
HeavyLocker: Lock Heavy Hitters in Distributed Data Streams
Qilong Shi

Tsinghua University

Beijing, China

sql23@mails.tsinghua.edu.cn

Xirui Li

Tsinghua University

Beijing, China

li-xr24@mails.tsinghua.edu.cn

Hanyue Zheng

Peking University

Beijing, China

2100012943@stu.pku.edu.cn

Tong Yang

Peking University

Beijing, China

yangtong@pku.edu.cn

Yangyang Wang

Tsinghua University

Beijing, China

wangyy-13@tsinghua.edu.cn

Mingwei Xu

Tsinghua University

Beijing, China

xumw@tsinghua.edu.cn

Abstract
In recent years, sketching has emerged as a pivotal technique for

identifying heavy hitters (items with high frequency) in large-scale

data streams. Despite this progress, the majority of existing sketch

algorithms are tailored primarily for detecting local heavy hitters

within a single data stream, with only a few capable of extending

their application to global heavy hitters across distributed data

streams. A common challenge encountered by these algorithms is

balancing performance with accuracy. To address this challenge,

we introduce HeavyLocker, a novel sketch algorithm that takes ad-

vantage of a distinct feature of real data streams: the separability of

heavy hitters. By leveraging this attribute, HeavyLocker precisely

locks and protects potential heavy hitters during the data stream

processing, ensuring accuracy in local heavy hitter detection with-

out compromising on speed. This unique capability also facilitates

its application to global detection tasks. Through theoretical analy-

sis, we validate the efficacy of HeavyLocker’s locking mechanism.

Our extensive experiments show that HeavyLocker outperforms

five benchmarked algorithms in accuracy and maintains fast speed

for both local and global heavy hitter detection, significantly re-

ducing errors by up to an order of magnitude compared to the

renowned Double-Anonymous Sketch.

CCS Concepts
• Networks→ Network measurement; • Information systems
→ Data stream mining.

Keywords
Distributed data streams; Sketch; Local/Global heavy hitter;

∗ Qilong Shi, Xirui Li, and Hanyue Zheng are co-first authors of this paper, and

they conducted this work under the guidance of corresponding authors Mingwei

Xu and Yangyang Wang. This work was supported in part by the National Natural

Science Foundation of China (No. 62221003, 62132004). The source code is available

on GitHub [3].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1245-6/25/08

https://doi.org/10.1145/3690624.3709167

ACM Reference Format:
Qilong Shi, Xirui Li, Hanyue Zheng, Tong Yang, Yangyang Wang, and Ming-

wei Xu. 2025. HeavyLocker: Lock Heavy Hitters in Distributed Data Streams.

In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.1 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3690624.3709167

KDD Availability Link:
The source code of this paper has been made publicly available at https:

//doi.org/10.5281/zenodo.14599301.

1 Introduction
Recent years have seen a surge in interest in detecting high-

frequency items within data stream processing, a vital area with di-

verse applications spanning datamining [17, 37, 38, 44, 45], databases

[13, 43, 46, 54, 55], data traffic measurement [39, 47, 48, 56], data

security [21, 22, 24–26, 49], and more [6, 9, 11, 16, 18, 19, 27, 33].

This process involves finding items whose frequency exceeds a

predefined threshold (we call them heavy hitters) and providing

accurate frequency estimations. For instance, consider the need for

load balancing in the data center [4, 8, 12, 20, 28, 31, 36, 42, 51]. Here,

administrators are tasked with detecting the most substantial data

traffic items, termed heavy hitters, to ensure efficient and balanced

data performance. Similarly, on social platforms, service providers

aim to discern users’ closest connections by detecting those individ-

uals who interact frequently with each user [5, 14, 23, 30, 32, 50, 52].

Consequently, the primary objective of this paper is to perform

heavy hitter detection in single or multiple data streams.

We introduce the concept of a data stream, a sequence of ⟨𝑘𝑒𝑦,
𝑣𝑎𝑙𝑢𝑒⟩ pairs, where the 𝑘𝑒𝑦 identifies each item. For instance, in

network data streams, a five-tuple can represent a network packet:

source IP address, destination IP address, source port, destination

port, and protocol. The 𝑣𝑎𝑙𝑢𝑒 typically represents the count of an

item, generally one. An example data stream is: 𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 =

{⟨𝑎, 1⟩, ⟨𝑏, 1⟩, ⟨𝑎, 1⟩, ⟨𝑐, 1⟩, ⟨𝑏, 1⟩, · · · }. Summing 𝑣𝑎𝑙𝑢𝑒𝑠 for identical

𝑘𝑒𝑦𝑠 provides item frequency. Our goal is to identify items whose

frequency exceeds a threshold, calculated as the product of the total

number of items (|𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 |) and a threshold 𝜃 (usually ≤ 0.1%).

This definition suits local heavy hitter detection within a single

stream, but real-world applications often involve multiple data

streams requiring distributed processing. As data volume increases,

detecting heavy hitters across distributed and multiple data streams

becomes crucial. By considering the sum of all data stream sizes as

𝑁 , we extend local detection to a global view without altering 𝜃 .

https://doi.org/10.1145/3690624.3709167
https://doi.org/10.1145/3690624.3709167
https://doi.org/10.5281/zenodo.14599301
https://doi.org/10.5281/zenodo.14599301
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690624.3709167&domain=pdf&date_stamp=2025-07-20

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

Distributed data streams can be either disjoint or intersecting.

Disjoint data streams ensure a 𝑘𝑒𝑦 appears exclusively in one

stream, while intersecting data streams allow the same 𝑘𝑒𝑦 to ap-

pear across multiple streams. This distinction is vital as both config-

urations occur frequently in real-world applications. Disjoint data
streams are found in autonomous systems (AS) within wide-area

networks (WAN), where external traffic is directed through various

border routers. The WAN routing protocol mandates that all pack-

ets from the same source IP traverse a single border router. Thus,

considering the source IP as the key, streams across distinct border

routers are disjoint. Network operators must track primary traf-

fic sources, identifying source IPs contributing the highest packet

volume over time. Each border router tallies and reports the most

frequent source IPs, enabling operators to pinpoint global heavy

hitters. Intersecting data streams are prevalent in peer-to-peer (P2P)

networks, where resources like files are shared directly between

peers without a centralized server. Each peer can act as both client

and server. Considering the file identifier (e.g., a hash of the file) as

the key, streams representing file transfers of the same file across

different peers are intersecting data streams. This intersection is

significant for monitoring file distribution and popularity within

the P2P network and for optimizing network resources.

In the era of big data, the rapid growth of data volume and speed

makes capturing each item’s information challenging. Approximate

solutions like sketches have become crucial. Sketches such as CM

Sketch+heap [17] and Elastic Sketch [46] detect local heavy hitters

and extend to identify global heavy hitters across distributed data

streams. They leverage the mergeability of CM Sketch and store hot

item keys for global detection. However, CM Sketch’s large error

leaves room for improvement. USS [41] refines the SpaceSaving

algorithm to be unbiased in multi-stream merging, but it increases

frequency estimate variance in skewed data streams. DA Sketch

[53] reduces aggregation errors with double anonymity principles

but still needs enhancements for better accuracy.

We observed that existing algorithms primarily address the skew-

ness of data streams, overlooking other potential features. Moti-

vated by this, we ask whether incorporating additional features
of heavy hitters could yield a more effective sketch algorithm
suitable for both local and global heavy hitter detection.

In response, we introduceHeavyLocker, a new sketch algorithm

that accurately locks and safeguards heavy hitters in both single

and distributed data streams by leveraging the separability of heavy

hitters. The innovations of HeavyLocker are highlighted below:

• First to Utilize separability: HeavyLocker leverages the
separability of heavy hitters and non-heavy hitters, enhanc-

ing prediction reliability.

• Lockable Buckets: It consists of rows of lockable buckets
with multiple cells for item storage, using separability to

set dynamic thresholds. Once a bucket’s item frequency sur-

passes this threshold, it locks, preventing further operations

and increasing accuracy.

• Further Optimization: Two optional schemes are proposed

to improve accuracy further.

• Scalable Across Distributed Streams: Separability holds

across multiple data streams, allowing HeavyLocker to ex-

tend naturally without compromising accuracy.

To evaluate real-world performance, we implemented Heavy-

Locker on software platforms (e.g., CPU) and conducted various

heavy hitter detection tasks, including local heavy hitters, global
heavy hitters, and adaptability to distributed data streams. Extensive
experiments show that by considering the data stream’s separability

and dynamically locking buckets, HeavyLocker consistently out-

performs state-of-the-art algorithms like DA Sketch by an order of

magnitude while maintaining high processing speeds. These results

underscore HeavyLocker’s practical applicability and scalability.

The rest of the paper is organized as follows: Section 2 pro-

vides background on heavy hitter detection and reviews recent

advancements. Section 3 describes HeavyLocker’s data structure

and algorithm. Section 4 offers a mathematical analysis, and Sec-

tion 5 details the experimental setup and results. Finally, Section 6

summarizes our findings and implications.

