
BitMatcher: Bit-level Counter Adjustment for
Sketches

Qilong Shi
Tsinghua University

Peng Cheng Laboratory

Chengjun Jia
Tsinghua University

Wenjun Li*
Peng Cheng Laboratory

Harvard University

Zaoxing Liu
University of Maryland

Tong Yang
Peking University

Peng Cheng Laboratory

Jianan Ji
Peking University

Gaogang Xie
Chinese Academy of Sciences

Weizhe Zhang
Peng Cheng Laboratory

Minlan Yu
Harvard University

Abstract—Sketch has been widely used in the field of large-
scale data stream processing. However, common fixed-counter
algorithms such as Count-Min Sketch have to allocate larger
counters, which wastes a lot of memory due to the high
skewness of real-world data streams. To reduce memory usage,
we propose to dynamically adjust the counter size that matches
the distribution of the data stream. We introduce BitMatcher,
a fast global-adjusting algorithm that automatically adjusts the
counter to the appropriate size to match the data stream. During
stream processing, BitMatcher identifies items hashed into a
bucket based on isolated fingerprints. If it overflows, BitMatcher
changes the flag bits in the bucket and dynamically increases
or shrinks the size of some counters in a fine-grained manner.
BitMatcher can also relocate a cold item in the bucket with
the idea of cuckoo hashing to preserve the potential hot item
while achieving global load balancing. Through the above way
of dealing with overflow caused by skewed data, BitMatcher
precisely manipulates allocated bits and maximizes memory
utilization. The experiments show that BitMatcher has high
throughput and can outperform SOTA by up to 4 orders of
magnitude in terms of accuracy. We also deployed BitMatcher on
several platforms, showing its software and hardware scalability.

Index Terms—Data stream, Approximate algorithm, Sketch.

I. INTRODUCTION

Recent years have witnessed that large-scale data stream
processing plays an important role in various applications
such as network monitoring [2], [3], [4], [5], recommendation
systems [6], stock tickers [7], joining tables [8], [9], and more
[10], [11], [12], [13]. In these applications, data are often
received and processed in a streaming fashion with varying
high rates and over the long term [14], [15]; we need algo-
rithmic approaches that can process these data accurately using
small memory. For instance, network operators are interested
in characterizing various flow events (e.g., heavy hitters and
flow size distribution) among Terabits-level network traffic,
given resource-constrained network devices.

*Corresponding author: Wenjun Li (wenjunli@pku.org.cn). Qilong Shi and
Chengjun Jia are co-first authors of this paper, and they conducted this work
under the guidance of Wenjun Li and Tong Yang. Qilong Shi finished this work
when he was a research assistant at Peking University. Wenjun Li finished
this work when he conducted his postdoctoral research at Harvard University.
The source code of this paper can be downloaded from the website [1].

To support these data applications, (one-pass) sketch algo-
rithms are promising. There are significant recent efforts in
optimizing sketch algorithm designs in various aspects, such
as memory, accuracy, and processing speed. However, these
prior efforts fell short of optimizing the memory-accuracy
tradeoffs to cope with the ever-increasing data volume and
limited compute/memory resources. A fundamental issue be-
hind these traditional designs is that they consider counters to
be fixed in length. With varying data streams, this fixed-length
counter design can lead to undesirable wasted memory space.
For instance, CM-Sketch [16] is implemented with fixed-size
counters and cannot easily adapt to real data streams when the
workload distribution varies over time. When there are only a
few hot items whose sizes are ≲ 232, but we use 32 bits for
all counters, most of the significant counter bits are wasted.

To adapt to the high-skewness characteristics of real data
streams, researchers have developed various algorithms to
improve the tradeoff between memory usage and accuracy
[17], [18], [19], [20], [21]. These algorithms fall into two
main categories: hierarchical-based and self-adjusting based.
Hierarchical-based algorithms, such as ASketch [14], struc-
ture data into layers to distinguish between frequently and
infrequently accessed items. While ASketch employs a filter
to collect frequently accessed items, its interaction with the
main sketch structure results in only marginal accuracy gains
at the expense of speed. Elastic Sketch [22] further develops
this approach, yet it struggles to maintain accuracy with
limited memory. Self-adjusting based algorithms dynamically
resize counters based on item frequency, optimizing space
without compromising accuracy. SALSA [23] begins with
small counters and combines them as needed, although its
decoding process is inefficient. DHS [24], on the other hand,
uses fixed-size buckets and adjusts counters within a single
bucket when hot items overflow. This method, however, faces
performance issues as the granularity of adjustments increases.

In summary, existing algorithms are compromised in either
performance or accuracy, and fail to adjust the counter size
properly for the underlying data distribution. Motivated by
this, we ask can we design a sketch algorithm that can adjust
the counter size in a very appropriate way to accommodate
different distributions, while retaining high performance?

To answer this question, we propose a new sketch algorithm
called BitMatcher. BitMatcher is able to match the suitable
bit-size counter for the vast majority of items according to
their frequency to achieve precise memory allocation under
arbitrary data distribution. To achieve this, BitMatcher’s design
ideas revolve around the following points:

1) We adopt a cuckoo filter-like structure [25] and treat a
single bucket as the basic hash unit. Cuckoo kick can be
used to balance the load among buckets to achieve the
goal of “global coordination”.

2) In a single bucket, we divide multiple entries to store
multiple items, and each entry is isolated by fingerprints
to achieve high accuracy.

3) ⌈log2(state number)⌉ bits are reserved in a bucket as
flag bits to indicate how the remaining bits are allocated
by each entry (called the “state” of the bucket). Decoding
is very simple to achieve high processing speed.

4) Most importantly, when dealing with overflow caused by
highly skewed data, we increase or shrink the size of each
entry in a fine-grained manner (changing the state in the
bucket). Combined with the global coordination in (1),
the precise allocation of counters can finally be achieved.

To evaluate real-world performance, we implement Bit-
Matcher in both software and hardware platforms (e.g., CPU,
and FPGA) and perform various measurement tasks including
frequency estimation, heavy hitters, heavy changes, frequency
distribution, and entropy estimation. BitMatcher achieves sig-
nificantly better results than SOTA (i.e., DHS) in large network
traffic datasets (errors improved by up to 4 orders of magni-
tude) and still beats SOTA in small datasets. The experimental
results on software and hardware show that BitMatcher reaches
high speeds and demonstrate that BitMatcher has real-world
feasibility and scalability.

The rest of the paper is organized as follows. Section II
introduces the background and latest work of data stream
processing. Section III shows the data structure and algorithm
of BitMatcher. Section IV gives the mathematical analysis and
Section V presents the experimental results. Finally, the whole
paper is summarized in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first define the data stream model and the
tasks we address in this paper. We then discuss the existing
works and their limitations. Finally, we give a more intuitive
motivation.

A. Problem Statement

• Data Stream Model: A data stream S is a sequence of N
items ⟨e1, e2, ..., eN ⟩(ei ∈ E), where E is the item set. Items
in E can appear more than once, and the algorithm should
process items in order to support online queries. The frequency
of an item ei(ei ∈ E) is defined as fi ≜

∑
j I{ei = ej} where

I is the indicator variable (either 0 or 1). As shown in Fig. 1,
f1 ∼ f4 can be calculated by counting the number of times
they appear in the data stream.

e4 e4 e3 e4 e1 e2 e3 e1······

a data stream

f1 = 2
f2 = 1
f3 = 2
f4 = 3

Fig. 1: A data stream.

Measurement Tasks: We aim to design a sketch algorithm
that tackles the following measurement tasks.
• Frequency Estimation: Given a data stream S =
⟨e1, e2, ..., eN ⟩, we want to (approximately) measure the fre-
quency of each item as accurately as possible (i.e., fi(∀ei ∈
E)). Frequency estimation is the basis of many applications
such as joining tables [8], [9] and multi-set querying [10].
There are many sketches that can be applied to this task,
including the 8 sketches mentioned in this paper, as well as
Cuckoo Counter [13] and Stingy Sketch [26].
• Heavy Hitter Detection: Finding an item set Ehh satisfying
that ∀ei ∈ Ehh, fi > θhh × N , where θhh is a predefined
threshold. Heavy hitter detection is important in data-intensive
applications like recommendation systems and information
retrieval [24]. In addition to the 8 algorithms mentioned in
the article, Tight-Sketch [27] can also be applied to this task.
• Heavy Changes: For each item appearing in the time window
T or T − 1 (a data stream can be divided into several time
windows according to each item’s arrival time), its change
degree can be denoted as ∆ = |fT

i − fT−1
i |. Heavy change

detection aims to find the items whose ∆ is larger than
θhc ×N (θhc is a predefined threshold). Generally speaking,
all sketches that can be applied to heavy hitter detection can
be applied to heavy changes.
• Item Size Distribution: Estimating the number of items be-
longing to each specific size. Item size distribution estimation
is widely used in database query load balancing [28] and
anomaly detection [29] by distribution. The sketches that can
be applied to this task in recent years are the DHS [24] and
Elastic Sketch [22] compared in this paper.
• Entropy Estimation: It returns the entropy of the data
stream to describe its distribution and uncertainty. Data stream
entropy is applied in data mining work, including clustering
[30] and data quality evaluation [31]. Similarly, the sketches
that can be applied to this task in recent years are DHS [24]
and Elastic Sketch [22].

