
Bubble Sketch: A High-performance and Memory-efficient Sketch
for Finding Top-𝑘 Items in Data Streams

Lu Cao
Harbin Institute of Technology

Shenzhen, China

Qilong Shi
Tsinghua University

Beijing, China

Yuxi Liu
Pengcheng Laboratory

Shenzhen, China

Hanyue Zheng
Peking University
Beijing, China

Yao Xin
Guangzhou University
Guangzhou, China

Wenjun LiB
Pengcheng Laboratory

Shenzhen, China

Tong Yang
Peking University
Beijing, China

Yangyang Wang
Tsinghua University

Beijing, China

Yang Xu
Fudan University
Shanghai, China

Weizhe Zhang
Harbin Institute of Technology

Shenzhen, China

Mingwei Xu
Tsinghua University

Beijing, China

Abstract
Sketch algorithms are crucial for identifying top-𝑘 items in large-
scale data streams. Existing methods often compromise between
performance and accuracy, unable to efficiently handle increasing
data volumes with limited memory. We present Bubble Sketch, a
compact algorithm that excels in both performance and accuracy.
Bubble Sketch achieves this by (1) Recording only full keys of hot
items, significantly reducing memory usage, and (2) Using threshold
relocation to resolve conflicts, enhancing detection accuracy. Unlike
traditional methods, Bubble Sketch eliminates the need for a Min-
Heap, ensuring fast processing speeds. Experiments show Bubble
Sketch outperforms the other seven algorithms compared, with the
highest throughput and precision, and surpasses HeavyKeeper in
accuracy by up to two orders of magnitude.

CCS Concepts
• Information systems→ Data stream mining.

Keywords
Data stream; Approximate algorithm; Sketch; Top-𝑘
ACM Reference Format:
Lu Cao, Qilong Shi, Yuxi Liu, Hanyue Zheng, Yao Xin, Wenjun LiB, Tong
Yang, Yangyang Wang, Yang Xu, Weizhe Zhang, and Mingwei Xu. 2024.

∗Lu Cao conducted this work under the guidance of corresponding authors Wenjun Li
(wenjunli@pku.org.cn) and Qilong Shi. This work was supported in part by the Major
Key Project of Peng Cheng Lab (PCL2023A06), NSFC (62102203,62221003,62132004,
62372123), 173 Program (2021-JCJQ-JJ-0483). The source code is available onGitHub [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679882

Bubble Sketch: A High-performance and Memory-efficient Sketch for Find-
ing Top-𝑘 Items in Data Streams. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’24),
October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3627673.3679882

1 Introduction
Detecting top-𝑘 frequent items in data streams is essential for ap-
plications like data mining [14, 16, 18, 36, 41, 42, 44, 45], traffic mea-
surement [2, 6, 17, 32, 35, 46], and data security [3, 4, 8, 11, 12, 20].
For instance, data centers must detect significant data traffic items
to balance load effectively, while social platforms detect frequent
interactions to discern user connections [9, 19, 34, 38, 40].

In the big data era, the speed and volume of data streams make
accurate item tracking challenging [22, 23]. Approximate solutions
like sampling often lack accuracy. Advanced algorithms that operate
on individual items need fast, consistent updates, avoiding slow
DRAM in favor of limited-capacity SRAM [13, 39]. Sketch-based
methods are popular for their efficiency in time and space with
acceptable error margins [5, 7, 12, 24, 26, 31].

Top-𝑘 sketch algorithms are either Min-Heap-based or Save-all-
potentiality. Min-Heap-based methods use a Min-Heap to track
top-𝑘 items [29] by adding new items to the sketch and replac-
ing the lowest frequency item in the heap if needed. This method
is slow and memory-inefficient due to constant updates, as seen
in HeavyKeeper [43], which needs 360 ∗ 𝑘 bits of memory. Save-
all-potentiality methods store potential top-𝑘 items as <full key,
frequency> pairs [25] in a single sketch, avoiding the Min-Heap but
suffering from poor accuracy and high insertion overhead when
memory is limited. Both methods struggle with performance and
accuracy under tight memory constraints, leading to the question:
Can we develop a compact sketch algorithm for top-𝑘 detection
that excels in both speed and accuracy?

