𝛿)) log𝛿).
Next we show how to choose the negative-positive ratio _.

Theorem 5.2. Given the expected number of items |U| and the
number of buckets in the Cuckoo hash table, 2𝑀 , we define 𝑟 :=

|U|/2𝑀 < 1/2 − Y is the load factor. Then we have

_ =

(
2𝑟

1 − 𝑒−2𝑟
− 1

)−1
+ 𝑜 (1) .

Proof. Let [ be the number of negative items (items in the first

hash table). A new item can either insert into an empty location in

the first hash table, increasing [ by one, or evict an old item with

probability [/𝑀 (assuming no insertion failures). This problem can

be reformulated as the well-known coupon collector’s problem,

where𝑀 is the number of coupons and [ is the number of draws.

Therefore, we have

2𝑟 =

𝑀∑︁
𝑙=𝑀−[

1

𝑙
+ 𝑜 (1) =

1∫
1−[/𝑀

1

𝑥
d𝑥 + 𝑜 (1) = ln

(
1 − [

𝑀

)
+ 𝑜 (1)

⇒ _ :=
[

2𝑟𝑀 − [ =

(
2𝑟

1 − 𝑒−2𝑟
− 1

)−1
+ 𝑜 (1) .

□

Remark. According to Theorem 5.2 and the Remark of Section
4.3.2, when 𝛿 = 1/2, ChainedFilter incurs a space cost of no more than
𝐶′𝑛 log 16_ = 2𝐶′𝑟/(_ + 1) log 16_ ·𝑀 bits. In contrast, the Counting
Block Bloom Filter of EMOMA [40] costs 8𝑀 bits if every block has two

13
The Counting Bloom Filter replaces every bit to a counter to support deletion of

existing items. It is called Counting Block Bloom Filter [38] if we further restrict all

mapped bits in the same block.

4-bit counters. In the following experiments, we fix the Cuckoo hash
table size 2𝑀 to 1 million. Table 3 shows the space cost (measured in
Mb) of ChainedFilter (𝛿 = 1/2) and EMOMA when 𝑟 ∈ [0.1, 0.4] (for
reasonable comparison, the space cost of Bloom Filter equals to that of
EMOMA). We observe that ChainedFilter is much more space-efficient:
it saves 76.7% (r=0.4) ∼ 99.75% (r=0.1) space of EMOMA to predict
exact locations.

Space
𝑟 0.10 0.15 0.20 0.25 0.30 0.35 0.40

EMOMA 4.00 4.00 4.00 4.00 4.00 4.00 4.00

ChainedFilter 0.10 0.20 0.32 0.45 0.60 0.76 0.93

Table 3: Filter space of EMOMA and ChainedFilter.

5.3.3 Experiments. In the first experiment, we show that al-

though ChainedFilter may not initially predict themapped locations

absolutely exactly, its error rate decreases exponentially and can

quickly converge to zero. To verify this, we set 𝑟 = 0.4 and query

all items in order for 𝑅 rounds to train the ChainedFilter and show

the change in error rate in Figure 13 (a). We find that only 0.34%

items are wrongly predicted after three rounds of training, and all

items are exactly predicted after seven rounds of training, resulting

in a reduction of (_ + 1)−1 |𝑟=0.4 = 31% external memory access for

Cuckoo Hashing. To further accelerate the training process, we in-

sert all items of the ⌊log log𝑛⌋ = 4-th layer F4 into an Othello hash

table [26] according to the Remark of Section 4.3.2, so that the

training process can be completed in four rounds (“ChainedFilter-

optimized” in Figure 13). In the second experiment, we use keys

of length 36 bytes and values of length 64 bytes and compare the

throughput of raw Cuckoo Hashing, Cuckoo Hashing with Chained-

Filter, with EMOMA, and with Bloom Filter (Figure 13 (b)). We find

that although ChainedFilter uses only 23.3% of the filter space of

EMOMA, its average construction and query throughput is 17% and

41% faster, respectively. It is interesting to note that both Cuckoo

Hashing with EMOMA and Cuckoo Hashing with Bloom Filter ex-

hibit slower query throughput compared to raw Cuckoo Hashing,

possibly due to their higher hash computation overhead.