B. Related Work

The sketch is widely used in data stream processing. The
most widely used sketch is the Count-Min sketch (CM) [16].
It consists of d arrays A1, A2, ..., Ad. Every array is a fixed-
size counter. For each item e, CM picks one counter per
array by independent hash functions hi(•), and increases all
mapped counters Ai[hi(e)] by 1. When querying frequency,
CM reports the minimum value of all mapped counters. As
an improvement, NitroSketch [32] uses geometric sampling to
exchange a small amount of accuracy for a very high update
speed. However, due to the high skewness of real data streams,
common CM-based methods have much memory waste. To
overcome this, hierarchical and self-adjusting sketches were
invented.

Filter

Sketch

pure counter

hybrid counter

Augmented Sketch Pyramid Sketch

exchange items

Heavy part

Light part

evict

Elastic Sketch

hybrid counter

carry

multiple
carry·····

Fig. 2: The latest hierarchical sketches.

1) Hierarchical Sketches: Fig. 2 shows a typical sketch of
three hierarchical structures. It can be found that they all divide
their structure into multiple layers, which are used to store
hot and cold items respectively, so as to achieve the effect of
adapting to the real data stream.

Augmented Sketch (AS) [14] uses an additional filter to
aggregate the hot items in advance. When an item arrives, AS
first looks for it in the filter, and if it is not found, AS inserts
it into the subsequent normal sketch (such as CM). After that,
it checks whether the frequency of this item is greater than the
smallest in the filter, and if so, exchanges them. This ensures
that there are always hot items in the filter. However, this
exchange process can significantly slow down processing.

Pyramid Sketch [19] divides its structure into a pure
counter at the bottom and a mixed counter above it, with a
total of λ layers. The number of counters of layer i is half
of that of layer i − 1. The first layer is a normal sketch, and
the second layer and above are used for automatic carry. With
this structure, it not only prevents counters from overflowing
without the need of knowing the frequency of the hot items in
advance, but also achieves high accuracy and high throughput
at the same time. But whenever querying the hot item, it will
access multiple layers and thus decrease the speed, making it
difficult to perform tasks that focus on hot items.

Elastic Sketch (EL) [22] is the state-of-the-art hierarchical
algorithm. It divides the structure into a heavy part and a light
part to accommodate hot items and cold items respectively.
It uses an algorithm similar to “Ostracism” to ensure the
accuracy of the separation of hot/cold items. Specifically, each
bucket in the heavy part stores three fields: item ID, positive
votes, and negative votes. Given an incoming item with ID e1,
if it is the same as the item in the bucket, EL increments the
positive votes. Otherwise, EL increment the negative votes,
and if #negative votes

#positive votes ≥ λ, where λ is a predefined threshold,
EL expels the item from the heavy part, and insert e1 into the
light. Unfortunately, the hot item can be accidentally expelled
in the process.

From the above, we can see that the existing hierarchical
algorithms have problems and it is actually because a data
stream cannot be easily divided into multiple classes. There
are many types of items in a data stream, and their frequency
ranges are very different. Therefore, other algorithms, based
on self-adjustment, are proposed to adjust the size of the
counter as the data stream comes, and thus be able to match
its distribution.

Indices

Values

Merges

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 0 3 0 21773 0 97 813 0 20 4833

0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

(a) The structure of SALSA [23].

Level-1
Segment

Level-3
Segment

Level-2
Segment Query()

LevelUp()

Cell

d2
h1(ea),

127
h1(eb),

83
h1(ec),

244
h2(ef),

258
h2(d2),
4095

h1(ed),
26

h1(ee),
54

h1(ea),
127

h1(eb),
83

h1(ec),
244

h3(d2),
4096

h2(ef),
258

0,
0

LevelUp(): Extend a
level-3 counter

Deallocation Overflow

Shift/Clear AllocationShift

(b) The structure of DHS [24].

Fig. 3: The latest self-adjusting sketches.

2) Self-adjusting Sketches: Fig. 3 shows the two most
famous self-adjusting sketch algorithms, and our BitMatcher
is also classified into this type. Fig. 3(a) shows the structure of
SALSA [23], a typical self-adjusting sketch. Initially, SALSA
uses only one 4-bit char rather than 32-bit int to estimate
frequency. It establishes an extra bitmap to tag overflowing
counters and merges small neighboring counters to form a
bigger one dynamically. As shown in Fig. 3(a), V alues[4] ∼
V alues[7] have been merged into one large counter (because
a hot item has entered one of these four counters). At this
time, Merges[4] ∼ Merges[6] (the extra bitmap) will be set
to 1, and Merges[7] will be set to 0 (that is, all except the
last bit are set to 1). SALSA achieves high accuracy, but its
shortcoming is obvious: The extra bitmap is space-consuming
and decreases the speed.

Fig. 3(b) shows the state-of-the-art self-adjusting algorithm,
Dynamic Hierarchical Sketch (DHS) [24]. It consists of
many fixed-size buckets (128 bits), and the buckets contain
three kinds of counters (the size of 8, 12, and 16 bits,
respectively). When an item in a smaller counter overflows,
DHS will reallocate the space in the bucket and move the
item to the larger counter (achieved by sacrificing the small
counter). As shown in Fig. 3(b), when the item in a 12-bit
counter overflows, it sacrifices two 8-bit counters and merges
them into a 16-bit counter, and then puts the item into it.
DHS’s counter adjustments are all within a single bucket,
which is fast. But it cannot record items with frequencies
greater than 216, which are common in the real world. This
is because the coarse-grained adjusting strategy makes DHS
hard to match streams with high skewness in practice. But in
general, self-adjusting algorithms are better able to adapt to
highly skewed data streams than hierarchical algorithms.

C. Insights about Motivation

Assuming that there is an item e1 with a frequency of 500
(f1 = 500), the ideal situation would be to assign it a 9-
bit counter (since it can record the frequency between 0 and
29 = 512). However, DHS only has counters with 8, 12,
or 16 bits, so it can only allocate a 12-bit counter; SALSA
has counters with 4, 8, 16, or 32 bits, so it must allocate a
16-bit counter. To quantify the effectiveness of self-adjusting
algorithms on counter allocation, “Optimal counter size” will
be formally defined here, and we will look at how far existing
algorithms are from this “optimum”, to give more insights
about motivation.

For a data stream S and its item set E, the number of
bits we need is:

∑
ei∈E(⌊log(fi)⌋+1). This is because, from

the perspective of information theory, to record an item with
frequency f0, the minimum number of bits required will not
be lower than log(f0). But since the minimum unit of memory
operation is 1 bit, (⌊log(fi)⌋ + 1) bits are necessary for this
item. Similarly, the used bit of an algorithm is [counter bits
used to store fi]. For example, the item e1 with f1 = 500
mentioned in the previous paragraph should ideally be loaded
with a 9-bit counter (since ⌊log(500)⌋ + 1 = 9). BitMatcher
(i.e., BM) is more likely to reach the optimum, while DHS
has to use a 12-bit counter, and SALSA uses a 16-bit counter.
Adding up the required bits of all items in a data stream yields
the total used bits.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

Us
ed

 Bi
ts

S k e w n e s s

 O p t . B M S A L S A D H S

(a) Actual value

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00
1
2
3
4
5

Us
ed

 Bi
ts

S k e w n e s s

 O p t . B M S A L S A D H S

(no
rm

aliz
ed

)

(b) After normalization
Fig. 4: Used bits and its normalized form.

