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Abstract
Sketch algorithms are crucial for identifying top-𝑘 items in large-
scale data streams. Existing methods often compromise between
performance and accuracy, unable to efficiently handle increasing
data volumes with limited memory. We present Bubble Sketch, a
compact algorithm that excels in both performance and accuracy.
Bubble Sketch achieves this by (1) Recording only full keys of hot
items, significantly reducing memory usage, and (2) Using threshold
relocation to resolve conflicts, enhancing detection accuracy. Unlike
traditional methods, Bubble Sketch eliminates the need for a Min-
Heap, ensuring fast processing speeds. Experiments show Bubble
Sketch outperforms the other seven algorithms compared, with the
highest throughput and precision, and surpasses HeavyKeeper in
accuracy by up to two orders of magnitude.
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1 Introduction
Detecting top-𝑘 frequent items in data streams is essential for ap-
plications like data mining [14, 16, 18, 36, 41, 42, 44, 45], traffic mea-
surement [2, 6, 17, 32, 35, 46], and data security [3, 4, 8, 11, 12, 20].
For instance, data centers must detect significant data traffic items
to balance load effectively, while social platforms detect frequent
interactions to discern user connections [9, 19, 34, 38, 40].

In the big data era, the speed and volume of data streams make
accurate item tracking challenging [22, 23]. Approximate solutions
like sampling often lack accuracy. Advanced algorithms that operate
on individual items need fast, consistent updates, avoiding slow
DRAM in favor of limited-capacity SRAM [13, 39]. Sketch-based
methods are popular for their efficiency in time and space with
acceptable error margins [5, 7, 12, 24, 26, 31].

Top-𝑘 sketch algorithms are either Min-Heap-based or Save-all-
potentiality. Min-Heap-based methods use a Min-Heap to track
top-𝑘 items [29] by adding new items to the sketch and replac-
ing the lowest frequency item in the heap if needed. This method
is slow and memory-inefficient due to constant updates, as seen
in HeavyKeeper [43], which needs 360 ∗ 𝑘 bits of memory. Save-
all-potentiality methods store potential top-𝑘 items as <full key,
frequency> pairs [25] in a single sketch, avoiding the Min-Heap but
suffering from poor accuracy and high insertion overhead when
memory is limited. Both methods struggle with performance and
accuracy under tight memory constraints, leading to the question:
Can we develop a compact sketch algorithm for top-𝑘 detection
that excels in both speed and accuracy?

We introduce Bubble Sketch (BS), which improves memory
efficiency with a unique bucket structure and threshold relocation
using bubble sorting. Key features of Bubble Sketch include:
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(1) Efficient Bucket Layout: Buckets store "hot" entries as
<full key, frequency> pairs and "cold" entries as smaller <fin-
gerprint, frequency> pairs, saving memory.

(2) Real-Time Bubble Sorting: Entries are sorted in real-time,
keeping hot items in the hot entries and exchanging keys
and fingerprints as needed for efficient top-𝑘 queries.

(3) Threshold Relocation for Accuracy: Potential top-𝑘 item
collisions are resolved by placing one in an alternate bucket,
improving accuracy.

Implemented in C++ and tested on various datasets, Bubble
Sketch shows superior performance, achieving the highest through-
put and accuracy among current algorithms. It outperforms Heavy-
Keeper by two orders of magnitude in accuracy and is 1.5 times
faster and more accurate than Waving Sketch.

2 Background
2.1 Problem Statement
Data Stream Model: As shown in Figure 1, a data stream P =

{𝑝1, 𝑝2, . . . , 𝑝𝑁 } contains𝑁 items and𝑛 distinct items. Items in data
P can be categorized into 𝑛 non-overlapping distinct items: E =

{𝑒1, 𝑒2, . . . , 𝑒𝑛}. The number of items in 𝑒𝑖 is called the frequency
of 𝑒𝑖 (abbreviated as 𝑒𝑖 .𝑓 or 𝑓𝑖 ), and so we have

∑𝑛
𝑖=1 𝑓𝑖 = 𝑁 . A

distinct item also has a unique ID to identify itself, represented as
𝑒𝑖 .𝑖𝑑 (for example, we often use the 5-tuple headers to identify a
TCP distinct packet in a network stream).