0 2 4 6 8
Number of Rounds

-

-16

-12

-8

-4

lo
g(

E
rr

or
 R

at
e)

(a)

Raw Cuckoo
ChainedFilter-basic
ChainedFilter-optimized
EMOMA
Bloom Filter

Raw

 C
uc

ko
o

Cha
ine

dF
ilte

r

-ba
sic

Cha
ine

dF
ilte

r

    
-op

tim
ize

d
EMOMA

Bloo
m Filte

r1

2

3

T
hr

ou
gh

pu
t (

M
op

s)

(b)

Construction
Query

Figure 10: Error rate and throughput of raw Cuckoo Hash-
ing, Cuckoo Hashing with ChainedFilter (0.93Mb), with
EMOMA (4Mb), and with Bloom Filter (4Mb).

5.4 Point Query for LSM-Tree
In the final application, we utilize ChainedFilter to reduce the

tail point query latency of LSM-Tree.
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5.4.1 Background. LSM-Tree (short for log-structured merge-

tree) is a storage system for high write-throughput of key-value

pairs. It uses an in-memory data structure called memtable to buffer

all updates until it is full, and then flushes the contents into the

persistent storage as a sorted run through a process called minor

compaction. However, since the sorted runs may have overlapping

key ranges, LSM-Tree has to check all of them for a point query,

which can result in poor query performance. To address this prob-

lem, LSM-Tree uses a hierarchical merging process called major

compaction to merge sorted runs
14
. In tiered major compaction,

the LSM-Tree is organized as a sequence of levels, and the number

of runs in each level is bounded by a threshold 𝑇 . If the number

achieves the threshold, the compaction process is triggered tomerge

all 𝑇 sorted runs a new sorted run (SSTable) in the next level. To

further speed up point queries, each SSTable typically has an ap-

proximate filter, such as a Bloom Filter, to skip most non-existing

items. However, since the approximate filter has false positives,

in the worst case, a point query still needs to check all SSTables,

resulting in poor tail point query latency.
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Figure 11: ChainedFilter (“& version”) for LSM-Tree. Note
that the second stage part must be a dynamic filter.

5.4.2 Modeling. To reduce the latency, we replace every approx-

imate filter with a dynamic exact ChainedFilter (“&” version, Al-
gorithm 1 and Section 4.3.1). Suppose there are 𝑁 SSTables in

one level, our goal is to reduce the worst case additional SSTable

search time from 𝑁 to 1 (whether or not there are repeating items).

Our key idea is, for ChainedFilter of the 𝑖-th SSTable in this level,

we regard all keys in the 𝑖-th SSTable as positive items, and regard

all other keys in the (𝑖 + 1), (𝑖 + 2), ..., 𝑁 -th SSTables (but not in

the 𝑖-th SSTable) as negative items (Figure 11 (a)). In this way,

an exact ChainedFilter says “yes” only when (1) the queried key

is in its corresponding SSTable, (2) the queried key is not in the

subsequent (𝑖 + 1), (𝑖 + 2), ..., 𝑁 -th SSTables in the same level (other-

wise the key must be excluded when the later SSTables are formed).

Consider the case where the 𝑗1 < 𝑗2 < ... < 𝑗𝑘 -th ChainedFilters

report “yes”. Our strategy is to check the corresponding SSTables

in order until we find a false positive SSTable (note that the item

keys are repeatable). Once we detect that the 𝑗𝑙 -th ChainedFilter’s

14
The most commonly used compaction strategies are leveled compaction and tiered

compaction. The leveled compaction minimizes space amplification at the expense of

read andwrite amplification, while the tiered compactionminimizeswrite amplification

at the cost of read and space amplification. Herewe only focus on the tiered compaction.

result is a false positive, we can assert that all the 𝑗𝑙+1, 𝑗𝑙+2, ..., 𝑗𝑘 -th
ChainedFilter’s results are false positives as well (Figure 11 (b)).
Therefore, the number of additional SSTable searches in this level

is no more than one.

5.4.3 Experiments. We measure the tail point query latency of

our approach in RocksDB database [15] by replacing the built-in

Bloom Filter with the ChainedFilter. To simplify the implementa-

tion, we let all SSTables stay in the first level (L0) and use the default
64MB write buffer size

15
. We reuse the built-in Bloom Filter as the

first stage of ChainedFilter, but additionally implement an Othello

hash table as the dynamic second stage filter. When creating a new

SSTable after a compaction, we generate the Bloom Filter as what

RocksDB does, but additionally query its keys in prior SSTables in

the same level and update the false positive SSTables’ ChainedFil-

ters by including the false positive items into the second stage filter

(Figure 11 (a)). When querying an item, we check the positive

SSTables (whose Bloom Filter reports “yes”) in order. Once we find

a false positive one, we can assert that all later possible SSTables

are false positives (Figure 11 (b)).
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Figure 12: Tail point query latency in RocksDB.