2 Background and Motivation
2.1 Problem Statement

First, we define two different kinds of distributed data streams

and local/global heavy hitter detection tasks. Next, we introduce

the related work and algorithms in detail. Finally, we give a more

intuitive motivation for our algorithm.

• Data stream: A data stream D = {𝑒1, 𝑒2, · · · , 𝑒𝑁 }(𝑒𝑖 ∈ 𝐸, where

𝐸 is the item set) contains 𝑁 items. Each item is a ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pair.
The key serves as an ID, while the value represents the frequency of

this item. For example, in the field of computer networks, we often

use the 5-tuple headers to identify a TCP flow. In this paper, we can

set 𝑣𝑎𝑙𝑢𝑒 = 1 (assume items arrive individually). The frequency of

an item 𝑒𝑖 (𝑒𝑖 ∈ 𝐸) is defined as 𝑓𝑖 ≜
∑

𝑗 𝐼 {𝑒𝑖 .𝑘𝑒𝑦 = 𝑒 𝑗 .𝑘𝑒𝑦} where
𝐼 is the indicator variable (either 0 or 1). An example of a data

stream is shown in Fig. 1: 𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 = {⟨𝑒1, 1⟩, ⟨𝑒3, 1⟩, ⟨𝑒2, 1⟩,
⟨𝑒1, 1⟩, ⟨𝑒4, 1⟩, ⟨𝑒3, 1⟩, ⟨𝑒4, 1⟩, ⟨𝑒4, 1⟩, · · · }. 𝑓1 ∼ 𝑓4 can be calculated

by counting the number of times they appear in the data stream.

• Disjoint data stream: Given 𝑛 data streams D1, · · · ,D𝑛 , where

D𝑖 = {𝑒 (𝑖,1) , · · · , 𝑒 (𝑖,𝑚𝑖) } contains𝑚𝑖 items. And each item 𝑒 (𝑖, 𝑗)
belongs to set U𝑖 = {𝑢 (𝑖,1) , · · · , 𝑢 (𝑖,𝑛𝑖) }, where 𝑛𝑖 is the number of

distinct items in D𝑖 . 𝑛 data streams are disjoint if U𝑖 ∩U𝑗 = ∅ for

any two different data stream D𝑖 and D𝑗 .

• Intersecting data stream: if ∃D𝑖 ,D𝑗 such that U𝑖 ∩ U𝑗 ≠ ∅,
then these 𝑛 data streams are intersecting.

�� �� �� ��

a data stream

······ �� = �
 �� = �
 �� = �
 �� = �

�� �� �� ��

Figure 1: A data stream.
• Local Heavy Hitter Detection [39]: In a single data stream D,

we aim to find an item set 𝐸ℎℎ and their frequencies satisfying that

∀𝑒𝑖 ∈ 𝐸ℎℎ, 𝑓𝑖 ≥ 𝜃 × 𝑁 , where 𝜃 is a predefined threshold and the

𝑁 = |D| (the number of items in D). Local heavy hitter detection

is important in data-intensive applications like recommendation

systems [10].

• Global Heavy Hitter Detection: In 𝑛 data streams D1,D2, · · · ,
D𝑛 , assume that the frequency of item 𝑒 in D𝑗 is defined as 𝑓

(𝑗)
𝑖

.

We aim to find an item set 𝐸ℎℎ and their frequencies satisfying that

HeavyLocker: Lock Heavy Hitters in Distributed Data Streams KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0.0 0.5 1.0 1.5 2.0
of Incoming Items 1e6

0

2

4

6

8

Fr
eq

ue
nc

y

1e2

CF of a HH CF of a Non-HH Real-time HH Threshold Final HH Threshold

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Incoming Items 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

1e3

(a) CAIDA dataset

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Incoming Items 1e6

0

2

4

6

8

Fr
eq

ue
nc

y

1e2

(b) Campus dataset

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Incoming Items 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq

ue
nc

y

1e3

(c) IMC dataset

Figure 2: The separability of heavy hitters in real-world data streams.

∀𝑒𝑖 ∈ 𝐸ℎℎ,
∑𝑛

𝑗=1 𝑓
(𝑗)
𝑖

≥ 𝜃 × 𝑁 , where 𝜃 is a predefined threshold

and the 𝑁 =
∑𝑛

𝑗=1 |D𝑗 |. It can be found that in the global scenario,

we should merge all data streams first and then consider the heavy

hitter on the merged data stream.

2.2 Related Work
This section explores established heavy hitter detection algo-

rithms, focusing on those adaptable to distributed data streams.

The Count-Min sketch (CM) [15] uses 𝑑 arrays of counters, incre-

mented by hash functions for each item. It reports the minimum

counter value, ensuring no underestimation. CM Sketch includes

a min-heap for hot items, allowing easy merging in distributed

scenarios, though its accuracy limitations hinder performance.

Elastic Sketch (ES) [46] partitions into heavy and light parts,

managed by an ostracism algorithm. Items exceeding a vote ratio

threshold 𝜆 move to the light part (typically a CM Sketch), which

can expel potential heavy hitters, reducing accuracy. ES merges

heavy and light parts separately in multi-stream applications.

MV Sketch (MV) [39] enhances CM Sketch with rows of buck-

ets, each recording total frequency, item key, and item frequency.

Majority voting updates candidate heavy hitters, but extra storage

per bucket affects memory efficiency.

Unbiased SpaceSaving (USS) [41] adapts the SpaceSaving algo-

rithm for multi-streams by adjusting its item replacement strategy.

While straightforward to merge, its method of overestimating hot

items and underestimating cold ones increases absolute errors.

DA Sketch (DAS) [53], the current state-of-the-art, redefines

unbiasedness with "fairness," treating heavy hitter selection and

frequency estimation independently, achieving reliable results even

in skewed multi-stream distributions.

2.3 Insights about "Lock"
We analyzed three real-world datasets to identify heavy-hitter

patterns. As shown in Fig. 2, we selected two million items and

plotted their cumulative frequency curves. These monotonically

increasing curves represent item frequencies against the number

of arriving items. Each line represents an item type, with heavy

hitter thresholds indicated by green dots. Blue lines represent heavy

hitters (above the threshold), and orange lines represent non-heavy

hitters (below the threshold).

2.3.1 Star with Separability: We observed that most blue and or-

ange lines are straight and separated by a red line representing the

real-time heavy hitter threshold (𝜃× number of arrived items). This

consistent pattern, particularly among medium to highly frequent

items, suggests "separability"—heavy and non-heavy hitters are

separable.

2.3.2 Lock to Protect Heavy Hitters: From separability, we infer

that final heavy hitters (blue lines) are likely real-time heavy hitters

(above the red line). Conversely, items consistently qualifying as

real-time heavy hitters are likely final heavy hitters. Therefore,

retaining such items until the data stream ends is crucial.

Our algorithm maps items to buckets, each with a lock bit.

When the frequency of all items in a bucket exceeds the real-

time heavy hitter threshold, the lock bit is set to true, preventing

decay/replacement operations. This strategy preserves real-time

heavy hitters in the bucket, increasing the accuracy of final heavy

hitter detection.

3 HeavyLocker Algorithm
This section outlines the data structure and functionality of the

HeavyLocker algorithm, designed to support heavy hitter detection

in distributed data streams. HeavyLocker is equipped with three

fundamental interfaces: Insert(), Query(), and Merge(). The Insert()
and Query() functions manage operations within a single sketch,

while Merge() facilitates the integration of multiple sketches from

different data streams.

3.1 Basic Framework

e1

ex

·····
0

HeavyLocker

Max Freq

Min Freq

hash(ex)

cell:

800
e2 75
e3 4

e4

0
70

e5 63
- -

ex

1
1300

ey 950
ez 500

cells

 buckets 0lock-bit: / 1

Figure 3: The data structure of HeavyLocker.

Fig. 3 depicts the structure of HeavyLocker, which consists of a

row of 𝑤 buckets, labeled {B1,B2, ...,B𝑤}. Each bucket contains

𝑑 cells, and we denote the 𝑗-th cell in the 𝑖-th bucket (from left

to right, from bottom to top) as 𝐵 [𝑖] [𝑗]. The storage space in

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

Figure 4: A running example of HeavyLocker (with 𝜃 = 0.1%).

each cell, 𝐵 [𝑖] [𝑗], is partitioned into two sections: 𝐵 [𝑖] [𝑗] .𝑖𝑑 for

the item’s key and 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 for its frequency count. Further-

more, each bucket is equipped with a lock-bit, 𝐵 [𝑖] .𝑙𝑜𝑐𝑘 , which
controls whether replacements are permitted within that bucket.

