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ABSTRACT
1Burst is a common pattern in data streams which is characterized

by a sudden increase in terms of arrival rate followed by a sudden

decrease. Burst detection has attracted extensive attention from

the research community. In this paper, we propose a novel sketch,

namely BurstSketch, to detect bursts accurately in real time. BurstS-

ketch first uses the technique Running Track to select potential

burst items efficiently, and then monitors the potential burst items

and capture the key features of burst pattern by a technique called

Snapshotting. Experimental results show that our sketch achieves

a 1.75 times higher recall rate than the strawman solution.

CCS CONCEPTS

• Theory of computation→ Sketching and sampling; • Infor-

mation systems → Data stream mining; Data streams.
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1 INTRODUCTION

1.1 Background and Motivation

Burst is a common pattern in data streams, which is characterized

by a sudden increase in terms of arrival rate followed by a sud-

den decrease. The arrival rate of an item refers to its number of

appearances in a fixed time window. The pattern of bursts is like

a pulse, which can often be observed in the natural world. The

appearance of burst often indicates the happening of abnormal

or notable events. For example, in financial markets, a burst of

trading volume may indicate the happening of financial fraud or

illegal market manipulation. For another example, when assigning

bandwidth for VIP users, a burst of requests indicate the need for

more bandwidth. By detecting this pattern, we can appropriately

distribute the limited bandwidth resource,i.e., by assigning more

bandwidth at the sudden increase and recovering it to normal level

after the sudden decrease. Further, burst detection can be applied in

text stream mining [1, 2], web clicks analysis [1], and bursty topic

mining in social networks [3–5].

Real-time burst detection is challenging because we need to

catch up with high speed (e.g., 1.5M items per second) of data

streams while maintaining accuracy. To achieve high speed, it is

ideal that only CPU caches are accessed when processing items,

which requires the data structure to be small enough to be held in

caches. Therefore, the design goal of this paper is to use limited

memory to accurately detect bursts in real time.

For real-time burst detection, typical works include CM-PBE [6]

and TopicSketch [3]. CM-PBE can not only detect bursty events in

real-time, but is also the first work that can detect bursty events

from history. It is quite efficient in both time and space. TopicSketch

aims at detecting hot topics in text streams. It is simple, fast, and

easy to deploy. However, the definitions of bursts in these two

works can only detect sudden increases, but cannot detect sudden

decreases. In other words, no existing work is capable of detecting

bursts in our definition which consists of a sudden increase and a

sudden decrease.

1.2 Our Proposed Algorithm
Towards the design goal of this paper, we propose a novel sketch to

accurately detect bursts in real time, namely, BurstSketch. To the

best of our knowledge, BurstSketch is the first sketch algorithm

focusing on detecting bursts in our definition in high-speed data

streams. BurstSketch is memory efficient: it is small enough to be



held in CPU L2 caches. BurstSketch is accurate: it achieves a 97%

recall rate (using 60KBmemory), which is 1.75 times higher than the

strawman solution. BurstSketch is fast: its time complexity is 𝑂 (1).

All related codes of BurstSketch are open-sourced and available at

GitHub anonymously [7].

BurstSketch consists of two parts, Stage 1 and Stage 2. For each

incoming item, we first check whether it is a potential burst item

in Stage 1, if so, it will be sent to Stage 2. The techniques used in

Stage 1 and Stage 2 are named Running Track and Snapshotting,

respectively. We show the two key techniques below.

Technique I: Running Track. Running Track is used to select

potential burst items. It needs to filter out infrequent items as well

as items arrive at a steady speed. Running Track works as follows.

We use many tracks, each item will be mapped into 𝑑 tracks by hash
functions ℎ1 (.) . . . ℎ𝑑 (.). For each track, we only observe the most

frequent item. If it is frequent enough, we consider it as a potential

burst item. To find the fastest item in each track, there are several

optional strategies: frequent [8], probabilistic decay [9], probabilistic

replacement [10]. We choose frequent since it is the simplest and

fastest which has a comparative accuracy compared to others. In

our strategy, high-speed items are unlikely to be filtered out in

every track, because it would be selected as long as it becomes the

most frequent item in at least one track.

Technique II: Snapshotting. Snapshotting is used to detect bursts

from potential bursts. The rationale of Snapshotting is that a burst

can be described only with the sudden increase and sudden decrease

in arrival rate. Therefore, we do not need to record frequencies of

items in every time window. In Snapshotting, we only take two

snapshots for the sudden increase and the sudden decrease so that

we can confirm whether it is a burst. Snapshotting detects bursts

with 𝑂 (1) memory.

2 PROBLEM STATEMENT & RELATEDWORK

2.1 Problem Statement
The symbols frequently used in this paper are shown in Table 2.1.

Table 1: Symbols used in this paper.
Notation Meaning

A𝑖 𝑖𝑡ℎ bucket array of Stage 1

B Bucket array of Stage 2

𝑘 parameter for the definition of sudden increase

and sudden decrease

𝐿 Maximum width of a burst

𝑇 Burst threshold

𝐻 Running Track threshold

𝐶𝑝𝑟𝑒 Frequency in the previous time window

𝐶𝑐𝑢𝑟 Frequency in the current time window

𝑡 Time stamp in Stage 2

Burst Detection: Burst, in our definition, is a particular pattern of

the changing behavior in terms of the arrival rate of an item in a

data stream, and the pattern consists of a sudden increase and a

sudden decrease. Specifically, we divide the data stream into fixed-

width time windows. Given an item 𝑒 , a sudden increase means

that, in two adjacent time windows, the arrival rate of 𝑒 in the

second time window is no less than 𝑘 times of that in the first time

window. Similarly, a sudden decrease is that the arrival rate of 𝑒 in
the second time window is no more than 1

𝑘 of that in the first time

window. Also, we do not consider infrequent bursty items as bursts,

for they are not useful in most applications, so the arrival rate of

a burst item should exceed a burst threshold. In practice, a burst

occurs over a short period of time. Therefore, we set a limitation 𝐿
for the width of a burst, namely, the number of time windows that

the burst lasts. The formal definition of a burst is as follows.