Figure 12 demonstrates that ChainedFilter can significantly re-

duce the tail point query latency of LSM-Tree. We generate items

with distinct 36-Byte random keys and 64-Byte values and vary

the number of items |U| from 4 million (400MB data, 7 SSTables

in total) to 16 million (1.6GB data, 30 SSTables in total). The filter

space of ChainedFilter just allows it to exactly classify positive

and negative items. We use RocksDB with only Bloom Filters with

the 0×, 1×, and 2× filter space as the comparison algorithm (“0×”
means no filter). In Figure 12 (a), we show the tail latency of query-

ing existing items
16
. Let us consider the “|U|=16 mill.” sub-figure

as an example. The green area in the figure shows the tail point

query latency using only built-in Bloom Filter which costs the same

15
RocksDB stores temporal write operations in memtable and flushes it to disk to

generate an SSTable file in L0 when its size reaches the write buffer size.

16
Since all existing keys are different, we end the query process once we find an item.
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space as ChainedFilter. The P0-P77, P77-P95, and P95-P99 tail la-

tency approximately represents the query latency with zero, one,

and more than one false positive SSTable reads. In the worst case,

with many false positive SSTable reads, the P99 tail point query la-

tency is about 31`𝑠 . In contrast, as shown in the blue area, the query

process using ChainedFilter has no false positive when querying

existing items, so the tail latency remains under 20`𝑠 , which is 36%

lower. In Figure 12 (b), we show the tail latency of querying non-

existing items. We find that when |U| is 16 million, the latency with

ChainedFilter gradually increases. This is because the latency is not

only determined by the number of false positive SSTables, but is

also influenced by the index of the false positive ChainedFilter. For

example, if the first SSTable reports a false positive, the algorithm

can quickly return, and thus the overall latency may be even lower

than 12`𝑠 . However, if the 30-th SSTable is the first one to report

false positive, the overall latency will be more than 18`𝑠 .

5.5 Learned Filter
In this part, we use ChainedFilter to reduce the false positive

rate of Learned Filters.

5.5.1 Background. Although our space lower bound (Section
2.2) assumes that the positive items are randomly drawn from the

universe, further compression can be achieved when the items fol-

low a specific data distribution. Learned Filters [16–19] incorporate

a continuous function, such as an RNN model, in front of the fil-

ter structure to capture the data distribution. When querying an

item, if the continuous function outputs “yes”, the Learned Filter

immediately reports true. However, when the continuous function

outputs “no”, the item is sent to a backup Bloom Filter to eliminate

false negatives. In the learned filter structure, both the learning

model and the backup filter may introduce false positives, but in

some cases, the overall false positive rate even decreases.

5.5.2 Experiments. Extending the chain rule (Theorem 2.2) to
general membership problems with different data distributions is

an intriguing problem
17
. Since we haven’t derive an elegant theory

at this moment, we empirically replace the backup Bloom Filter

/ Bloomier Filter with our ChainedFilter (“&” version) to show

the experimental improvements. We refer to the open-source code

of the learned Bloom Filter and the dataset on GitHub [42]. The

dataset has 30,000 positive (good) and 30,000 negative (bad) websites

evaluated by users. In this experiment, we randomly select different

proportions (ranging from 0% to 100%) of data to train the RNN

model. Generally, the model’s generalization ability improves as

the amount of training data increases. Experimental results show

that when we fix the overall false positive rate at 0.01
18
, the filter

space of Learned ChainedFilter can be up to 99.1% lower than that

of Learned Bloom Filter and 96.2% lower than 𝑛𝑓 (𝜖, _) (the space
lower bound without considering data distribution).

17
An analogy is, some machine learning algorithms like Boosting [41] combine multi-

stage elementary classifiers to work together, which seem similar to ChainedFilter.

18
For Learned ChainedFilter and Learned Bloomier Filter, we set the false positive rate

of the RNN model to 0.01, and the false positive rate of the backup filter to zero. For

Learned Bloom Filer, we set the false positive rate of both the RNN model and the

backup filter to 0.005.
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Figure 13: Filter space in bits (log scale) of Learned Bloom
Filter, Learned Bloomier Filter and Learned ChainedFilter.

6 RELATEDWORK
Filter algorithms are the foundation of many important problems

[43–53] and have been well studied. In this section, we introduce

more membership filters that may work as our elementary filters.