Cells within a bucket are sorted by frequency in descending order;

thus, 𝐵 [𝑖] [0] .𝑐𝑛𝑡 ≤ 𝐵 [𝑖] [1] .𝑐𝑛𝑡 ≤ ... ≤ 𝐵 [𝑖] [𝑑 − 1] .𝑐𝑛𝑡 . When a

bucket is full, and the value in 𝐵 [𝑖] [0] .𝑐𝑛𝑡 exceeds a predefined

threshold, the bucket is locked. This prevents any further replace-

ment in the bucket, assuming it likely contains only heavy hitters.

The pseudo-code for this section is in Appendix A.

3.1.1 Insert(𝑒): Algorithm 1 shows the insert operation. Initially,

all entries are set to 0. Providing that the heavy hitter threshold is

𝜃 . When inserting an item 𝑒 , we first compute its corresponding

bucket 𝐵 [𝑖] via a hash function. We also increment 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 by 1

to indicate how many items have been processed. Next, we check

whether the frequency of the smallest item in 𝐵 [𝑖] is greater than
𝑖𝑡𝑒𝑚𝑛𝑢𝑚 × 𝜃 and change the lock-bit 𝐵 [𝑖] .𝑙𝑜𝑐𝑘 accordingly. For

example, assuming that 100,000 items have been processed, 𝜃 =

0.05%, then when 𝐵 [𝑖] [0] .𝑐𝑛𝑡 ≥ 100, 000 × 0.05% = 50, the bucket

will be locked; otherwise, it will be unlocked. As shown in Fig.

3, 𝐵 [1] [0] .𝑐𝑛𝑡 = 4 < 50, and 𝐵 [2] [0] .𝑐𝑛𝑡 = 0 < 50, so 𝐵1 and

𝐵2 not locked. Meanwhile, 𝐵𝑤 is locked because its minimum cell

frequency is 500 > 50.

Next, we traverse all the cells 𝐵 [𝑖] [𝑗] (0 ≤ 𝑗 < 𝑑) in the bucket

to determine whether the item is stored. If so, we can add the 𝑐𝑛𝑡

field. If an empty cell is in the bucket, insert it directly.

Finally, when the bucket is full, and 𝑒 is not found, we try to

do a replacement operation on the smallest item. The algorithm

ends here if 𝐵 [𝑖] is locked. If 𝐵 [𝑖] is not locked, we will use the
RAP_Replacement strategy [7] to the smallest item. If the frequency

is reduced to 0, replace it; otherwise, we end here.

3.1.2 Query(): Algorithm 2 shows the operation of querying all

heavy hitters. We only need to traverse all 𝑑 ×𝑤 cells in Heavy-

Locker and return the items whose frequency exceeds the given

threshold. Note that our algorithm is invertible, i.e., the item can

be recovered directly from the data structure because we preserve

the full key of the item. Those algorithms that do not record the

item’s full key are not invertible. They must traverse the item set

again to query all heavy hitters, which is time-consuming.

3.1.3 Merge(𝑉): Algorithm 3 outlines merging 𝑛 data streams by

combining 𝑛 HeavyLockers, each with the same size and hash func-

tion configuration. We define 𝐵 [𝑖] (𝑣) as the 𝑖-th bucket in the 𝑣-th

HeavyLocker, where 1 ≤ 𝑖 ≤ 𝑤 and 1 ≤ 𝑣 ≤ 𝑛. To aggregate these,

we use the Stream Summary [29] data structure to combine the

largest items at the same location in each HeavyLocker. Algorithm

3 traverses the buckets at the same location, pushing data from

each cell into the Stream Summary if the key is absent. Otherwise,

it updates the item’s counter and order in Stream Summary. The

𝑖-th bucket of the merged HeavyLocker is built by querying the

top-𝑑 elements of Stream Summary.

Merging operates on buckets rather than the entire HeavyLocker,

keeping the overhead manageable and avoiding the need for a large

Stream Summary. This approach provides a precise network mea-

surement as if detected by a single large detector [25, 39]. Addi-

tionally, we can divide a data stream into groups, deploy multiple

HeavyLockers, and aggregate them before reporting to enhance

detection and reduce reporting overhead, as demonstrated in the

experiment in 5.5.

3.1.4 Selection of dynamic lock threshold in 𝑥 data streams: It is
crucial to appropriately adjust the 𝜃 threshold across various data

stream configurations. In disjoint data streams, the threshold for

each HeavyLocker is adjusted to 𝜃 · 𝑥 to account for separation,

while in intersecting data streams, the threshold remains 𝜃 . This

differentiation ensures optimal threshold settings to handle spe-

cific dynamics and overlaps of the data streams. For a detailed

explanation, see the theoretical analysis in Section 4.3.

3.2 Example of Insertion
Here we show the insertion example of HeavyLocker, as shown

in Fig. 4, assuming the heavy hitter threshold is 0.1%. In the exam-

ple on the left, To insert 𝑒2, the HeavyLocker calculates one hash

function, maps 𝑒2 to a bucket, and updates 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 . Because 𝑒2
is not stored in it, and the threshold for locking the bucket at this

time is 82000 × 0.1% = 82 ≤ the smallest counter (82), so nothing

is changed. To insert 𝑒3, we also update 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 and then find

that 𝑒3 is stored in the bucket, so we update this cell to (𝑒3, 201).
Currently, the bucket lock threshold is 82.001 > 82, so the bucket is

set to unlock. In the example on the right, to insert 𝑒5, replacement

is triggered because 𝑒3 is not stored in this unlocked bucket. We

replace the smallest (𝑒4, 6) with probability
1

6+1 = 1

7
. Assuming the

replacement fails, then nothing is changed. To insert 𝑒9, similarly, 𝑒9
does not exist in this bucket, so we try to replace (𝑒4, 6). Assuming

the replacement success, we update this cell to (𝑒9, 7). At this time,

since 7 > 6.502, the bucket is set to lock.

3.3 Optimization 1: Tuning Lock Threshold
As mentioned in Section 2.3, the blue and orange lines in Fig. 2

are almost separated by the real-time heavy hitter red line. However,

some blue lines temporarily fall below the red line, caused by heavy

hitters arriving slowly initially and accelerating later. Using the real-

time heavy hitter threshold for locking buckets can lead to errors if

HeavyLocker: Lock Heavy Hitters in Distributed Data Streams KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Incoming Items 1e6

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

1e3

HH

Non-HH & few HH

Non-HH

Real-time HH Threshold Adjusted Threshold Final HH Threshold

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Incoming Items 1e6

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
1e3

HH

Non-HH & few HH

Non-HH

Figure 5: Insight of adjusting heavy hitter threshold.

D1 D1+D2 D1+D2+D3 All0%

20%

40%

60%

80%

100%

F 1
 S

co
re 56.1%

93.3% 95.4% 97.2%

Figure 6: The maximum 𝐹1 𝑠𝑐𝑜𝑟𝑒 when consider different
design and optimization. 𝐷1: Multiple cells in each bucket.
𝐷2: Dynamically lock with real-time heavy hitter threshold.

𝐷3: Tuning lock threshold. 𝐷4: Multi-hashing.

these items are replaced by cold items. To protect them, we lower

the original threshold’s slope, creating a new threshold. As shown

in Fig. 5, we use the solid red line as the new lock threshold, which is

the red dotted line multiplied by a constant 𝐿 (the lock tuning value).
Although this may mistakenly protect some non-heavy hitters with

medium frequency, Figs. 6 and 7(b) demonstrate its effectiveness.

To implement this, we change 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 × 𝜃 to 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 × 𝜃 × 𝐿 in

line 3 of Algorithm 1.

3.4 Optimization 2: Multi-hashing
In Algorithm 1, each item is mapped to a single candidate bucket

using one hash function. This can lead to a situation where 𝑑 + 1

heavy hitters are mapped to the same bucket, causing one item to be

lost since only 𝑑 cells are available, reducing accuracy. To mitigate

this, we use multiple hash functions to select more candidate buck-

ets, reducing hash conflicts. This optimization is especially effective

when memory is tight and collision rates are high, as detailed in

Section 4.1. However, more hash functions increase overhead and

decrease processing speed. Fig. 7(c) illustrates the trade-off between

accuracy and speed. To implement this, we calculate multiple hash

functions in line 2 of Algorithm 1 and traverse them in line 7.

3.5 Put Them All Together
Fig. 6 illustrates the impact of each design and optimization.

Using only a multi-cell structure in a bucket (D1), the 𝐹1 score for

detecting heavy hitters is 56.1%. Adding the core of our algorithm,

the dynamic threshold lock (D2), increases the 𝐹1 score to 93.3%,

demonstrating its effectiveness. Incorporating threshold tuning (D3)

further improves the score to 95.4%. Finally, adding multi-hashing

(D4) raises the 𝐹1 score to 97.2%.