Data Streams𝒆𝟑 𝒆𝟏 𝒆𝟑 𝒆𝟑 𝒆𝟓 𝒆𝟏 𝒆𝟐 𝒆𝟐

𝒆%What’s the Top-k of largest frequency?     

𝒆𝟏:	2 												𝒆𝟐 :	2																	𝒆𝟑:	3 														𝒆𝟓 :	1

Figure 1: Finding Top-𝑘 Items.
Top-𝑘 Items Detection: Top-𝑘 items detection outputs the ID

and frequency of themost frequent𝑘 items in a data stream, denoted
as (𝑒1, 𝑓1), (𝑒2, 𝑓2), . . . , (𝑒𝑘 , 𝑓𝑘 ).

2.2 Related Work
Sketches are widely used for finding top-𝑘 items in data streams and
are generally divided intoMin-Heap-based and Save-all-potentiality-
based solutions. Min-Heap-based methods use a Min-Heap to store
top-𝑘 items. CM Sketch + Min-Heap[10] hashes items to multiple
counters and updates the Min-Heap using the minimum counter
value, which can misidentify cold items as hot and slows processing
due to frequent updates. HeavyKeeper (HK) [43] and Cuckoo
Counter (CC)[33] also suffer from throughput issues and high
memory usage due to the Min-Heap.

Save-all-potentiality methods store all potential top-𝑘 items
within the data structure. Space-Saving (SS)[30] replaces the small-
est existing item with new items, but its accuracy is limited by not
considering data stream characteristics. Unbiased Space-Saving
(USS)[37] improves frequency estimation for multi-node scenarios
but is less effective for single nodes. Waving Sketch [21] requires
traversing all entries to extract top-𝑘 items and faces memory issues
by storing complete IDs in each cell. Double-Anonymous Sketch
(DAS) [47] aims for fairness but suffers from low throughput due
to its two-layer structure.

2.3 Why Yet Another One?
Min-Heap-based algorithms, like Cuckoo Counter, achieve high
precision but suffer from throughput issues. Save-all-potentiality
algorithms, like Waving Sketch, lead to poor precision and high
memory usage in tight memory scenarios. DAS improves precision
but has low throughput due to its two-layer structure. To address
these limitations, we propose Bubble Sketch , a single-layer algo-
rithm that adapts to data skewness, reducing memory usage and
enhancing precision without needing a Min-Heap. This design sig-
nificantly boosts throughput, making BS approximately 8 times
faster than DAS and the fastest among current top-𝑘 algorithms.

3 Bubble Sketch Framework
3.1 Data Structure
The Bubble Sketch data structure, illustrated in Figure 2, comprises
two arrays, 𝐴1 and 𝐴2, designed to handle potential conflicts effec-
tively. Each array has𝑤 buckets, and each bucket contains 𝐵 entries
of varying sizes, labeled {entry_1, entry_2, . . . , entry_B}. Entries are
the basic units, and buckets serve as access units. The bit width of
entries increases progressively, forming a ladder-like distribution.
The largest entry, entry_B, stores hot items (top-𝑘 items) with an
ID and a large counter for the <full key, frequency> pair. The smaller
entries, designated for secondary-hot or cold items, contain a fin-
gerprint and a smaller counter for the <fingerprint, frequency> pair.
While the width of ID and fingerprint remains constant across en-
tries, the counter width varies. This design leverages the skewness
of data streams, optimizing storage by accommodating as many
conflicting items as possible. The real-time bubble sorting technique
dynamically relocates streams within the same bucket, ensuring
hot streams occupy larger entries and cold streams smaller ones.
Each bucket acts as a hash unit, requiring only O(1) access time and
enabling linear traversal within the bucket. This design ensures
high throughput during updates. Buckets are aligned with the ma-
chine word length (e.g., 128 bits) to maximize entry manipulation
per memory access.

entries in a bucket

Entry part

…

Cold
Entries

Hot
Entry

C1Fp1

……

CB-2FpB-2

CB-1FpB-1

CBID

𝒉𝟏𝒆𝟏

…

𝒉𝟐

FP：fingerprint C : counter

𝑨rray 2

Array 1

W

Figure 2: The data structure of Bubble Sketch.

3.2 Algorithm and Operations
For conciseness, we use 𝐴𝑖 [ℎ] [𝑟 ] to represent the entry 𝑟 of bucket
ℎ in array 𝑖 . Initially, all entries are initialized to zero. Below we
introduce the implementation process of the two main operations
of our algorithm in turn: insertion and query.