As shown in Fig. 4(a), we compared the used bits of SALSA
and DHS under various skewness datasets. The Opt. curve
shows a decreasing trend with increasing skewness, which
is because our dataset has the same total number of items
(i.e., |S| =

∑
ei∈E fi), and the skewness of the data leads to

a decrease in item types (i.e., |E|), and then reduced Opt..
Note that the used bits of SALSA and DHS are far from
optimal. The normalized results are shown in Fig. 4(b). When
the skewness > 1.2 (common in real data streams), SALSA
uses more than 2x the optimal value, and DHS is as high as
4x, while our algorithm does not exceed 1.5x. This means
that if storing a data stream optimally needs to allocate 10MB
of counters, then SALSA needs 20MB, DHS needs 40MB,
and BM only needs < 15MB. Typical hardware platforms and
switches usually only have < 30MB of memory, so optimizing
the memory utilization of sketch is very important.

Fig. 5 shows the real counter distribution (based on the real
item distribution), the counter distribution for SALSA, DHS
and BM under different memories. The lines in the figure are
all discrete and only meaningful when the x-coordinate is an
integer (such as x = 1, 2...). The black line (Real) represents
the optimal counter distribution for a data stream S. Assuming
that there are y kinds of items (i.e., {e1, e2, ..., ey}) in S with
frequencies between 2x−1 and 2x (i.e., 2x−1 ≤ f1, f2, ..., fy <
2x), then the best case is to accommodate them with y x-bit
counters, so the black line will pass through the point (x, y).
For example, as shown in Fig. 5(a), since the CAIDA dataset
has 9 items with a frequency between 213 and 214 so the
black line passes through (14, 9). Simply put, if a data stream
S is a sequence of N items ⟨e1, e2, ..., eN ⟩(ei ∈ E), where
E is the item set. Then its black line in Figure 5 will pass
through all such (X,Y) ∈ {(x, y)|y = |{ei|ei ∈ E, 2x−1 ≤
fi < 2x, x ∈ N+}|}. For each algorithm, their lines will pass

through (X,Y) if and only if there are Y non-empty counters
of X bits in their data structures.

For DHS (yellow line), because it has only three types of
counters (8, 12, and 16 bits), its x-coordinate can only take
8, 12, and 16. Each yellow line shows the optimal counter
distribution of DHS when the memory is large enough. That is,
DHS stores all items with frequency < 28 in an 8-bit counter,
and the items with frequency between 28 ∼ 212 are stored in
12-bit counters, and so on. The same goes for SALSA (purple
line). For BM, we plotted it for different relative memory.
BM1:10 in the figure indicates that number of counters

item types = 1
10 ,

which is a very tight memory.

0 5 1 0 1 5 2 0 2 5 3 0
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6

Nu
mb

er

c e i l (l o g (f))

 R e a l S A L S A D H S
 B M 1 : 1 0 B M 1 : 1 B M 1 0 : 1

(a) CAIDA dataset

0 5 1 0 1 5 2 0 2 5 3 0
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7

Nu
mb

er

c e i l (l o g (f))

 R e a l S A L S A D H S
 B M 1 : 1 0 B M 1 : 1 B M 1 0 : 1

(b) IMC dataset

Fig. 5: Distribution of various-sized counters.
As shown in Fig. 5, we measured two real-world datasets

(i.e., CAIDA and IMC). Details of these datasets can be found
in § V-A. We can find that the optimal counter lines of SALSA
and DHS deviate significantly from the Real line, while BM
fits the hot item part (the right part of the black line) well
under different relative memories. For the cold item part (the
left side), when the memory changes from BM1:10 to BM1:1,
BM will waste a small amount of space, and it will gradually
fit when the memory changes to BM10:1. From the above
discussion, we find that the memory utilization of DHS and
SALSA is low. This can also be seen in the experimental
part of § V. When memory size is tight, the accuracy of
BM is much ahead of DHS and SALSA. BitMatcher achieves
extremely fine-grained memory allocation due to its bit-level
counter adjustment, which makes it superior to the two current
self-adjustment algorithms.

III. BITMATCHER FRAMEWORK

In this section, we describe the data structure and algorithm
of BitMatcher. A data stream processing algorithm should
provide two fundamental interfaces: Insert() and Query() in
order to support each processing task.

A. Data Structure

As shown in Fig. 6, BitMatcher consists of two arrays,
A1 and A2. We assume that each array has w buckets,
and each bucket consists of B entries with different sizes:
{entry1, entry2, ..., entryB} (the size of entryi increases as
i increases, and B may change as the data stream comes).
An entry is the smallest unit of BitMatcher, and a bucket is
the unit of one access. As a result, we want the length of
a bucket to be an integer multiple of a machine word (e.g.,
64bits, 128bits...), and there will be no waste of memory

Flag'

Flag''

Flag

A typical bucket

·······

·······

fpB

Flag=0000 : 4bit

kickout

Array 1

Array 2

kickout

Flag entryB entryB-1 ······· entry2 entry1

counterB

fp2 counter2
fp1 counter1

8 bit 2 bit

8 bit 3 bit

8 bit 4 bit

8 bit 5 bit

8 bit 6 bit

64 bit

Structure

Bucket

State trans.

sacrificing fpB

fp2

 counterB

fpB

fp2
fp1

counterB

compressing

Fig. 6: The data structure of BitMatcher.

access. Each entry consists of two parts, fingerprint and
counter. We employ the fingerprint to identify the item (e.g.,
ex); it is derived from an independent hash function fp(ex).
All fingerprints must occupy the same size space to meet the
requirements of our algorithm. Note that the distribution of
each entry (or counter) in the bucket will change with the
processing of the data stream. We call this the “state” of a
bucket. The Flag bit in the bucket shows the state of the
bucket at this time. The transition of buckets between states
follows two core ideas: sacrificing (the smallest counter) and
compressing (the largest counter). We will introduce it in detail
in the following subsection. Our algorithm will naturally place
hot items in larger entries and cold items in smaller entries.
The upper right corner of Fig. 6 is a typical 64-bit size bucket
in its initial state.

Notice that we introduce partial-key cuckoo hashing [25]
to derive an item’s alternate location based on its finger-
print. For an item e, the details of calculating the index
of two candidate buckets are as follows, h1(e) = hash(e),
h2(e) = h1(e) ⊕ hash(e′s fingerprint). The ⊕ (XOR)
in the formula guarantees that h1(e) can also be computed
from h2(e) and e′s fingerprint, which means that h1(e) =
h2(e)⊕hash(e′s fingerprint). Hence, no matter which array
the item is now in, we can calculate the location of the item
in the other array by its current position and fingerprint:

hanother = hcurrent ⊕ hash(item′sfingerprint)

It should be noted that our data structure of 2 arrays and
one cuckoo hashing function may be similar to that of the
Cuckoo filter [25], but the similarity stops there. First, these
two algorithms have different focuses. Cuckoo filter is only
used for set membership query, that is, to determine whether
an item is in a given set. BitMatcher focuses on generality. It

5 entries 4 entries 3 entries

2 3 4 5 6 3 4 5 16

4 5 6 13

5 6 7 10

4 5 27

5 6 25

6 7 23

7 8 21

······

6 OVF 16 OVF

3/4/5 OVF

4/5/6 OVF

13 OVF

10 OVF

Kick 2 & empty

2 OVF

Kick 5 & empty

5 OVF

4/5 OVF

Flag

0000 0001

0010

0011

0100

0101

0110

0111

Kick
𝒆𝒏𝒕𝒓𝒚𝟏

Kick
𝒆𝒏𝒕𝒓𝒚𝟏

5/6 OVF

6/7 OVF

Fig. 7: State transition table and rules.

can handle five different tasks. Second, and most importantly,
the core innovation of BitMatcher is the dynamic bit-level
counter adjustment based on “state transition” in a single
bucket (which will be introduced shortly). The reason for
introducing cuckoo hashing is to deal with some special cases
that state transitions cannot handle.

B. Algorithm and Operations

Insert: Pseudocode can be found in Algorithm 1. For
brevity, we use Ai[j][k] to refer to arrayi[bucketj][entryk].
Initially, all entries are set to 0. When inserting an item e,
we first compute two indexes by hashing, h1(e) and h2(e) to
find two candidate buckets, A1[h1(e)] and A2[h2(e)]. Then
we scan all entries in these two buckets. If item e exists,
we increment the counter of the corresponding entry by 1.
If item e is new, we insert it into the empty entry and set the
counter value to 1. If two buckets are full, we randomly select
A1[h1(e)][1] or A2[h2(e)][1] and decrease it by 1 (we can also
use other replacement strategies here, such as “Exponentially
-1 [33]”, “RAP [34]” or “USS [35]”, but experiments have
shown that “Directly -1” has the best effect). After insertion,
if an overflow occurs, we first try to place or exchange it into
a larger entry, just like line 9 of Algorithm 1. If it fails, the
following in-bucket state transitions are required.