We introduce Bubble Sketch (BS), which improves memory
efficiency with a unique bucket structure and threshold relocation
using bubble sorting. Key features of Bubble Sketch include:

https://doi.org/10.1145/3627673.3679882
https://doi.org/10.1145/3627673.3679882

CIKM ’24, October 21–25, 2024, Boise, ID, USA Lu Cao et al.

(1) Efficient Bucket Layout: Buckets store "hot" entries as
<full key, frequency> pairs and "cold" entries as smaller <fin-
gerprint, frequency> pairs, saving memory.

(2) Real-Time Bubble Sorting: Entries are sorted in real-time,
keeping hot items in the hot entries and exchanging keys
and fingerprints as needed for efficient top-𝑘 queries.

(3) Threshold Relocation for Accuracy: Potential top-𝑘 item
collisions are resolved by placing one in an alternate bucket,
improving accuracy.

Implemented in C++ and tested on various datasets, Bubble
Sketch shows superior performance, achieving the highest through-
put and accuracy among current algorithms. It outperforms Heavy-
Keeper by two orders of magnitude in accuracy and is 1.5 times
faster and more accurate than Waving Sketch.

2 Background
2.1 Problem Statement
Data Stream Model: As shown in Figure 1, a data stream P =

{𝑝1, 𝑝2, . . . , 𝑝𝑁 } contains𝑁 items and𝑛 distinct items. Items in data
P can be categorized into 𝑛 non-overlapping distinct items: E =

{𝑒1, 𝑒2, . . . , 𝑒𝑛}. The number of items in 𝑒𝑖 is called the frequency
of 𝑒𝑖 (abbreviated as 𝑒𝑖 .𝑓 or 𝑓𝑖), and so we have

∑𝑛
𝑖=1 𝑓𝑖 = 𝑁 . A

distinct item also has a unique ID to identify itself, represented as
𝑒𝑖 .𝑖𝑑 (for example, we often use the 5-tuple headers to identify a
TCP distinct packet in a network stream).

Data Streams𝒆𝟑 𝒆𝟏 𝒆𝟑 𝒆𝟑 𝒆𝟓 𝒆𝟏 𝒆𝟐 𝒆𝟐

𝒆%What’s the Top-k of largest frequency?

𝒆𝟏:	2 												𝒆𝟐 :	2																	𝒆𝟑:	3 														𝒆𝟓 :	1

Figure 1: Finding Top-𝑘 Items.
Top-𝑘 Items Detection: Top-𝑘 items detection outputs the ID

and frequency of themost frequent𝑘 items in a data stream, denoted
as (𝑒1, 𝑓1), (𝑒2, 𝑓2), . . . , (𝑒𝑘 , 𝑓𝑘).

2.2 Related Work
Sketches are widely used for finding top-𝑘 items in data streams and
are generally divided intoMin-Heap-based and Save-all-potentiality-
based solutions. Min-Heap-based methods use a Min-Heap to store
top-𝑘 items. CM Sketch + Min-Heap[10] hashes items to multiple
counters and updates the Min-Heap using the minimum counter
value, which can misidentify cold items as hot and slows processing
due to frequent updates. HeavyKeeper (HK) [43] and Cuckoo
Counter (CC)[33] also suffer from throughput issues and high
memory usage due to the Min-Heap.

Save-all-potentiality methods store all potential top-𝑘 items
within the data structure. Space-Saving (SS)[30] replaces the small-
est existing item with new items, but its accuracy is limited by not
considering data stream characteristics. Unbiased Space-Saving
(USS)[37] improves frequency estimation for multi-node scenarios
but is less effective for single nodes. Waving Sketch [21] requires
traversing all entries to extract top-𝑘 items and faces memory issues
by storing complete IDs in each cell. Double-Anonymous Sketch
(DAS) [47] aims for fairness but suffers from low throughput due
to its two-layer structure.

2.3 Why Yet Another One?
Min-Heap-based algorithms, like Cuckoo Counter, achieve high
precision but suffer from throughput issues. Save-all-potentiality
algorithms, like Waving Sketch, lead to poor precision and high
memory usage in tight memory scenarios. DAS improves precision
but has low throughput due to its two-layer structure. To address
these limitations, we propose Bubble Sketch , a single-layer algo-
rithm that adapts to data skewness, reducing memory usage and
enhancing precision without needing a Min-Heap. This design sig-
nificantly boosts throughput, making BS approximately 8 times
faster than DAS and the fastest among current top-𝑘 algorithms.