3.2.1 Insert.
Each time an incoming item 𝑒 is inserted, we first compute two
hash values using formulas: ℎ1 = ℎ𝑎𝑠ℎ1 (𝑒) and ℎ2 = ℎ𝑎𝑠ℎ2 (𝑒), to
identify two candidate buckets in two arrays, 𝐴1 [ℎ1] and 𝐴2 [ℎ2].
The entries in these buckets are then traversed to find whether
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Figure 3: Insert matching items.

𝑒 already exists. If 𝑒 is found in the bucket 𝐴1 [ℎ1] as shown in
Figure 3(a), its corresponding entry’s counter 𝐶𝑒 is incremented
by 1. The entries within 𝐴1 [ℎ1] are then sorted according to their
counter values (frequencies), to make sure hot items are always at
the top. When items switch between hot and cold entries, their IDs
and fingerprints would be exchanged. If, after sorting, the updated
entry becomes the second-largest entry and the value of 𝐶𝑒 + 1
remains below the threshold Δ, the insertion process is complete.

If the updated frequency 𝐶𝑒 + 1 exceeds the threshold Δ, it in-
dicates that there may be two hot items conflicting within the
bucket. Furthermore, if the frequency also surpasses the counter
value 𝐶′ of the topmost item in the alternative bucket 𝐴2 [ℎ2], we
initiate the relocation mechanism, as shown in Figure 3(b). The
fingerprint of 𝑒 is converted to ID and stored together with its
frequency in the hot entry of 𝐴2 [ℎ2]. Additionally, the original
items in 𝐴2 [ℎ2] undergo a downward shift, where 𝐴2 [ℎ2] [𝐵] .ID is
updated to𝐴2 [ℎ2] [𝐵−1] .fp′ID′ , and the item in entry_1 is discarded.

If 𝑒 is a new item (does not exist in the candidate bucket), it
would be inserted into the first empty entry in either 𝐴1 [ℎ1] or
𝐴2 [ℎ2], and the associated counter is set to 1. In the event that
both candidate buckets are full, we choose either 𝐴1 [ℎ1] [1] or
𝐴2 [ℎ2] [1] at random and decrement its counter by 1. Alternative re-
placement strategies, such as “Exponential-weakening decay” [43],
“Probability replacement” [28, 37] may also be employed at this
stage. If the frequency decays to 0, we insert 𝑒 into the correspond-
ing entry. Otherwise, 𝑒 would be discarded.

The “𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛” mechanism relies heavily on the
value of Δ. To determine Δ, we use a global counter to dynami-
cally monitor the maximum frequency, 𝑓max. According to the Zipf
distribution, where 𝛼 represents skewness and the frequency of
the 𝑖-th largest item is (1/𝑖)𝛼 times that of the largest item, we set
Δ = 𝑓max ×

(
1
𝑘

)𝛼
to identify the top-𝑘 items. Typically, 𝛼 = 1 is

used. Higher 𝛼 values decrease Δ, causing more frequent evictions.

3.2.2 Top-𝑘 Query.
For top-𝑘 queries, we only need to focus exclusively on the items
contained in the hot entry (entry_B). This is accomplished by loop-
ing through all hot entries in the array, subsequently sorting them,
and then extracting the top-𝑘 items along with their frequency
fields for reporting.

kick

Insert 𝒆𝟐

𝒆𝟓
𝒉𝟐(𝒆𝟓)

𝒉𝟏(𝒆𝟓)

Array 1

entry 3

entry 2

entry 1

entry 4

Bucket x1

𝒆𝟏𝟒: (id , 11)

𝒆𝟏𝟏: (fp , 6)

𝒆𝟕: (fp , 3)

𝒆𝒎𝒑𝒕𝒚

𝒆𝟏𝟒: (id , 11)

𝒆𝟏𝟏: (fp , 6)

𝒆𝟕: (fp , )

𝒆𝟐: (fp , 1)

Bucket z1

𝒆𝟏: (id , 901)

𝒆𝟑: (fp , 799+1)

𝒆𝟒: (fp , 88)

𝒆𝟗: (fp , 7)

𝒆𝟏: (id , 901)