Definition: For a time series data stream 𝑆 = {𝑒𝑡1, 𝑒𝑡2, 𝑒𝑡3, . . . },
an item 𝑒 and a burst threshold 𝑇 , given that the data stream is

divided into fixed time windows 𝑤1, 𝑤2, 𝑤3 . . . and the arrival

rate of 𝑒 in the time windows are 𝑟1, 𝑟2, 𝑟3, . . . , if there exist four
time windows𝑤𝑖 , 𝑤𝑖+1, 𝑤 𝑗 , 𝑤 𝑗+1, where

𝑟𝑖+1 � 𝑘 · 𝑟𝑖 ∧ 𝑟 𝑗+1 �
1

𝑘
· 𝑟 𝑗 ∧ 𝑗 > 𝑖

and

𝑟𝑘 � 𝑇,∀𝑘 ∈ {𝑖 + 1, . . . , 𝑗} ∧ 𝑗 − 𝑖 � 𝐿

then 𝑒 is a burst item, the changing process of its arrival rate is a

burst, the width of the burst is 𝑗 − 𝑖 time windows, window 𝑤𝑖+1

is the sudden-increase window, and window 𝑤 𝑗+1 is the sudden-

decrease window. If multiple sudden-increase windows happen

consecutively, we just consider the latest one as the burst’s possible

beginning. If multiple sudden-decrease windows happen consecu-

tively, we just consider the first one after the sudden increase as

the burst’s end. It can prevent multiple reports of a single burst.

High-speed Item Detection: A time series data stream 𝑆 is di-

vided into multiple equal-sized time windows𝑤1,𝑤2,𝑤3 . . . , a high-
speed item refers to an item whose frequency in a time window

exceeds a predefined threshold 𝑇 .

2.2 The Comparison of the Definitions of Burst
For burst detection, all existing works only focus on the sudden

increase of item frequency, but do not care about whether there

is a sudden decrease. In this paper, we present a more complete

definition with both sudden increase and sudden decrease. In some

applications, the occurrence of a sudden decrease is also important.

Take the example of assigning limited bandwidth for VIP users. If

a VIP user’s requests take on a sudden increase, we should assign

enough bandwidth to the users. Importantly, we should recover the

bandwidth to a normal level for the user when its requests suddenly

decrease. There are many more similar examples, such as assigning

more computation resources for users with burst requests, assigning

more fast memory for the burst of a hot item, and overclocking

the CPU frequency for the process with the burst of a computation

request. For these examples, the limited resource should be recalled

in time when the sudden decrease occurs.

2.3 Prior Work on Burst Detection
Several burst detecting algorithms have been proposed focusing on

some specific areas, such as text stream or document stream mining

[1–3, 11], astronomical observation [11] and telecommunication

traffic management [12]. When it comes to generic burst detection

methods [4, 11, 13–16], most of them are based onWavelet Tree (WT)

and Aggregation Tree (AT). We also survey some typical sketches

[8–10, 17–32, 32–50], which we will not discuss here due to the

space limitation.

Recently there are two pieces of works concerning burst detec-

tion. One is CM-PBE [6], which concentrates on detecting burst



from history without storing or querying the whole stream. To iden-

tify bursty events in data streams, they propose a concept called

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑢𝑟𝑣𝑒 , which shows how the frequency of an item grows

cumulatively over time. To store the frequency curve, they use dy-

namic programming, which enables them to approximate the curve

with as few points as possible; thus, largely save the storage space.

This work is the first to discuss the identification of bursty events

in history with high efficiency in both space and query time. Our al-

gorithm differs from this work in two regards. First, the definitions

of bursts are different. In their work, an event that witnesses a large

acceleration in its arrival rate is considered a bursty event, whereas

in our definition, burst consists of a sudden increase and a sudden

decrease in its arrival rate. Besides, our algorithm cares more about

real-time burst detection in high-speed data streams, while their

work puts a premium on bursty events detection in history. Another

one is TopicSketch [3] from Wei et al. Their definition of burst is

close to the definition from CM-PBE, which is different from ours,

as mentioned above. Therefore, they also use the acceleration of

items’ arrival rate as a metrics of burst. To calculate the acceleration,

they incrementally maintain velocities of two time windows. Thus,

the acceleration can be derived on the fly. Apart from the definition

of bursts, their work differs from ours also in that our algorithm is

general-purpose, while they only focus on burst topic detection.

3 BURSTSKETCH ALGORITHM

3.1 The Strawman Solution
The strawman solution is based on CM sketch. CM sketch consists

of 𝑘 counter arrays, each associated with a hash function. For each

incoming item, the hash function is calculated to map it to a map-

ping bucket in each array, then all the mapping buckets of the item

is increased by 1. To report the estimated frequency of an item,

the CM sketches output the minimum value among the mapping

buckets. In the strawman solution , we construct 𝐿 + 2 CM sketches

to store the estimated frequencies of the latest 𝐿 + 2 time windows

to detect burst whose width no larger than 𝐿. We use a queue to

store potential burst items. Whenever the frequency of an item

in a window is larger than the burst threshold, we insert its flow

ID into the queue. At the end of each time window, for potential

burst items, we query their frequencies from CM sketches to find

burst patterns. Although the strawman solution is capable to detect

bursts, it is memory consuming and inaccurate. Because it stores

information of 𝐿 + 2 windows and takes into account many items

that are not potential bursts.