3 Bubble Sketch Framework
3.1 Data Structure
The Bubble Sketch data structure, illustrated in Figure 2, comprises
two arrays, 𝐴1 and 𝐴2, designed to handle potential conflicts effec-
tively. Each array has𝑤 buckets, and each bucket contains 𝐵 entries
of varying sizes, labeled {entry_1, entry_2, . . . , entry_B}. Entries are
the basic units, and buckets serve as access units. The bit width of
entries increases progressively, forming a ladder-like distribution.
The largest entry, entry_B, stores hot items (top-𝑘 items) with an
ID and a large counter for the <full key, frequency> pair. The smaller
entries, designated for secondary-hot or cold items, contain a fin-
gerprint and a smaller counter for the <fingerprint, frequency> pair.
While the width of ID and fingerprint remains constant across en-
tries, the counter width varies. This design leverages the skewness
of data streams, optimizing storage by accommodating as many
conflicting items as possible. The real-time bubble sorting technique
dynamically relocates streams within the same bucket, ensuring
hot streams occupy larger entries and cold streams smaller ones.
Each bucket acts as a hash unit, requiring only O(1) access time and
enabling linear traversal within the bucket. This design ensures
high throughput during updates. Buckets are aligned with the ma-
chine word length (e.g., 128 bits) to maximize entry manipulation
per memory access.

entries in a bucket

Entry part

…

Cold
Entries

Hot
Entry

C1Fp1

……

CB-2FpB-2

CB-1FpB-1

CBID

𝒉𝟏𝒆𝟏

…

𝒉𝟐

FP：fingerprint C : counter

𝑨rray 2

Array 1

W

Figure 2: The data structure of Bubble Sketch.

3.2 Algorithm and Operations
For conciseness, we use 𝐴𝑖 [ℎ] [𝑟] to represent the entry 𝑟 of bucket
ℎ in array 𝑖 . Initially, all entries are initialized to zero. Below we
introduce the implementation process of the two main operations
of our algorithm in turn: insertion and query.

3.2.1 Insert.
Each time an incoming item 𝑒 is inserted, we first compute two
hash values using formulas: ℎ1 = ℎ𝑎𝑠ℎ1 (𝑒) and ℎ2 = ℎ𝑎𝑠ℎ2 (𝑒), to
identify two candidate buckets in two arrays, 𝐴1 [ℎ1] and 𝐴2 [ℎ2].
The entries in these buckets are then traversed to find whether

Bubble Sketch: A High-performance and Memory-efficient Sketch for Finding Top-𝑘 Items in Data Streams CIKM ’24, October 21–25, 2024, Boise, ID, USA

ID , C𝒆

Bucket i in Array1

i = hash1 (e)

if Ce +1<∆ or Ce <C’

Insert e…

fpe ,Ce

ID , C

…

fpe ,Ce+1 Sort

(a) Insertion without threshold relocation

Shift
Up

𝒆 Kick

ID , C
Bucket i in Array 1

Remove e…

ID , C

empty

ID’ , C’

Insert e
…

IDe , Ce+1

…fp’ID’ ,C’…

…

…

…

i = hash1(e)

j = hash2(e)

Shift
Down

fpe ,Ce

Bucket j in Array 2

(b) Insertion with threshold relocation

Figure 3: Insert matching items.

𝑒 already exists. If 𝑒 is found in the bucket 𝐴1 [ℎ1] as shown in
Figure 3(a), its corresponding entry’s counter 𝐶𝑒 is incremented
by 1. The entries within 𝐴1 [ℎ1] are then sorted according to their
counter values (frequencies), to make sure hot items are always at
the top. When items switch between hot and cold entries, their IDs
and fingerprints would be exchanged. If, after sorting, the updated
entry becomes the second-largest entry and the value of 𝐶𝑒 + 1
remains below the threshold Δ, the insertion process is complete.