𝒆𝟒: (fp , 88)

𝒆𝟗: (fp , 7)

𝒆𝒎𝒑𝒕𝒚

> thld
𝒆𝒎𝒑𝒕𝒚

Shift 

Up

Bucket x2

Lossy -1

𝒆𝟐𝟏: (id , 22)

𝒆𝟕: (fp , 39)

𝒆𝟓: (fp , 39)

𝒆𝟒: (fp , 1)

𝒆𝟐𝟏: (id , 22)

𝒆𝟓: (fp , 40)

𝒆𝟕: (fp , 39)

𝒆𝟖: (fp , 1)

Insert 
𝒆𝟐

Insert 
𝒆𝟖

Sort

Bucket z

𝒆𝟔: (id , 199)

𝒆𝟓: (fp , 81)

𝒆𝟒: (fp , 80)

𝒆𝟕: (fp , 2)

𝒆𝟑: (id , 800)

𝒆𝟔: (fp , 199)

𝒆𝟓: (fp , 81)

𝒆𝟒: (fp , 80)

Array 2

entry 3

entry 2

entry 1

entry 4
Insert 
𝒆𝟑

Shift 

Down

𝒆𝟖
𝒉𝟐(𝒆𝟖)

𝒉𝟏(𝒆𝟖)

𝒆𝟑
𝒉𝟐(𝒆𝟑)

𝒉𝟏(𝒆𝟑)

𝒆𝟐
𝒉𝟐(𝒆𝟐)

𝒉𝟏(𝒆𝟐)

2

3

Figure 4: An running example of Bubble Sketch.

3.3 A Running Example
Figure 4 illustrates a running example of BS for insertion. The pa-
rameters are configured as follows:We assume𝐵 = 4 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

799. In this example, 𝑒𝑛𝑡𝑟𝑦4 in each bucket is the hot entry, and
only the buckets involved in each array are displayed.

Case 1, to insert 𝑒5: The two candidate buckets after hashing
are 𝑥1 and 𝑥2. A search in these buckets reveals that 𝑒5 already
exists in entry 𝑥2 [2]. Consequently, 𝑥2 [2] .𝑐𝑛𝑡 is incremented by 1,
and the entry is updated to 𝑒5 : (fp, 40). The whole bucket is then
sorted in order. As a result, 𝑒5 is shifted up to 𝑥2 [3], while 𝑒7 is
shifted down to 𝑥2 [2].

Case 2, to insert 𝑒2: The item 𝑒2 is not found in the correspond-
ing buckets 𝑥1 and 𝑥2, but an empty entry exists at 𝑥1 [1]. Therefore,
𝑒2 : (fp, 1) is inserted into this entry.

Case 3, to insert 𝑒8: The fingerprints in all entries do not match
𝑒8. The smallest entry, 𝑥2 [1], is selected (randomly). The counter is
decayed to 0, and 𝑒8 replaces 𝑒4.

Case 4, to insert 𝑒3: Searching through the two buckets, 𝑒3
is found in entry 𝑧1 [3]. The count of 𝑒3 is incremented by 1, up-
dating the entry to 𝑒3 : (fp, 800). As 𝑒3’s frequency exceeds the
threshold and surpasses the frequency in the top entry (𝑧2 [4]) in
the alternate bucket, 𝑒6 : (ID, 199) in entry 𝑧2 [4] is shifted down
to accommodate 𝑒3. Item 𝑒3 : (ID, 800) is then placed into entry
𝐴2 [𝑧2] [4]. Concurrently, item 𝑒6 : (ID, 199) is shifted to 𝑒𝑛𝑡𝑟𝑦3,
becoming 𝑒6 : (fp, 199), with its ID replaced by a fingerprint, and
all other existing entries are shifted down by one position. After
𝑒3 : (ID, 800) is relocated to 𝑧2 [4] and the original entry 𝑧1 [3] is
cleared, the empty entry appears in 𝑧1 [1] since the bucket needs to
be sorted in ascending order.

4 Performance Evaluation
4.1 Experiment Setup
The machine is Ubuntu 20.04 with an Intel i7-9700 CPU @ 3.0GHz
and 16GB of DRAM. We use CAIDA Datasets obtained from the
Equinix-Chicago data, as documented in [15], and align with the
datasets in [42]. We consider the following metrics:

Throughput: It is calculated as 𝑁 /𝑇 , where 𝑁 is the total num-
ber of items processed, and𝑇 is the time taken to run the algorithm.