6.1 Approximate Membership Filters
Approximate filters originated with Bloom Filter [28] in 1970. A

Bloom Filter is a bitmap of size𝑚 where every one of 𝑛 positive

items is mapped using 𝑘 independent hash functions. To insert an

item, we set all mapped positions to one; To query an item, we

check whether all mapped positions are one, and report positive iff

they are. A Bloom Filter satisfies one-sided error: a query is either

“definitely not” (no false negative) or “probably yes” (small false

positive). The false positive rate depends on the space cost

𝜖 =

(
1 −

(
1 − 1

𝑚

)𝑛𝑘 )𝑘
≈

(
1 − 𝑒−

𝑛𝑘
𝑚

)𝑘
⇒𝑚 ⩾

𝑛 log 1/𝜖
ln 2

.

In 1978, [13] gave the tight space lower bound (log 1/𝜖+𝑜 (1) bits per
item) for approximate filters, which means the Bloom Filter wastes

no more than 1/ln 2 − 1 = 44% space. In 2010, [30] gave the space

lower bound 𝐶 (𝜖) log 1/𝜖 bits per item for dynamic approximate

data structures, where 𝐶 (𝜖) > 1 depends only on 𝜖 . Many later

works have emerged to reduce the space overhead of Bloom Filter.

Cuckoo Filter (2014) [14] borrows the concept fromCuckooHashing

(Background of Section 5.3) and uses fingerprints for approximate

classification. It maps an item 𝑒 to two buckets ℎ(𝑒) and (ℎ(𝑒) ⊕
𝑓 (𝑒)) in one hash table, and shows that the load factor can be up to

95% if the buckets have four slots. Therefore, the space cost drops

to 1.05(2 + log 1/𝜖) bits per item. Inspired by Bloomier filter and

the peeling theory, XOR Filter (2019) [23] and Binary Fuse Filter

(2022) [24] achieves a space cost of𝐶 log 1/𝜖 bits per item for static

membership query (Remark of Section 3). In fact, a more compact

space cost ((1 + 𝑜 (1)) log 1/𝜖 bits per item) is given by [54] (2008)

and [55] (2009) for static membership query if we allow a more

complex implementation.

6.2 Exact Membership Filters
One type of exact filters builds upon perfect hashing [56]. The

Bloomier Filter [21, 22] (2004) is a milestone which requires 1.23

bits per item (the theoretical result is excerpted from IBLT (2011)

[10]). According to [25] (2021), this constant can be optimized to

13
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close to 1 (Remark of Section 3). In fact, a more compact space

cost of (1 + 𝑜 (1)) bits per item is achievable if a more complex

implementation is allowed [54, 55]. Othello Hashing [26] (2016) and

Coloring Embedder [27] (2021) provide dynamic perfect hashing

designs with𝑂 (1) bits per item. However, they both need additional

structures with 𝛺 (𝑛 log𝑛) space for construction and update.

Another one type of exact filters is called “dictionaries”. In 1984,

[57] described a general constant-time hashing scheme (FKS dic-

tionary) with a space complexity of 𝑂 (𝑛) words (not bits). In 1994,

researchers designed an static exact filter with a space complexity of

𝑂 (𝐵) [58] (they later improved to 𝐵(1 +𝑂 (1/log log log |U|)) [59]
in 1999) for static dictionary, where 𝐵 := ⌈log

( |U |
𝑛

)
⌉ is the lower

bound for static membership problems [13]. In 2001, the space com-

plexity is optimized to nearly optimal (𝐵 +𝑂 (log log( |U|)) + 𝑜 (𝑛)
bits) [60]. In 2010, [29] proofs the lower bound (1+𝑜 (1))𝐵 also holds

for dynamic exact membership filters. Nowadays, the research on

exact membership problems is still on going [61].

In the end, we list some other membership filters satisfying

special properties. In 2005, [62] started considers dynamic general

membership problems and designed a membership filter with a

space complexity of ((1 + 𝑜 (1))𝑛 log 1/𝜖 +𝑂 (𝑛 + log |U|) bits for
arbitrary 𝜖 and _. Since 2018, researchers have creatively introduced

machine learning methodology to construct Learned Bloom Filters

[16–19], or add pre-filters to construct membership algorithms [35],

which are more accurate than the original Bloom Filter.

7 CONCLUSION
In this paper, we present a lossless factorization theorem, namely

chain rule, for solving general membership query problems. Based

on this theorem, we propose a simple yet space-efficient filter frame-

work called ChainedFilter and apply it to various applications. Both

theoretical and experimental results show that the ChainedFilter

outperforms its elementary filters. We believe our chain rule can

inspire more innovative works, and our ChainedFilter can be used

in more practical applications.
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