3.2 The Burst Sketch
Rationale: In this paper, we propose a novel sketch, namely BurstS-

ketch. BurstSketch consists of two stages. To avoid recording un-

necessary information, the first stage checks whether an incoming

item is a potential burst item. We only send the potential items

to the second stage for burst detection. To detect a burst, rather

than recording the frequencies of 𝐿 + 2 time windows for each item,

Stage 2 only records the frequencies of 2 adjacent time windows

for potential burst items to detect whether there exists sudden in-

crease or sudden decrease, and we use a timestamp to snapshot it.

In summary, compared to the strawman solution, our BurstSketch

filters out much more unnecessary information.

Data Structure: As shown in Figure 1, BurstSketch has two stages:

Stage 1 using Running Track to filter low arrival rate items, and

Stage 2 using Snapshotting to find burst patterns. Stage 1 consists

of 𝑑 bucket arrays A1,A2, . . . ,A𝑑 , and each array consists of𝑚
buckets. There are 𝑑 hash functions ℎ1 (.), ℎ2 (.), . . . , ℎ𝑑 (.) associat-
ing with 𝑑 bucket arrays respectively. Each bucket has two fields:

item ID (key) and frequency. We have a Running Track threshold

𝐻 to determine whether the item is a potential burst item. It is

worth noting that the number of tracks determines the maximum

number of bursts our BurstSketch can detect simultaneously. A sin-

gle track takes up only several bytes, but more tracks enable us to

detect more bursts simultaneously, and also lessens hash collisions.

Therefore, we recommend using enough tracks to achieve higher

accuracy. Stage 2 is a bucket arrayB[1],B[2], . . . ,B[𝑀] associated

with a hash function 𝑔(.). Each bucket has 𝑠 cells. Each cell has four

fields: item ID (key), two counters𝐶𝑝𝑟𝑒 and𝐶𝑐𝑢𝑟 , timestamp 𝑡 .𝐶𝑝𝑟𝑒
is used to record the frequency of the item in the previous time

window, while 𝐶𝑐𝑢𝑟 is used to record the frequency of the item in

the current time window. The timestamp records the time window

in which the latest sudden increase happened. If the timestamp is

equal to 0, it means no sudden increase occurred.

Algorithm 1: Insertion-BurstSketch

Input: an item 𝑒; 𝐻 , the Running Track threshold;

1 if 𝑒 is in B[𝑔(𝑒)] then
2 𝑒.𝐶𝑐𝑢𝑟 ← 𝑒.𝐶𝑐𝑢𝑟 + 1;

3 else

4 for each 𝑖 ∈ [1, 𝑑] do
5 if 𝑒 is in A𝑖 [ℎ𝑖 (𝑒)] then
6 increase the frequency of 𝑒 by 1;

7 if the frequency of 𝑒 ≥ 𝐻 then

8 if Insert_Stage2 (𝑒 , the frequency of 𝑒) then
9 clear A𝑖 [ℎ𝑖 (𝑒)] to empty;

10 else if A𝑖 [ℎ𝑖 (𝑒)] is empty then

11 insert 𝑒 into A𝑖 [ℎ𝑖 (𝑒)] and set the frequency of

𝑒 to 1;

12 else if 𝑒 is not in A𝑖 [ℎ𝑖 (𝑒)] and A𝑖 [ℎ𝑖 (𝑒)] is not

empty then

13 decrease the frequency of A𝑖 [ℎ𝑖 (𝑒)] by 1;

14 if the frequency of A𝑖 [ℎ𝑖 (𝑒)] is 0 then
15 clear A𝑖 [ℎ𝑖 (𝑒)] to empty;

16 Function Insert_Stage2(𝑒 , 𝐶):
17 if 𝐶 > the 𝐶𝑐𝑢𝑟 of the smallest item in B[𝑔(𝑒)] then
18 use 𝑒 to replace the smallest item;

19 𝑒.𝐶𝑐𝑢𝑟 ← 𝐶; 𝑒.𝐶𝑝𝑟𝑒 ← 0;

20 return 1;

21 return 0;

Insertion:Given an incoming item 𝑒 , if 𝑒 is in Stage 2, we increment

𝑒.𝐶𝑐𝑢𝑟 by 1. Otherwise, we insert it into Stage 1: we hash 𝑒 into 𝑑
mapping buckets of Stage 1 A1 [ℎ1 (𝑒)], 𝐴2 [ℎ2 (𝑒)], . . . , 𝐴𝑑 [ℎ𝑑 (𝑒)].
For each bucket, there are 3 cases.

Case 1: 𝑒 is not in the bucket, and the bucket is empty. In this

case, we insert 𝑒 into the bucket with the frequency of 1.
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Figure 1: An example of BurstSketch using one hash function.

Case 2: 𝑒 is not in the bucket, and the bucket is not empty. In

this case, we decrement the frequency of the bucket by 1. If the

frequency is decreased to 0, we empty the bucket. We need a re-

placement strategy to allow a new potential burst to get in when

it is hashed into a full bucket. There are three typical replacement

strategies, namely, Frequent [8], probabilistic decay [9], and proba-

bilistic replacement [10]. We choose Frequent for it is fast and easy

to implement.

Case 3: 𝑒 is in the bucket. We just increment the frequency of 𝑒
by 1. If the frequency of 𝑒 is equal to or larger than the Running

Track threshold 𝐻 , we try inserting 𝑒 into Stage 2 (because 𝑒 is
frequent enough): if we find an empty cell in the bucket B[𝑔(𝑒)],
we insert 𝑒 in it with its frequency. Otherwise, we try evicting the

smallest item whose timestamp 𝑡 is 0: if the frequency of the item

is smaller than the frequency of 𝑒 , we evict the item and insert 𝑒
with its frequency. If all the items’ 𝑡 are not 0, we try evicting the

smallest item in the bucket with the same method. Stage 2 stores

and monitors potential bursts. The space in Stage 2 is limited, so we

need to evict the items that are not likely to become a burst when

the corresponding bucket is full.