State transition: Pseudocode can be found in Algorithm
2. The main part of our algorithm is described next. For
convenience, we assume that the bucket size is fixed at 64 bits
(other sizes are similar), the fingerprint size is fixed at 8 bits,
and the flag bit is 4 bits. As shown in Fig. 7, ⟨x1 x2 ... xB⟩
in each yellow box represents a state of the bucket, and the
black boxes adjacent to them are the corresponding flag bits.
When accessing a bucket, we first use the flag bits to decode
the number of entries and the counter size of each entry. For
example, the initial state ⟨2 3 4 5 6⟩ on the left represents
that there are 5 entries in the bucket at this time while the
flag bits are 0000 , and the counter fields occupy 2/3/4/5/6
bits respectively. It can be verified that fingerprints occupy 8
bits×5 = 40 bits, counters occupy 2+3+4+5+6 = 20 bits,
and flag occupies 4 bits, so the total size is 64 bits. Similarly,
if we find that the flag of a bucket is 0001 , we can decode
the state in the bucket as ⟨3 4 5 16⟩ according to Fig. 7.

5 OVF

0000
8 bit 2 bit
8 bit 3 bit
8 bit 4 bit
8 bit 5 bit
8 bit 6 bit

0001
8 bit 2 bit
8 bit 3 bit
8 bit 4 bit
8 bit 5 bit
8 bit 16 bit

OVF

largest
overflow

0010
8 bit 4 bit
8 bit 5 bit
8 bit 6 bit
8 bit 13 bit

10

OVF

compressible

1
1

1 OVF

0011
8 bit 5 bit
8 bit 6 bit
8 bit 7 bit
8 bit 10 bit

incompressible

Kick 5

sacrifice

8 bit 6 bit
8 bit 7 bit
8 bit 23 bit

8 bit 7 bit
8 bit 8 bit
8 bit 21 bit

10 OVF

6/7 OVFKick 6

non-largest
overflow 13

131
1

compressible

Fig. 8: A running example of BitMatcher.

Next, we introduce the state transition rules with a running
example. As mentioned in the previous subsection, the core
idea of BitMatcher can be summed up in two points: sacrific-
ing the smallest counter and compressing the largest counter.
During the process, there are mainly the following two cases.

Case 1: If the largest entryB in the bucket overflows (it
contains the hottest item), we sacrifice the smallest entry1
in the bucket and allocate all its space to the counter field
of entryB . As shown in the first frame of Fig. 8, if the 6-
bit counter (entry5) in ⟨2 3 4 5 6⟩ overflows, we sacrifice
the smallest entry1 and assign all these 10 bits to entry5’s
counter, then the state becomes ⟨3 4 5 16⟩, and its flag bit
changes from 0000 to 0001 . “OVF” is short for “overflow”.

Case 2: If a non-maximum entryi (i < B) in the bucket
overflows, we try to compress the counter field of entryB ,
reduce its space by (B−1) bits and divide it equally among the
remaining B−1 entries (i.e., entry1 ∼ entryB−1). As shown
in the second frame of Fig. 8, if the 4-bit counter (entry2)
overflows, we try to compress the largest 16-bit counter by 3
bits and divide it equally among the smaller counters. If the
compression is successful, the status becomes ⟨4 5 6 13⟩, and
the flag bit changes from 0001 to 0010 .

If the smaller counter (e.g., the 6-bit) of ⟨4 5 6 13⟩ continues
to overflow, keep trying to change the state to ⟨5 6 7 10⟩. There
are two cases here: 1⃝ If it is incompressible (that is, the item
frequency in the 13-bit counter is greater than 210 and less
than 213), we use the cuckoo hash to kick out the overflowed
small counter. 2⃝ Otherwise, we just compress it. Examples
are in the 3rd ∼ 4th frame in Fig. 8.

At this point, the largest counter is no longer compressible
(otherwise the state would be ⟨6 7 8 7⟩, which breaks our
rule). There are three cases here: 1⃝ If the largest counter
overflows, we sacrifice the smallest entry as before. 2⃝ If the
smallest counter overflows, we will kick it out with cuckoo
hash and empty it (the maximum number of kicks is limited
by a parameter named maxloop, generally = 1 to meet the
loading rate). 3⃝ Otherwise, we sacrifice the smallest entry to
the largest counter and then compress it. Examples are in the
4th ∼ 5th frame in Fig. 8.

General state transition rules are shown in Fig. 9, where
C[X,Y] represents the Yth state containing X entries and
cntmin/max refers to the smallest/largest counter. For exam-
ple, ⟨4 5 6 13⟩ in Fig. 7 is C[4, 2], because it is the second
state at the “4 entries” frame. Similarly, ⟨5 6 25⟩ is C[3, 2].

C[X,Y] C[X-1,Y]

C[X-1,Y+1]

������OVF

non-������/��� OVF

������OVF

If � is the maximum under �

C[X,Y] C[X-1,Y]

C[X,Y+1]

������OVF

non-������OVF & ������compressible

non-������OVF & ������incompressible

If � is non-maximum under �

Fig. 9: General state transition rules in BitMatcher.

Algorithm 1: Insert(e)
Input: an item p belonging to e ∈ E

1 fp = fingerprint(e) , maxloop ≥ 0;
2 h1 = hash(e) , h2 = h1(e)⊕ hash(fp);
3 entry.fp/cnt to refer to entry.fingerprint/counter;
4 Decode current state C[X,Y] by flag, X is the

number of entries in a bucket;
5 i, i′ ∈ {1, 2} , i+ i′ = 3 , j from X down to 1;
6 if fp == Ai[hi(e)][j].fp then
7 Ai[hi(e)][j].cnt++;
8 if Ai[hi(e)][j] overflow then
9 Stay overflow(Ai[hi(e)][j]);

10 if failed then
11 State transition(C[X,Y], j);

12 else if Ai[hi(e)] has an empty entry then
13 insert e into the entry;

14 else if Ai[hi(e)][1]−− == 0 then
15 put {fp, 1} to Ai[hi(e)][1];

16 Function Stay_overflow(Ai[h][j]):
17 if has Ai[h][k].cnt , (k > j) is smaller then
18 swap(Ai[h][j] , Ai[h][k]);
19 return 1;

20 return 0;

Query: When querying an item e, we calculate two indexes
firstly, h1(e) and h2(e), by partial-key cuckoo hashing. Then
we match the fingerprint of e with these fingerprints in
Ai[h1(e)] (i ∈ {1, 2}, 1 ≤ j ≤ B). If matched, we return
the counter of the corresponding entry. Or if there is at least
1 empty entry, we return 0. Otherwise, we just return the
minimum of the two buckets.

Algorithm 2: State transition(C[X,Y], j)
1 if Y is the maximum under current X then
2 Kickout(maxloop, Ai[h][1]);
3 if j==X then
4 change from C[X,Y] to C[X − 1, Y];

5 else if j==1 then
6 stay in C[X,Y];

7 else
8 change from C[X,Y] to C[X − 1, Y + 1];

9 else
10 if j==X then
11 Kickout(maxloop, Ai[h][1]);
12 change from C[X,Y] to C[X − 1, Y];

13 else if Ai[h][X] can be compressed then
14 change from C[X,Y] to C[X,Y + 1];

15 else
16 Kickout(maxloop, Ai[h][j]);

17 Function Kickout(maxloop , Ai[h][j]):
18 rh = h⊕ hash(Ai[h][j].fp);
19 if Ai′ [rh] has an empty and capable entry then
20 put Ai[h][j] into this entry; return;

21 choose a smallest capable entry Ai′ [rh][k];
22 if maxloop−− > 0 then
23 Kickout(maxloop, Ai′ [rh][k]);

24 put Ai′ [h][j] into Ai′ [rh][k];

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the expected AAE for the
frequency estimation of BM. Then we define the “loading rate”
to represent the load status of BM at a certain time.