4 Mathematical Analysis
In this section, we provided the hash collision probability of

HeavyLocker (Section 4.1), as well as its error bounds (Section 4.2),

and from this, we derived its theoretical precision (Section 4.4) and

recall rate (Section 4.5). In Section 4.3, we discussed several relevant

facts, such as the exponential level optimization of error by the

lock operation. In the argument of this section, we assume 𝑛 as the

total number of items, 𝑤 as the number of buckets, and 𝑑 as the

number of cells in a bucket. We use 𝑒𝑖 to represent an item, 𝑓𝑖 to

represent its size, and
ˆ𝑓𝑖 to represent the estimated size of it. We

use 𝜃 to denote our lock threshold, i.e., the bucket is locked when

the smallest item reaches the current 𝜃 × 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 . We use 𝜙 to

represent the threshold for heavy hitters, i.e., an item is considered

a heavy hitter when it exceeds 𝜙𝑛. We assume that the number of

data streams is 𝑑𝑠𝑛𝑢𝑚 . For detailed proof, please refer to [3].

4.1 Hash Collision Probability
In this section, we present the collision probabilities of inserting

an item under single-hash and multi-hash scenarios, respectively,

demonstrating that the collision probability with multi-hash is

significantly lower than that with single-hash.

Theorem 4.1. Assuming we use a single hash ℎ1, and the sketch
has inserted 𝑠 distinct items, let 𝑝1 be the probability of a collision
when we insert a new item, we have:

𝑝1 ≈
1

√
2𝜋𝛽

𝑒−
𝛽2

2

where 𝛽 =
𝑑− 𝑠

𝑤√︃
𝑠
𝑤
(1− 1

𝑤
)
.

Theorem 4.2. Assume we use𝑘 independent hash functionsℎ1, · · ·
, ℎ𝑘 , and the sketch already contains 𝑠 distinct items. Let 𝑝𝑘 be the
probability of a collision when we insert a new item, we have:

𝑝𝑘 ≈ 𝑝𝑘
1

So, we can find that the hash collision probability decreases

exponentially with the number of hash functions, proving the ef-

fectiveness of multi-hashing in Section 3.4.

4.2 Error Bound
In this section, we present the upper and lower bounds of over-

estimation and underestimation for HeavyLocker.

4.2.1 Overestimation Bound.
If a heavy hitter is overestimated, it implies that the last time it

was stored in a bucket, it replaced an item larger than itself. How-

ever, due to the presence of a lock mechanism, it is unlikely that

there exists an item larger than itself that is not locked. Below, we

rigorously explain this point:

Theorem 4.3. Assuming a heavy hitter 𝑒1 is overestimated, its
actual size is 𝑓1, and HeavyLocker provides an estimated size ˆ𝑓1. We
have:

Pr[ˆ𝑓1 ≤ 𝑓1 + 𝜖] ≥ 1 −

√︄
𝑝 (1 − 𝑝)
8𝜋 (𝑝 − 𝜃)𝜖 𝑒

−2 (𝑝−𝜃)𝜖
𝑝 (1−𝑝)

where 𝑝 =
𝑓1
𝑛 .

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

4.2.2 Underestimation Bound. In this section, we will present the

lower bounds for underestimation in HeavyLocker. Underestima-

tion occurs because the underestimated item consistently fails to

replace the smallest value in its bucket. However, due to the pres-

ence of the lock mechanism, if the bucket is not locked, the smallest

value in the bucket should be below 𝜃𝑛. This makes it unlikely that

a heavy hitter cannot replace the smallest value in the bucket over

a long period. We will explain this in detail below.

Theorem 4.4. Assuming a heavy hitter 𝑒1 is underestimated, its
actual size is 𝑓1, and HeavyLocker provides an estimated size of ˆ𝑓1.
Then, we have:

Pr[ˆ𝑓1 ≥ 𝑓1 − 𝜖] ≥ 1 − (𝑝 − 𝜃

𝜃𝜖
)
𝑝

𝜃

where 𝑝 =
𝑓1
𝑛 .

4.3 Optimization of Error
In this section, we explain there facts: (1) The Lock mechanism

reduces errors, thereby increasing accuracy; (2) The error in Global

HeavyLocker is less than that in Local HeavyLocker; (3) If the

bucket threshold at a single data stream is 𝜃 , it will change in the

case of multiple data streams.

Theorem 4.5. The lock mechanism reduces errors, thereby increas-
ing accuracy.

Theorem 4.6. The error in Global HeavyLocker is less than that
in Local HeavyLocker.

Theorem 4.7. Assuming that all streams arrive uniformly, and
the bucket threshold at a single point is 𝜃 . Then, in the case of multiple
data streams:

• if they are intersecting, the threshold for each Local Heavy-
Locker is 𝜃 .

• if they are disjoint, the threshold for each Local HeavyLocker
is 𝜃 · 𝑑𝑠𝑛𝑢𝑚 .

where 𝑑𝑠𝑛𝑢𝑚 represents the number of data streams.

4.4 Precision Rate
In this section, we estimate the precision of the HeavyLocker

algorithm. Precision is defined as the ratio of the number of items

that truly exceed 𝜙𝑛 to the number of items that HeavyLocker

reports as exceeding 𝜙𝑛.

Theorem 4.8. Let the precision be denoted by 𝑝0, the target thresh-
old by 𝜙 , and the lock threshold by 𝜃 , the number of heavy hitter is 𝑠 .
We propose the following estimation for 𝑝0:

𝐸 (𝑝0) ≥ 1 − 4

𝑤

𝑠

√︄
𝜙 (1 − 𝜙)
𝜋 (𝜙 − 𝜃)𝜖 𝑒

(𝜙−𝜃)𝜖
64𝜙 (1−𝜙) − 𝜖0

where 𝜖0 < 0.01.

4.5 Recall Rate
In this section, we provide an estimation of the recall for Heavy-

Locker. Here, recall is defined as the proportion of items that truly

exceed 𝜙𝑛 and are reported by HeavyLocker as exceeding 𝜙𝑛.

Theorem 4.9. Let the recall rate be denoted by 𝑟0, the target thresh-
old by 𝜙 . Then, we have:

𝐸 (𝑟0) ≥ 1 − 1

2

√
2𝜋𝛽

𝑒−
𝛽2

2 − 𝜖0

where 𝛽 =
𝑑− 1

𝑤𝜙√︃
1

𝑤𝜙
(1− 1

𝑤
)
,𝜖0 < 0.01.

5 Experimental Results
In this section, we present a series of experiments conducted to

evaluate HeavyLocker’s performance. First, we describe the experi-

mental setup and the metrics used, and then we tune the parameters

for optimal results. Next, we analyze the effect of HeavyLocker

on local and global heavy hitter detection, considering different

memory capacities, varying heavy hitter thresholds, diverse data

skewness, and changes in the number of data streams. Finally, we

provide a thorough analysis of the experimental results.

To ensure that our experiments are fair and transparent, we have

used either commonly adopted algorithms or open-sourced ones

provided by their authors. We have made our related source codes

and datasets available on GitHub [3], allowing for easy access and

reproducibility of our experiments.

5.1 Experiment Setup
Here, we only show a brief experimental setup; please refer to

Appendix B for a detailed version.

5.1.1 Test Platform. We conducted our experiments using a ma-

chine equipped with an Intel 𝑖7 − 9700𝐶𝑃𝑈@3.0𝐺𝐻𝑧 and 16GB

DRAM, running Ubuntu 20.04. To mitigate CPU jitter errors, we

computed average results based on 10 runs for each evaluation.

5.1.2 Datasets. We use 2 kinds of datasets in experiments: CAIDA

[1] and Zipf [34] dataset.

5.1.3 Comparing Algorithms. We implement our HeavyLocker

(HL) in C++, and compare our results with CM sketch+heap (CM)

[15], Elastic sketch (ES) [46], MV Sketch (MV) [40], Unbiased Space-

Saving (USS) [41], and Double-anonymous Sketch (DAS) [53].

5.1.4 Tasks and Metrics. We perform heavy hitter detection (re-

porting items whose sizes are larger than a predefined threshold),

and the following metrics are considered: Speed, AAE, ARE, Preci-

sion, Recall, and 𝐹1 score.

In the following sections, we illustrate the performance of Heavy-

Locker (HL) by processing speed, AAE, ARE, and 𝐹1 score, against

memory, heavy hitter threshold, skewness, and number of data

streams. Due to space constraints, precision and recall figures are in

the supplementary file [3]. Abbreviations are: HL for HeavyLocker,

CM for CM Sketch+heap, ES for Elastic Sketch, MV for MV Sketch,

USS for Unbiased SpaceSaving, and DAS for Double-anonymous

Sketch. We consider USS and DAS as the state-of-the-art (SOTA)

algorithms due to their superior accuracy.