If the updated frequency 𝐶𝑒 + 1 exceeds the threshold Δ, it in-
dicates that there may be two hot items conflicting within the
bucket. Furthermore, if the frequency also surpasses the counter
value 𝐶′ of the topmost item in the alternative bucket 𝐴2 [ℎ2], we
initiate the relocation mechanism, as shown in Figure 3(b). The
fingerprint of 𝑒 is converted to ID and stored together with its
frequency in the hot entry of 𝐴2 [ℎ2]. Additionally, the original
items in 𝐴2 [ℎ2] undergo a downward shift, where 𝐴2 [ℎ2] [𝐵] .ID is
updated to𝐴2 [ℎ2] [𝐵−1] .fp′ID′ , and the item in entry_1 is discarded.

If 𝑒 is a new item (does not exist in the candidate bucket), it
would be inserted into the first empty entry in either 𝐴1 [ℎ1] or
𝐴2 [ℎ2], and the associated counter is set to 1. In the event that
both candidate buckets are full, we choose either 𝐴1 [ℎ1] [1] or
𝐴2 [ℎ2] [1] at random and decrement its counter by 1. Alternative re-
placement strategies, such as “Exponential-weakening decay” [43],
“Probability replacement” [28, 37] may also be employed at this
stage. If the frequency decays to 0, we insert 𝑒 into the correspond-
ing entry. Otherwise, 𝑒 would be discarded.

The “𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛” mechanism relies heavily on the
value of Δ. To determine Δ, we use a global counter to dynami-
cally monitor the maximum frequency, 𝑓max. According to the Zipf
distribution, where 𝛼 represents skewness and the frequency of
the 𝑖-th largest item is (1/𝑖)𝛼 times that of the largest item, we set
Δ = 𝑓max ×

(
1
𝑘

)𝛼
to identify the top-𝑘 items. Typically, 𝛼 = 1 is

used. Higher 𝛼 values decrease Δ, causing more frequent evictions.

3.2.2 Top-𝑘 Query.
For top-𝑘 queries, we only need to focus exclusively on the items
contained in the hot entry (entry_B). This is accomplished by loop-
ing through all hot entries in the array, subsequently sorting them,
and then extracting the top-𝑘 items along with their frequency
fields for reporting.

kick

Insert 𝒆𝟐

𝒆𝟓
𝒉𝟐(𝒆𝟓)

𝒉𝟏(𝒆𝟓)

Array 1

entry 3

entry 2

entry 1

entry 4

Bucket x1

𝒆𝟏𝟒: (id , 11)

𝒆𝟏𝟏: (fp , 6)

𝒆𝟕: (fp , 3)

𝒆𝒎𝒑𝒕𝒚

𝒆𝟏𝟒: (id , 11)

𝒆𝟏𝟏: (fp , 6)

𝒆𝟕: (fp ,)

𝒆𝟐: (fp , 1)

Bucket z1

𝒆𝟏: (id , 901)

𝒆𝟑: (fp , 799+1)

𝒆𝟒: (fp , 88)

𝒆𝟗: (fp , 7)

𝒆𝟏: (id , 901)

𝒆𝟒: (fp , 88)

𝒆𝟗: (fp , 7)

𝒆𝒎𝒑𝒕𝒚

> thld
𝒆𝒎𝒑𝒕𝒚

Shift

Up

Bucket x2

Lossy -1

𝒆𝟐𝟏: (id , 22)

𝒆𝟕: (fp , 39)

𝒆𝟓: (fp , 39)

𝒆𝟒: (fp , 1)

𝒆𝟐𝟏: (id , 22)

𝒆𝟓: (fp , 40)

𝒆𝟕: (fp , 39)

𝒆𝟖: (fp , 1)

Insert
𝒆𝟐

Insert
𝒆𝟖

Sort

Bucket z

𝒆𝟔: (id , 199)

𝒆𝟓: (fp , 81)

𝒆𝟒: (fp , 80)

𝒆𝟕: (fp , 2)

𝒆𝟑: (id , 800)

𝒆𝟔: (fp , 199)

𝒆𝟓: (fp , 81)

𝒆𝟒: (fp , 80)

Array 2

entry 3

entry 2

entry 1

entry 4
Insert
𝒆𝟑

Shift

Down

𝒆𝟖
𝒉𝟐(𝒆𝟖)

𝒉𝟏(𝒆𝟖)

𝒆𝟑
𝒉𝟐(𝒆𝟑)

𝒉𝟏(𝒆𝟑)

𝒆𝟐
𝒉𝟐(𝒆𝟐)

𝒉𝟏(𝒆𝟐)

2

3

Figure 4: An running example of Bubble Sketch.