A. Average Absolute Error (AAE)

The calculation formula of AAE is defined as
1
|Ψ|

∑
(ei∈Ψ) |fi − f̃i|, where fi is the real frequency of

item ei, f̃i is the estimated frequency, and the Ψ is the query
set. We have the theorem: E(AAE) ≈ N

w2F
, where N is the

total number of items, w is the width of the BM, and F is
the length of the fingerprint. Detailed proofs can be found in
supplemental material [36].

We use the CAIDA and IMC datasets. For detailed informa-
tion, please refer to § V-A. The experimental results are shown
in Fig. 10 with 0.1 ∼ 10 MB memory. The black line is the
empirical AAE, and the red line is the theoretical expectation
of AAE. F = 8 bits. We can find that the theoretical values
fit fairly well.

B. Space and Time Complexity

We can obtain the following time and space complexity in
Table I. Notice that the d and w are the depth and width.

0 . 1 1 1 0
0
1
2
3
4
5

AA
E

M e m o r y (M B)

 T h e o r e t i c a l E m p i r i c a l

(a) CAIDA

0 . 1 1 1 0
0
1
2
3
4
5

AA
E

M e m o r y (M B)

 T h e o r e t i c a l E m p i r i c a l

(b) IMC

Fig. 10: Empirical and theoretical AAE.

Sketch d w Space Insert Query

CM[1] log 1
δ

2
ϵ O(1ϵ log

1
δ) O(log 1

δ) O(log 1
δ)

NI[2] log 1
δ O(1

ϵ2p +

√
log 1

δ

ϵ2p1.5
√
m
) O(

log 1
δ

ϵ2p +
log1.5 1

δ

ϵ2p1.5
√
m
) O(p log 1

δ) O(log 1
δ)

DHS[3] 1
∑3

k=1
λk

δϵ2lk
O(

∑3
k=1

λk

δϵ2lk
) O(1) O(1)

BitMatcher 2 1
δϵ2F O(1

δϵ2F) O(1) O(1)

TABLE I: Comparison of BitMatcher with SOTA.

Note that some algorithms in the above table have self-
contained parameters, so please go to the corresponding orig-
inal paper if necessary.

C. Loading Rate

First, we introduce the definition of the loading rate.

Definition IV.1. If the BitMatcher contains 2w buckets, of
which x buckets are full (no empty entries), then the loading
rate at this time is x

2w .

Then we have the following theorems. Detailed proofs are
in supplemental material [36].

Theorem IV.1. Assuming that the BitMatcher has 2w buckets,
each bucket has an average of B entries, each array has 1
candidate bucket, and n types of items arrive at this time. Then
for the loading rate LR at this time, we have:

LR ≥ 1−

⌈B⌉−1∑
i=0

(
n
2w

)i
i!

 e−
n
2w (1)

Theorem IV.2. Under the conditions of Theorem IV.1, and we
consider the fingerprint effect. Assuming that the theoretical
upper bound of the loading rate is LRopt, we have:

LR ≤ LRopt = min(
n

2w
∑B−1

i=0
2F

2F−i

, 1) (2)

We use the CAIDA dataset to validate our conclusions.
As shown in Fig. 11, we show the theoretical optimal value
and theoretical lower bound of the loading rate of BM, and
the empirical value is recorded for every 5K items. The
experimental results validate our theory. This also shows that
BitMatcher has very few hash collisions.

0 . 0 2 0 . 0 k 4 0 . 0 k 6 0 . 0 k 8 0 . 0 k 1 0 0 . 0 k0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Lo
ad

ing
 Ra

te

o f i t e m t y p e s i n s e r t e d (| E |)

 I d e a l
 T h e o r e t i c a l (L B)
 E m p i r i c a l

Fig. 11: Empirical and theoretical LR.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments. We have released
our source code on the website [1], as well as the GitHub [36].

A. Experiment Setup

1) Test Platform:
We performed all experiments on a machine with Intel

i7−9700CPU@3.0GHz and 16G DRAM. The OS is Ubuntu
20.04. To reduce the CPU jitter error, we take the average
results by running 10 times for each evaluation circularly.

2) Datasets:
1) CAIDA Datasets: We use the CAIDA trace which was

collected in Equinix-Chicago monitor from CAIDA [37]. It
contains 165K kinds of items and 2.49M items in total. The
maximum item size is 17K.

2) Campus Datasets: We obtain the real IP traces from
the main gateway at our campus. The dataset is the same as
that used in the Pyramid Sketch [19]. It contains 1M kinds of
items and 10M items in total. The maximum item size is 25K.

3) IMC DC Trace: IMC Data Center Trace [38] is collected
from the data centers studied in [39]. It contains 6.71M kinds
of items and 19.86M items in total. The maximum item size
is 0.69M.

4) Zipf Datasets (synthetic): We generate a series of
synthetic traces that follow the Zipf [40] distribution using
Web Polygraph [41]. The skewness of the traces ranges from
0.0 to 3.0. Each trace contains 32.0M items. The number
of item types decreases as the skewness increases. When
the skewness = 0.0, there are 1M kinds of items; when the
skewness = 3.0, there are 350 kinds of items. The maximum
item size ranges from 123K to 18.1M.

We consider CAIDA and Campus as a common dataset
and IMC as a large dataset. Because the number of item
types of the latter is much larger that of the former. The Zipf
dataset is artificially synthesized to test the performance of
each algorithm under different skewness.

B. Algorithms and Tasks

1) Comparing Algorithms:
We implement our BitMatcher (BM) in C++, and compare

our results with CM sketch (CM) [16], Augmented sketch
(AS) [14], Dynamic Hierarchical Sketch (DHS) [24], Pyramid
sketch [19], Elastic sketch (EL) [22], Nitro sketch (NI) [32]
and Self-Adjusting Lean Streaming Analytics (SALSA) [23].
Because the Pyramid CU sketch (PCU) has the highest accu-
racy [19], we use PCU sketch as the representative of Pyramid

sketch. And for SALSA we choose SALSACM . For CM, AS,
DHS and PCU, we use their open-source codes; For EL, NI,
and SALSA, we implemented them by ourselves.

The entry sizes in CM and AS are 16 or 32 bits, depending
on the maximum item size in datasets. CM and CU allocate 4
arrays and use 4 32-bit Bob hash [42] functions for items
mapping. AS consists of the widely used CM sketch and
a filter. The filter will allocate about 0.4KB of additional
memory, and the CM sketch of AS also includes 4 arrays
and 4 32-bit Bob hash functions. The size of a single bucket
of DHS is 128 bits, which contains three levels of entries,
whose fingerprints occupy 8 bits, and counters occupy 8, 12,
and 16 bits respectively. All entries of the PCU are 4 bits,
and the number of mapped entries is 4. The PCU uses one
64-bit Bob hash function. EL’s heavy part contains 8 entries
in each bucket, and the depth of the CM sketch in the light
part is 1. The depth of the count sketch of NI is 4, and the
geometric sampling rate is p = 0.01. The initial counter size
of SALSA is 4 bits and the maximum is 32 bits. The bucket
size of BitMatcher is 64 bits, the initial state is ⟨2 3 4 5 6⟩.
The state transition rules are the same as in Fig. 7.

2) Measurement Tasks:
Five tasks are used to measure the algorithms.
Frequency Estimation: Reporting the size of each item. It

is implemented by using the Query() function to query each
item.

Heavy Hitter (HH) Detection: It is implemented by using
an auxiliary counter to record the total item number within a
measurement interval and computing the threshold θhh × N ,
and storing and returning the items whose frequency is larger
than θhh ×N into a set Fhh.

Heavy Change (HC) Detection: It needs two same data
stream processing structures to store items in two neighboring
time windows T − 1 and T respectively. For each target item
e, its change degree is ∆ = |queryT (e.id)−queryT−1(e.id)|.
Items whose change degrees are larger than a threshold will
be identified as heavy changers and stored in a set Fhc.

Item size distribution: It is implemented by using auxiliary
memory: using Query() to get the size of each item and
counting the number of items of each size Ni (|{e|e ∈
E, e.f = Ni}|) in the auxiliary memory.

Entropy Estimation: We compute the entropy based on the
item size distribution as −

∑
(i ∗ ni

m log ni

m), where m is the
sum of ni, and ni is the number of items with a size of i.

C. Metrics

We consider the following metrics.
Throughput: Throughput is used to measure the processing

speed of the insertion and query. The formula is N
T , where N

is the number of items, and T is the running time. We use a
million insertions per second (Mps) to represent throughput.

AAE: AAE is defined as 1
|E|

∑
(ei∈E) |fi− f̃i|, where fi is

the real frequency of item ei, f̃i is the estimated frequency,
and the E is the query set. We query each distinct item in the
dataset once.