5.2 Parameter Tuning
5.2.1 Number of cells per bucket (depth). The parameter of the

number of cells (𝑑) per bucket plays a crucial role in determining

the optimal performance of HeavyLocker. The value of 𝑑 greatly

HeavyLocker: Lock Heavy Hitters in Distributed Data Streams KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

1 2 3 4
of hash functions

0.8

1.0

F 1
 s

co
re

1 2 3 4
of hash functions

10
1

10
2

A
A

E
1 2 3 4
of hash functions

10
2

10
1

A
R

E

1 2 3 4
of hash functions

0

10

20

Sp
ee

d

20KB 30KB 40KB

1 2 3 4 5 6 7 8
Depth

0.8

1.0

F 1
 s

co
re

1 2 3 4 5 6 7 8
Depth

10
1

10
2

A
A

E

1 2 3 4 5 6 7 8
Depth

10
2

10
1

A
R

E

1 2 3 4 5 6 7 8
Depth

0

10

20

Sp
ee

d

(a) Accuracy and speed vs. depth.

0.1 0.4 0.7 1.0
Lock tuning value

0.8

1.0

F 1
 s

co
re

0.1 0.4 0.7 1.0
Lock tuning value

10
1

10
2

A
A

E

0.1 0.4 0.7 1.0
Lock tuning value

10
2

10
1

A
R

E

0.1 0.4 0.7 1.0
Lock tuning value

0

10

20

Sp
ee

d

(b) Accuracy and speed vs. lock tuning value.

1 2 3 4
of hash functions

0.9

1.0

F 1
 s

co
re

1 2 3 4
of hash functions

10
1

10
2

A
A

E

1 2 3 4
of hash functions

10
2

10
1

A
R

E
1 2 3 4
of hash functions

0

10

20

Sp
ee

d

(c) Accuracy and speed vs. # of hash.

Figure 7: Parameter Tuning.

influences the trade-off between accuracy and speed. If 𝑑 is small,

the number of items per bucket is limited, so the time required to

traverse the entire bucket is less, but the accuracy is generally low

at this time. Conversely, if 𝑑 is large, each bucket can hold more

items, so the time required to traverse the entire bucket is relatively

large, but the accuracy is generally high at this time.

Fig. 7(a) illustrates our experimentation with varying the number

of cells per bucket (i.e., depth) from 1 to 8 and measuring the cor-

responding AAE, ARE, 𝐹1 score, and speed. Each figure comprises

three lines representing the outcomes of using memory sizes of

20KB, 30KB, and 40KB, respectively. Our observation reveals that

the accuracy for different memories improves considerably as 𝑑

increases from 1 to 6, while it remains stable when it goes up to 8.

Therefore, we decided to set 𝑑 = 6 in the following experiments.

5.2.2 Lock tuning value (L). As mentioned in Section 3.3, in Al-

gorithm 1, it is reasonable to lock a bucket only if the minimum

frequency in the bucket exceeds the heavy hitter threshold (i.e.,

𝑖𝑡𝑒𝑚𝑛𝑢𝑚×𝜃) to ensure that all locked buckets contain heavy hitters.

However, some heavy hitters may come slowly in certain periods. If

it is mistakenly replaced before reaching the heavy hitter threshold,

it will cause a large error. To address this issue, we need to adjust

the threshold of locking a bucket accordingly. This explains why

the algorithm included the lock tuning value (𝐿). By adjusting the

lock tuning value appropriately, we can balance capturing all heavy

hitters and ensuring that no heavy items are lost.

Based on the results displayed in Fig. 7(b), we experimented with

three different memory sizes, each with a lock threshold ranging

from 0.1 to 1.0 in increments of 0.1. The accuracy levels showed an

initial increase and subsequent decrease, reaching an optimal value

of 0.7. Thus, we set the lock tuning value to 𝐿 = 0.7, which delivered

the best accuracy performance.

5.2.3 Number of hash functions. As mentioned in Section 3.4, Al-

gorithm 1 assigns each item to a candidate bucket based on only

one hash function. One possible approach to enhance the perfor-

mance of heavy hitter detection is to expand the number of hash

functions utilized. By doing so, we can increase the loading rate of

the overall data structure, which in turn may improve the accuracy

of identifying heavy hitters.

Based on Fig. 7(c), we altered the identifier from 1 to 4. Our

results reveal that increasing the number of hash functions en-

hances the accuracy of detecting heavy hitters while reducing the

throughput rate due to the time-consuming nature of hash func-

tion calculation. For scenarios where speed requirements are not

strict, we recommend using 2 hash functions to reduce errors, but

in the experimental part, we choose to pay more attention to speed.

Consequently, we decided to maintain the number of hash functions
used in HeavyLocker at 1 during the subsequent experiment.

5.3 Processing Speed
Fig. 8(a) compares the processing speed of HeavyLocker (HL)

with other methods on normal datasets. HL is consistently faster

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

0

5

10

15

20

25

30

35

In
se

rt
 S

pe
ed

 (M
pp

s)

CM Sketch
Elastic Sketch

MV Sketch
USS

DA Sketch
HeavyLocker

0

5

10

15

20

In
se

rt
 S

pe
ed

 (M
pp

s)

9.3

17.9

9.5 9.9

14.1 14.1

(a) Insert speed in CAIDA.

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

0

10

20

30

In
se

rt
 S

pe
ed

 (M
pp

s)

(b) Insert speed vs. data skewness.

Figure 8: Insert speed.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

0.0

0.5

1.0

F 1
 s

co
re

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
1

10
1

10
3

A
A

E

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
2

10
0

A
R

E

CM Sketch
Elastic Sketch

MV Sketch
USS

DA Sketch
HeavyLocker

30 60 90 120 150 180
Memory(KB)

0.0

0.5

1.0

F 1
 s

co
re

30 60 90 120 150 180
Memory(KB)

10
1

10
3

A
A

E

30 60 90 120 150 180
Memory(KB)

10
2

10
0

A
R

E

(a) Accuracy vs. memory.

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

0.0

0.5

1.0

F 1
 s

co
re

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
1

10
3

A
A

E

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
2

10
0

A
R

E

(b) Accuracy vs. heavy hitter threshold.

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

0.0

0.5

1.0

F 1
 s

co
re

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
1

10
3

A
A

E

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
2

10
0

A
R

E

(c) Accuracy vs. dataset skewness.

Figure 9: Local Heavy Hitter Detection.

than CM, MV, and USS, but slower than ES. Specifically, HL matches

DAS in speed, is 40% faster than USS, and 20% slower than ES. The

processing speed is influenced mainly by the number of calls to

costly operations like the hash and rand functions (used in proba-

bility replacement) as discussed in 3.1.1. Unlike methods with hier-

archical hash functions, HL uses a single layer of buckets, avoiding

multiple hash computations. However, HL incurs a slightly higher

insertion cost than ES due to traversing six cells in a bucket and

calculating random values.

As shown in Fig. 8(b), HL and DAS processing speeds increase

with dataset skewness, surpassing ES. This is because HL and DAS

use the rand function for conflicts. In the Zipf dataset, higher skew-

ness leads to fewer item types and increased hot item frequencies,

reducing competition. Thus, new items are more likely to hit or in-

sert into empty cells, minimizing rand function calls and improving

insertion efficiency.

5.4 Local Heavy Hitter Detection
5.4.1 Change memory of data structure: In this experiment,

we change the memory size from 30KB to 180KB to observe the

influence of different memory sizes on each algorithm. From Fig.

9(a), we find that HL is much more accurate than the other five

algorithms for most memory sizes. When the memory size is suf-

ficient, HL’s AAE/ARE is about 3.3× and 2.6× lower than that of

DAS and USS and can reach 𝐹1 score of 95% even with only 30KB.

The results get even better when the memory is small, which means

that compared to the most advanced methods, HL can better handle

serious hash conflicts caused by small memory sizes. Although MV

and ES can achieve a certain recall advantage with small memory,

this is due to the overestimation of the size of their streams, which

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

0.0

0.5

1.0

F 1
 s

co
re

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
1

10
1

10
3

A
A

E

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
2

10
0

A
R

E

CM Sketch
Elastic Sketch

MV Sketch
USS

DA Sketch
HeavyLocker

1 2 3 4 5 6
of data streams

0.0

0.5

1.0

F 1
 s

co
re

1 2 3 4 5 6
of data streams

10
0

10
1

10
2

10
3

A
A

E

1 2 3 4 5 6
of data streams

10
2

10
1

10
0

A
R

E

(a) Disjoint data streams.

1 2 3 4 5 6
of data streams

0.0

0.5

1.0

F 1
 s

co
re

1 2 3 4 5 6
of data streams

10
1

10
2

10
3

A
A

E

1 2 3 4 5 6
of data streams

10
1

10
0

A
R

E

(b) Intersecting data streams.

Figure 10: Accuracy vs. # of Data Streams.

also makes their 𝐹1 score much lower than HL. Besides, it should

be noted that we implemented the invertible version of CM, which

restricts the quantity of information it provides to a limited range

and ensures that its recall always remains at a moderate level in

the experiments. Thus, the performance of CM in our experiments

may be different from the traditional cases.