Detection: Stage 2 uses Snapshotting to capture the sudden in-

crease and the sudden decrease for each item, and reports bursts in

the end of each time window. For item 𝑒 , suppose the max width of

a burst is 𝐿. First we detect if there is a sudden increase or sudden

decrease: we check the frequencies of 𝑒 in the latest two time win-

dows. If 𝑒.𝐶𝑐𝑢𝑟
𝑒.𝐶𝑝𝑟𝑒

≥ 2, the sudden increase happens. Then we update

the current time window into 𝑡 . Specially, if 𝑒 has been inserted into

Stage 2 in the current time window (which means we do not know

𝑒.𝐶𝑝𝑟𝑒 ), we regard 𝑒.𝐶𝑝𝑟𝑒 as 0. If 𝑒.𝐶𝑐𝑢𝑟
𝑒.𝐶𝑝𝑟𝑒

≤ 1
2 , a sudden decrease

happens. Then we check whether there has been a sudden increase

and whether the difference between 𝑡 and the current time window

is no more than 𝐿. If so, BurstSketch reports a burst which has 𝑡
as its sudden-increase window and the current time window as

its sudden-decrease window, then we clean 𝑒.𝑡 to 0. Otherwise, no

burst is reported and 𝑡 remains unchanged.

Cleaning Policy: In Stage 1, we clean all arrays at the end of each

time window. In Stage 2, we evict the items whose arrival rates are

always low. Specifically, at the end of every time window, we check

if the frequencies of the latest two time windows are both lower

than𝐻 . If so, we evict the item.We also clean illegal potential bursts,

whose frequency is smaller than 𝑇 in the current time window. If

so, we clean 𝑡 of the item to 0.

An running example: Figure 1 show an running example of

BurstSketch. In this example, in Stage 2, given a bucket with

(𝑒10, 125, 90, 4), 𝑒10 is the item ID, 125 is 𝑒10’s frequency in the

previous time window 𝐶𝑝𝑟𝑒 , 90 is 𝑒10’s frequency in the current

time window 𝐶𝑐𝑢𝑟 , 4 is the time when the latest sudden increase

happens. Suppose the Running Track threshold 𝐻 = 50, the burst

threshold 𝑇 = 100, and the time of this example is at the end of

time window 8. 1) To insert 𝑒8, we find it in Stage 2, so we just

increment 𝑒8 .𝐶𝑐𝑢𝑟 by 1. 2) To insert 𝑒2, we find it in Stage 1, so

we just increment the frequency of 𝑒2 by 1. 3) To insert 𝑒5, we do
not find it in both stages, so we decrement the frequency of the

item in the mapped bucket by 1. 4) To insert 𝑒3, we decrement the

frequency of 𝑒7 from 1 to 0, then we evict 𝑒7. 5) To insert 𝑒4, we
find it in Stage 1, so we increment 𝑒4 by 1. After the increment, the

frequency of 𝑒4 reaches the Running Track threshold and we find

an empty cell in Stage 2. Then we clean 𝑒4 in Stage 1 and insert it

into Stage 2 with the frequency of 50. 6) To insert 𝑒1, we find an

empty bucket in Stage 1, so we insert 𝑒1 with the frequency of 1.

At the end of every time window, we check if there is any sudden

increase, sudden decrease, illegal burst, or legal burst. At the same

time, we evict the items which are not potential anymore. 7) For 𝑒9,
both 𝑒9 .𝐶𝑝𝑟𝑒 and 𝑒9 .𝐶𝑐𝑢𝑟 are below 50, so we evict 𝑒9 from Stage 2.

8) For 𝑒10, 𝑒10 .𝐶𝑐𝑢𝑟 is below 100, it means it is an illegal burst, so

we clean its timestamp to 0. 9) For 𝑒11,
𝑒11 .𝐶𝑐𝑢𝑟
𝑒11 .𝐶𝑝𝑟𝑒

= 350
150 ≥ 2, it means

a sudden increase happens. Therefore, we record the current time

window 8 into the timestamp field. 10) For 𝑒12,
𝑒12 .𝐶𝑐𝑢𝑟
𝑒12 .𝐶𝑝𝑟𝑒

= 120
400 ≤ 1

2 ,

it means a sudden decrease happens. And we find the width of the

burst (i.e., 8 − 3 = 5) is legal. Therefore, we report 𝑒12 as a burst
with a width of 5. Then we clean the timestamp of 𝑒12.
Bursts inside bursts:Wehave an extended version to detect bursts

inside bursts. The definition of bursts inside bursts is similar to

bracket matching: sudden increase corresponds to left bracket and

sudden decrease corresponds to right bracket. To detect bursts

inside bursts, the ideal algorithm works as follows. We add a stack



for each item in Stage 2. When a sudden increase happens, we push

a timestamp with current time into the stack. If the stack is full, we

delete the oldest timestamp, which is at the bottom of the stack. We

use an array with two pointers (a header and a tail) to implement

the stack, and thus can delete the timestamp from the bottom of

the stack. When a sudden decrease happens, we pop the timestamp

(the most recent sudden increase) from the top of the stack, and

report the pair of sudden increase and sudden decrease as bursts

inside bursts. If the stack is empty, we do nothing.

3.3 Optimization: Deduplication

In Stage 1, we record the fastest item (whose arrival rate is fastest)

in each bucket. However, a high-speed item may occupy more

than one bucket, which is redundant. Therefore, reducing copies of

high-speed items can save memory for BurstSketch. Therefore, we

modify the insertion of Stage 1. Given an incoming item 𝑒 , if we do
not find 𝑒 in Stage 2, we map 𝑒 into 𝑑 mapping buckets of Stage 1

according to three cases:

Case 1: 𝑒 is not in any bucket, and none of the buckets is empty.