0.010.10.40.71.010
Memory (MB)

0

5

10

15

20

25

CM BM AS DHS PCU EL NI SAL

// //

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

0

5

10

15

20
Th

ro
ug

hp
ut

 (M
ps

)

// //

(a) Insert Throughput

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

// //

(b) Query Throughput

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

10
6

10
4

10
2

10
0

10
2

10
4

A
A

E

// //

(c) AAE

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

10
6

10
4

10
2

10
0

10
2

10
4

A
R

E

// //

(d) ARE

Fig. 12: Frequency estimation - Common dataset - CAIDA.

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

////

(a) Insert Throughput

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

////

(b) Query Throughput

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

10
6

10
4

10
2

10
0

10
2

10
4

A
A

E

// //

(c) AAE

0.01 0.1 0.4 0.7 1.0 10
Memory (MB)

10
3

10
1

10
1

10
3

A
R

E

// //

(d) ARE

Fig. 13: Frequency estimation - Common dataset - Campus.

0.01 0.1 1 4 7 10
Memory (MB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

// //

(a) Insert Throughput

0.01 0.1 1 4 7 10
Memory (MB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

ps
)

// //

(b) Query Throughput

0.01 0.1 1 4 7 10
Memory (MB)

10
3

10
1

10
1

10
3

A
A

E

// //

(c) AAE

0.01 0.1 1 4 7 10
Memory (MB)

10
3

10
1

10
1

10
3

A
R

E

// //

(d) ARE

Fig. 14: Frequency estimation - Large dataset - IMC.

ARE: ARE is defined as 1
|E|

∑
(ei∈E)

|fi−f̃i|
fi

. These param-
eters in the formula have the same meaning as in AAE.

F1-score: 2×PR×RR
PR+RR , where PR (Precision Rate) refers to

the ratio of true instances reported and RR (Recall Rate) refers
to the ratio of reported true instances. We use the F1-score
to evaluate the accuracy of heavy hitter and heavy change
detection.

WMRE (Weighted Mean Relative Error) [2], [43]:∑z
i=1 |ni−ñi|∑z
i=1(

ni+ñi
2)

, where z is the maximum item size, and ni

and ñi are the true and estimated numbers of items of size
i respectively. We use WMRE to evaluate the accuracy of the
item size distribution (ISD).

RE (Relative Error): |True−Estimate|
True , where True and

Estimate are the true and estimated values, respectively. We
use RE to evaluate the accuracy of entropy estimations.

D. Frequency Estimation

In this part, we use three datasets to measure the perfor-
mance of BM in the common case (CAIDA), the large data
case (IMC), and different skewness (Zipf) to verify BM’s
adaptivity in various scenarios. We illustrate the performance
of our BM by insert throughput, query throughput, AAE, ARE.

In the following content, we use the abbreviation of each
algorithm to call them (i.e., CM, AS, DHS, PCU, BM, EL,
NI, SAL). For the correspondence between the abbreviation
and the original name, please refer to § V-B1.

1) Common Dataset - CAIDA and Campus:
This part is to verify the effectiveness of BM when data

pressure is low. Fig. 12 and 13 show the experimental results
under the CAIDA and Campus dataset. The memory range we
selected is 0.1 ∼ 1.0MB, and in order to better see the trend
of each algorithm, we took two extreme points on both sides
of this range: 0.01MB and 10MB. At the same time, we also
give the counter distribution in this memory range, so that the
reader can compare it with Fig. 5.

1) For throughput: Fig. 12(a), 12(b), 13(a), and 13(b)
depict insert and query speeds. Despite high insertion speeds
(> 100Mps) due to a low sampling rate (p = 0.01), NI’s accu-
racy is compromised, thus it’s excluded from insert throughput
analysis. BM, PCU, EL, and DHS exhibit top insertion rates
as they calculate fewer hash functions compared to others like
CM, AS, and SAL, which need four times more. SAL is slower
than CM due to extra decoding, and AS is the least efficient
due to frequent data exchange between its filter and sketch.

0.010.10.40.71.010
Memory (MB)

0

5

10

15

20

25

CM BM AS DHS PCU EL NI SAL

// //

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

0

10

20

30

Th
ro

ug
hp

ut
 (M

ps
)

(a) Insert Throughput

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
3

10
1

10
1

10
3

10
5

A
A

E
(b) AAE - 0.01 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
4

10
2

10
0

10
2

10
4

A
A

E

(c) AAE - 0.1 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
4

10
2

10
0

10
2

10
4

A
A

E

(d) AAE - 1.0 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
5

10
3

10
1

10
1

10
3

10
5

A
A

E

(e) AAE - 10.0 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

ps
)

(f) Query Throughput

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
2

10
0

10
2

10
4

A
R

E

(g) ARE - 0.01 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
4

10
2

10
0

10
2

A
R

E

(h) ARE - 0.1 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
5

10
3

10
1

10
1

A
R

E

(i) ARE - 1.0 MB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Skewness

10
5

10
3

10
1

10
1

A
R

E

(j) ARE - 10.0 MB

Fig. 15: Frequency estimation - Skewed dataset - Zipf.

For query speed, BM ranks second with DHS and PCU, all
surpassed by EL. As memory usage grows, the throughput for
all sketches declines slightly due to increased cache misses
and memory access delays.

2) For error: Fig. 12(c), 12(d), 13(c), and 13(d) compare
the AAE and ARE across algorithms. With less than 1MB of
memory, BM’s error is comparable to, or slightly better than,
DHS, and it outperforms all other algorithms by more than
half an order of magnitude. However, with 10MB of memory,
BM and DHS fall behind EL and SAL. This is because
BM and DHS use 8-bit fingerprints, which are less accurate
with more memory, while EL’s larger memory accommodates
complete item IDs and SAL’s structure allows for lower error
rates, making them more accurate in high memory scenarios.
Nonetheless, such high memory conditions are rare in real-
world datasets like CAIDA and Campus. Additionally, NI’s
error grows with more memory, confirming that its high
insertion throughput comes at the cost of accuracy.

In summary, BM delivers relatively high throughput and
better accuracy than DHS and other algorithms, particularly
noticeable when handling smaller datasets.

2) Large Dataset - IMC:
This subsection is to verify the effectiveness of BM under

high data pressure. Fig. 14 shows the experimental results
under the IMC dataset. The memory range we choose is
1 ∼ 10MB since the number of item types of IMC is about
10 times that of CAIDA. Similarly, we tested 0.01MB and
0.1MB extreme cases (we did not choose 100MB because it
is too large and will not be used in reality).

1) For throughput: Fig. 14(a) and 14(b) reveal that BM
generally has top-tier insertion and querying speeds, often
surpassing DHS. With over 4MB of memory, BM and PCU
share the highest query throughput.

2) For error: In high data volume scenarios, BM sig-
nificantly outperforms other algorithms in terms of AAE and
ARE, as indicated by Figures 14(c) and 14(d). For normal

memory ranges (1 ∼ 10MB), BM’s AAE is more than 10x
lower than other algorithms, and nearly 100x lower than DHS.
This superior performance is due to BM’s ability to better
handle frequent items, which DHS’s lower granularity self-
adjusting algorithm struggles with, leading to higher AAE.

In the ARE metric, BM maintains a slight edge over DHS
and is more than 10x better than the competition. The slight
difference between BM and DHS in ARE can be attributed to
the nature of ARE, which is less impacted by frequent items.
DHS inaccurately estimates hot items but remains accurate for
cold ones. Hence, DHS’s ARE is closer to BM, but its AAE
is much higher. Overall, BM showcases outstanding accuracy
under heavy data loads and maintains competitive throughput.

3) Skewed Dataset - Zipf:
This subsection verifies BM’s adaptability to data streams

with different skewness. Fig. 15 shows the experimental results
under the Zipf dataset. The range of skewness is 0.0 ∼ 3.0. We
measure the AAE and ARE under 4 special memories. Since
the trends in throughput are similar across different memory
sizes, we plot their averages.