5.4.2 Change heavy hitter threshold: In this experiment, we

change the heavy hitter threshold from 0.01% to 0.06%. Fig. 9(b)

shows how adjusting the heavy hitter threshold affects the methods’

accuracy.We find that HL consistently outperformed other methods.

Specifically, HL’s AAE and ARE are up to 3.7× and 5.5× lower than

DAS, respectively, and can reach 𝐹1 score of 95% when the heavy

hitter threshold = 0.01%. We observe that the AAE/ARE of most

methods decreases and the 𝐹1 score increases as the heavy hitter

threshold increases. This is because a higher threshold reduces the

number of heavy hitters that need identification, and hotter items

tend to experience fewer hash collisions, thus diminishing errors.

5.4.3 Change skewness of dataset: In this experiment, we stud-

ied the influence of different dataset skewnesses on the methods

by measuring the accuracy of each method under the Zipf datasets

mentioned in 5.1.2. According to Fig. 9(c), HL achieves the highest

𝐹1 score and the lowest AAE/ARE in datasets with any skewness,

which proves that HL has good adaptability to datasets with vary-

ing skewnesses. Specifically, HL’s AAE and ARE are up to 5.6× and

5.4× lower than DAS, respectively, and can reach 𝐹1 score above

84% with any skewness.

5.5 Scalability of Heavy Hitter Detection
To evaluate HL’s scalability, we split the CAIDA dataset to gener-

ate disjoint and intersecting data streams. For disjoint streams, the

dataset is partitioned by hashing the item’s key and taking modulo

the number of partitions. For intersecting streams, the dataset is

randomly split by computing a random value for each item. We

vary the number of detectors and use merge functions to explore

the impact of data stream quantity on the accuracy of aggregated

frameworks while keeping the total flow rate constant.

HeavyLocker: Lock Heavy Hitters in Distributed Data Streams KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

0.0

0.5

1.0

F 1
 s

co
re

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
1

10
1

10
3

A
A

E

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
2

10
0

A
R

E

CM Sketch
Elastic Sketch

MV Sketch
USS

DA Sketch
HeavyLocker

30 60 90 120 150 180
Memory(KB)

0.0

0.5

1.0

F 1
 s

co
re

30 60 90 120 150 180
Memory(KB)

10
0

10
1

10
2

10
3

A
A

E

30 60 90 120 150 180
Memory(KB)

10
3

10
2

10
1

10
0

A
R

E

(a) Accuracy vs. memory.

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

0.0

0.5

1.0

F 1
 s

co
re

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
0

10
1

10
2

10
3

A
A

E

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
3

10
2

10
1

10
0

A
R

E

(b) Accuracy vs. heavy hitter threshold.

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

0.0

0.5

1.0

F 1
 s

co
re

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
0

10
1

10
2

10
3

A
A

E

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
3

10
2

10
1

10
0

A
R

E

(c) Accuracy vs. dataset skewness.

Figure 11: Global Heavy Hitter Detection (Disjoint).

Fig. 10(a) shows that in the disjoint case, aggregation accuracy

increases with the number of data streams. More detectors mean

each tracks fewer heavy hitters, reducing sketch error at each detec-

tor. The merging process further reduces error (see Theorem 4.6),

resulting in HL’s AAE and ARE being up to 7.6× and 7.9× lower

than DAS, respectively.

Fig. 10(b) shows that in the intersecting case, aggregation accu-

racy decreases with more data streams. This is because the number

of heavy hitters each detector tracks remains unchanged, increas-

ing inaccuracy during aggregation. Thus, more detectors lead to

larger errors. The special performance of MV is likely due to its

unique estimation method in the merge function.

In summary, it is recommended to divide a device’s data stream

into many disjoint streams and measure them individually with

HeavyLockers. Aggregating these results at the device level before

transmission to the control plane improves measurement accuracy

without increasing reporting overhead. Notably, HL’s 𝐹1 score and

AAE/ARE are consistently better than other methods, demonstrat-

ing its advantages in data aggregation.

5.6 Global Heavy Hitter Detection
In this experiment, we simulated the effect of memory size, heavy

hitter threshold, and dataset skewness on global heavy hitter detec-

tion. To realize this experiment, we divided the dataset into six parts

using different methods and measured them using six detectors,

respectively. Then, we simulated the aggregation process of results

in the collector to observe the effectiveness of various methods in

finding global heavy hitters.

5.6.1 Disjoint data stream. Fig. 11 shows the result when data

streams are disjoint. We observe that the overall trend is basically

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

0.0

0.5

1.0

F 1
 s

co
re

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
1

10
1

10
3

A
A

E

0.01 0.02 0.03 0.04 0.05 0.06
HH threshold (%)

10
2

10
0

A
R

E

CM Sketch
Elastic Sketch

MV Sketch
USS

DA Sketch
HeavyLocker

30 60 90 120 150 180
Memory(KB)

0.0

0.5

1.0

F 1
 s

co
re

30 60 90 120 150 180
Memory(KB)

10
1

10
2

10
3

A
A

E

30 60 90 120 150 180
Memory(KB)

10
2

10
1

10
0

A
R

E

(a) Accuracy vs. memory.

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

0.0

0.5

1.0

F 1
 s

co
re

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
1

10
2

10
3

A
A

E

0.1 0.2 0.3 0.4 0.5 0.6
HH threshold ()

10
2

10
1

10
0

A
R

E

(b) Accuracy vs. heavy hitter threshold.

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

0.0

0.5

1.0

F 1
 s

co
re

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
1

10
2

10
3

A
A

E

0.6 0.9 1.2 1.5 1.8 2.1
Skewness

10
2

10
1

10
0

A
R

E

(c) Accuracy vs. dataset skewness.

Figure 12: Global Heavy Hitter Detection (Intersecting).

consistent with the local heavy hitter detection in 5.4, and the

performance of all methods except MV is better than local heavy

hitter detection. This means that for most methods, splitting the

data stream into disjoint parts while measuring can benefit the

final aggregation result. Specifically, when varying memory, heavy

hitter threshold, and data skewness, HL consistently achieved the

highest 𝐹1 score. The AAE and ARE with HL were significantly

lower than those observed with DAS, by factors of up to 5.2×, 6.1×,
and 7.2× for AAE and 6.5×, 6.9×, and 6.2× for ARE, respectively.

5.6.2 Intersecting data stream. Fig. 12 shows the result when data

streams intersect. We observe similar results as the experiment

in 5.6.1. Note that the accuracy of CM, ES, USS, DAS, and HL in

the intersecting case is lower than the experiment in the disjoint

case, which is in line with the conclusion in 5.5. Specifically, when

changing memory, heavy hitter threshold, and dataset skewness,

HL always has the highest 𝐹1 score. The AAE and ARE were signif-

icantly reduced compared to DAS, by factors of up to 2.9×, 2.1×,
and 50.5× for AAE and 3.4×, 2.6×, and 41.3× for ARE, respectively.

6 Conclusion
Detecting global heavy hitters in distributed data streams is

crucial for various applications. Existing algorithms designed for

local detection often perform poorly when scaled to global sce-

narios. This paper introduces HeavyLocker, which leverages the

"separability" feature of data streams to lock and protect heavy

hitters precisely, facilitating scalability to global applications. We

also present two optimizations and a solid theoretical analysis. Ex-

tensive experiments show that HeavyLocker achieves excellent

results in local and global heavy hitter detection compared with

the state-of-the-art, demonstrating its real-world feasibility.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

References
[1] [n. d.]. The CAIDA traces. http://www.caida.org/data/overview/.

[2] [n. d.]. Hash website. http://burtleburtle.net/bob/hash/evahash.html.

[3] [n. d.]. Our open source Github. https://github.com/HeavyLocker/

HeavyLockerSketch.

[4] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. {HeteroSketch}:
Coordinating network-wide monitoring in heterogeneous and dynamic networks.

in USENIX NSDI (2022).
[5] Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Minlan Yu.

2018. A comparison of performance and accuracy of measurement algorithms in

software. in ACM SOSR (2018).

[6] Ran Ben Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, and Danny Raz.

2018. Network-wide routing-oblivious heavy hitters. in ACM ANCS (2018).
[7] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Randomized

admission policy for efficient top-k and frequency estimation. in IEEE INFOCOM
(2017).

[8] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021.

SALSA: Self-Adjusting Lean Streaming Analytics. in IEEE ICDE (2021).

[9] Ran Ben-Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, Bilal Tayh, and

Danny Raz. 2021. Routing-oblivious network-wide measurements. IEEE/ACM
Transactions on Networking 29, 6 (2021), 2386–2398.

[10] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy

hitters in streams and sliding windows. in IEEE INFOCOM (2016).

[11] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu

Wang, and David P Woodruff. 2017. Bptree: An l-2 heavy hitters algorithm using

constant memory. in ACM SIGMOD (2017).