3.3 A Running Example
Figure 4 illustrates a running example of BS for insertion. The pa-
rameters are configured as follows:We assume𝐵 = 4 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

799. In this example, 𝑒𝑛𝑡𝑟𝑦4 in each bucket is the hot entry, and
only the buckets involved in each array are displayed.

Case 1, to insert 𝑒5: The two candidate buckets after hashing
are 𝑥1 and 𝑥2. A search in these buckets reveals that 𝑒5 already
exists in entry 𝑥2 [2]. Consequently, 𝑥2 [2] .𝑐𝑛𝑡 is incremented by 1,
and the entry is updated to 𝑒5 : (fp, 40). The whole bucket is then
sorted in order. As a result, 𝑒5 is shifted up to 𝑥2 [3], while 𝑒7 is
shifted down to 𝑥2 [2].

Case 2, to insert 𝑒2: The item 𝑒2 is not found in the correspond-
ing buckets 𝑥1 and 𝑥2, but an empty entry exists at 𝑥1 [1]. Therefore,
𝑒2 : (fp, 1) is inserted into this entry.

Case 3, to insert 𝑒8: The fingerprints in all entries do not match
𝑒8. The smallest entry, 𝑥2 [1], is selected (randomly). The counter is
decayed to 0, and 𝑒8 replaces 𝑒4.

Case 4, to insert 𝑒3: Searching through the two buckets, 𝑒3
is found in entry 𝑧1 [3]. The count of 𝑒3 is incremented by 1, up-
dating the entry to 𝑒3 : (fp, 800). As 𝑒3’s frequency exceeds the
threshold and surpasses the frequency in the top entry (𝑧2 [4]) in
the alternate bucket, 𝑒6 : (ID, 199) in entry 𝑧2 [4] is shifted down
to accommodate 𝑒3. Item 𝑒3 : (ID, 800) is then placed into entry
𝐴2 [𝑧2] [4]. Concurrently, item 𝑒6 : (ID, 199) is shifted to 𝑒𝑛𝑡𝑟𝑦3,
becoming 𝑒6 : (fp, 199), with its ID replaced by a fingerprint, and
all other existing entries are shifted down by one position. After
𝑒3 : (ID, 800) is relocated to 𝑧2 [4] and the original entry 𝑧1 [3] is
cleared, the empty entry appears in 𝑧1 [1] since the bucket needs to
be sorted in ascending order.

4 Performance Evaluation
4.1 Experiment Setup
The machine is Ubuntu 20.04 with an Intel i7-9700 CPU @ 3.0GHz
and 16GB of DRAM. We use CAIDA Datasets obtained from the
Equinix-Chicago data, as documented in [15], and align with the
datasets in [42]. We consider the following metrics:

Throughput: It is calculated as 𝑁 /𝑇 , where 𝑁 is the total num-
ber of items processed, and𝑇 is the time taken to run the algorithm.

AAE:AAE is defined as 1
|Ψ |

∑
(𝑒𝑖 ∈Ψ)

���𝑓𝑖 − 𝑓𝑖

���. Here, 𝑓𝑖 is the actual
frequency of an item 𝑒𝑖 , 𝑓𝑖 represents its estimated frequency, and
Ψ is the estimated set of top-𝑘 items.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Lu Cao et al.

250500
Memory (KB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

CM-H USS WS DAS CC HK SS BS(Ours)

100 200 300 400 500
Memory (KB)

0

5

10

15

20
Th

ro
ug

hp
ut

 (M
ps

)

(a) Insert Throughput

100 200 300 400 500
Memory (KB)

10
2

10
1

10
0

10
1

10
2

10
3

A
A

E

(b) AAE

100 200 300 400 500
Memory (KB)

10
5

10
4

10
3

10
2

10
1

10
0

A
R

E

(c) ARE

100 200 300 400 500
Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(d) Precision

Figure 5: Top-𝑘 estimation - vs. Memory - CAIDA.