In this case, we decrement the frequency of each bucket by 1. If the

frequency is decreased to 0, we empty the bucket.

Case 2: 𝑒 is not in any bucket, and at least one of the buckets is

empty. In this case, we insert 𝑒 into one of the empty buckets.

Case 3: 𝑒 is in a bucket. We just increment the frequency of 𝑒 by
1. If the frequency of 𝑒 is equal to or larger than the Running Track

threshold 𝐻 after the increment, we try inserting 𝑒 into Stage 2 the

same as in the basic version.

3.4 BurstSketch Can Do More
Except for finding bursts, BurstSketch can also find high-speed

items. We divide the data streams into short time windows to detect

its speed. For items in Stage 1, the frequency of the item reports

its arrival rate. For items 𝑒 in Stage 2, 𝑒.𝐶𝑐𝑢𝑟 reports its arrival rate.
There is no overestimation error in the arrival rate. Suppose the

threshold of a high-speed item is𝐾 . We check every bucket in Stage

1 and Stage 2 at the end of each time window, if the arrival rate of

an item is higher than 𝐾 , we report it as a high-speed item.

4 MATHEMATICAL ANALYSIS
In this section, we provide theoretical analysis for BurstSketch.

First, we derive the error bound of Stage 1 in Section 4.1. Then we

show an upper bound of the number of distinct items in Stage 2 in

Section 4.2. Finally, we show that there is no overestimation error

in Section 4.3.

4.1 The Error Bound of Stage 1
Lemma 4.1. Given a time series data stream 𝑆 which has fixed

window size. In a window𝑤 , for item 𝑒𝑖 , suppose 𝑒𝑖 does not in Stage

2. Let 𝐹𝑖, 𝑗,𝑘 be the number of items mapping to bucket A 𝑗 [𝑘] in 𝑤
except for item 𝑒𝑖 , 𝑓𝑖 be the frequency of 𝑒𝑖 in 𝑤 , A 𝑗 [𝑘] .𝐼𝐷 be the

ID of bucket A 𝑗 [𝑘], A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 be the frequency of bucket A 𝑗 [𝑘].
Suppose 𝑓𝑖 > 𝐹𝑖, 𝑗,𝑘 , which means 𝑒𝑖 is in the majority in this bucket,

we have A 𝑗 [𝑘] .𝐼𝐷 = 𝑒𝑖 and 𝑓𝑖 − 𝐹𝑖, 𝑗,𝑘 ≤ A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 ≤ 𝑓𝑖 .

Proof. Since each item which is not 𝑒𝑖 can at most counteract

one 𝑒𝑖 , so there at least remains 𝑓𝑖 − 𝐹𝑖, 𝑗,𝑘 numbers of 𝑒𝑖 . Therefore,
A 𝑗 [𝑘] .𝐼𝐷 = 𝑒𝑖 and 𝑓𝑖 − 𝐹𝑖, 𝑗,𝑘 ≤ A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 . A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 ≤ 𝑓𝑖
is obvious because A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 increases only when the item is

equal to A 𝑗 [𝑘] .𝐼𝐷 . �

Theorem 4.2. Given a time series data stream 𝑆 which has fixed

window size𝑊 . In a window𝑤 , suppose A 𝑗 [𝑘] .𝐼𝐷 = 𝑒𝑖 , let 𝑓𝑖 be the
frequency of item 𝑒𝑖 in𝑤 . For 0 < 𝜀 < 𝑓𝑖 , we have

𝑃𝑟 {𝑓𝑖 − A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 ≥ 𝜀} ≤
𝑊 − 𝑓𝑖
𝑚𝜀

(1)

Proof. By the linearity of the expectation and the pairwise

independence of the hash functions, we have

𝐸 [𝐹𝑖, 𝑗,𝑘 ] = 𝐸 [
∑

𝑒≠𝑒𝑖

𝑓𝑒 𝐼ℎ 𝑗 (𝑒)=ℎ 𝑗 (𝑒𝑖 ) ] =
∑

𝑒≠𝑒𝑖

𝑓𝑒
1

𝑚
=
𝑊 − 𝑓𝑖
𝑚

where 𝑓𝑒 is the frequency of item 𝑒 in the window. By Markov

inequality, we have

𝑃𝑟 {𝐹𝑖, 𝑗,𝑘 < 𝜀} = 1 − 𝑃𝑟 {𝐹𝑖, 𝑗,𝑘 ≥ 𝜀} ≥ 1 −
𝑊 − 𝑓𝑖
𝑚𝜀

Therefore, according to the lemma above,

𝑃𝑟 {𝑓𝑖 − A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 ≥ 𝜀} = 1 − 𝑃𝑟 {𝑓𝑖 − A 𝑗 [𝑘] .𝑐𝑜𝑢𝑛𝑡 < 𝜀}

≤ 1 − 𝑃𝑟 {𝑓𝑖 > 𝐹𝑖, 𝑗,𝑘 ∧ 𝐹𝑖, 𝑗,𝑘 < 𝜀}

= 1 − 𝑃𝑟 {𝐹𝑖, 𝑗,𝑘 < 𝜀}

≤
𝑊 − 𝑓𝑖
𝑚𝜀

�

4.2 Upper Bound of the Number of Distinct
Items in Stage 2

Theorem 4.3. Given a data stream 𝑆 . We assume each window

has𝑊 items. In each window, 𝑆 obeys an arbitrary distribution. Let 𝑛
be the number of distinct items in Stage 2, 𝐻 be the Running Track

threshold. Then, we have

𝑛 ≤
3𝑊

𝐻
(2)

Proof. For an item, it is in Stage 2 either because it has already

been in Stage 2 before this window or because it passes through

Stage 1 in this window. We denote 𝑓0 the frequency of the item in

the current window, 𝑓1 the frequency of the item in the previous

window, 𝑓2 the frequency of the item in the window before the

previous window. In the case of the item that has already been in

Stage 2, because of the cleaning policy, we have 𝑓1 ≥ 𝐻 ∨ 𝑓2 ≥ 𝐻 . In

another case, the item passes through Stage 1, which means 𝑓0 ≥ 𝐻 .