[12] Valerio Bruschi, Ran Ben Basat, Zaoxing Liu, Gianni Antichi, Giuseppe Bianchi,

and Michael Mitzenmacher. 2020. DISCOvering the heavy hitters with disaggre-

gated sketches. in ACM CoNEXT (2020).

[13] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. 2021. Out

of many we are one: Measuring item batch with clock-sketch. In Proceedings of
the 2021 International Conference on Management of Data. 261–273.

[14] Zhuo Cheng, Maria Apostolaki, Zaoxing Liu, and Vyas Sekar. 2024. TRUSTS-

KETCH: Trustworthy Sketch-based Telemetry on Cloud Hosts. in NDSS (2024).
[15] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[16] Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. 2020. An

incrementally-deployable P4-enabled architecture for network-wide heavy-hitter

detection. IEEE Transactions on Network and Service Management 17, 1 (2020),
75–88.

[17] Cormode Graham, Korn Flip, Muthukrishnan Shanmugavelayutham, and Srivas-

tava Divesh. 2003. Finding hierarchical heavy hitters in data streams. in ACM
VLDB (2003).

[18] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-wide

heavy hitter detection with commodity switches. in ACM SOSR (2018).

[19] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross Teixeira, S Muthukrishnan,

and Jennifer Rexford. 2020. Carpe elephants: Seize the global heavy hitters. in
ACM SPIN (2020).

[20] Eric R Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang,

Stratos Idreos, and Michael Mitzenmacher. 2022. Proteus: A self-designing range

filter. in ACM SIGMOD (2022).

[21] Haoyu Li, Liuhui Wang, Qizhi Chen, Jianan Ji, Yuhan Wu, Yikai Zhao, Tong Yang,

and Aditya Akella. 2023. Chainedfilter: Combining membership filters by chain

rule. in ACM SIGMOD (2023).

[22] Weihe Li and Paul Patras. 2023. Tight-sketch: A high-performance sketch for

heavy item-oriented data stream mining with limited memory size. in ACM
CIKM (2023).

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Flowradar: A better

netflow for data centers. in USENIX NSDI (2016).
[24] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and general sketch-

based monitoring in software switches. in ACM SIGCOMM (2019).

[25] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-

ing with univmon. in ACM SIGCOMM (2016).

[26] Zirui Liu, Yixin Zhang, Yifan Zhu, Ruwen Zhang, Tong Yang, Kun Xie, Sha Wang,

Tao Li, and Bin Cui. 2023. TreeSensing: Linearly Compressing Sketches with

Flexibility. in ACM SIGMOD (2023).

[27] Lailong Luo, Pengtao Fu, Shangsen Li, Deke Guo, Qianzhen Zhang, and Huaimin

Wang. 2023. Ark filter: A general and space-efficient sketch for network flow

analysis. IEEE/ACM Transactions on Networking (2023).

[28] Antonis Manousis, Zhuo Cheng, Ran Ben Basat, Zaoxing Liu, and Vyas Sekar.

2022. Enabling efficient and general subpopulation analytics in multidimensional

data streams. in ACM VLDB (2022).

[29] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient com-

putation of frequent and top-k elements in data streams. in Springer ICDT (2005).

[30] MasoudMoshref, Minlan Yu, RameshGovindan, andAmin Vahdat. 2016. Trumpet:

Timely and precise triggers in data centers. in ACM SIGCOMM (2016).

[31] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.

2022. {SketchLib}: Enabling efficient sketch-based monitoring on programmable

switches. in USENIX NSDI (2022).
[32] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.

2023. Sketchovsky: Enabling ensembles of sketches on programmable switches.

in USENIX NSDI (2023).
[33] Prashant Pandey, Shikha Singh, Michael A Bender, Jonathan W Berry, Martín

Farach-Colton, Rob Johnson, Thomas M Kroeger, and Cynthia A Phillips. 2020.

Timely reporting of heavy hitters using external memory. in ACM SIGMOD
(2020).

[34] David MW Powers. 1998. Applications and explanations of Zipf’s law. in EMNLP-
CoNLL (1998).

[35] Alex Rousskov and Duane Wessels. 2004. High-performance benchmarking with

Web Polygraph. Software: Practice and Experience 34, 2 (2004), 187–211.
[36] Rana Shahout, Roy Friedman, and Ran Ben Basat. 2023. Together is Better: Heavy

Hitters Quantile Estimation. in ACM SIGMOD (2023).

[37] Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gao-

gang Xie, Weizhe Zhang, and Minlan Yu. 2024. BitMatcher: Bit-level Counter

Adjustment for Sketches. in IEEE ICDE (2024).

[38] Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.

2023. Cuckoo Counter: Adaptive Structure of Counters for Accurate Frequency

and Top-k Estimation. IEEE/ACM Transactions on Networking (2023).

[39] Lu Tang, Qun Huang, and Patrick PC Lee. 2019. Mv-sketch: A fast and com-

pact invertible sketch for heavy flow detection in network data streams. IEEE
INFOCOM (2019).

[40] Lu Tang, Qun Huang, and Patrick PC Lee. 2020. A fast and compact invert-

ible sketch for network-wide heavy flow detection. IEEE/ACM Transactions on
Networking 28, 5 (2020), 2350–2363.

[41] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item

estimation. in ACM SIGMOD (2018).

[42] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos

Idreos, and Tim Kraska. 2022. SNARF: a learning-enhanced range filter. in ACM
VLDB (2022).

[43] Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin

Cui. 2023. JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-

Product Estimation. in ACM SIGMOD (2023).

[44] Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng Chen,

Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. 2022. She: A generic

framework for data stream mining over sliding windows. in ICPP (2022).

[45] Kaicheng Yang, Sheng Long, Qilong Shi, Yuanpeng Li, Zirui Liu, Yuhan Wu, Tong

Yang, and Zhengyi Jia. 2023. Sketchint: Empowering int with towersketch for

per-flow per-switch measurement. IEEE Transactions on Parallel and Distributed
Systems (2023).

[46] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-

wide measurements. in ACM SIGCOMM (2018).

[47] Minlan Yu. 2019. Network telemetry: towards a top-down approach. in ACM
SIGCOMM Computer Communication Review 49, 1 (2019), 11–17.

[48] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-

ment with OpenSketch. in USENIX NSDI (2013).
[49] Hailin Zhang, Zirui Liu, Boxuan Chen, Yikai Zhao, Tong Zhao, Tong Yang, and

Bin Cui. 2024. CAFE: Towards Compact, Adaptive, and Fast Embedding for

Large-scale Recommendation Models. in ACM SIGMOD (2024).

[50] Yinda Zhang, Peiqing Chen, and Zaoxing Liu. 2024. {OctoSketch}: Enabling
{Real-Time}, Continuous Network Monitoring over Multiple Cores. in USENIX
NSDI (2024).

[51] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS:

Adaptive Memory Layout Organization of Sketch Slots for Fast and Accurate

Data Stream Processing. in ACM SIGKDD (2021).

[52] Fuheng Zhao, Punnal Ismail Khan, Divyakant Agrawal, Amr El Abbadi, Arpit

Gupta, and Zaoxing Liu. 2023. Panakos: Chasing the Tails for Multidimensional

Data Streams. in ACM VLDB (2023).

[53] Yikai Zhao, Wenchen Han, Zheng Zhong, Yinda Zhang, Tong Yang, and Bin Cui.

2023. Double-anonymous sketch: Achieving fairness for finding global top-k

frequent items. in ACM SIGMOD (2023).

[54] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. 2021.

Burstsketch: Finding bursts in data streams. in ACM SIGMOD (2021).

[55] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve

Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream

processing. in ACM SIGMOD (2018).