1) For throughput: Fig. 15(a) and 15(f) show the results
of insert and query throughput. We can find that BM has
higher insert and query throughput than DHS, ranking sec-
ond, only behind EL. It is worth noting that the insertion
throughput of the four algorithms BM, EL, DHS, AS increases
as the skewness increases. This is because they are all self-
adjusting (BM/DHS) or filter-containing (EL/AS) structures,
which record the item’s ID or fingerprint, which allows a
quick memory hit when a hit item arrives without performing
additional operations. Thereby increasing the speed. CM,
PCU, and SAL have the same number of hashes for each item,
so the skewness of the data does not affect their insertion
speed. For query throughput, the results are mostly similar
to insertion. It is worth noting that the query speed of AS
becomes constantly low at this time. This is because the filter
is traversed for each query.

0.010.10.40.71.010
Memory (MB)

0

5

10

15

20

25

CM BM AS DHS PCU EL NI SAL

// //

0.1 0.4 0.7 1.0
Memory (MB)

10
2

10
1

10
0

10
1

10
2

10
3

A
A

E

(a) AAE (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
1

10
0

10
1

10
2

10
3

A
A

E
(b) AAE (IMC)

0.1 0.4 0.7 1.0
Memory (MB)

10
3

10
2

10
1

10
0

10
1

A
R

E

(c) ARE (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
3

10
2

10
1

10
0

A
R

E

(d) ARE (IMC)

0.1 0.4 0.7 1.0
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

(e) F1-score (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

(f) F1-score (IMC)

Fig. 16: Heavy hitter detection - Accuracy.

0.1 0.4 0.7 1.0
Memory (MB)

10
3

10
2

10
1

10
0

10
1

A
A

E

(a) AAE (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
2

10
1

10
0

10
1

10
2

A
A

E

(b) AAE (IMC)

0.1 0.4 0.7 1.0
Memory (MB)

10
3

10
2

10
1

10
0

A
R

E

(c) ARE (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
4

10
3

10
2

10
1

10
0

A
R

E

(d) ARE (IMC)

0.1 0.4 0.7 1.0
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

(e) F1-score (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

(f) F1-score (IMC)

Fig. 17: Heavy change detection - Accuracy.

2) For error: Fig. 15(b)∼15(e) and 15(g)∼15(j) shows the
results of AAE and ARE. Note that in most cases, under the
premise that the total number of items is the same, the higher
the skewness, the smaller the estimation error of the algorithm
should be. Because this means that the “hot item effect” of the
data stream will be more significant, that is, fewer hot items
occupy most of the frequency. Therefore, the number of item
types will decrease as the skewness increases, so that the data
structure of the algorithm can fully accommodate each kind of
item. For example, the total number of items in the Zipf dataset
used in our experiments is 32M , the maximum item frequency
of the 0.0-skewness dataset is 123K, including 1M items, and
the average size of each item is 32. The maximum frequency
of the 3.0-skewness dataset is as high as 18.1M, it contains
only 350 items, and the average size of each item is 90K.
This trend is not absolute. For example, in Fig. 15(g)∼15(i),
the ARE increases when the skewness is 0.0 ∼ 1.0. This is
due to some characteristics of this dataset, which we will not
go into here. Note that the AAE of the DHS increases sharply
when the skewness > 1.0, as it can no longer accommodate
the hottest item.

We found that in the figure, the line of BM is in the bottom
left of the figure in most cases, which means that it has the
smallest error for the same skewness. Noting that when the
skewness increases, the error of each algorithm may drop to 0,
we focus on the point where the error of each algorithm drops
to 0. When the memory is 0.01MB, the error of each algorithm
is always greater than 0, because the space is too compact at
this time. However, BM’s AAE and ARE are always the best at
this time. When memory is 0.1MB, BM first drops to error=0
at skewness=2.2, while {EL, SAL, CM, AS} are at {2.3, 2.4,
2.6, 2.7} respectively. When the memory is 1.0MB, the error
of both BM and EL first drops to 0 at skewness=1.9, while
SAL, CM, AS are all at 2.0. When the memory is 10.0MB, the
error of SAL, CM, AS first drops to 0 when at skewness=1.6,
while BM and EL are both at 1.7.

From Fig. 15(b)∼15(e) and 15(g)∼15(j), we can intuitively

see that this point tends to move to the left as the memory
increases, which is very reasonable. And different algorithms
move at different speeds, BM changed from the original
first place (0.1MB) to the second place (10.0MB). As we
mentioned above, since the fingerprint length of EL is much
larger than that of BM, the error bound of CM, AS, and SAL
will be ahead of BM when the memory is large. Therefore,
their progress is accelerated with the increase in memory.
However, as we said earlier, in reality, we usually focus on
the case where the memory is relatively compact, and the
performance of BM is generally the best at this time.

E. Heavy Hitter Detection

Fig. 16 compares the error and accuracy of BM and other
algorithms in heavy hitter detection. With a memory range of
0.1 ∼ 1MB and a threshold set at 0.002% of total items, BM
outperforms other algorithms. With at least 0.3MB of memory,
BM’s error rates are significantly lower than DHS’s and are
much better than those of other algorithms, achieving the
highest F1-score. However, with 0.2MB or less, BM slightly
falls behind DHS due to not being fully effective at lower data
volumes.

For the IMC dataset, BM is far ahead in accuracy, with
its error rates being notably lower than those of EL, PCU,
and DHS—up to four times better compared to DHS. This
advantage is especially pronounced in heavy hitter detection,
where BM’s design to preserve information about the most
active items pays off, resulting in leading ARE and F1-scores.

F. Heavy Change Detection

In the heavy hitter detection comparison (Fig. 17), using
0.1 ∼ 1MB of memory and a detection threshold of 0.001%
of total items, BM’s error rate is similar to that of DHS, SAL,
and CM, placing them in the top tier. The superiority of BM
is particularly evident at 0.2MB of memory in the CAIDA
dataset, though its full potential isn’t realized due to lower
data volumes.

0.1 0.4 0.7 1.0
Memory (MB)

10
4

10
3

10
2

10
1

R
E

DHS BM EL

0.1 0.4 0.7 1.0
Memory (MB)

10
2

10
1

10
0

W
M

R
E

(a) Common dataset (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
2

10
1

10
0

10
1

W
M

R
E

(b) Large dataset (IMC)

Fig. 18: Item size distribution.

With the IMC dataset, BM’s AAE is significantly lower
than EL and PCU, and it’s 2 ∼ 4 orders of magnitude better
than DHS. However, BM’s ARE is slightly worse than DHS
at memory levels of 0.5MB or less because DHS can allocate
more space for infrequent items by not adjusting for hot items
as BM does. Above 0.6MB of memory, BM surpasses DHS
and all competitors.

G. Item Size Distribution

Fig. 18 compares the WMRE of the BM algorithm with
others for item size distribution, within a memory range of
0.1 ∼ 1MB. The comparison is limited to DHS and EL due
to data availability from their original studies. BM performs
slightly better than DHS and is notably more accurate than
EL by 0.5 ∼ 1.5 orders of magnitude in the CAIDA dataset.
For the IMC dataset, BM’s accuracy exceeds both DHS and
EL by 1 ∼ 2 orders of magnitude.

H. Entropy Estimation

Fig. 19 shows that BM has a lower RE in entropy esti-
mation compared to DHS and EL across a memory range of
0.1 ∼ 1MB. Specifically, with at least 0.3MB of memory,
BM’s accuracy surpasses DHS by an order of magnitude and
EL by two orders. In the IMC dataset, BM’s lead is even more
pronounced.

Interestingly, as memory increases, DHS’s RE grows due
to its entropy estimation method. With limited memory, DHS
overestimates the frequency of rare items, inadvertently creat-
ing a more uniform distribution that appears to have higher
entropy, which is closer to the actual value. As memory
size increases, DHS’s estimates become more precise, leading
to less overestimation and a lower calculated entropy, thus
increasing the RE.

I. FPGA Platform Integration

FPGA is a widely used commodity hardware. Table II com-
pares the resource usage of BitMatcher on FPGA with Elastic
Sketch with the same error rate for frequency estimation on
CAIDA. Although BM needs more logic resources due to the
algorithm complexity, BM saves 38.5% bits for RAM, and
the max frequency is 18.3% higher, which means that the
processing speed on the FPGA is higher for BM. The excess
logics usage does not matter because the common FPGA

0.1 0.4 0.7 1.0
Memory (MB)

10
4

10
3

10
2

10
1

R
E

DHS BM EL

0.1 0.4 0.7 1.0
Memory (MB)

10
4

10
3

10
2

10
1

R
E

(a) Common dataset (CAIDA)

0.1 0.4 0.7 1.0
Memory (MB)

10
2

10
1

10
0

R
E

(b) Large dataset (IMC)

Fig. 19: Entropy.