In summary, for an item in Stage 2, it satisfies 𝑓0 ≥ 𝐻∨ 𝑓1 ≥ 𝐻∨ 𝑓2 ≥

𝐻 . For each window, the number of items whose frequency is not

less than the threshold is no more than 𝑊
𝐻 . We add up it and derive

the upper bound 3𝑊
𝐻 . �

4.3 Proof of no Overestimation Error
Theorem 4.4. For any item 𝑒𝑖 in Stage 2, let 𝑓𝑖 be the estimated

frequency of item 𝑒𝑖 in Stage 2, 𝑓𝑖 be the real frequency, then

𝑓𝑖 ≤ 𝑓𝑖

Proof. For item 𝑒𝑖 , if it has already been in Stage 2 before the

current window, it is obvious that estimated frequency 𝑓𝑖 is equal
to the real frequency 𝑓𝑖 . If it passes through Stage 1 in the current

window, the frequency before being stored in Stage 2 should not be

less than the Running Track threshold. Because we set the threshold

as the initial value of 𝑓𝑖 , we have 𝑓𝑖 ≤ 𝑓𝑖 . �



Corollary 4.5. The arrival rates of output items in finding high-

speed items are definitely higher than 𝐾 .

5 EXPERIMENTAL RESULTS
In this section, we show the experimental results of BurstSketch.

First, we describe the experimental setup in Section 5.1. Second,

we show how parameter settings affect BurstSketch’s performance

in Section 5.2. Third, we evaluate the performance of BurstSketch

on different datasets and provide some analysis on BurstSketch

in Section 5.4 and Section 5.5, respectively. Finally, we compare

BurstSketch with prior works on burst detection and finding high-

speed items in Section 5.6.

5.1 Experimental Setup
Datasets: We use the following datasets in our experiments and

divide them into count-based windows and time-based windows.

1) IP Trace Dataset: As many papers [9, 24] do, we use

anonymized IP trace streams from CAIDA [51]. CAIDA identi-

fies each flow of IP trace streams by the five-tuples: source and

destination IP address, source, and destination port, protocol. We

use the source and destination IP address in the five-tuples as ID.

We use 20M items. The number of bursts of this dataset is 19551

when we set the window size as 40K items. The duration in which

the data was collected is 44.02s.

2) Web Page Dataset: The web page dataset is built from a collec-

tion of web pages, which were downloaded from a website [52].

Each item is 4 bytes long, representing the number of distinct items

in a web page. We use 20M items. The number of bursts of this

dataset is 6861 when we set the window size as 70K items.

3) Network Dataset: The network dataset contains users’ posting

history on the stack exchange website [53]. Each item has three

values 𝑢, 𝑣 , 𝑡 , which means user 𝑢 answered user 𝑣 ’s question at

time 𝑡 . We use 𝑢 as ID. We use 3M items. The number of bursts of

this dataset is 989 when we set the window size as 70K items.

Implementation: BurstSketch and the strawman solution is im-

plemented in C++. We run the programs on a server with dual

6-core CPUs (12 threads, Intel Xeon CPU E5-2620 @2.00 GHz) and

64GB DRAM memory. In all experiments, we use BOB Hash [54]to

implement the hash functions.

Metrics:

1) Recall Rate (RR): The ratio of the number of correctly reported

to the number of true instances.

2) Precision Rate (PR): The ratio of the number of correctly re-

ported to the number of reported instances.

3) F1 Score: 2·𝑅𝑅 ·𝑃𝑅
𝑅𝑅+𝑃𝑅 . It is calculated from the precision and recall

of the test, and it is also a measure of a test’s accuracy.

4) Throughput:Million insertions per second (MIPS). We repeat

the experiments 5 times and average the results.

5.2 Experiments on Parameter Settings
In this section, we measure the effects of some key parameters of

BurstSketch, namely, the number of hash functions 𝑑 , the ratio of

the size of Stage 1 to the size of Stage 2 𝑚𝑑
𝑀𝑠 , the number of cells in

a bucket 𝑠 , the ratio of the Running Track threshold to the burst

threshold 𝑙 , and the ratio between two adjoin windows for sudden

increase or sudden decrease detection 𝑘 in Stage 2. We also consider

the replacement strategy in Stage 1 a parameter. We use the CAIDA

dataset in these experiments, and RR and PR to evaluate the effects.

Effects of 𝑑 (Figure 2(a)): In the basic version, the best 𝑑 is 1.

In the optimized version, 𝑑 = 6 is the best. In this experiment, we

fix the size of Stage 1 and Stage 2 to 2000. The number of hash

functions 𝑑 varies from 1 to 6. The results show that in the basic

version, when 𝑑 = 1, the RR is the highest. As 𝑑 grows larger than

1, RR decreases evidently. In the optimized version, RR increases

as 𝑑 becomes larger, so the optimal 𝑑 is 6. Thus, we set 𝑑 = 1

for the basic version and 𝑑 = 6 for the optimized version in the

following experiments. Users can tune the parameter 𝑑 to make a

trade off between accuracy and speed depending on the application

requirements. A larger value of 𝑑 for the optimized version will

slow down its speed because we have to check 𝑑 − 1 more buckets

for each insertion (Figure 4(e)). In other words, increasing 𝑑 from 1

to the optimal value means higher accuracy but will lower speed.