1000 2000 3000 4000 5000
K

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

(a) Insert Throughput

1000 2000 3000 4000 5000
K

10
1

10
0

10
1

10
2

A
A

E

(b) AAE

1000 2000 3000 4000 5000
K

10
4

10
3

10
2

10
1

10
0

A
R

E

(c) ARE

1000 2000 3000 4000 5000
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(d) Precision

Figure 6: Top-𝑘 estimation - vs. 𝑘 - CAIDA.

10 20 30 40 50
Memory (KB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

(a) Insert Throughput

10 20 30 40 50
Memory (KB)

10
0

10
1

10
2

10
3

A
A

E

(b) AAE

10 20 30 40 50
Memory (KB)

10
3

10
2

10
1

10
0

A
R

E

(c) ARE

10 20 30 40 50
Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(d) Precision

Figure 7: Top-𝑘 estimation - vs. Tight memory.

ARE: ARE is defined as 1
|Ψ |

∑
(𝑒𝑖 ∈Ψ)

���𝑓𝑖 − 𝑓𝑖

��� /𝑓𝑖 .
Precision: Precision (top-𝑘) is defined as the proportion of ac-

curately identified top-𝑘 items out of the total 𝑘 items reported.

4.1.1 Experimental Configuration.
The Bubble Sketch (BS) algorithm is compared with CM sketch

+ Heap (CM-H) [10], Unbiased Space-Saving (USS) [37], Cuckoo
Counter (CC) [33], Waving Sketch (WS) [21], HeavyKeeper (HK)
[43], Lossy Counting (LC) [27], Double-Anonymous Sketch (DAS)
[47], and Space-Saving (SS) [30] using their open-source codes.

4.2 Experiment Results
4.2.1 Experiments on Throughput. With Memory size ranges from
50KB to 500KB. Figures 5(a) show BS consistently surpasses other
algorithms in throughput, even with small memory sizes like 50KB.
BS achieves twice the throughput of WS and 2.5 times that of HK.
With memory fixed at 250KB and 𝑘 varying from 500 to 5000, Fig-
ures 6(a) showBSmaintaining a distinct throughput advantage. BS’s
design avoids the Min-Heap structure, requiring fewer operations
per insertion, achieving 2.3 times the throughput of CC.

4.2.2 Experiments on AAE. Figures 5(b) compare the AAE of dif-
ferent algorithms. BS maintains stable and low AAE values, almost
an order of magnitude lower than HK and significantly better than
USS within the memory range of 50KB to 500KB. Figures 6(b) show
BS’s AAE is superior across all 𝑘 , maintaining low AAE even with
increasing 𝑘 . In contrast, HK and USS’s performance deteriorates.

4.2.3 Experiments on ARE. Figure 5(c) shows that BS has lower
error rates than CM-H in low-memory conditions. BS’s stability is

due to its full storage of item IDs, reducing error rates. Figures 6(c)
show BS’s ARE is significantly lower than DAS’s and better than
other sketches, except for HK at 𝑘 of 1500.

4.2.4 Experiments on Precision. BS consistently achieves the high-
est precision across all memory scenarios. Figure 5(d) shows BS
delivering 100% precision with small memory usage, outperforming
other algorithms significantly. Figures 6(d) show BS achieving 100%
precision as 𝑘 increases from 500 to 5000, outperforming other
algorithms whose precision declines with increasing 𝑘 .

4.2.5 Experiments on Tight Memory. Experiments on the CAIDA
dataset span memory ranges from 5KB to 50KB with 𝑘 fixed at
1000. Figure 7 shows only BS, DAS, WS, and SS perform well in
this range. BS achieves the highest throughput and lowest AAE
and ARE in tight-memory scenarios, outperforming DAS, WS, and
SS. Figure 7(d) shows BS’s precision is lower than DAS below 20KB
but converges to 1 within the 20KB to 50KB range.

5 Conclusion
Finding top-𝑘 hot items in data streams plays an important role
in real-world applications. To comprehensively improve existing
algorithms in terms of speed and accuracy, we propose a high-
performance and memory-efficient algorithm called Bubble Sketch.
It maintains the ordering and replacement of items within a bucket
to achieve the effect of isolating hot and cold items. To verify its
effectiveness, we deployed our sketch and 7 other sketches on the
software platform and conducted the top-𝑘 items detection experi-
ment. Extensive results show that our proposed Bubble Sketch has
excellent accuracy/precision and the highest throughput.