TABLE II: FPGA resource usage comparison

Algorithms Logics RAM Max Frequency
Elastic Sketch 2,939 1,978,368 bits 162.6 MHz

BitMatcher 11,639 1,216,512 bits 192.3 MHz

chip [22] has more than 359K logics, and BM only takes
up ˜3%. The FPGA source code of BM can refer to [36].
Table II demonstrates BM’s advantage in memory utilization
again and the hardware feasibility. Due to space limitations, we
will give design details and continue to improve the hardware
implementation in our follow-up work.

VI. CONCLUSION

Data stream processing plays an essential role in various
applications. To fully adapt to the high skewness of real data,
in this paper, we propose BitMatcher, a sketch algorithm that
can dynamically adjust the counter size in a bit-level way to
accommodate different distributions while retaining high pro-
cessing performance. To demonstrate this, we implement our
sketch on several platforms and evaluate five typical measure-
ment tasks. Extensive experiments show that BitMatcher can
achieve excellent accuracy and maintain high speed while fully
utilizing memory, demonstrating its real-world feasibility and
scalability. In the future, we will improve BitMatcher in the
following aspects: (1) Further optimize the algorithm on FPGA
(and more hardware platforms), focusing on the integration
of software and hardware; (2) Integrate into commonly used
systems; (3) Use mathematical theory to analyze how well the
counter adjustment strategy of BitMatcher can do.

VII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. This work was supported in part
by the National Key Research and Development Program of
China (No. 2022ZD0115303), in part by the National Natural
Science Foundation of China (No. 62102203, U20A20179,
62372009, 62072430), in part by the Basic Research En-
hancement Program of China (No. 2021-JCJQ-JJ-0483), in
part by the Major Key Project of Peng Cheng Laboratory
(No. PCL2023A06), in part by the China Postdoctoral Science
Foundation (No. 2020TQ0158, 2020M682825), and in part by
the International Post-Doctoral Exchange Fellowship Program
of China (No. PC2021037).

REFERENCES

[1] “Our open source website,” https://www.wenjunli.com/BitMatcher.
[2] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,

“Sketchvisor: Robust network measurement for software packet process-
ing,” in ACM SIGCOMM, 2017.

[3] M. Yu, “Network telemetry: towards a top-down approach,” in ACM
SIGCOMM Computer Communication Review, vol. 49, no. 1, pp. 11–
17, 2019.

[4] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in USENIX NSDI, 2013.

[5] Y. Zhou, J. Bi, T. Yang, K. Gao, J. Cao, D. Zhang, Y. Wang, and
C. Zhang, “Hypersight: Towards scalable, high-coverage, and dynamic
network monitoring queries,” IEEE Journal on Selected Areas in Com-
munications, vol. 38, no. 6, pp. 1147–1160, 2020.

[6] Ş. Gündüz and M. T. Özsu, “A web page prediction model based on
click-stream tree representation of user behavior,” in ACM SIGKDD,
2003.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A scalable
continuous query system for internet databases,” in ACM SIGMOD,
2000.

[8] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin, “Compass: Online sketch-
based query optimization for in-memory databases,” in ACM SIGMOD,
2021.

[9] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire, “Correlation
sketches for approximate join-correlation queries,” in ACM SIGMOD,
2021.

[10] R. Li, P. Wang, J. Zhu, J. Zhao, J. Di, X. Yang, and K. Ye, “Building
fast and compact sketches for approximately multi-set multi-membership
querying,” in ACM SIGMOD, 2021.

[11] Z. Dai, A. Desai, R. Heckel, and A. Shrivastava, “Active sampling count
sketch (ascs) for online sparse estimation of a trillion scale covariance
matrix,” in ACM SIGMOD, 2021.

[12] P. Jia, P. Wang, J. Zhao, S. Zhang, Y. Qi, M. Hu, C. Deng, and X. Guan,
“Bidirectionally densifying lsh sketches with empty bins,” Proceedings
of the 2021 International Conference on Management of Data, 2021.

[13] Q. Shi, Y. Xu, J. Qi, W. Li, T. Yang, Y. Xu, and Y. Wang, “Cuckoo
counter: Adaptive structure of counters for accurate frequency and top-
k estimation,” IEEE/ACM Transactions on Networking, 2023.

[14] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in ACM SIGMOD, 2016.

[15] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1530–
1541, 2008.

[16] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[17] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[18] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters for
data streams with skewed distributions,” in IEEE RIDE-SDMA, 2005.

[19] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1442–1453, 2017.

[20] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond
sketch: Accurate per-flow measurement for big streaming data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 12, pp.
2650–2662, 2019.

[21] J. Qi, W. Li, T. Yang, D. Li, and H. Li, “Cuckoo counter: A novel
framework for accurate per-flow frequency estimation in network mea-
surement,” in ACM/IEEE ANCS, 2019.

[22] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in ACM SIGCOMM, 2018.

[23] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik, “Salsa:
Self-adjusting lean streaming analytics,” in IEEE ICDE, 2021.

[24] B. Zhao, X. Li, B. Tian, Z. Mei, and W. Wu, “Dhs: Adaptive memory
layout organization of sketch slots for fast and accurate data stream
processing,” in ACM SIGKDD, 2021.

[25] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in ACM CoNEXT, 2014.

[26] H. Li, Q. Chen, Y. Zhang, T. Yang, and B. Cui, “Stingy sketch: a sketch
framework for accurate and fast frequency estimation,” in ACM VLDB,
2022.

[27] W. Li and P. Patras, “Tight-sketch: A high-performance sketch for heavy
item-oriented data stream mining with limited memory size,” in ACM
CIKM, 2023.

[28] V. Poosala, Y. E. Ioannidis et al., “Estimation of query-result distribution
and its application in parallel-join load balancing,” in ACM VLDB, 1996.

[29] Q. Huang and P. P. Lee, “Ld-sketch: A distributed sketching design for
accurate and scalable anomaly detection in network data streams,” IEEE
INFOCOM, 2014.

[30] C.-H. Cheng, A. W. Fu, and Y. Zhang, “Entropy-based subspace clus-
tering for mining numerical data,” in ACM SIGKDD, 1999.

[31] Z. Li, F. Xiao, S. Wang, T. Pei, and J. Li, “Achievable rate maximization
for cognitive hybrid satellite-terrestrial networks with af-relays,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 304–
313, 2018.

[32] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in ACM SIGCOMM, 2019.

[33] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: An accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845–1858,
2019.

[34] R. B. Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner, “Ran-
domized admission policy for efficient top-k, frequency, and volume
estimation,” IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp.
1432–1445, 2019.

[35] D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in ACM SIGMOD, 2018.

[36] “Our open source github,” https://github.com/wenjunpaper/BitMatcher.
[37] “The caida traces,” http://www.caida.org/data/overview/.
[38] “Data set for imc 2010 data center measurement.” https://pages.cs.wisc.

edu/∼tbenson/IMC10 Data.html.
[39] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in ACM SIGCOMM, 2010.
[40] D. M. Powers, “Applications and explanations of zipf’s law,” in EMNLP-

CoNLL, 1998.
[41] A. Rousskov and D. Wessels, “High-performance benchmarking with

web polygraph,” Software: Practice and Experience, vol. 34, no. 2, pp.
187–211, 2004.

[42] “Hash website,”
http://burtleburtle.net/bob/hash/evahash.html.

[43] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” in ACM
SIGMETRICS, 2004.

https://www.wenjunli.com/BitMatcher
https://github.com/wenjunpaper/BitMatcher
http://www.caida.org/data/overview/
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://burtleburtle.net/bob/hash/evahash.html

	Introduction
	Background and Motivation
	Problem Statement
	Related Work
	Hierarchical Sketches
	Self-adjusting Sketches

	Insights about Motivation

	BitMatcher Framework
	Data Structure
	Algorithm and Operations

	Mathematical Analysis
	Average Absolute Error (AAE)
	Space and Time Complexity
	Loading Rate

	Performance Evaluation
	Experiment Setup
	Test Platform
	Datasets

	Algorithms and Tasks
	Comparing Algorithms
	Measurement Tasks

	Metrics
	Frequency Estimation
	Common Dataset - CAIDA and Campus
	Large Dataset - IMC
	Skewed Dataset - Zipf

	Heavy Hitter Detection
	Heavy Change Detection
	Item Size Distribution
	Entropy Estimation
	FPGA Platform Integration

	Conclusion
	Acknowledgment
	References