Effects of 𝑚𝑑
𝑀𝑠 (Figure 2(b)): The experimental results show that

the best value for 𝑚𝑑
𝑀𝑠 is from 2.25 to 3.25. In this experiment, we

set the total memory size to 3 different values: 40KB, 60KB, and

80KB and vary 𝑚𝑑
𝑀𝑠 from 1.25 to 3.75. The results show that when

memory size is 60KB or 80KB, RR increases as 𝑚𝑑
𝑀𝑠 increase. When

memory size is 40KB, RR peaks while 𝑚𝑑
𝑀𝑠 = 2.25. Therefore, the

optimal value of 𝑚𝑑
𝑀𝑠 is from 2.25 to 3.25, and we choose 𝑚𝑑

𝑀𝑠 = 3.25.

Effects of 𝑠 (Figure 2(c)): The experimental results show that

BurstSketch achieves the best accuracy when the number of cells in a

bucket is 4. We compare the effects of different values of 𝑠 and find

that 4 is always the optimal value for 𝑠 in 3 different memory cases,

as shown in the figure. So we set 𝑠 to 4 in our experiments.

Effects of 𝑙 (Figure 2(d)): The experimental results show that the

optimal value for 𝑙 is from 0.3 to 0.4. In this experiment, we compare

the performance of BurstSketch when 𝑙 varies from 0.2 to 0.6. When

the memory size is 40KB, PR peaks when 𝑙 = 0.4. When the memory

size is 60/80KB, PR reaches the peak point while 𝑙 = 0.3. Thus, the

optimal value of 𝑙 is from 0.3 to 0.4, and we set 𝑙 = 0.3.

Effects of the ratio 𝑘 (Figure 2(e)): Our experimental results

show that BurstSketch performs well even when the ratio 𝑘 is very

high. As the ratio 𝑘 varies, the RR of BurstSketch is stable, which

indicates that the performance of BurstSketch is insensitive to 𝑘 .
For simplicity, we set 𝑘 to 2 in our experiments in this paper.

Effects of replacement strategy (Figure 2(f)): Our experimen-

tal results show that the RR of BurstSketch under the three replacement

strategies are close. Although the RR of probabilistic replacement is

often slightly higher, it is slow, complex, and unstable, while Fre-

quent is fast and easy to implement. Therefore, we choose frequent

as the replacement strategy in this paper.

Analysis: The optimal value of 𝑑 in the basic version is small be-

cause higher 𝑑 results in more copies of high-speed items, which is

memory consuming. This is consistent with our analysis in Section

3.3. After the deduplication, the value of 𝑑 of the optimized version

is larger because each potential burst item has more opportunities

to be selected into Stage 2. For 𝑚𝑑
𝑀𝑠 , as 𝑚𝑑 becomes larger, hash

collisions are reduced. If 𝑀𝑠 is larger, more potential burst items

can be monitored at the same time. Therefore, the optimal ratio

balances two stages. For 𝑙 , if it is smaller, items in Stage 1 is easier

to be inserted into Stage 2, so that the arrival rate of the item will

be more accurate. However, as 𝑙 grows larger, the number of items

monitored in Stage 2 grows larger. making Stage 2 easier to be full.

Therefore, the optimal ratio balances these two situations.
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Figure 2: Evaluation on Parameter Settings.

Concrete Steps for Choosing Parameters: For parameter 𝑑 in

the basic version, we find that 𝑑 = 1 is optimal in most cases. For

parameter 𝑑 in the optimized version, increasing 𝑑 will increase

accuracy and decrease speed. Therefore, users can adjust 𝑑 to strike

a good trade off between accuracy and speed. For parameter 𝑚𝑑
𝑀𝑠 ,

the optimal 𝑚𝑑
𝑀𝑠 is always large than 0.75 in general. Therefore, we

can try increasing 𝑚𝑑
𝑀𝑠 to find the optimal 𝑚𝑑

𝑀𝑠 . For parameter 𝑠 , the
optimal 𝑠 is always in the range of 2 − 16 in general. Therefore, we

can try setting 𝑠 from 2 to 16 to find the optimal 𝑠 . For parameter 𝑙 ,
the optimal 𝑙 is always in the range of 0.2−0.6 in general. Therefore,
we can try setting 𝑙 from 0.2 to 0.6 to find the optimal value.

5.3 Experiments on Different Datasets
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Figure 3: Burst Detection

on Different Datasets.

In this section, we conduct ex-

periments on three real-world

datasets: CAIDA, Web Page, and

Network, and evaluate BurstS-

ketch’s performance with F1

score. The F1 score exceeds 94%

with 20KB of memory, which in-

dicates that BurstSketch works

well with very limited memory.

When the memory size exceeds

100KB, the F1 score on three

datasets all exceeds 97%. In addition, the reason why BurstSketch

performs best in CAIDA dataset is that the skewness of CAIDA is

the highest. It means that it is easier to filter out non-burst item in

Stage 1 in CAIDA. The results show that BurstSketch achieves high

F1 score on every datasets. The performance of BurstSketch in three

datasets are only slightly different, and the trends are very similar.

The results show the robustness of BurstSketch, so in the following

experiments, we only use CAIDA dataset.

5.4 Comparison with Strawman Solution
In this section, we compare BurstSketch’s performance with the

strawman solution and the optimized version in the metrics below.

RR (Figure 4(a)): This experiment shows that RR of the optimized

BurstSketch is slightly higher than BurstSketch, and the RR of BurstS-

ketch greatly outperforms the strawman solution. Compared to the

strawman solution, RR of BurstSketch is about 25% higher in av-

erage. The optimized BurstSketch improve the RR by about 2%

compared to the basic version.