Bubble Sketch: A High-performance and Memory-efficient Sketch for Finding Top-𝑘 Items in Data Streams CIKM ’24, October 21–25, 2024, Boise, ID, USA

References
[1] Our GitHub. https://github.com/wenjunpaper/BubbleSketch.
[2] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021.

SALSA: Self-Adjusting Lean Streaming Analytics. In IEEE ICDE.
[3] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy

hitters in streams and sliding windows. In IEEE INFOCOM.
[4] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and ErezWaisbard.

2017. Constant time updates in hierarchical heavy hitters. In ACM SIGCOMM.
[5] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In ICALP.
[6] Aiyou Chen, Yu Jin, Jin Cao, and Li Erran Li. 2010. Tracking long duration flows

in network traffic. In IEEE INFOCOM.
[7] Min Chen, Shigang Chen, and Zhiping Cai. 2016. Counter tree: A scalable

counter architecture for per-flow traffic measurement. IEEE/ACM Transactions
on Networking 25, 2 (2016), 1249–1262.

[8] Graham Cormode. 2011. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers (2011), 15.

[9] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh
Srivastava. 2003. Finding hierarchical heavy hitters in data streams. In ACM
VLDB.

[10] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[11] Garofalakis M Cormode G. 2005. Sketching streams through the net: Distributed
approximate query tracking. In ACM VLDB.

[12] Haipeng Dai, Meng Li, Alex X Liu, Jiaqi Zheng, and Guihai Chen. 2019. Finding
persistent items in distributed datasets. IEEE/ACM Transactions on Networking
28, 1 (2019), 1–14.

[13] Haipeng Dai, Yuankun Zhong, Alex X Liu, Wei Wang, and Meng Li. 2016. Noisy
bloom filters for multi-set membership testing. In ACM SIGMETRICS.

[14] Zhuochen Fan, Ruixin Wang, Yalun Cai, Ruwen Zhang, Tong Yang, Yuhan Wu,
Bin Cui, and Steve Uhlig. 2023. OneSketch: A Generic and Accurate Sketch for
Data Streams. IEEE Transactions on Knowledge and Data Engineering 35, 12 (2023),
12887–12901.

[15] Cooperative Association for Internet Data Analysis. 2016. The CAIDA Traces.
http://www.caida.org/data/overview/

[16] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong
Zhang. 2017. Sketchvisor: Robust network measurement for software packet
processing. In ACM SIGCOMM.

[17] Qun Huang and Patrick PC Lee. 2014. LD-sketch: A distributed sketching design
for accurate and scalable anomaly detection in network data streams. In IEEE
INFOCOM.

[18] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. Sketchlearn: Relieving user
burdens in approximate measurement with automated statistical inference. In
ACM SIGCOMM.

[19] Anukool Lakhina, Mark Crovella, and Christiphe Diot. 2004. Characterization of
network-wide anomalies in traffic flows. In ACM SIGCOMM.

[20] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. 2022. Stingy sketch:
a sketch framework for accurate and fast frequency estimation. In ACM VLDB.

[21] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong
Zhang. 2020. Wavingsketch: An unbiased and generic sketch for finding top-k
items in data streams. In ACM SIGKDD.

[22] Meng Li, Deyi Chen, Haipeng Dai, Rongbiao Xie, Siqiang Luo, Rong Gu, Tong
Yang, and Guihai ChenFellow. 2023. Seesaw Counting Filter: A Dynamic Filtering
Framework for Vulnerable Negative Keys. IEEE Transactions on Knowledge and
Data Engineering 35, 12 (2023), 12987–13001.

[23] Meng Li, Rongbiao Xie, Deyi Chen, Haipeng Dai, Rong Gu, He Huang, Wanchun
Dou, and Guihai Chen. 2023. A Pareto optimal Bloom filter family with hash
adaptivity. The VLDB Journal 32, 3 (2023), 525–548.