[56] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, Yangyang Wang, Mingwei

Xu, and Jianping Wu. 2020. Newton: Intent-driven network traffic monitoring.

in ACM CoNEXT (2020).

http://www.caida.org/data/overview/
http://burtleburtle.net/bob/hash/evahash.html
https://github.com/HeavyLocker/HeavyLockerSketch
https://github.com/HeavyLocker/HeavyLockerSketch

HeavyLocker: Lock Heavy Hitters in Distributed Data Streams KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Appendix
A Pseudo-Code

Algorithm 1: Insert(𝑒)
Input: an item 𝑒

1 𝜃 is the heavy hitter threshold (usually ≤ 0.1%, also the

dynamic lock threshold);

2 𝑖 = ℎ𝑎𝑠ℎ(𝑒); 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 + +;
3 if 𝐵 [𝑖] [0] .𝑐𝑛𝑡 ≥ 𝑖𝑡𝑒𝑚𝑛𝑢𝑚 × 𝜃 then
4 𝐵 [𝑖] .𝑙𝑜𝑐𝑘 = 1;

5 end
6 else
7 𝐵 [𝑖] .𝑙𝑜𝑐𝑘 = 0;

8 end
9 for 𝑗 = 𝑑 − 1 to 0 do
10 if 𝐵 [𝑖] [𝑗] .𝑖𝑑 == 𝑒.𝑘𝑒𝑦 then
11 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 + +;
12 Swap 𝐵 [𝑖] [𝑗] and 𝐵 [𝑖] [𝑗 + 1] when necessary to

maintain order in the bucket;

13 return;
14 end
15 else if 𝐵 [𝑖] [𝑗] is empty then
16 𝐵 [𝑖] [𝑗] .𝑖𝑑 = 𝑒.𝑘𝑒𝑦;

17 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 = 1;

18 return;
19 end
20 end
21 if 𝐵 [𝑖] .𝑙𝑜𝑐𝑘 == 0 then
22 𝑅𝐴𝑃_𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝐵 [𝑖] [0], 𝑒);
23 end
24 Function RAP_Replacement(𝐵 [𝑖] [𝑗], 𝑒):
25 if (𝑟𝑎𝑛𝑑 () % (𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 + 1)) == 0 then
26 𝐵 [𝑖] [𝑗] .𝑖𝑑 = 𝑒.𝑘𝑒𝑦;

27 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 + +;
28 end

Algorithm 2: Query()
Output: A vector containing all heavy hitters

1 𝜃 is the heavy hitter threshold;

2 𝑁 is the sum of frequencies of all items in the data stream;

3 𝑣𝑒𝑐𝑡𝑜𝑟 ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ 𝑎𝑛𝑠;
4 for 𝑖 = 1 to𝑤 do
5 for 𝑗 = 0 to 𝑑 − 1 do
6 if 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡 ≥ 𝜃 × 𝑁 then
7 𝑎𝑛𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (⟨𝐵 [𝑖] [𝑗] .𝑖𝑑, 𝐵 [𝑖] [𝑗] .𝑐𝑛𝑡⟩);
8 end
9 end

10 end
11 return 𝑎𝑛𝑠;

Algorithm 3: Merge(𝑉)
Input: A vector 𝑉 containing 𝑛 HeavyLockers

Output: One merged HeavyLocker

1 𝑛 is the number of HeavyLocker or data stream;

2 𝐻𝑒𝑎𝑣𝑦𝐿𝑜𝑐𝑘𝑒𝑟 𝑟𝑒𝑠𝑢𝑙𝑡 ;

3 𝑆𝑡𝑟𝑒𝑎𝑚𝑆𝑢𝑚𝑚𝑎𝑟𝑦 𝑞;

4 for 𝑣 = 1 to 𝑛 do
5 for 𝑖 = 1 to𝑤 do
6 for 𝑗 = 0 to 𝑑 − 1 do
7 𝑏𝑜𝑜𝑙 𝑝 = 𝑞.𝑓 𝑖𝑛𝑑 (⟨𝐵 [𝑖] (𝑣) [𝑗] .𝑒);
8 if 𝑝 then
9 𝑞.𝑟𝑒𝑙𝑖𝑛𝑘 (𝑝, ⟨𝐵 [𝑖] (𝑣) [𝑗] .𝑒, 𝐵 [𝑖] (𝑣) [𝑗] .𝑐𝑛𝑡⟩);

10 end
11 else
12 𝑞.𝑝𝑢𝑠ℎ(⟨𝐵 [𝑖] (𝑣) [𝑗] .𝑒, 𝐵 [𝑖] (𝑣) [𝑗] .𝑐𝑛𝑡⟩);
13 end
14 end
15 for 𝑘 = 0 to 𝑑 − 1 do
16 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖] (𝑣) [𝑗] .𝑒 = 𝑞.𝑡𝑜𝑝 ().𝑒;
17 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖] (𝑣) [𝑗] .𝑐𝑛𝑡 = 𝑞.𝑡𝑜𝑝 ().𝑐𝑛𝑡 ;
18 𝑞.𝑝𝑜𝑝 ();
19 end
20 end
21 𝑞.𝑐𝑙𝑒𝑎𝑟 ();
22 end
23 return 𝑟𝑒𝑠𝑢𝑙𝑡 ;

B Experiment Setup
B.1 Test Platform

We conducted our experiments using a machine equipped with

an Intel 𝑖7− 9700𝐶𝑃𝑈@3.0𝐺𝐻𝑧 and 16GB DRAM, running Ubuntu

20.04. To mitigate CPU jitter errors, we computed average results

based on 10 runs for each evaluation.

B.2 Datasets
We use 2 kinds of datasets in experiments.

•CAIDADatasets:Weuse the CAIDA trace collected in Equinix-

Chicago monitor from CAIDA [1]. This trace is identical to the one

used in the Elastic Sketch paper. The monitoring period for this

trace was 5 seconds, during which it captured 165K kinds of items

and 2.49M items in total. The largest item observed in this trace

was 17K in size.

• Zipf Datasets (synthetic): We generate a series of synthetic

traces that follow the Zipf [34] distribution using Web Polygraph

[35]. The skewness of the traces ranges from 0.6 to 2.1. Each trace

contains 32.0M items in total. The number of items decreases as the

skewness increases. When the skewness = 0.6, there are 1M kinds

of items; when the skewness = 2.1, there are 10K kinds of items.

The maximum item size ranges from 62 to 2.22M.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Qilong Shi, et al.

B.3 Comparing Algorithms
We implement our HeavyLocker (HL) in C++, and compare our

results with CM sketch+heap (CM) [15], Elastic sketch (ES) [46], MV

Sketch (MV) [40], Unbiased SpaceSaving (USS) [41], and Double-

anonymous Sketch (DAS) [53]. For CM, ES, MV, and DAS, we used

the open-source code in their original paper; For USS, we imple-

mented it by ourselves.

As for the configuration of these methods, we set their data struc-

tures to have a 𝑑𝑒𝑝𝑡ℎ = 4 and use four 32-bit Bob hash functions

[2] for item mapping. In addition, except for exceptional needs

(for example, the counter of the light part of ES is set to 8 bits),

we uniformly set the item ID and counter fields to 32 bits to en-

sure fairness. The optimal parameters of our HeavyLocker will be

introduced later in the following subsection.

When it comes to network-wide heavy hitter detection, we im-

plemented the aggregation functions of the five works mentioned

above and compared them with HeavyLocker’s. For ES and MV,

we implement the aggregation functions mentioned in their source

codes. For DAS and USS, we implement the aggregation function

by merging the buckets rather than the counters, since their codes

lack the discussion of the aggregation algorithm. For CM, we use

sum merging and maximum merging [46] in different scenarios,

just like what ES did to its light part.

B.4 Tasks and Metrics
We perform heavy hitter detection (reporting items whose sizes

are larger than a predefined threshold), and the following metrics

are considered.

Speed: Speed is used to measure the processing speed of the

insertion and is estimated by the algorithm’s running time. It is

estimated by the formula
𝑁
𝑇
, where 𝑁 is the number of items, and

𝑇 is the running time. We use millions of packets per second (Mpps)

to represent throughput. All the experiments are repeated 10 times

to minimize accidental deviations.

AAE: AAE is defined as
1

|𝐸 |
∑

(𝑒𝑖 ∈𝐸) |𝑓𝑖 − ˜𝑓𝑖 |, where 𝑓𝑖 is the real
frequency of item 𝑒𝑖 , ˜𝑓𝑖 is the estimated frequency, and the 𝐸 is the

query set. In heavy hitter detection, the query set is the reporting

set, that is, all heavy hitters reported by each algorithm.

ARE: ARE is defined as
1

|𝐸 |
∑

(𝑒𝑖 ∈𝐸)
| 𝑓𝑖− ˜𝑓𝑖 |

𝑓𝑖
. These parameters

in the formula have the same meaning as in AAE.

Precision: Fraction of true heavy hitters reported over all re-

ported items.

Recall: Fraction of true heavy hitters reported over all true

heavy hitters;

𝐹1 score: 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . 𝐹1 score is an indicator to measure

the comprehensive accuracy of heavy hitter detection.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Statement
	2.2 Related Work
	2.3 Insights about "Lock"

	3 HeavyLocker Algorithm
	3.1 Basic Framework
	3.2 Example of Insertion
	3.3 Optimization 1: Tuning Lock Threshold
	3.4 Optimization 2: Multi-hashing
	3.5 Put Them All Together

	4 Mathematical Analysis
	4.1 Hash Collision Probability
	4.2 Error Bound
	4.3 Optimization of Error
	4.4 Precision Rate
	4.5 Recall Rate

	5 Experimental Results
	5.1 Experiment Setup
	5.2 Parameter Tuning
	5.3 Processing Speed
	5.4 Local Heavy Hitter Detection
	5.5 Scalability of Heavy Hitter Detection
	5.6 Global Heavy Hitter Detection

	6 Conclusion
	References
	A Pseudo-Code
	B Experiment Setup
	B.1 Test Platform
	B.2 Datasets
	B.3 Comparing Algorithms
	B.4 Tasks and Metrics