PR (Figure 4(b)): This experiment shows that the PR of the optimized

BurstSketch is higher than the basic version and is much higher than

the strawman solution. The results show that BurstSketch’s PR

is about 40% higher than the strawman solution. The PR of the

optimized version is 0.1% higher than the basic version.

Throughput (Figure 4(c)): Our results show that the insertion

throughput of the BurstSketch is always higher than that of the straw-

man solution. The throughput of optimized BurstSketch is 3.2 times

higher than that of the strawman solution. The throughput of the

basic version is 1.34 times higher than that of the optimized ver-

sion (𝑑 = 6). However, if the optimized version’s 𝑑 is smaller, the

throughput is higher. It also shows that decreasing 𝑑 is a trade off

between accuracy and speed.

Analysis: The experiment results show that BurstSketch greatly

outperforms the strawman solution. The results are consistent with

our analysis in Section 3.2. The main reason is that the strawman

solution stores frequencies of all items in 𝑛 + 2 time windows (𝑛 is

the max width of a burst) to detect bursts, which have enormous

redundancy. In contrast, first, BurstSketch uses Running Track to

filter out infrequent items and frequent item with a steady arrival

rate, which are not potential bursts. Second, BurstSketch uses snap-

shotting to snapshot two key feathers of a burst: sudden increase

and sudden decrease, to detect bursts from the potential burst items.

5.5 Analysis on BurstSketch
In this section, we analyse BurstSketch from several aspects. First,

we compare its performance in time-based windows and count-

based windows. To show Stage 1’s effectiveness, we measure the

number of data streams that pass through Stage 1. Also, we evaluate

the minimal memory usage to achieve an acceptable performance

in data streams of different speeds. Finally, we test BurstSketch’s

performance in detecting bursts inside bursts.

Performance under time-based and count-based windows

(Figure 5(a)): Different from count-based windows, the number

of items per window could vary a lot in time-based windows. The

experimental results show that BurstSketch’s performance under

count-based windows is slightly higher than its performance under

time-based windows. This reveals that the accuracy of our BurstS-

ketch is insensitive to whether the number of items in each window

is equal. The reason behind is that, no matter whether the number

of items in each window is equal, after the items are filtered by

Stage 1, the number of items (potential bursts) that reach Stage 2

varies a lot per window.

The number of items that pass through stage 1 (Figure 5(b)):

The experimental results show that Stage 1 is highly effective in

filtering out non-burst items, since about 87% of the items in the

data stream are filtered out. Only 4 (0.8%) items that are filtered out

are bursts, which shows that Stage 1 has a very high recall rate.

Memory usage in burst detection in data streams of different

speed(Figure 5(c)): In this experiment, we vary the speed of the

input data stream (from 10K items to 90K items per window), and
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Figure 5: Analyses on BurstSketch.

check how much memory BurstSketch has to use to achieve an F1

score of 0.9. The experimental results show that the memory usage

to achieve an F1 score of 0.9 grows linearly with the increase of the

speed of the data stream.

Bursts inside bursts (Figure 5(d)): The results show that BurstS-

ketch performs well in detecting bursts inside bursts. The PR in

finding bursts inside bursts exceeds 97% with 20KB memory. The

RR is 70% with 20KB memory but grows rapidly.

The influence of the duration of bursts(Figure 5(e)): The ex-

perimental results reveal that as the duration of burst grows larger,

the RR of BurstSketch increases. The reason is that the streams

with larger duration tend to be stable, and our algorithm detects

this kind of bursts more effectively.

5.6 Comparison with Prior Work
In this section, we compare BurstSketch with prior works in burst

detection and finding high-speed items. In burst detection, we com-

pare it with CM-PBE-1 [6] and TopicSketch [3] using the ground

truth by our definition. In finding high-speed items, we compare it

with HeavyGuardian [9] and SpaceSaving [25].
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Figure 6: Comparison with Prior Works.

Comparison on Burst Detection (Figure 6(a)): The experimen-

tal results show that BurstSketch largely outperforms TopicSketch and

CM-PBE. BurstSketch achieves an F1 score very close to 1, while

TopicSketch’s F1 score failed to exceed 0.5 with the memory usage

of 300KB, and the F1 score achieved by CM-PBE failed to exceed

0.08 with the memory usage of 300KB. As mentioned above, our

definition is different from others, which means the applications are

also different. Therefore, the experimental comparison of different

definitions does not mean that the performance of BurstSketch

is much better than other burst algorithms. It means that other

algorithms are inappropriate for our applications.

F1 for finding high-speed items (Figure 6(b)): This experiment

shows that BurstSketch achieves high F1 score in finding high-speed

items. The F1 score of BurstSketch reaches 0.95 even if the memory

size is only 20KB. As the memory size exceeds 40KB, the F1 score

of BurstSketch is very close to 1. The F1 score of BurstSketch is a

little lower than that of HeavyGuardian, but they are very close.

The F1 score of BurstSketch is averagely 1.32 times higher than

SpaceSaving, and is 3.5 times higher under the memory size of 20KB.

The results show that BurstSketch performs well in finding high-

speed items, which is consistent with our analysis in Section 3.2.

In fact, Running Track is designed to filter out slow-speed items

and select high-speed items. Therefore, BurstSketch is efficient in

finding high-speed items.

6 CONCLUSION
Real-time burst detection in high-speed data streams is important

in many applications. This paper proposes a novel algorithm called

BurstSketch for real-time burst detection, which is fast, memory-

efficient, and accurate. Experimental results show that the BurstS-

ketch can achieve high accuracy with fairly limited memory usage

in real-time burst detection and finding high-speed items.
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