AAE:AAE is defined as 1
|Ψ |

∑
(𝑒𝑖 ∈Ψ)

���𝑓𝑖 − 𝑓𝑖

���. Here, 𝑓𝑖 is the actual
frequency of an item 𝑒𝑖 , 𝑓𝑖 represents its estimated frequency, and
Ψ is the estimated set of top-𝑘 items.
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Figure 5: Top-𝑘 estimation - vs. Memory - CAIDA.
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Figure 6: Top-𝑘 estimation - vs. 𝑘 - CAIDA.
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Figure 7: Top-𝑘 estimation - vs. Tight memory.

ARE: ARE is defined as 1
|Ψ |

∑
(𝑒𝑖 ∈Ψ)

���𝑓𝑖 − 𝑓𝑖

��� /𝑓𝑖 .
Precision: Precision (top-𝑘) is defined as the proportion of ac-

curately identified top-𝑘 items out of the total 𝑘 items reported.

4.1.1 Experimental Configuration.
The Bubble Sketch (BS) algorithm is compared with CM sketch

+ Heap (CM-H) [10], Unbiased Space-Saving (USS) [37], Cuckoo
Counter (CC) [33], Waving Sketch (WS) [21], HeavyKeeper (HK)
[43], Lossy Counting (LC) [27], Double-Anonymous Sketch (DAS)
[47], and Space-Saving (SS) [30] using their open-source codes.

4.2 Experiment Results
4.2.1 Experiments on Throughput. With Memory size ranges from
50KB to 500KB. Figures 5(a) show BS consistently surpasses other
algorithms in throughput, even with small memory sizes like 50KB.
BS achieves twice the throughput of WS and 2.5 times that of HK.
With memory fixed at 250KB and 𝑘 varying from 500 to 5000, Fig-
ures 6(a) showBSmaintaining a distinct throughput advantage. BS’s
design avoids the Min-Heap structure, requiring fewer operations
per insertion, achieving 2.3 times the throughput of CC.

4.2.2 Experiments on AAE. Figures 5(b) compare the AAE of dif-
ferent algorithms. BS maintains stable and low AAE values, almost
an order of magnitude lower than HK and significantly better than
USS within the memory range of 50KB to 500KB. Figures 6(b) show
BS’s AAE is superior across all 𝑘 , maintaining low AAE even with
increasing 𝑘 . In contrast, HK and USS’s performance deteriorates.

4.2.3 Experiments on ARE. Figure 5(c) shows that BS has lower
error rates than CM-H in low-memory conditions. BS’s stability is

due to its full storage of item IDs, reducing error rates. Figures 6(c)
show BS’s ARE is significantly lower than DAS’s and better than
other sketches, except for HK at 𝑘 of 1500.

4.2.4 Experiments on Precision. BS consistently achieves the high-
est precision across all memory scenarios. Figure 5(d) shows BS
delivering 100% precision with small memory usage, outperforming
other algorithms significantly. Figures 6(d) show BS achieving 100%
precision as 𝑘 increases from 500 to 5000, outperforming other
algorithms whose precision declines with increasing 𝑘 .

4.2.5 Experiments on Tight Memory. Experiments on the CAIDA
dataset span memory ranges from 5KB to 50KB with 𝑘 fixed at
1000. Figure 7 shows only BS, DAS, WS, and SS perform well in
this range. BS achieves the highest throughput and lowest AAE
and ARE in tight-memory scenarios, outperforming DAS, WS, and
SS. Figure 7(d) shows BS’s precision is lower than DAS below 20KB
but converges to 1 within the 20KB to 50KB range.

5 Conclusion
Finding top-𝑘 hot items in data streams plays an important role
in real-world applications. To comprehensively improve existing
algorithms in terms of speed and accuracy, we propose a high-
performance and memory-efficient algorithm called Bubble Sketch.
It maintains the ordering and replacement of items within a bucket
to achieve the effect of isolating hot and cold items. To verify its
effectiveness, we deployed our sketch and 7 other sketches on the
software platform and conducted the top-𝑘 items detection experi-
ment. Extensive results show that our proposed Bubble Sketch has
excellent accuracy/precision and the highest throughput.
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