[24] Tao Li, Shigang Chen, and Yibei Ling. 2012. Per-flow traffic measurement through
randomized counter sharing. IEEE/ACM Transactions on Networking 20, 5 (2012),
1622–1634.

[25] Weihe Li and Paul Patras. 2023. Tight-Sketch: A High-Performance Sketch for
Heavy Item-Oriented Data Stream Mining with Limited Memory Size. In ACM

CIKM.
[26] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better

NetFlow for Data Centers. In USENIX NSDI.
[27] Gurmeet SinghManku and RajeevMotwani. 2002. Approximate frequency counts

over data streams. In ACM VLDB.
[28] Motwani R. Manku G S. 2019. Randomized admission policy for efficient top-k,

frequency, and volume estimation. IEEE/ACM Transactions on Networking 27, 4
(2019), 1432–1445.

[29] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2006. An integrated
efficient solution for computing frequent and top-k elements in data streams.
ACM Transactions on Database Systems (TODS) 31, 3 (2006), 1095–1133.

[30] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient com-
putation of frequent and top-k elements in data streams. In ICDT.

[31] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,
Peter A Dinda, Ming-Yang Kao, and Gokhan Memik. 2007. Reversible sketches:
enabling monitoring and analysis over high-speed data streams. IEEE/ACM
Transactions on Networking 15, 5 (2007), 1059–1072.

[32] Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gao-
gang Xie, Weizhe Zhang, and Minlan Yu. 2024. BitMatcher: Bit-level Counter
Adjustment for Sketches. In IEEE ICDE.

[33] Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.
2023. Cuckoo Counter: Adaptive Structure of Counters for Accurate Frequency
and Top-k Estimation. IEEE/ACM Transactions on Networking 31, 4 (2023), 1854–
1869.

[34] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable packet scheduling at line rate. In
ACM SIGCOMM.

[35] Lu Tang, Qun Huang, and Patrick PC Lee. 2020. A fast and compact invert-
ible sketch for network-wide heavy flow detection. IEEE/ACM Transactions on
Networking 28, 5 (2020), 2350–2363.

[36] Lu Tang, Qun Huang, and Patrick PC Lee. 2020. SpreadSketch: Toward invertible
and network-wide detection of superspreaders. In IEEE INFOCOM.

[37] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In ACM SIGMOD.

[38] Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng Chen,
Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. 2022. She: A generic
framework for data stream mining over sliding windows. In ICPP.

[39] Rongbiao Xie, Meng Li, Zheyu Miao, Rong Gu, He Huang, Haipeng Dai, and
Guihai Chen. 2021. Hash adaptive bloom filter. In IEEE ICDE.

[40] Kaicheng Yang, Sheng Long, Qilong Shi, Yuanpeng Li, Zirui Liu, Yuhan Wu, Tong
Yang, and Zhengyi Jia. 2023. SketchINT: Empowering INT with TowerSketch for
per-flow per-switch measurement. IEEE Transactions on Parallel and Distributed
Systems (2023).

[41] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li.
2019. Diamond sketch: Accurate per-flow measurement for big streaming data.
IEEE Transactions on Parallel and Distributed Systems 30, 12, 2650–2662.

[42] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In ACM SIGCOMM.

[43] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen,
and Xiaoming Li. 2019. HeavyKeeper: an accurate algorithm for finding Top-𝑘
elephant flows. IEEE/ACM Transactions on Networking 27, 5 (2019), 1845–1858.

[44] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyramid
sketch: A sketch framework for frequency estimation of data streams. In ACM
VLDB.

[45] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In USENIX NSDI.

[46] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS:
Adaptive memory layout organization of sketch slots for fast and accurate data
stream processing. In ACM SIGKDD.

[47] Yikai Zhao, Wenchen Han, Zheng Zhong, Yinda Zhang, Tong Yang, and Bin Cui.
2023. Double-Anonymous Sketch: Achieving Top-K-fairness for Finding Global
Top-K Frequent Items. In ACM SIGMOD.

https://github.com/wenjunpaper/BubbleSketch
http://www.caida.org/data/overview/

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 Related Work
	2.3 Why Yet Another One?

	3 Bubble Sketch Framework
	3.1 Data Structure
	3.2 Algorithm and Operations
	3.3 A Running Example

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Conclusion
	References

